Intelligent System Project

(Project Example 1 - CUSTOMER RELATIONSHIP MANAGEMENT [CRM] / FIDELIZATION ANALYSIS)

Miquel Sànchez i Marrè
miquel@cs.upc.edu

http://kemlg.upc.edu/menu1/miquel-sanchez-i-marre

Course 2014/2015

https://kemlg.upc.edu
EXAMPLE 2 – CUSTOMER RELATIONSHIP MANAGEMENT (CRM) / FIDELIZATION ANALYSIS

Contents

- Problem Analysis
- ISP Goal definition
- ISP Development steps
 - Data Description and Data Management
 - Data Analysis
 - Methods Selection
 - Model Building
 - Model Validation and Model Comparison
- Conclusions
Problem Analysis

- Italian company selling products bought by mailing system
- *Study of the buying behaviour* of the company customers, and *discovering of factors* which make a customer to be *loyal* or to be an *ocasional* buyer
- Priority issues of companies:
 - Get the most of their *loyal customers*
 - Need to characterize and distinguish the *loyal customers* from *ocasional customers* to focus their marketing efforts on the right audience (*loyal customers*).
- How to *minimize* the costs (marketing, etc.), to get a *maximum* benefit
IPS Goal Definition

- Main objective: to classify customers into homogeneous groups, which characterize different objective profiles.
- To solve the problem of the company, it seems that a series of sub-objectives must be met:
 - Characterization of the relevant information related to customer loyalty.
 - Identification of loyal customers using different models and comparing them.
 - Obtaining one/ several predictive model/ s allowing the company to easily differentiate new (and old) customers as loyal or not loyal.
Data Management (1)

DATA COLLECTION AND PLANNING
- Product sale data ordered by mail in Italy
- Customers in the DB between 1992 and 1996
 - 210,085 customers
- Stratified sample by time intervals
 - 2470 customers

DATA DEPURATION AND FILTERING
- 3 Databases: customers, buying orders in local agencies, buying orders at the central agency
 - Different record structure and type
- Building up an specific DB for marketing (datamart)
Data Management (2)

- Marketing status
- Client active?
- Client in debt?
- Total number of orders
- Date of first order
- Date of last order
- Total amount ordered
- Total amount paid
- Current balance
- Payments delayed?
- Time lag between 1st & 2nd order
- Amount of current instalment
- Residual number of instalments

- Dimension of the shop
- Age
- Area of residence
- Sex
- 1st payment with instalments?
- First amount spent
- Number of products at 1st order
Exploratory Data Analysis (1)

- Statistical Descriptive Analysis
- New Variable Creation (response variables)
 - $Y \equiv \text{“Loyalty of a customer”}$
 - $Y = 0$, Number of orders equal to 1 $\equiv \text{“ocasional”}$
 - $Y = 1$, Number of orders higher than 1 $\equiv \text{“loyal”}$
 - Other possible variables:
 - Total amount paid
 - Number of products at first order
- Distribution of the response variable:

<table>
<thead>
<tr>
<th>Modality</th>
<th>Absolute Frequency</th>
<th>Relative Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = 0$</td>
<td>1457</td>
<td>59,71</td>
</tr>
<tr>
<td>$Y = 1$</td>
<td>1013</td>
<td>40,29</td>
</tr>
</tbody>
</table>
Exploratory Data Analysis (2)

- More than 19 observations have a *missing value for the variable Y*
 - Treatment: remove them

- Possible explicative variables
 - Behaviour variables related to the 1st contact (1st order)
 - Sociodemographic variables

- Just a few missing values in the explicative variables
 - Treatment: mean/median/mode substitution
Exploratory Data Analysis (3)

- Conditional distribution of sociodemographic variables regarding variable Y:

<table>
<thead>
<tr>
<th>Sex</th>
<th>Y = 0</th>
<th>Y = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>61.04%</td>
<td>38.96%</td>
</tr>
<tr>
<td>Male</td>
<td>57.88%</td>
<td>42.12%</td>
</tr>
</tbody>
</table>

No differences

<table>
<thead>
<tr>
<th>Area</th>
<th>Y = 0</th>
<th>Y = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>55.40%</td>
<td>44.60%</td>
</tr>
<tr>
<td>Center</td>
<td>58.22%</td>
<td>41.78%</td>
</tr>
<tr>
<td>South</td>
<td>62.73%</td>
<td>37.27%</td>
</tr>
</tbody>
</table>

% Loyal customers decrease from North to South
Exploratory Data Analysis (4)

- Conditional distribution of sociodemographic variables regarding variable Y:

<table>
<thead>
<tr>
<th>Age</th>
<th>Y = 0</th>
<th>Y = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-35</td>
<td>68.80%</td>
<td>31.20%</td>
</tr>
<tr>
<td>36-50</td>
<td>53.44%</td>
<td>46.56%</td>
</tr>
<tr>
<td>51-89</td>
<td>60.42%</td>
<td>39.58%</td>
</tr>
</tbody>
</table>

- % Loyal customers increase with age

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Y = 0</th>
<th>Y = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small (<15)</td>
<td>60.39%</td>
<td>39.61%</td>
</tr>
<tr>
<td>Medium (≥15 & <30)</td>
<td>56.95%</td>
<td>43.05%</td>
</tr>
<tr>
<td>Large (≥30 & <60)</td>
<td>62.11%</td>
<td>37.89%</td>
</tr>
</tbody>
</table>

- % Loyal customers decrease in large agencies
Exploratory Data Analysis (5)

- Contingency Table of variables *instalment* and Y:

<table>
<thead>
<tr>
<th></th>
<th>Instal. = 0</th>
<th>Instal. = 1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y = 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1239</td>
<td>218</td>
<td>1457</td>
</tr>
<tr>
<td></td>
<td>50,16%</td>
<td>8,83%</td>
<td>58,99%</td>
</tr>
<tr>
<td></td>
<td>85,04%F</td>
<td>14,96%F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68,04%C</td>
<td>33,59%C</td>
<td></td>
</tr>
<tr>
<td>Y = 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>582</td>
<td>431</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>23,56%</td>
<td>17,45%</td>
<td>41,01%</td>
</tr>
<tr>
<td></td>
<td>57,45%F</td>
<td>42,55%F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31,96%C</td>
<td>66,41%C</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1821</td>
<td>649</td>
<td>2470</td>
</tr>
<tr>
<td></td>
<td>73,72%</td>
<td>26,28%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Customer wich make payments with instalments is very probable to be a loyal customer.
Exploratory Data Analysis (6)

- Variables Boxplots:
 - First amount spent
 - Number of products at 1st order

Figure 10.1: Conditional distribution of (a) the amount spent and (b) the number of products with respect to the levels of Y.
Exploratory Data Analysis (7)

- Variable/Attribute Relevance
 - Bivariant charts
 - Contingency Tables
 - Boxplots
 - Feature Selection and Feature Weighting

- Variable selection
Planning and Model/Method Selection (1)

- **Data Transformations**
 - Binarization of qualitative modalities of variables *Age, Dimension, Area* => 9 binary variables
 - Variable *Sex*, is already binary
 - Variable *Total amount* and *Number of orders* are quantitatives

- **Hypotheses**
 - 12 explicative variables and one binary response variable (*Y* ≡ customer loyalty)
Planning and Model/Method Selection (2)

- Data matrix:

Table 10.5 "The considered data matrix.

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

© Miquel Sànchez i Marrè, KEMLG, 2007
Planning and Model/Method Selection (3)

- **Models**
 - Logistic Regression Model
 - Connexionist Model (Artifical Neural Networks, ANNs)
 - Decision Tree Model
 - Case-Based Reasoning Model (CBR)
Logistic Regression

- Results:

- Model: \(p(Y=1) \equiv t + t_a*A + t_b*B + t_c*C \) is significative

- A customer will be “valuable” \(\iff p(Y=1) > 0.5 \iff t + t_a*A + t_b*B + t_c*C > 0 \)
Connexionist Models (ANN, RBF)

- Training step
- Decodification/classifying step
- Perceptrons, Backpropagation and Kohonen Maps (SOMs).
Radial Basis Function Network (1)

- Network Description:
 - One RBF with a hidden node
 - 13 explicative variables = 13 input nodes
 - Input combination function: a Gaussian Radial Function with equal heights and equal weights
 - Activation function for hidden node is the identity function
 - Activation function for the output node is the softmax function (normalized output of Y probability)

- Network parameters trained by means of minimization of error rate in the classification process
Radial Basis Function Network (2)

- Error rate evolution in the classification
 - 7 iterations makes the error stable

- Adjusted Weights with higher values:
 - Age15_35
 - Instalment
 - Number_of_products
Decision Tree Models

Decision tree for the weather data.
Decision Tree Models (1)

- Prediction of Y value according to the explicative variables, through a discriminant process

- Methods
 - CART
 - ID3
 - C4.5
 - ...

- Used Methods
 - CART with entropy criterium
 - CART with Gini’s impurity criterium (best model)
Decision Tree Models (2)

- Classification accuracy versus number of tree leaves:

![Graph showing classification accuracy versus number of tree leaves](image)

Figure 10.3 Evolution of the classification accuracy for the classification tree as the number of leaves increases.
Decision Tree Models (3)

- Classification Rules extracted from the Decision Tree:

Table 10.7 (continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Class</th>
<th>Support</th>
<th>Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF 2659000 <= FIRST_AMOUNT_SPENT</td>
<td>0</td>
<td>43.8%</td>
<td>1</td>
</tr>
<tr>
<td>IF 375000 <= FIRST_AMOUNT_SPENT < 2659000 AND INSTALLMENT EQUALS 0</td>
<td>1</td>
<td>20.6%</td>
<td>1</td>
</tr>
<tr>
<td>IF 105000 <= FIRST_AMOUNT_SPENT < 375000 AND NORTH EQUALS 1 AND INSTALLMENT EQUALS 0</td>
<td>0</td>
<td>100.0%</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 10.7 (continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Class</th>
<th>Support</th>
<th>Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF 2.5 <= NUMBER_OF_PRODUCTS < 5.5 AND 515000 <= FIRST_AMOUNT_SPENT AND INSTALLMENT EQUALS 1</td>
<td>0</td>
<td>26.2%</td>
<td>1</td>
</tr>
<tr>
<td>IF 5.5 <= NUMBER_OF_PRODUCTS AND 515000 <= FIRST_AMOUNT_SPENT AND INSTALLMENT EQUALS 1</td>
<td>0</td>
<td>31.3%</td>
<td>1</td>
</tr>
<tr>
<td>IF AGE36..50 EQUALS 1 AND NORTH EQUALS 0 AND FIRST_AMOUNT_SPENT < 375000 AND INSTALLMENT EQUALS 0</td>
<td>0</td>
<td>74.5%</td>
<td>1</td>
</tr>
<tr>
<td>IF AGE36..50 EQUALS 0 AND NORTH EQUALS 0 AND FIRST_AMOUNT_SPENT < 375000 AND INSTALLMENT EQUALS 0</td>
<td>0</td>
<td>47.5%</td>
<td>1</td>
</tr>
</tbody>
</table>
Decision Tree Models (4)

- Discriminant Variables used:
 - Age15_35
 - Instalment
 - Number_of_products
 - First amount spent
 - Geographic area
CBR Models

new case → Retrieve → Adapt → Eval → Learn

CASE LIBRARY
DOMAIN KNOWLEDGE

case to store
best case
adapted solution
evaluated solution (fail/success)
retrieved cases
K-NN classification model

- Simplification of the general CBR model
- Only similar instances are retrieved (k)
- Misclassification rate table according to number k:

<table>
<thead>
<tr>
<th>K</th>
<th>Misclassification rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>732</td>
<td>0.41</td>
</tr>
<tr>
<td>100</td>
<td>0.328</td>
</tr>
<tr>
<td>10</td>
<td>0.316</td>
</tr>
</tbody>
</table>
Model Validation (1)

GENERAL

- Precision and faithability of obtained models
- Scalability/Generalization of the system
- Interpretability, flexibility and user friendly system

PARTICULAR

- Validations (startified)
 - Crossed
- Confusion Matrices
 - On validation set
- Misclassification Rate Table
- ROC Curves
- Gini Index
Model Validation (2)

- Confusion Matrix

<table>
<thead>
<tr>
<th>LOGISTIC REGRESSION</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>48,02</td>
</tr>
<tr>
<td>1</td>
<td>22,92</td>
</tr>
</tbody>
</table>

Error Type I
False Negatives

Error Type II
False Positives

<table>
<thead>
<tr>
<th>CART CLASSIFICATION TREE</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>43,52</td>
</tr>
<tr>
<td>1</td>
<td>14,32</td>
</tr>
</tbody>
</table>
Model Validation (3)

- Confusion Matrix

<table>
<thead>
<tr>
<th>RBF neural network</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Observed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K-NN MBR</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Observed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Model Validation (4)

- Misclassification Rate Table

<table>
<thead>
<tr>
<th>MODEL</th>
<th>MISCLAS. RATE</th>
<th>VALIDATION MISCLAS. RATE</th>
<th>TEST MISCLAS. RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CART Tree</td>
<td>0,2593856655</td>
<td>0,2974079127</td>
<td>0,2909836066</td>
</tr>
<tr>
<td>K-NN MBR</td>
<td>0,2894197952</td>
<td>0,2974079127</td>
<td>0,3155737705</td>
</tr>
<tr>
<td>Regression</td>
<td>0,3071672355</td>
<td>0,3383356071</td>
<td>0,3770491803</td>
</tr>
<tr>
<td>RBF</td>
<td>0,3051194539</td>
<td>0,3246930423</td>
<td>0,3360655738</td>
</tr>
</tbody>
</table>
Model Validation (5)

- ROC Curves
 - Sensitivity (1 – probability(error type I)) versus 1- specificity (probability(error type II):
Model Validation (6)

- Gini Index of performance
 - Area between the ROC curve and the 45º bisector

<table>
<thead>
<tr>
<th>Method</th>
<th>Logistic Regression</th>
<th>RBF</th>
<th>CART Tree</th>
<th>K-NN MBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gini Index</td>
<td>0.4375</td>
<td>0.4230</td>
<td>0.4445</td>
<td>0.5673</td>
</tr>
</tbody>
</table>
Conclusions

- Goal: To distinguish two types of customers: loyal and occasional
 - Y variable formulation
- Data treatment
 - Creation of a unique DB (datamart)
 - Missing values management
- Exploratory Analysis based bivariant analysis between Y and other variables
 - Variable selection
- Models selection
 - Discriminant Models
- Models used
 - Logistic Regression
 - CART
 - K-NN MBR
 - RBF
- Model Comparison
 - CART and K-NN seem to be the best ones
- Model Interpretability