Mario Martin

CS-UPC

March 27, 2025

Goal of this lecture

@ So far we approximated the value or action-value function using
parameters 6 (e.g. neural networks)
Vg ~ V7
Qo(s,a) ~ V7™(s)
@ A policy was generated directly from the value function e.g. using e-

greedy

@ In this lecture we will directly parameterize the policy in a stochastic
setting
mo(als) = Po(als)

and do a direct Policy search

Again on model-free setting

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 1/95

Three approaches to RL

Value Fungtion Policy

Actor
Critic

Value-Based Policy-Based

Value based learning: Implicit policy
@ Learn value function Qy(s, a) and from there infer policy
7(s) = argmax, Q(s, a)
Policy based learning: No value function
@ Explicitly learn policy mg(als) that implicitly maximize
reward over all policies

Actor-Critic learning: Learn both Value Function and Policy

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 2/95

Advantges of Policy over Value approach

o Advantages:

>

vV vyVvYyYy

In some cases, computing Q-values is harder than picking optimal
actions

Better convergence properties

Effective in high dimensional or continuous action spaces
Exploration can be directly controlled

Can learn stochastic policies

@ Disadvantages:

>

>

Typically converge to a local optimum rather than a global optimum
Evaluating a policy is typically data inefficient and high variance

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 3/95

Stochastic Policies

@ In general, two kinds of policies:
» Deterministic policy
a=my(s)
» Stochastic policy
P(als) = ma(als)
@ Nice thing is that they are smoother than greedy policies, and so, we
can compute gradients!

@ Not new: e-greedy is stochastic...

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 4/95

Stochastic Policies

@ In general, two kinds of policies:
» Deterministic policy
a=my(s)
» Stochastic policy
P(als) = ma(als)
@ Nice thing is that they are smoother than greedy policies, and so, we
can compute gradients!
@ Not new: e-greedy is stochastic... but different idea. Stochastic policy
is good on its own, not because it is an approx. of a greedy policy

@ Any example where an stochastic policy could be better than a
deterministic one?

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 4/95

Stochastic Policies when aliased states (POMDPs)

B &

@ The agent cannot differentiate the grey states

@ Consider features of the following form:
¢d(s) = L(wall to d) Vd € {N,E,S, W}
@ Compare value-based RL, using an approximate value function
Qo(s, a) = fy(¢(s, a))
@ To policy-based RL, using a parametrized policy
mo(als) = gy(¢(s a))

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

5/05

Stochastic Policies when aliased states (POMDPs)

— -— l - -

& &

@ Under aliasing, an optimal deterministic policy will either

» move W in both gray states
» move E in both gray states

@ Either way, it can get stuck and never reach the money
@ So it will be stuck in the corridor for a long time

@ Value-based RL learns a deterministic policy (or near deterministic
when it explores)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 6/95

Stochastic Policies when aliased states (POMDPs)

—> > l > -

& e &

@ An optimal stochastic policy will randomly move E or W in gray
states
» mp(move E | wall to N and S) = 0.5
» mp(move W | wall to N and S) = 0.5

@ It will reach the goal state in a few steps with high probability

@ Policy—based RL can learn the optimal stochastic policy

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

7/95

Policy Objective Functions

@ Goal: given policy my(als) with parameters 6, find best 6
@ ... but how do we measure the quality of a policy my?

@ In episodic environments we can use the start value

Ji(0) = V™ (s1)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

9/95

Policy Objective Functions

@ In continuing environments we can use the average value

Jav(8) =D d™(s)V™(s)

S

where d™(s) is stationary distribution of Markov chain for 7y (can be
estimated as the expected number of time steps on s in a randomly
generated episode following 7y divided by time steps of trial)

@ Or the average reward per time-step

Jar(0) = Z d™(s) Z mo(a|s)r(s, a)

S

@ For simplicity, we will mostly discuss the episodic case, but can easily
extend to the continuing / infinite horizon case

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 10/95

Policy optimization

Goal: given policy mp(als) with parameters 6, find best 6
Policy based reinforcement learning is an optimization problem

Find policy parameters 6 that maximize J(6)

Two approaches for solving the optimization problem

» Gradient-free
» Policy-gradient

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 11/95

Subsection 1

Gradient Free Policy Optimization

Goal: given parametrized method (with parameters) to approximate
policy mg(als), find best values for 6

Policy based reinforcement learning is an optimization problem

Find policy parameters 6 that maximize J(0)

Some approaches do not use gradient
Hill climbing

Simplex / amoeba / Nelder Mead
Genetic algorithms

Cross-Entropy method (CEM)
Covariance Matrix Adaptation (CMA)

v

vV vyVvVvyy

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 13 /95

Gradient Free Policy Optimization

Goal: given parametrized method (with parameters) to approximate
policy mg(als), find best values for 6

Policy based reinforcement learning is an optimization problem

Find policy parameters 6 that maximize J(0)

Some approaches do not use gradient
Hill climbing

Simplex / amoeba / Nelder Mead
Genetic algorithms

Cross-Entropy method (CEM)
Covariance Matrix Adaptation (CMA)

v

vV vyVvVvyy

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 13 /95

Cross-Entropy Method (CEM)

@ A simplified version of Evolutionary algorithm
@ Works embarrassingly well in some problems, f.i.
» Playing Tetris (Szita et al., 2006), (Gabillon et al., 2013)
» A variant of CEM called Covariance Matrix Adaptation has become
standard in graphics (Wampler et al., 2009)
@ Very simple idea:
@ From current policy, sample N trials (large)
@ Take the M trials with larger long-term return (we call the elite)
© Fit new policy to behave as in M best sessions
© Repeat until satisfied

@ Policy improves gradually

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 14 /95

https://pdfs.semanticscholar.org/b199/22afc8678a228c780715d50f5a427dc51680.pdf
https://papers.nips.cc/paper/5190-approximate-dynamic-programming-finally-performs-well-in-the-game-of-tetris.pdf
http://grail.cs.washington.edu/projects/animal-morphology/s2009/Optimal_Gait_and_Form_for_Animal_Locomotion.pdf

Tabular Cross-Entropy

Tabular Cross-Entropy Algorithm
Given M (f.i, 20), N (f.i. 200)
Initialize matrix policy m(a|s) = As , randomly
repeat
Sample N roll-outs of the policy and collect for each R;

elite = M best samples
_ [times in M samples took a in s] + A

als) =
m(als) [times in M samples was at s] + A|A]
until convergence

return 7w

Notice! No value functions!

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

15/95

Tabular Cross-Entropy

Some possible problems and solutions:

@ If you were in an state only once, you only took one action and
probabilities become 0/1

@ Solution: Introduction of A\, a parameter to smooth probabilities

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

16 /95

Tabular Cross-Entropy

Some possible problems and solutions:

@ If you were in an state only once, you only took one action and
probabilities become 0/1

@ Solution: Introduction of A\, a parameter to smooth probabilities

@ Due to randomness, algorithm will prefer “lucky” sessions (training on
lucky sessions is no good)

@ Solution: run several simulations with these state-action pairs and
average the results.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 16 /95

Approximated Cross-Entropy Method (CEM)

Approximated Cross-Entropy Method |

Given M (f.i, 20), N (f.i. 200) and function approximation (f.i. NN)
depending on 6
Initialize 8 randomly
repeat
Sample N roll-outs of the policy and collect for each R:
elite = M best samples
0=0+aVv Zs,aeelite |Og 7T9(3|S)}
until convergence
return 7y

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 17 /95

Approximated Cross-Entropy Method (CEM)

@ No Value function involved

@ Notice that best policy is:

arg max log mp(a|s) = arg max mp(als

max Y logmy(als) = argmax [[mo(als)
s,acelite s,acelite

so gradient goes in that direction

@ Intuitively, is the policy that maximizes similarity with behavior of
successful samples [Notice this is Cross-Entropy loss of output of NN
and actions of the elite.]

@ | promised no gradient, but notice that gradient is for the
approximation, not for the rewards of the policy

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 18 /95

Approximated Cross-Entropy Method (CEM)

@ Another popular implementation of CE methods consist is
approximating the policy using a Neural Network where weights have
a value and a standard deviation. It is initialized randomly with large
standard deviation.

@ Repeat until convergence:

© A population of N neural networks are a created from the policy by
sampling the weights from the stochastic neural network

@ Each of the N networks is evaluated and a elite of best M members is
selected.

© Weights of the stochastic neural network are recomputed from
statistics from the Elite

@ Instead of approximating probabilities of action of the elite, we
approximate the weights

@ Simple to implement and effective

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 19/95

Gradient-Free methods

@ Often a great simple baseline to try
@ Benefits

» Can work with any policy parameterizations, including
non-differentiable
» Frequently very easy to parallelize (faster wall-clock training time)

@ Limitations
» Typically not very sample efficient because it ignores temporal structure

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 20/95

Subsection 2

Policy gradient methods

@ Policy based reinforcement learning is an optimization problem
@ Find policy parameters 6 that maximize V7™
@ We have seen gradient-free methods, but greater efficiency often
possible using gradient in the optimization
@ Pletora of methods:
» Gradient descent
» Conjugate gradient
» Quasi-newton
@ We focus on gradient ascent, many extensions possible

@ And on methods that exploit sequential structure

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 22 /95

Policy gradient differences wrt Value methods

With Value functions we use Greedy updates:

0 = argmaxE,, [Q" (s, a)]
0

small change large change small change large change
T 2

o v v v

Potentially unstable learning process with large policy jumps because
arg max is not differentiable

@ On the other hand, Policy Gradient updates are:
0J(0)
O = O —
+ a 20

@ Stable learning process with smooth policy improvement

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 23 /95

Policy gradient method

@ Define J(0) = J™ to make explicit the dependence of the evaluation
policy on the policy parameters

@ Assume episodic MDPs

@ Policy gradient algorithms search for a local maximum in J(6) by
ascending the gradient of the policy, w.r.t parameters 6

VO = aVyJ(0)

@ Where VyJ(0) is the policy gradient and « is a step-size parameter

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 24 /95

Computing the gradient analytically

@ We now compute the policy gradient analytically

o Assume policy is differentiable whenever it is non-zero

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 25/95

Computing the gradient analytically

We now compute the policy gradient analytically
Assume policy is differentiable whenever it is non-zero

and that we know the gradient Vymy(als)

Denote a state-action trajectory (or trial) 7 as

T = (S0, a0, 11, S1,a1, 2, ... ST—1,aT—1, T, ST)

Define long-term-reward to be the sum of rewards for the trajectory

(R(7))

It works also for discounted returns.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 25/95

Computing the gradient analytically

@ The value of the policy J() is:

J(0) = Ex, [R(7]—ZPTW
where P(7]6) denotes the probability of trajectory 7 when following
policy my
@ Notice that sum is for all possible trajectories

@ In this new notation, our goal is to find the policy parameters theta)
that:

arg max J(0) = arg max Z P(T|0)R(T)
0 -

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 26 /95

[Log-trick: a convenient equality|

@ In general, assume we want to compute V log f(x) :
Vig f(x) = — VF(x)
e

f(x)Vlogf(x) = Vf(x)

@ It can be applied to any function and we can use the equality in any
direction

The term Vfg:)() is called likelihood ratio and is used to analytically
compute the gradients

Btw. Notice the caveat... Assume policy is differentiable whenever it
is non-zero.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 27 /95

Computing the gradient analytically

@ In this new notation, our goal is to find the policy parameters 6 that:

arg max J(0) = arg max Z P(T|0)R(T)
0 -

@ So, taken the gradient wrt 6

VoJ(0) = Vo> P(r|0)R(7)

= Y VoP(r0)R(r)

= Y P(r|0)R(r) Vg log P(7]0)

T

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

28/95

Computing the gradient analytically

@ Goal is to find the policy parameters 6 that:

arg max J(6) = arg max Z P(7|0)R(T)
0 -

@ So, taken the gradient wrt 6

VoJ(0) =D P(7|0)R(7)Vglog P(7|6)

@ Of course we cannot compute all trajectories...

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

29/95

Computing the gradient analytically

@ Goal is to find the policy parameters 6 that:

arg max J(6) = arg max Z P(7|0)R(T)
0 -

@ So, taken the gradient wrt 6

V(0 ZP T|0)R(T)V g log P(7]0)

@ Of course we cannot compute all trajectories...but we can sample m
trajectories because of the form of the equation

m
VoJ(0) =~ (1/m) Z R(7i)Vglog P(7|0)
i=1

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 29 /95

Computing the gradient analytically: at last!

@ Sample m trajectories:

m

VoJ(0) =~ (1/m) > R(7:)Vg log P(i|0)
i—1

@ However, we still have a problem, we don’t know the how to compute
Vo log P(7|0)
@ Fortunately, we can derive it from the stochastic policy

T-1
Volog P(T|0) = Vylog lu(so) H 7r9(a,-]s,-)P(s,-+1|s,-,a,-)]
i=0

T-1
= Vy [Iog p(s0) + D logmg(ailsi) + log P(siv1lsi, ai)]

i=0
T-1
= Z VQ Iogm;(a;\s,-)
i=0 —

No dynamics model required!

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 30/95

Computing the gradient analytically

@ We assumed at the beginning that policy is differentiable and that we
now the derivative wrt parameters 6

@ So, we have the desired solution:

VoJ(0) = (1/m) i(Y Vologﬂe(aj!51)>
(

i=1 Sj,aj)GT,'

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 31/95

Differentiable policies? Deep Neural Network

@ A very popular way to approximate the policy is to use a Deep NN
with soft-max last layer with so many neurons as actions.

@ In this case, use autodiff of the neural network package you use! In
pytorch:

loss = - torch.mean(log outputs * R)
where prob_outputs is the output layer of the DNN and R the long
term reward.
@ Backpropagation is implemented in pytorch and will do the work for
you!
@ Common approaches for stochastic policies:

» Last softmax layer in discrete case
» Last layer with i and log o in continuous case

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 32/95

SoftMax Probabilities
or
actions

H Define diagonal
multivariate
S—» L1 L2 |Ln Gaussian
probability
— distribution
(@2

Continuous action space

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 35/95

Continuous action space

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 36/95

H Define diagonal
multivariate
S—» L1 L2 .. |Ln Gaussian
probability
— distribution
O

Continuous action space

S |1 2| . |Ln

Define diagonal
multivariate
Gaussian
probability
distribution

Yes!!!l Continuous actions! Big improvement in applicability of RL!

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC

March 27, 2025

37/95

Vanilla Policy Gradient

Vanilla Policy Gradient

Given architecture with parameters 6 to implement 7y
Initialize # randomly
repeat
Generate episode {s1,a1,r,...ST_1,aT-1,IT,ST} ~ Tp
Get R + long-term return for episode
for all time stepst=1to T — 1 do
0 < 6+ aVglogmg(at|s:)R
end for
until convergence

Substitute Vg log mg(a¢|s:) with appropriate equation.
Btw, notice no explicit exploration mechanism needed when policies are

stochastic (all on policy)!

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 38/95

Vanilla Policy Gradient

@ Remember:

m T-1
Vod(0) ~ (1/m) Y R(7i) > Ve logmy(ails;)
i=1 i=0

@ Unbiased but very noisy
@ Fixes that can make it practical

» Temporal structure
» Baseline

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

39/95

Subsection 3

REINFORCE algorithm

@ An deeper analysis shows we can also consider rewards-to-go for
states instead of rewards of whole trajectory, adding temporal
information to the algorithm and improving learning.

REINFORCE algorithm

Given architecture with parameters 6 to implement 7y
Initialize 6 randomly
repeat
Generate episode {si, a1, r,...ST_1,a7-1,T,ST} ~ Tp
for all time steps t =1to T — 1 do
Get R; < long-term return from step t to T°
0 < 0+ aVglogmy(at|st)Re
end for
until convergence

See proof from Don't Let the Past Distract You if you are not convinced.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 41/95

https://spinningup.openai.com/en/latest/spinningup/extra_pg_proof1.html

REINFORCE algorithm with baseline

@ Monte-Carlo policy gradient still has high variance because R; has a
lot of variance

@ We can reduce variance subtracting a baseline to the estimator
0 «+ 0+ aVylogmg(ar|s:)(Re — b(st))

@ without introducing any bias when baseline does not depend on
actions taken

@ A good baseline is b(s;) = V™ (s;) so we will use that

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 42/95

REINFORCE algorithm with baseline

@ Monte-Carlo policy gradient still has high variance because R; has a
lot of variance

@ We can reduce variance subtracting a baseline to the estimator
0 «+ 0+ aVylogmg(ar|s:)(Re — b(st))

@ without introducing any bias when baseline does not depend on
actions taken

A good baseline is b(s;) = V™ (s;) so we will use that

How to estimate V797?

@ We’'ll use another set of parameters w to approximate

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 42/95

REINFORCE algorithm with baseline

REINFORCE algorithm with baseline

Given architecture with parameters 0 to implement 7y and parameters

w to approximate V
Initialize 8 randomly
repeat
Generate episode {s1,a1,r,...ST_1,aT-1,IT,ST} ~ Tp
for all time stepst =1to T — 1 do
Get R; < long-term return from step t to T
d < Ry — Viu(st)
w < w + 6V, Vi (st)
6 < 0 4+ adVy log mg(a|st)
end for
until convergence

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

43/95

Actor-Critic Architectures

@ Monte-Carlo policy gradient has high variance
@ So we used a baseline to reduce the variance Ry — V/(s¢)

@ Can we do something to speed up learning like we did with MC using
TD?

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 44 /95

Actor-Critic Architectures

Monte-Carlo policy gradient has high variance

So we used a baseline to reduce the variance Ry — V/(s¢)

Can we do something to speed up learning like we did with MC using
TD?

Yes, use different estimators of R; that do bootstrapping f.i.
TD(0), n-steps, etc.

These algorithms are called Actor Critic

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 44 /95

Actor-Critic Architectures

@ The Critic, evaluates the current policy and the result is used in the
policy training

@ The Actor implements the policy and is trained using Policy Gradient
with estimations from the critic

Value
Function

/

state action

reward

;i Environment |__,

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 45 /95

Actor-Critic Architectures

@ Actor-critic algorithms maintain two sets of parameters (like in
REINFORCE with baseline):
Critic parameters: approximation parameters w for
action-value function under current policy
Actor parameters: policy parameters 6

@ Actor-critic algorithms follow an approximate policy gradient:

Critic: Updates action-value function parameters w like in
policy evaluation updates (you can apply everything we
saw in FA for prediction)

Actor: Updates policy gradient 6, in direction suggested by
critic

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 46 /95

Actor-Critic Architectures

@ Actor updates are always in the same way:
0 < 0 + aVglog mg(at|st) Gt

where G; is the evaluation of long-term returned by the critic for s;

@ Critic updates are done to evaluate the current policy
W< w + 045V9 VW(atISt)

where ¢ is the estimated error in evaluating the s state and that
implements the kind of bootstrapping done.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 47 /95

Choices

@ The policy gradient has many equivalent forms

VoJ(0) = Er, [Vologme(als) Ry REINFORCE
=Er, [Vglogmy(als)Qu(s, a)] Actor-Critic
=E,, [Vglogmy(a|s)Aw(s,a)]] Advantage Actor-Critic
=Er, [Vglogmy(als)d] TD Actor-Critic
=Er, [Volog mg(als)Acat] Generalized Actor Critic

@ Each leads a stochastic gradient ascent algorithm

@ Critic uses policy evaluation (e.g. MC or TD learning) to estimate
Q" (s,a), A™(s,a) or V7(s)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 48 /95

Advantage Actor Critic (AAC or A2C)

@ In this critic Advantage value function is used:
AT (s,a) = Q™ (s,a) — V™(s)

@ The advantage function can significantly reduce variance of policy
gradient

@ So the critic should really estimate the advantage function, for
instance, estimating both V(s) and Q using two function
approximators and two parameter vectors:

VTo(s) =~ V,(s) (1)
Q™ (s,a) ~ Qu(s,a) (2)
A(s,a) = Qu(s,a)— Vi(s) (3)

@ And updating both value functions by e.g. TD learning

@ Nice thing, you only punish policy when not optimal (why?) Do you
see resemblance with REINFORCE with baseline?

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 49 /95

Other versions of A2C

@ One way to implement A2C method without two different networks to
estimate Qy (s, a) and V,(s) is to use estimators of Qy (s, a).

@ For instance, TD Advantage estimator:

A" (s,a) = Q™(s,a)— VT(s)
= Eq, [r+yV7(s)]s,a] — V™(s)

@ or MonteCarlo Advantage estimator:

AT (s,a) = Q™ (s,a) — V7(s)
= E,, [R]s,a] — V™(s)

@ In practice these approaches only require one set of critic parameters
v to approximate TD error

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 50 /95

Generalized Advantage Estimator (GAE)

@ Generalized Advantage Estimator (Schulman et al. 2016). [nice
review]

@ Use a version of Advantage that consider weighted average of n-steps
estimators of advantage like in TD():

o0

AGaE = Z()\’Y)tut [rers1 + Vg (sr41) — Vi (ser)]

t'=t

t'-step advantage

@ Used in continuous setting for locomotion tasks

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 51/95

https://arxiv.org/pdf/1506.02438.pdf
https://danieltakeshi.github.io/2017/04/02/notes-on-the-generalized-advantage-estimation-paper/
https://sites.google.com/site/gaepapersupp/

Asyncrhonous Advantage Actor Critic (A3C)

A3C (Mnih et al. 2016) idea: Sample for data can be parallelized
using several copies of the same agent
» use NV copies of the agents (workers) working in parallel collecting
samples and computing gradients for policy and value function
» After some time, pass gradients to a main network that updates actor
and critic using the gradients of all
» After some time the worker copy the weights of the global network

This parallelism decorrelates the agents’ data, so no Experience
Replay Buffer needed

@ Even one can explicitly use different exploration policies in each
actor-learner to maximize diversity

Asynchronism can be extended to other update mechanisms (Sarsa,
Q-learning...) but it works better in Advantage Actor critic setting

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 52/95

https://arxiv.org/pdf/1602.01783.pdf

@ What about exploration in Policy Gradient methods?

Asyncrhonous Advantage Actor Critic (A3C)

What about exploration in Policy Gradient methods?
Policy is stochastic, so naturally it explores

But degree of exploration usually converges too fast

Usually, in the loss function, a term is added that encourages
exploration

This is done computing the Entropy of the policy:

H(r(se))=—> m(als)logm(als)

acA

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 53/95

Subsection 4

Summary

@ The policy gradient has many equivalent forms

VoJ(0) = Ex, [Volog mo(als)Re] REINFORCE
=Er, [Vologmg(als)Qu(s, a)] Actor-Critic
=E., [Vologmg(als)Aw(s,a)]] Advantage Actor-Critic
=Er, [Vglog my(als)d] TD Actor-Critic
=E, [Volog mg(als)Acat] Generalized Actor Critic

@ Each leads a stochastic gradient ascent algorithm

e Critic uses policy evaluation (e.g. MC or TD learning) to estimate
Q™ (s,a),A™(s,a) or V7(s)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 55/95

Compatible Function Approximation: Bias in AC

Approximating the policy gradient with critic can introduce bias

A biased policy gradient may not find the right solution

Luckily, if we choose value function approximation carefully, then we
can avoid bias

If the following two conditions are satisfied:
@ Value function approximator is compatible to the policy

VwQu(s,a) = Vylogmy(als)
@ Value function parameters w minimize the mean-squared error

VwEr, [(Q™(s,a) — Qu(s,a))’] =0

Then the policy gradient is without bias

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 56 /95

Problems with Policy Gradient Directions

@ Goal: Each step of policy gradient yields an updated policy 7’ whose
value is greater than or equal to the prior policy m: VT > ym
@ Several inefficiencies:

» Gradient ascent approaches update the weights a small step in
direction of gradient

» Gradient is First order / linear approximation of the value function’s
dependence on the policy parameterization instead of actual policy?

A policy can often be re—parameterized without changing action probabilities (f.i.,
increasing score of all actions in a softmax policy). Vanilla gradient is sensitive to these
re—parameterizations.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 57 /95

About step size

@ Step size is important in any problem involving finding the optima of
a function

@ Supervised learning: Step too far — next updates will fix it
@ But in Reinforcement learning
» Step too far — bad policy
» Next batch: collected under bad policy
» Policy is determining data collect! Essentially controlling
exploration and exploitation trade o due to particular policy parameters
and the stochasticity of the policy
» May not be able to recover from a bad choice, collapse in performance!

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 58 /95

About step size

@ Step size is important in any problem involving finding the optima of
a function

@ Supervised learning: Step too far — next updates will fix it
@ But in Reinforcement learning
» Step too far — bad policy
» Next batch: collected under bad policy
» Policy is determining data collect! Essentially controlling
exploration and exploitation trade o due to particular policy parameters
and the stochasticity of the policy
» May not be able to recover from a bad choice, collapse in performance!

» Small learning rates do not solve the problem because small changes in
weights can change a lot the policy (distances in weight spaces not
necessarily mean small distances in policies)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 58 /95

Better Policy Gradient Directions: Natural Gradient

A more efficient gradient in learning problems is the natural gradient

It corresponds to steepest ascent in policy space and not in the
parameter space with right step size

Also, the natural policy gradient is parametrization independent

Convergence to a local minimum is guaranteed

It finds ascent direction that is closest to vanilla gradient, when
changing policy by a small, fixed amount

Vigotme(als) = G, 'Vomg(als)

Where Gy is the Fisher information matrix

Gop = Eqr, [Va log mo(a|s) Ve |0gﬂ9(3’5)T}

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 59 /95

Better Policy Gradient Directions: Natural Gradient

(a)*Vanilla’ pohcy gradients (b) Natural pahcy gradlents

5 0.5 5 0.5
=04 < 0.4
§o3 §o03
+2 +2

g 0.2 J \ g 0.2
'_d‘ 0.1 \ 1. '_Q... 0.1
& 00 L5 00

-2 -15 -1.0 -0.5 0.0 -2 -15 -1.0 -0.5 00
Controller gain 6,=k Controller gain 6,=k

Figure: From (Peters et al. 2005)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 60 /95

https://homes.cs.washington.edu/~todorov/courses/amath579/reading/NaturalActorCritic.pdf

Natural Actor Critic (Peters et al 2005)

@ Under linear model modelization of critic:
A™(s,a) = ¢(s,a)Tw
@ Using compatible function approximation,
VwAw(s,a) = Vglogmy(als)
@ The natural policy gradient nicely simplifies,

VoJ(0) = Er,[Vologms(als)A™ (s, a)]
= Eg [V@ log mp(als) Ve |Og7T9(a|S)TW}
= Gyw
VirrJo) = w
@ i.e. update actor parameters in direction of critic parameters

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

61/95

https://homes.cs.washington.edu/~todorov/courses/amath579/reading/NaturalActorCritic.pdf

Problems with Policy gradient methods

@ Step size and Policy gradient directions

@ Data inefficiency:
» We don't have data replay because action should be the one selected
by the current policy
» And policy changes after learning
» (notice the difference with off-policy learning)
» We cannot reuse data which lead to policy inefficiency

@ We don't have anymore the experience Replay. Can we reuse data?

@ Yes! Let's go back to Importance Sampling

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 62 /95

[Importance Sampling (IS) technique]

@ Estimate the expectation of a different distribution w.r.t. the
distribution used to draw samples

Ecp[f(x)] = D p(x)f(x)
_ Zq(X P(X f(x

*

q(x)
- p(x)
_ Ew,[q(x)f()}
~ = p(Xt xt)
- ; q(Xt

where data is sampled using q distribution. That means, we can
estimate E, [f(x)] using distribution q instead of p

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 63 /95

[Importance Sampling (IS) technique]

o Caution:

» Cannot use if g is zero where p is non—zero
» Importance sampling can dramatically increase variance (choose g
wisely, as close to p as possible)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 64 /95

Problems with Policy gradient methods

@ Let's use old policy to collect data

VJ(0) = E(s,,a0)~mp [Vlogmg (ar | st) A(st, ar)]

9 (St> at)

\A A (s,
o | 7o (50.20) ogmg (ar | st) A(st, at)

= E(Snat)’vﬂeo

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 65/95

Problems with Policy gradient methods

@ Let's use old policy to collect data

VJ(0) = E(s,,a0)~mp [Vlogmg (ar | st) A(st, ar)]

9 (St> at)
G (stv at)

= E(St,at)fvﬂgo/d [v |Og iyl (at ‘ St) A (St7 at)‘|

@ Surrogate function to optimize:

7o \(St, @
J(G) = E(St,at)Nﬂ'QOId [MA (St7 af)]

7Tgo/d (St ’ at)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 65/95

@ Cool. We can use now old datal

Problems with Policy gradient methods

@ Cool. We can use now old data!
@ However, we have a problem with Importance Sampling.

@ The expectations are them same, but we are using sampling method
to estimate them and variance is different.

@ That means that we may need to sample more data, if ratio is far
away from 1 (old policy is far from current policy)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 66 /95

TRPO (Schulman et al 2017)

@ Trust Region Policy Optimization (TRPO) maximize parameters that
change the policy increasing advantage in action over wrt. old policy
in proximal spaces to avoid too large step size.

. n mo(at]st) 7
maximize E; | =22 A(se, a
0 b | Tog (acst) (st ar)

subject to B, [KL [mg,, (- | st),m9 (- | s)]] <

@ Under penalizing constraint (using KL divergence of 6 and 6,4) that
ensures improvement of the policy in the proximity (small step size)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 67 /95

https://arxiv.org/pdf/1502.05477.pdf

[Kullback-Leibler divergence (KL Divergence)]

@ Used to compute differences between distributions

Dk (PIIQ) = /p(X) log (p(x)> dx

q(x)
@ Examples:
KL(P|Q) = 500.000 KL(P||Q) = 1099.402
0.200 0.200
0.175 0175
0.150 0.150
0.125 0125
0.100 0.100
0.075 0.075
0.050 0.050
0.025 0.025
0.000 0.000
-100 -75 -50 =25 0.0 25 5.0 75 100 -10.0 -75 -50 -25 0.0 25 5.0 75 100

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 68 /95

TRPO (Schulman et al 2017)

@ In policies Dy :

mi(a|s)

DKL (7T1H7T2) [S] = Z 71'1(8 | S) Iog 7r2(a ‘ 5)

acA
e So:

- & | _mo(arlst) 7
maximize E; {”Goud (af|st)A(5t7 at)}
subject to E;[KL[mg,, (- |st),mo (- | st)]] <0

@ Equivalent to improve the maximum with minimum change in
parameters under the KL divergence measure.

@ It is solved using Natural Gradient (see here for a nice explanation).

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 69 /95

https://arxiv.org/pdf/1502.05477.pdf
https://gebob19.github.io/natural-gradient/

TRPO (Schulman et al 2017)

@ In policies Dy :
D (mallma) [s] = 3" ma(a | 5)log 2 15)
eh m2(a | s)
e So:
i & mo(atlst) A
maximize E; l:WA(St, at)}
subject to E;[KL[mg,, (- |st),mo (- | st)]] <0
@ Equivalent to improve the maximum with minimum change in

parameters under the KL divergence measure.

It is solved using Natural Gradient (see here for a nice explanation).

A lot of other details. See paper for details

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 69 /95

https://arxiv.org/pdf/1502.05477.pdf
https://gebob19.github.io/natural-gradient/

Proximal Policy Optimization (Schulman et al 2017)

@ Proximal Policy Optimization (PPO) inspired in TRPO but simplifies
computation.

@ New goal surrogate function is objective function clipped to limit
changes around the current solution:

LELP(0) = B¢ [min (re(0) A, clip (re(0), 1 — €, 14 €) A¢)]
where

T (at | St)

re(6) = Togg (at | 5t)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 70/95

https://arxiv.org/pdf/1707.06347.pdf

A<

1—e1l

1+e€

LeLr

@ How clipping works:

https://arxiv.org/pdf/1707.06347.pdf

Proximal Policy Optimization (Schulman et al 2017)

@ Simple algorithm:

Algorithm 1 PPO, Actor-Critic Style
for iteration=1,2,... do
for actor=1,2,...,] N do
Run policy 7g,,, in environment for 7 timesteps

Compute advantage estimates A], L Ap
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
001(1 4
end for

@ N actors (in parallel) run in order to get data from old policy (from
few hundred to a few thousand samples). [Notice iid and amount of
data collected |

@ Optimization is done for K (3-10) batches reusing data (notice that
at each iteration r changes!)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 72/95

https://arxiv.org/pdf/1707.06347.pdf

PPO conclusions

@ The clipped objective function prevent the policy from diverging or
becoming unstable. This allows PPO to learn from smaller amounts of
data without overfitting or becoming overly sensitive to noisy samples.

@ Still no use of Experience Replay, so not so sample efficient like
value-based methods.

@ A lot of implementation details to be aware (Engstrom et al 2020)
and The 32 Implementation Details of PPO

@ In recent versions some terms added in the Loss function (entropy
and Bellman Error)

Some videos: Learning to walk in minutes from (Rudder et alt 22)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 73/95

http://arxiv.org/abs/2005.12729
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://leggedrobotics.github.io/legged_gym/
https://arxiv.org/abs/2109.11978

PPO conclusions

@ The clipped objective function prevent the policy from diverging or
becoming unstable. This allows PPO to learn from smaller amounts of
data without overfitting or becoming overly sensitive to noisy samples.

@ Still no use of Experience Replay, so not so sample efficient like
value-based methods.

@ A lot of implementation details to be aware (Engstrom et al 2020)
and The 32 Implementation Details of PPO

@ In recent versions some terms added in the Loss function (entropy
and Bellman Error)

Some videos: Learning to walk in minutes from (Rudder et alt 22)

... Most popular on-policy method and famous nowadays because it
has been used to train ChatGPT!

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 73/95

http://arxiv.org/abs/2005.12729
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://leggedrobotics.github.io/legged_gym/
https://arxiv.org/abs/2109.11978

Subsection 5

DDPG: Deep Determ. PG (Lillicrap et al. 2016)

DDPG is an extension of Q-learning for continuous action spaces.
» Therefore, it is an off-policy algorithm (we can use ER!)

It is also an actor-critic algorithm (has networks Q4 and 7y.)
Uses @ and 7 target networks for stability.

Differently from other critic algorithms, policy is deterministic,

noise added for exploration: a; = my(s;) + € (where ¢ ~ N)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 75/95

https://arxiv.org/pdf/1509.02971.pdf

DDPG: Deep Determ. PG (Lillicrap et al. 2016)

@ @y network is trained using standard loss function:

(s,a,r,s")~

2
LoD = E [(%(s, 3) = (1 + 700 (5, M0, ())]

@ As action is deterministic and continuous (NN), we can easily follow
the gradient in policy network to increase future reward:

max B [Qy(s, 70(s))] = Vo _E [Qs(s,mo(s))]

2 \

Z S a V@T(@()

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 76 /95

https://arxiv.org/pdf/1509.02971.pdf

DDPG: Deep Determ. PG (Lillicrap et al. 2016)

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|¢?) and actor pu(s]0#) with weights 09 and 0#.
Initialize target network @’ and zi’ with weights 82" < 62, g#" « g~
Initialize replay buffer R
for episode = 1, M do
Initialize a random process A for action exploration
Receive initial observation state s;
fort=1,Tdo
Select action a; = pu(s,]6") + N according to the current policy and exploration noise
Execute action a; and observe reward 7, and observe new state 5,41
Store transition (s¢, a4, ¢, $¢41) in R
Sample a random minibatch of N transitions (s;, a;, 75, si4+1) from R
Set yi =1 + 7Q (siq1, ' (si41]6)|69)
Update critic by minimizing the loss: L = % 37, (1; — Q(s;, a;]09))?
Update the actor policy using the sampled policy gradient:

1
Voud = & > VaQ(s,al0%) o=, amu(sn) Von (510”5,

Update the target networks:
69 « 799 4 (1 7)8°
0" 70" 4 (1 7)o"

end for
end for

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 77/95

https://arxiv.org/pdf/1509.02971.pdf

TD3: Twin Delayed DDPG (Fujimoto et al, 2018)

@ Similar to DDPG but with the following changes:

@ Pessimistic Double-Q Learning: It uses two (twin) Q networks and uses
the "pessimistic” one for current state for updating the networks

(s,a,r,s")~

2
lé.D) = E D(%(s, 3) ~ (r 7 min Q. (5 a’(s'»)
@ C(lipped action regularization in loss: noise added like DDPG but noise
bounded to fixed range.
a'(s") = clip (mg,,, (s") + clip(e, —¢, €), aLow, anign) » € ~N(0,0)

© Delayed Policy Updates: Updates of Critic are more frequent than of
policy (fi. 2 or 3 times)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 78/95

https://arxiv.org/pdf/1802.09477.pdf

TD3: Twin Delayed DDPG (Fujimoto et al, 2018)

Algorithm 1 TD3

Initialize critic networks Qg, , 0o, and actor network 7
with random parameters ¢, 62, ¢
Initialize target networks 6} < 61, 04 < 62, ¢' < ¢
Initialize replay buffer B
fort =1to 7 do
Select action with exploration noise a ~ 7y (s) + ¢,
¢ ~ N(0,0) and observe reward r and new state s’
Store transition tuple (s, a,r, s’) in B

Sample mini-batch of N transitions (s, a, r, s") from B
Ty (s')+e €~ clipN(0,5),—c,c)
Y < 7+ yming 2 Qg (s',a)
Update critics §; — argming, N1 > (y—Qp, (s, a))?
if t mod d then
Update ¢ by the deterministic policy gradient:
Vo d (6) = N7' 32 VaQo, (5. @) azry(5) Vo (s)
Update target networks:
0!« 70; + (1 —1)6,
¢ T+ (1—1)¢
end if
end for

Mario Martin (CS-UPC)

ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

79/95

https://arxiv.org/pdf/1802.09477.pdf

SAC: Soft Actor Critic (Haarnoja et al, 2018)

@ DDPG and TD3 are deterministic methods that add noise for
exploration. In SAC, policies are stochastic according to Soft-max:

(%)
76

@ Solution to this criteria are Entropy-regularized policies: we will look
for maximum entropy policies with given data,

m(als) =

I arg max TIE,W li ’yt<R(St+1) +aH (7 (+|st)))1

t=0
where « is the trade-off between reward and entropy and the entropy
of a policy is defined as:

H(r(|s)) = E_[~logn(al)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 80/95

https://arxiv.org/pdf/1801.01290.pdf

SAC: Soft Actor Critic (Haarnoja et al, 2018)

@ However, we cannot apply the soft-max operator in the continuous
space! We need an actor that tries to guess the maximum. So the
goal is, given a Q-value function Q, find the policy that:

eQG(Sh')/a
Zy (St)

@ With some rearrangement (see here) applying the Dy, definition, we
have the loss for the Actor.

Jz(¢) = Es,np lDKL <7T¢ (- |st)
Jn(¢) = Esip [Eatw [alog 7y (at | st) — Qo (st at)]}

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 81/95

https://arxiv.org/pdf/1801.01290.pdf
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/#sac

SAC: Soft Actor Critic (Haarnoja et al, 2018)

@ Let's define value functions in this case:

Q(s,2) = E |31 R(seir)+ad 2 H (n(1)
t=0

So = S,ap — a]
t=1

@ So Bellman equations can be written as:

Q(s,a) = | E [R(s)+7(Q(s,d) + ot (n(|s))]

s'~P.al ~m

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 82/95

https://arxiv.org/pdf/1801.01290.pdf

SAC: Critic loss

Architecture: Networks and loss functions for actor and critic:

@ Q-value functions: Qy, (s, a), Qp,(s, a) (twin like TD3) with Q-target
counterpart
» Let's define the target (Bellman eq.) where a’ is sampled from the
policy:

y(s,a,r,s')=r+~ (min Qy(s',a") —alog W¢(a'\s’))
i=1, i

» Then Loss for the Q-value networks is:

(s,a,r,s’,d)~D

L(@;,D) = E <Q@[(Sa 3) _)/(Sv a, rvs/)>

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 83/95

SAC: Actor loss and Reparametrization trick

@ Policy my(als). Maximize:

E [Q7(s,a) — alogms(als)]

3N7T¢
@ But problematic! because in gradient V4, expectation follow
stochastic 7.

@ Authors use a reparametrizarion trick (see here or here). It can be
done when we define the stochastic 74 as Gaussian by adding
noise to the action:

ag(s, &) = tanh (ug(s) +oy(s) ©€), €~ N(0,1)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 84 /95

http://gokererdogan.github.io/2016/07/01/reparameterization-trick/
https://gabrielhuang.gitbooks.io/machine-learning/content/reparametrization-trick.html

SAC: Reparametrization Trick and Tahn

@ Reparametrization trick solves the problem of applying the gradients:

decoder model decoder model

‘ Deterministic node I
~q(zx) z=p+oQe
. Random node

e TN
60 oo0-

encoder model encoder model

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 85/95

SAC: Reparametrization Trick and Tahn

@ Reparametrization trick solves the problem of applying the gradients:

decoder model decoder model

‘ Deterministic node I
~q(zx) z=p+oQe
. Random node

AN
60 o600
I I
encoder model encoder model

@ Finally, tanh is to set a limit to the actions while having exact values
for (notice problem with Normal distribution and boundaries)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 85/95

SAC: Some comments

@ Now we can rewrite the term as:

E [Q(s,a) — alogmy(als)] =

anvmy,

Q7 (s, 30(s, €)) — arlog mo (3u(s, €)ls)]
@ Now we can optimize the policy according to

max B Qs 30(5:€) - alogns(3(5,€)5)

and we can compute now the gradients:

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025

86/95

Algorithm 1 Soft Actor-Critic

1: Input: initial policy parameters 6, Q-function parameters ¢y, ¢, empty replay buffer D
2: Set target parameters equal to main parameters Guarg1 < @1, Grarg2 < G2
3 repeat

16:
17:

Observe state s and select action a ~ 7y(-|s)

Execute a in the environment

Observe next state s, reward r, and done signal d to indicate whether s is terminal
Store (s,a,r, s, d) in replay buffer D

If ¢ is terminal, reset environment state.

if it’s time to update then

for j in range(however many updates) do
Randomly sample a batch of transitions, B = {(s,a,r,s',d)} from D
Compute targets for the Q functions:

0 0) = 91) (i Qo (5) ~ alogm@))~ ()
=1,
Update Q-functions by one step of gradient descent using

> @Qalsia) =yl s, d) fori=1,2

(s.ars' d)EB

V¢-

Update policy by one step of gradient ascent using

otk Z(mm% s,0(s)) = alog o (@))).

i=1,2
where @g(s) is a sample from 7y(-|s) which is differentiable wrt 6 via the
reparametrization trick.
Update target networks with
Grargi < Phrargi + (1= p)di fori=1,2

end for

end if

18: until convergence

SAC: Some final comments

@ Entropy enforces exploration (see why?), so no need to add noise to
actions.

@ Usually « is fixed as a hyper-parameter or decreases during learning
and is disabled to test performance. Also some heuristic methods to
automatically adjust it (Haarnoja et al, 2018)

State of the art during a lot of time
Very popular in robotics

Very robust in stochastic domains

An extra hyperparameter o

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 88/95

http://arxiv.org/abs/1812.05905
https://sites.google.com/view/soft-actor-critic
https://sites.google.com/view/minitaur-locomotion/
https://danijar.com/project/daydreamer/

SAC: Some final comments

@ Entropy enforces exploration (see why?), so no need to add noise to
actions.

@ Usually « is fixed as a hyper-parameter or decreases during learning
and is disabled to test performance. Also some heuristic methods to
automatically adjust it (Haarnoja et al, 2018)

State of the art during a lot of time
Very popular in robotics
Very robust in stochastic domains

An extra hyperparameter o

Some videos of the paper: Mujoco and Robot

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 88/95

http://arxiv.org/abs/1812.05905
https://sites.google.com/view/soft-actor-critic
https://sites.google.com/view/minitaur-locomotion/
https://danijar.com/project/daydreamer/

SAC: Some final comments

@ Entropy enforces exploration (see why?), so no need to add noise to
actions.

@ Usually « is fixed as a hyper-parameter or decreases during learning
and is disabled to test performance. Also some heuristic methods to
automatically adjust it (Haarnoja et al, 2018)

State of the art during a lot of time
Very popular in robotics
Very robust in stochastic domains

An extra hyperparameter o

Some videos of the paper: Mujoco and Robot
(today we can do it better (Wu et al 2022) using other advanced
techniques).

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 88/95

http://arxiv.org/abs/1812.05905
https://sites.google.com/view/soft-actor-critic
https://sites.google.com/view/minitaur-locomotion/
https://danijar.com/project/daydreamer/

Latest methods in the family

e TQC in (Kuznetsov, 2020) extends SAC to the Distributional
approach to approximate returns and, recently, (Farebrother et al.,
2024) to Distributional losses

e REDQ in (Chen 2021) extends SAC to an ensemble of Q-value
networks and doing several updates of the networks for each
sample (high UTD ratio)from the environment.

@ DroQ in (Hiraoka 2022) modifies REDQ to have dropout Q-functions
and Batch Normalization that simulate the role of the ensemble

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 89/95

https://arxiv.org/abs/2005.04269
https://arxiv.org/abs/2403.03950v1
https://arxiv.org/abs/2403.03950v1
https://arxiv.org/abs/2101.05982
https://openreview.net/forum?id=xCVJMsPv3RT

REDQ (Chen 2021)

~ REDQ (Chen, 2021) is a sample-efficient RL method equipped with
high update-to-data (UTD) ratio and randomized ensemble.
» High UTD ratio: number of Q updates (—) per environment
interaction () is high (e.g., 20 updates per interaction).
» Randomized ensemble: a randomly selected subset (“&3°) of
ensemble (E) is used at the target (Min) in the Q update (—).
s a

reward r, state s REDQ agent

,—' e
\ s
Ensemble .|

Environment

N,
Y

action a

Update Q-functions in ensemble ([IT1]) to precisely predict:
7+ min(Q;(s, @), Q;(s, @) AP
——————

Min

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 90 /95

https://arxiv.org/abs/2101.05982

DroQ (Hiraoka 2022)

» DroQ is a REDQ variant using a small ensemble of dropout Q-functions (&)
in which dropout (and layer normalization () are used
s a

DroQ agent

-7 Weight |

| Dropout | | Dropout |
l ayerNorm | I ayerNorm l

ReLU ReLU

» Q. Why is dropout () needed ?

A. To inject Q-function uncertainty (3) to the target ([Min]), similarly to REDQ.

-

REDQ agent DroQ agent) |~ Weight
Ensemble

T

» Q. Why is layer normalization (|LaverNormJ) needed ?
A. To suppress (‘) the learning instability caused by dropout.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 91/95

https://openreview.net/forum?id=xCVJMsPv3RT

Latest methods in the family

@ TQC in (Kuznetsov, 2020) extends SAC to the Distributional
approach to approximate returns and, recently, (Farebrother et al.
2024) to Distributional losses

e REDQ in (Chen 2021) extends SAC to an ensemble of Q-value
networks and doing several updates of the networks for each sample
from the environment.

e DroQ in (Hiraoka 2022) modifies REDQ to have dropout Q-functions

@ Not so popular neither widely used as SAC.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 92 /95

https://arxiv.org/abs/2005.04269
https://arxiv.org/abs/2403.03950v1
https://arxiv.org/abs/2403.03950v1
https://arxiv.org/abs/2101.05982
https://openreview.net/forum?id=xCVJMsPv3RT

Latest findings (1)

@ (Nikishin et. al 2022) discover tendency to overfitting to earlier
experiences. Proposes to reset the critic network after some time
and learn from the ER and current actor regularly. Combines with
high UTD and n-steps.

@ (Schwarzer et al. 2023) Proposed BBF that combines Deep Learning
techniques (ResNet architecture) with some tricks for efficient RL in
Atari games.

@ (Bhatt et al. 2024) proposes Cross-Q that removes the target
network by stabilizing the learning with BatchNorm layers applied
carefully.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 93/95

https://arxiv.org/abs/2205.07802
https://arxiv.org/abs/2305.19452
https://arxiv.org/abs/1902.05605

Latest findings (I1)

@ (Nauman et al. 2024) BRO proposes bigger critic with a particular
regularized architecture , optimistic estimation of Q-values and
exploration, and higher replay ratios of data from ER.

o (Gallici et al. 2024) PQN removes Experience Replay (data is
collected from parallel environments) and target network (by using
LayerNorm) from DQN. Speeds up learning and it is specially
effective when env. is in GPU or when using RNNs.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 94 /95

https://arxiv.org/abs/2405.16158
https://arxiv.org/abs/2407.04811

Latest findings (I1)

@ (Nauman et al. 2024) BRO proposes bigger critic with a particular
regularized architecture , optimistic estimation of Q-values and
exploration, and higher replay ratios of data from ER.

o (Gallici et al. 2024) PQN removes Experience Replay (data is
collected from parallel environments) and target network (by using
LayerNorm) from DQN. Speeds up learning and it is specially
effective when env. is in GPU or when using RNNs.

@ Some promising techniques and results but not extensively tested and
theory behind is not clear.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 94 /95

https://arxiv.org/abs/2405.16158
https://arxiv.org/abs/2407.04811

Latest findings (I1)

@ (Nauman et al. 2024) BRO proposes bigger critic with a particular
regularized architecture , optimistic estimation of Q-values and
exploration, and higher replay ratios of data from ER.

o (Gallici et al. 2024) PQN removes Experience Replay (data is
collected from parallel environments) and target network (by using
LayerNorm) from DQN. Speeds up learning and it is specially
effective when env. is in GPU or when using RNNs.

@ Some promising techniques and results but not extensively tested and
theory behind is not clear.

@ We have found state of the art generic model-free algorithms for
RL

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 94 /95

https://arxiv.org/abs/2405.16158
https://arxiv.org/abs/2407.04811

Recommended resources

@ Nice review of Policy Gradient Algorithms in Lil'Log blog

@ Good description of algorithms in Spinning Up with implementation
in Pytorch and Tensorflow

@ Understable implementations of Actor Critic methods in
RL-Adventure-2

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC March 27, 2025 95/95

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://spinningup.openai.com/en/latest/user/algorithms.html
https://github.com/higgsfield/RL-Adventure-2

	Policy optimization
	Gradient Free Policy Optimization
	Policy gradient
	Reduce variance using temporal structure: Reinforce and Actor-Critic architectures
	Conclusions and other approaches
	Off-policy AC methods

