Intelligent System Project

(Part IV - DEVELOPMENT OF AN ISP)

Miquel Sànchez i Marrè
miquel@cs.upc.edu

http://kemlg.upc.edu/menu1/miquel-sanchez-i-marre

Course 2015/2016

https://kemlg.upc.edu

Knowledge Engineering and Machine Learning Group
UNIVERSITAT POLITÈCNICA DE CATALUNYA
PART 4 – DEVELOPMENT OF AN INTELLIGENT SYSTEM PROJECT

https://kemlg.upc.edu
Development of an ISP

- Data/Information Extraction
- Knowledge/Ontological Analysis
- Data Mining & Knowledge Acquisition Process
- Planning and selection of Intelligent/Statistical/Mathematical Methods/Techniques
- Construction of Models and implementation of Techniques
- Module Integration
- Validation of Models/Techniques. Comparison of Techniques
- Proposed Solution
Data/Information Extraction

- Planning for data collection
 - Sampling
- Data collection
- Purification and filtering data
 - Error Detection and Repairing
 - Outlier Management
 - Missing Values
- Meta-Data gathering
- Data Relevance
Knowledge/Ontological Analysis

- Knowledge acquisition is hard
- AI/Computer scientists are not especially prepared
- Ontology formation means to study and learn a new domain and new tasks

Methods:
- Literature revision
- Expert interviews:
 - Questions and answers for basic principles
 - Explicit scenarios or use cases
- Automatic Knowledge acquisition from data
 - Use of Data Mining/Machine Learning methods
Data Mining & Knowledge Acquisition Process (1)

- Several descriptive analyses
 - Visualization
 - Histogram / Bar chart
 - TS plots
 - Bivariate diagrams

- Obtaining new variables
 - Recoding
 - Formation of response/target variable/s
 - Y=f(…)

- Distribution of response/target variable/s
Data Mining & Knowledge Acquisition Process (2)

- Variable/attribute relevance
 - Bivariate diagrams
 - Contingency tables
 - Boxplots
 - Techniques of *feature selection* and *feature weighting*

- Variable selection: determination of the explanatory variables
 - \(Y = f(X_1, X_2, \ldots, X_n) \)
Planning and selection of Intelligent / Statistical / Mathematical Methods (1)

- Depending on the *objective* and *sub-objectives* of the problem and the data, the methods are chosen.
- Some methods may involve:
 - Additional data transformations
 - Assumptions / hypotheses
- Different types of models
 - Statistical models
 - Artificial Intelligence Models
 - Hybrid Statistical / AI Models
 - Optimization and Operations Research Models
Planning and selection of Intelligent / Statistical / Mathematical Methods (2)

- Statistical Techniques
 - Linear Models: simple regression, multiple regression
 - Time Series Models (AR, MA, ARIMA)
 - Component Principal Analysis (CPA) / Discriminant Analysis (DA)

- Artificial Intelligence Techniques
 - Decision Trees
 - Classification Rules
 - Association Rules
 - Clustering
 - Instance-Based Learning (IBL, CBR)
 - Connectionist Approach (Artificial Neural Networks)
 - Evolutionary Computation (Genetic Algorithms, Genetic Programming)
Planning and selection of Intelligent / Statistical / Mathematical Methods (3)

- AI & Stats Techniques
 - Regression Trees
 - Model Trees
 - Probabilistic/Belief/Bayesian Networks
 - Support Vector Machines (SVMs)
Model Classification (1)

Data Mining Models

Models with No response variable / Unsupervised models
- Descriptive Models
 - Conceptual Clustering Self Organising Maps (SOMs)
 - Statistical clustering
 - Clustering based on rules (CIBR)

Models with response variable / Supervised models
- Associative Models
 - Association Rules Model-based Reasoning Qualitative Reasoning
 - Principal Component Analysis (PCA)
 - Simple Correspondence Analysis (SCA)
 - Multiple Correspondence Analysis (MCA)
 - Bayesian networks (BayNet)

- Discriminant Models
 - Case-based models
 - Case-based Classifier (CBRClas)
 - Rule-based models
 - Rule-based Classifiers Decision Trees
 - Bayesian models
 - Naïve Bayes Classifier

- Predictive Models
 - Connexionist models (NeuralNet)
 - Case-based Predictor (CBRPred)
 - Evolutionary Computing (GAs)
 - Swarm Intelligence
 - Linear Regression (LR)
 - Multiple Linear Regression (MLR)
 - Analysis of Variance (ANOVA)
 - Generalized Linear Models (GLM)
 - Time Series (TS)

Models with response variable / Supervised models
- Rule-based Classifiers
 - Decision Trees

Models with no response variable / Unsupervised models
- Case-based Classifiers
 - Regression Trees
 - Model Trees
 - Support Vector Machines (SVM)
Model Classification (2)

UNCERTAINTY MODELS

PROBABILISTIC MODELS
 (Stats) Pure Probabilistic Model
 (AI &Stats) Bayesian Network Model [Pearl]

NEAR-PROBABILISTIC MODELS
 (AI) Certainty Factor Method [MYCIN]
 (AI) Subjective Bayesian Method [PROSPECTOR]

EVIDENTIAL MODEL
 (AI) Evidence Theory [Dempster-Shafer]

POSSIBILISTIC MODEL
 (AI) Possibility Theory Fuzzy Logic [Zadeh]
Construction of Models and Implementation of Techniques

● Using different software tools
 ■ Statistics tools
 ◆ MINITAB
 ◆ SPSS
 ◆ SAS
 ◆ SPAD
 ◆ SYSTEM-R
 ■ Optimization and Operation Research tools
 ■ Artificial Intelligence tools
 ◆ WEKA
 ◆ Matlab
 ◆ GESCONDA

● Using Programming languages
 ■ Java
 ■ C++
 ■ Python
 ■ CommonLisp
 ■ ...
Module Integration

● Manual Integration of Models

● Model Interoperability
 ■ Interoperability is the ability of two or more systems or components *to exchange information* and *to use the information* that has been exchanged.

● Semantic Interoperability of Models
 ■ Additionally, when the components share a *common understanding* of the information model behind the data being interchanged, semantic interoperability is achieved.
Validation of Models/Techniques. Comparison of Techniques

OBJECTIVES

- Accuracy and reliability of the models obtained
- Scalability / generalization of the models
- Interpretability of models
- Flexibility and ease of use of the models

METHODS

- Validation
 - Simple / Cross-Validation
 - Random / Stratified
- Confusion matrices
- Table of classification errors
- ROC Curves
 - Gini index
Proposed Solution

- Method/s and model/s chosen
- Justification of the choice
- Estimation accuracy/goodness of the method(s)/model(s) chosen
Examples of Intelligent System Projects

- Analysis of the internal behaviour of Internet web pages regarding to web links design and web surfing efficiency to improve the quality of WWW
- Analysis and prediction of a company customers’ loyalty
- An intelligent urban planning transport system
- An intelligent system to propose the best wastewater treatment technology for a given town
- An intelligent recommender system for market basket analysis
Miquel Sànchez i Marrè
(miquel@cs.upc.edu)

http://kemlg.upc.edu/