Reinforcement Learning
Searching for optimal policies I:
Bellman equations and optimal policies

Mario Martin
Universitat politècnica de Catalunya
Dept. LSI
How to find optimal policies

- Bellman equations for value functions
- Evaluation of policies
- Properties of the optimal policy
- Methods:
 - Dynamic Programming
 - Policy Iteration
 - Value Iteration
 - +[Asynchronous Versions]
 - RL algorithms
 - Q-learning
 - Sarsa
 - TD-learning
Value Functions

• The value of a state is the expected return starting from that state; depends on the agent’s policy:

\[
V_\pi(s) = E_\pi \{ R_t \mid s_t = s \} = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s
\]

• The value of taking an action in a state under policy \(\pi \) is the expected return starting from that state, taking that action, and thereafter following \(\pi \):

\[
Q_\pi(s, a) = E_\pi \{ R_t \mid s_t = s, a_t = a \} = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a
\]
Bellman Equation for a Policy π

The basic idea:

\[
R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4} \ldots
\]

\[
= r_{t+1} + \gamma \left(r_{t+2} + \gamma r_{t+3} + \gamma^2 r_{t+4} \ldots \right)
\]

\[
= r_{t+1} + \gamma R_{t+1}
\]

So:

\[
V^\pi(s) = E_\pi \{ R_t | s_t = s \}
\]

\[
= E_\pi \{ r_{t+1} + \gamma V^\pi(s_{t+1}) | s_t = s \}
\]
Bellman Equation for a Policy π

$$V^\pi(s) = E_\pi \{ R_t | s_t = s \}$$

$$= E_\pi \{ r_{t+1} + \gamma V^\pi(s_{t+1}) | s_t = s \}$$

Or, without the expectation operator:

$$V^\pi(s) = \sum_{s'} P_{ss'}^{\pi(s)} \left[R_{ss'}^{\pi(s)} + \gamma V^\pi(s') \right] \quad \text{(generic)}$$

$$V^\pi(s) = \sum_{s'} T(s, \pi(s), s') \left[r(s, \pi(s), s') + \gamma V^\pi(s') \right]$$

$$V^\pi(s) = \sum_{s'} T(s, \pi(s), s') r(s, \pi(s), s') + \sum_{s'} T(s, \pi(s), s') [\gamma V^\pi(s')]$$

$$V^\pi(s) = r(s, \pi(s), s') + \gamma V^\pi(s') \quad \text{(deterministic environment)}$$
Bellman Equation for a Policy π

- When we are using estimations of the values, we call TD error to

\[TDerror(s) = V^\pi(s) - \sum_{s'} T(s, \pi(s), s') \left[r(s, \pi(s), s') + \gamma V^\pi(s') \right] \]
Value Functions

• The value of a state is the expected return starting from that state; depends on the agent’s policy:

State-value function for policy π:

$$V^\pi(s) = E_\pi \{ R_t \mid s_t = s \} = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\}$$

• The value of taking an action in a state under policy π is the expected return starting from that state, taking that action, and thereafter following π:

Action-value function for policy π:

$$Q^\pi(s, a) = E_\pi \{ R_t \mid s_t = s, a_t = a \} = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\}$$
Q-value Bellman Equation

The basic idea:

Follow policy

\[R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4} \cdots \]

\[
= r_{t+1} + \gamma \left(r_{t+2} + \gamma r_{t+3} + \gamma^2 r_{t+4} \cdots \right)
\]

\[
= r_{t+1} + \gamma R_{t+1}
\]

Action a

So:

\[
Q^\pi(s,a) = E_\pi \left\{ R_t \mid s_t = s, a_t = a \right\}
\]

\[
= E_\pi \left\{ r_{t+1} + \gamma V^\pi(s_{t+1}) \mid s_t = s, a_t = a \right\}
\]
Q-value Bellman Equation

\[Q^\pi(s, a) = E_\pi \{ R_t | s_t = s, a_t = a \} \]
\[= E_\pi \{ r_{t+1} + \gamma V^\pi(s_{t+1}) | s_t = s, a_t = a \} \]

Or, without the expectation operator:

\[Q^\pi(s, a) = \sum_{s'} P^a_{ss'} \left[R^a_{ss'} + \gamma V^\pi(s') \right] \] (generic)

\[Q^\pi(s, a) = \sum_{s'} T(s, a, s') \left[r(s, a, s') + \gamma V^\pi(s') \right] \]

\[Q^\pi(s, a) = \sum_{s'} T(s, a, s') r(s, a, s') + \sum_{s'} T(s, a, s') \left[\gamma V^\pi(s') \right] \]

\[Q^\pi(s, a) = r(s, a, s') + \gamma V^\pi(s') \] (deterministic environment)
Q-value Bellman Equation

- When we are using estimations of the values, we call TD error to

\[
TD_{\text{error}}(s, a) = Q^\pi(s, a) - \sum_{s'} T(s, a, s') \left[r(s, a, s') + \gamma V^\pi(s') \right]
\]
Calculation of value functions for a given policy (policy evaluation)

Policy Evaluation: for a given policy π, compute the state-value function V^π

Recall: State-value function for policy π:

$$V^\pi (s) = E_\pi \{ R_t \mid s_t = s \} = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\}$$

First way: Solve a set of linear equations

Bellman equation for V^π:

$$V^\pi (s) = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V^\pi (s') \right]$$

--- a system of $|S|$ simultaneous linear equations
Iterative Method for policy evaluation

Second way: iterative method (convergence proved)

\[V_0 \rightarrow V_1 \rightarrow \cdots \rightarrow V_k \rightarrow V_{k+1} \rightarrow \cdots \rightarrow V^\pi \]

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

\[
V_{k+1}(s) \leftarrow \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V_k(s') \right]
\]
Iterative Policy Evaluation

Input π, the policy to be evaluated
Initialize $V(s) = 0$, for all $s \in S^+$
Repeat
 $\Delta \leftarrow 0$
For each $s \in S$:
 $v \leftarrow V(s)$
 $V(s) \leftarrow \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V(s')]$
 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$
until $\Delta < \theta$ (a small positive number)
Output $V \approx V^\pi$
Policy space: Ordering and properties of the optimal policy

• We define a partial ordering of policies “≤” in the following way:

\[\pi' \leq \pi \iff V^{\pi'}(s) \leq V^{\pi}(s) \quad \forall s \]

• The optimal policy (\(\pi^* \))
 – Could be not unique [but all share same value function \(V^* = V^{\pi^*} \)]
 – Some are deterministic
 [in no deterministic policies \(\pi(s,a) \) means prob. of taking action \(a \) in state \(s \)]
 – All share the same value function
 – Optimal policies are the greedy policies with respect to \(V^* \) or \(Q^* \)
Greedy policies

• A policy is greedy with respect to a value function if it is optimal according to that value function for a one-step problem.
Obtaining Greedy Policies from Values

• Policy derived from values

\[\pi(s_i) = \arg \max_{a \in A} \left(\sum_j T(s_i, a, s_j) \left(r(s_j) + \gamma V(s_j) \right) \right) \]

\[\pi(s_i) = \arg \max_{a \in A} Q(s_i, a) \]

• Relation between \(V \) and \(Q \) values in Greedy policies

\[V^\pi(s_t) = \max_{a \in A} Q^\pi(s_t, a) \]
Reinforcement Learning
Searching for optimal policies II:
Dynamic Programming

Mario Martin
Universitat politècnica de Catalunya
Dept. LSI
Two Methods for Finding Optimal Policies

• Bellman equations to organize the search for the policies in a Markovian world

• Dynamic Programming
 – Policy iteration
 – Value iteration
Policy Improvement

Suppose we have computed V^π for a deterministic policy π.

For a given state s, would it be better to do an action $a \neq \pi(s)$?

The value of doing a in state s is:

$$Q^\pi(s, a) = E_\pi \left\{ r_{t+1} + \gamma V^\pi(s_{t+1}) \mid s_t = s, a_t = a \right\}$$

$$= \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V^\pi(s') \right]$$

It is better to switch to action a for state s if and only if

$$Q^\pi(s, a) > V^\pi(s)$$
Policy Improvement Cont.

Do this for all states to get a new policy π' that is **greedy** with respect to V^π:

$$\pi'(s) = \arg\max_a Q^\pi(s, a)$$

$$= \arg\max_a \sum_{s'} P^a_{ss'} \left[R^a_{ss'} + \gamma V^\pi(s') \right]$$

Then $V^{\pi'} \geq V^\pi$
Policy Iteration

\[\pi_0 \rightarrow V^{\pi_0} \rightarrow \pi_1 \rightarrow V^{\pi_1} \rightarrow \cdots \pi^* \rightarrow V^* \rightarrow \pi^* \]

- Policy evaluation
- Policy improvement
 - "greedification"
Policy Iteration

Choose an arbitrary policy π
repeat
 For each state (compute the value function)
 \[
 V^\pi(s) := \sum_{s' \in S} \left(r(s') + \gamma V^\pi(s') \right) T(s, \pi(s), s')
 \]
 For each state (improve the policy at each state)
 \[
 \pi'(s) := \arg\max_{a \in A} \left(\sum_{s' \in S} \left(r(s') + \gamma V^\pi(s') \right) T(s, a, s') \right)
 \]
 $\pi := \pi'$
until no improvement is obtained
Policy Iteration

• Guaranteed to improve in less iterations than the number of states [Hooward 1960]
• Relaxation can be done in parallel and asynchronously (not complete sweeps at each iteration)
Value Iteration

Recall the **full policy-evaluation backup**:

\[
V_{k+1}(s) \leftarrow \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V_k(s') \right]
\]

Here is the **full value-iteration backup**:

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V_k(s') \right]
\]
Value Iteration Cont.

Initialize V arbitrarily, e.g., $V(s) = 0$, for all $s \in S^+$

Repeat

\[\Delta \leftarrow 0 \]

For each $s \in S$:

\[\nu \leftarrow V(s) \]

\[V(s) \leftarrow \max_a \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V(s')] \]

\[\Delta \leftarrow \max(\Delta, |\nu - V(s)|) \]

until $\Delta < \theta$ (a small positive number)

Output a deterministic policy, π, such that

\[\pi(s) = \arg\max_a \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V(s')] \]
Value Iteration

• **Proved by Singh and Yee:**

\[
\sup \left| V^* - \hat{V} \right| \leq \varepsilon \quad \Rightarrow \quad \sup \left| V^* - \hat{V} \right| \leq \gamma \varepsilon
\]

• Error is decreased by a factor of \(\gamma \) on every iteration
Notes About Value Iteration

- Relaxation can be done
 - Asynchronously
 - In parallel
Summary

• Bellman eqs. for value functions
• Optimal policies are greedy policies
• How greedy policies can be derived from value functions
• How a policy can be evaluated
• How to iteratively improve the policy (policy iteration)
• How to calculate the value function for the optimal policy without explicit representation of policy (value iteration)
Method for Learning Behaviors

I- Learn a world model

II- Find the optimal policy with previous algorithms

III- Execute the policy forever
Problems

- A world model is needed (transitions and reinforcements)
- Large amount of resources involved before improving the policy
- What happens when the environment is changing?

ARE ALL THESE CONSTRAINTS NECESSARY?
Reinforcement Learning
Searching for optimal policies III:
RL algorithms

Mario Martin
Universitat politècnica de Catalunya
Dept. LSI
RL algorithms

• Active learning (learning by doing)
RL algorithms

• Take advantage of asynchronous updates
 (limit case: update only one state - the current state)

• Experiences allow a sampling of the model
 (transition probabilities are indirectly estimated while interacting with the environment)

• Advantages
 – No model of the world needed
 – Good policies before learning the optimal policy
 – Reacts to changes in the environment
Dynamic Programming backup

\[V(s_t) \leftarrow E_{\pi} \left\{ r_{t+1} + \gamma V(s_t) \mid s_t = s, \pi \right\} \]
Temporal Difference backup

\[V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)] \]
Temporal Difference backup

- Assume

\[\mathcal{R}(s) = \frac{1}{\text{# times visited state} + 1} \]

\[V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)] \]

First experiment \(s_1 \) ! \(s_3 \)

\[V(s_1) \leftarrow 0 + \alpha [r_3 + \gamma V(s_3) - 0] \]

\[V(s_1) \leftarrow 0 + 1 [r_3 + \gamma V(s_3) - 0] = r_3 + \gamma V(s_3) \]
Temporal Difference backup

\[V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)] \]

\[\alpha = \frac{1}{\text{#times visited state} + 1} \]

First experiment \(s_1 \rightarrow s_3 \)

Second experiment \(s_1 \rightarrow s_2 \)

\[V(s_1) \leftarrow r_3 + \gamma V(s_3) + \alpha [r_2 + \gamma V(s_2) - r_3 + \gamma V(s_3)] \]

\[V(s_1) \leftarrow r_3 + \gamma V(s_3) + \frac{1}{2} [r_2 + \gamma V(s_2) - r_3 + \gamma V(s_3)] \]

\[V(s_1) \leftarrow \frac{1}{2} [r_2 + \gamma V(s_2)] + \frac{1}{2} [r_3 + \gamma V(s_3)] \]
Temporal Difference backup

\[V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)] \]

\[\mathbb{R}(s) = \frac{1}{\text{# times visited state} + 1} \]

First experiment \(s_1 \rightarrow s_3 \)
Second experiment \(s_1 \rightarrow s_2 \)
Third experiment \(s_1 \rightarrow s_3 \)

\[V(s_1) \leftarrow \frac{1}{2} [r_2 + \gamma V(s_2)] + \frac{1}{2} [r_3 + \gamma V(s_3)] + \alpha \left[r_3 + \gamma V(s_3) - \left(\frac{1}{2} [r_2 + \gamma V(s_2)] + \frac{1}{2} [r_3 + \gamma V(s_3)] \right) \right] \]

\[V(s_1) \leftarrow \frac{1}{2} [r_2 + \gamma V(s_2)] + \frac{1}{2} [r_3 + \gamma V(s_3)] + \frac{1}{3} \left[r_3 + \gamma V(s_3) - \left(\frac{1}{2} [r_2 + \gamma V(s_2)] + \frac{1}{2} [r_3 + \gamma V(s_3)] \right) \right] \]

\[V(s_1) \leftarrow \frac{1}{2} [r_2 + \gamma V(s_2)] + \frac{1}{2} [r_3 + \gamma V(s_3)] + \frac{1}{3} \left[r_3 + \gamma V(s_3) - \frac{1}{6} [r_2 + \gamma V(s_2)] - \frac{1}{6} [r_3 + \gamma V(s_3)] \right] \]

\[V(s_1) \leftarrow \left(\frac{1}{2} - \frac{1}{6} \right) [r_2 + \gamma V(s_2)] + \left(\frac{1}{2} + \frac{1}{3} - \frac{1}{6} \right) [r_3 + \gamma V(s_3)] = \frac{1}{3} [r_2 + \gamma V(s_2)] + \frac{2}{3} [r_3 + \gamma V(s_3)] \]
Temporal Difference backup

\[V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)] \]

\[\mathcal{R}(s) = \frac{1}{\text{# times visited state} + 1} \]

After infinite experiments,

\[V(s_1) \leftarrow T(s_1, a, s_2) [r_2 + \gamma V(s_2)] + T(s_1, a, s_3) [r_3 + \gamma V(s_3)] \]

That is,

\[V(s_t) \leftarrow E_{\pi} \{ r_{t+1} + \gamma V(s_t) \mid s_t = s, a \} \]

The same that DP algorithms calculated but now without knowing transition probabilities!
Q-function backup

\[V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right] \]

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - Q(s_t, a_t) \right] \]
Q-function backup

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - Q(s_t, a_t) \right] \]

Relation between \(V \) and \(Q \) values in Greedy policies:

\[V^\pi (s_t) = \max_{a \in A} Q^\pi (s_t, a) \]

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right] \]

By the way… This is called TDError
Q-function backup

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right] \]

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right] \]

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right] \]

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right] \]
RL algorithms

• TD(0) algorithms
 – Q-learning
 – Sarsa

• TD(1) algorithms
 – Monte Carlo

• General TD-learning
 – n-steps TD estimators
 – TD(λ)
Q-learning

• Based on Q-backups

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right] \]
Q-Learning: Off-Policy TD (first version)

\[
Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right]
\]

Initialize \(Q(s,a) \) and \(\pi(s) \) arbitrarily
Set agent in random initial state \(s \)
repeat
 \(a := \pi(s) \)
 Take action \(a \), get reinforcement \(r \) and perceive new state \(s' \)
 \[
 Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)
 \]
 \(\pi(s) \leftarrow \arg \max_{a \in A} Q(s, a) \)
 \(s' := s' \)
until convergence in policy (or repeat forever)
Need for Exploratory actions

- Problems:
 - Asynchronous under the assumption that all states are visited
 - But following always a policy, some states may remain never visited
 - High possibility of being stuck with a non optimal policy in stochastic environments
 - one only state and bad luck in first estimate
 - to maximize the action in one state we must test periodically the values of the neighbor states
Exploration

• It is necessary not to follow always the policy
 – Exploration (taking a non policy action)

• But it is necessary to follow the policy for estimating the values (policy iteration)
 – Exploitation (taking a policy action)

• We must search for a balance between them
Exploration

• ε-greedy action-selection
 – Choose a greedy action with probability $(1-\varepsilon)$ and a random action with probability ε

• Softmax action-selection

$$P_s(a) = \frac{e^{Q(s,a)/T}}{\sum_{b \in A} e^{Q(s,b)/T}}$$

T is a parameter called Boltzmann Temperature that usually is decreased while the learning life of the agent.
Initial Values

• Other ways to avoid exploration:
 – Initializing Q values optimistically, we force an exploration procedure that (for static environments) allow us to eliminate the explicit exploration procedure
Q-Learning: Off-Policy TD (right version)

\[
Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right]
\]

Initialize \(Q(s, a) \) and \(\pi(s) \) arbitrarily
Set agent in random initial state \(s \)
repeat

Select action \(a \) depending on the action-selection procedure, the Q values (or the policy), and the current state \(s \)
Take action \(a \), get reinforcement \(r \) and perceive new state \(s' \)

\[
Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)
\]

\[
\pi(s) \leftarrow \arg \max_{a \in A} Q(s, a)
\]
\(s := s' \)
until convergence in policy (or repeat forever)
Learning rate parameter: α

- α is used for weighting different experiences
- In stationary environments:

$$\alpha(s) = \frac{1}{\text{number of visits to state } s}$$

In this case, the Q and V values are the exact arithmetic average of the experiences
Learning rate parameter: α

- In non-stationary environments:
 - α takes a constant value (usually on the range 0.3..0.5)
- Constant values decay relative influence of past experiences
- As higher the value, higher the learning (more influence of recent experiences in the estimations)
Convergence for Q-learning

\[\lim_{t \to \infty} Q(s, a) = Q^*(s, a) \]

Conditions

- All states are infinitely visited and each action is executed an infinite number of times

\[\sum_{i=0}^{\infty} \alpha_s = \infty \quad \text{but} \quad \sum_{i=0}^{\infty} \alpha_s^2 < \infty \]

Watkins & Dayan 1992

- At each “Q-interval” the maximum error is decreased in a \(\gamma \) factor (similar to Value Iteration)
On-line versus Off-line

• On-line learning: Values learned are for the current policy used
• Off-line learning: Values learned for one policy while following another one.
• Q-learning is Off-line learning: Values are learned for the greedy policy, not for the ε-greedy policy used while learning
• Sarsa is On-line learning
Sarsa backup: on-policy learning

- Based on Q-backups

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right] \]

- But now we estimate Q values for the current behavior executed:

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right] \]
Sarsa: On-line Q-learning

Initialize $Q(s,a)$ and $\pi(s)$ arbitrarily
Set initial state s
Select action a depending on the action-selection procedure, the Q values (or the policy) and the current state s
repeat
 Take action a, get reinforcement r and perceive new state s'
 $a' :=$ Select action depending on the action-selection procedure, the Q values (or the policy) and the state s'
 \[
 Q(s,a) := Q(s,a) + \alpha \left(r + \gamma Q(s',a') - Q(s,a) \right)
 \]
 $\pi(s) := \arg \max_{a \in A} Q(s,a)$
 $r := r'$; $s := s'$; $a := a'$
until convergence in policy
Differences between Q-learning and Sarsa

- **Q-learning** (optimal path)
 - \(r = -1 \) (after each step)
 - \(r = -100 \) (if she falls in the white area)
 - Deterministic actions but \(\varepsilon \)-greedy selection procedure

- **Sarsa** (safe path)
 - \(r = -1 \) (after each step)
 - \(r = -100 \) (if she falls in the white area)
 - Deterministic actions but \(\varepsilon \)-greedy selection procedure
Differences between Q-learning and Sarsa

\(\varepsilon\)-greedy, \(\varepsilon = 0.1\)