
An Online Learning System for the Prediction
of Electricity Distribution Feeder Failures

Hila Becker
Columbia University

hila@cs.columbia.edu

Marta Arias
Center for Computational Learning Systems

marta@ccls.columbia.edu

Experiments

This work has been partly supported by a research contract from
Consolidated Edison Company of New York

Motivation
Electrical feeder cables are an essential part of the network
that distributes electricity to the boroughs of New York City

The feeders have a significant failure rate, and many
resources are devoted to their maintenance and repair

We would like to produce a ranking of these feeders
according to their failure susceptibility, in order to monitor
them and take preventive action

Since we can gather a lot of data about feeder
characteristics and performance, it is natural to use
machine learning for this ranking task

The Problem

Approach The Algorithm
Several parameters can be tuned to improve
the performance of our algorithm:

β : Learning Rate - a constant (0,1] used in
the weight update function

N : Max Number of Models - number of
models which may be considered for use in
the expert ensemble

M : Max Ensemble Size - the number of
experts used to make a prediction

α : Age Penalty - rate for exponential decay
by age, used for dropping models

p : New Models Weight Percentile –
determines what weight to assign new models
as a percentile in the range [min,max] for the
minimum and maximum weights of the
existing models

n : New Models - the number of models to
add in each round

Copyright © 2006,
The Trustees of Columbia University in the City of New York
All Rights Reserved

Build on the notion of learning from expert
advice as formulated in the continuous
version of the Weighted Majority algorithm

Each model has a weight, which serves as
a measurement of its performance
throughout the algorithm

To predict, we combine the ranking of the
top performing models by computing the
weighted average rank per feeder re-sorting
according to these ranks

The weights are updated at every round to
reflect the performance of the model in the
current round with respect to the true labels

We measure performance as a
normalized average rank of failures. For
example, in a ranking of 50 items with actual
failures ranked #4 and #20, the performance
is: 1 - (4 + 20) / (2*50) = 0.76

We can add new models at every round in
order to adapt to the changes in the state of
the system

We also remove poorly performing and old
models to avoid having to monitor an ever-
increasing set of experts

Let T be the number of rounds and θ=0 the initial
number of models

For t=1 to T:

Train n new models mθ+1, … ,mθ+n ; θ=θ+n

Assign a weight to each new model: wθ+i = p’th
percentile of current weights

Receive new data and for each model mi , i=1…θ
generate ranking ri

Predict by combining the ranking of the M
highest-weight models

Compute the weighted average rank per feeder
and sort to produce the algorithm’s predicted
ranked list

Receive the actual ranking, compute
performance score si and suffer loss
Li = (sbest – si)/(sbest-sworst) for each model mi

Update the weights: wi,t+1 = wi,t * βLi

If total number of models θ > N
Calculate qi = wi,t+1 * α^age for each model
Drop the (θ-N) models with lowest q value

The feature set for each feeder include

Static data – age, composition of feeder sections
Dynamic data – electrical load on a feeder and its
transformers

Dynamic data values lead to different models, depending on
the date and time of training

Models have to be trained frequently to reflect the current
state of the system

Need to come up with a strategy for training new models that
would best adapt to the changing system

An Online-Learning system that treats batch-
trained models as “experts”

m1 mθm6m5m4m3m2 …
F11
F43
F56

.

.

.
F33
F57
F21

F24
F11
F60

.

.

.
F27
F93
F54

F66
F48
F56

.

.

.
F53
F87
F78

F45
F10
F99

.

.

.
F44
F27
F21

F17
F99
F43

.

.

.
F37
F57
F78

F56
F11
F73

.

.

.
F46
F21
F88

F43
F99
F11

.

.

.
F46
F27
F93

…

w1 wθw3 w4 w5 w6w2

F17
F99
F43

.

.

.
F37
F57
F78

feeders

June-August 2005 performance with a weak training strategy
top: performance of SVMs, MartiRank and Linear
Regression algorithms measured as the normalized average
rank of failures per day, new models trained every two weeks
bottom: number of outages per day

Performance of the online system June 2005-August 2006
top: average rank of failures per day
bottom: number of outages per day

Summer 2005
Variation in
performance of the
online system by
tuning the max
ensemble size
parameter

Shows the tradeoff
between combining the
advice of 1,5,10 and 20
experts for the final
prediction

Summer 2005
Variation in
performance of the
online system by
tuning the weight
percentile parameter

Shows the tradeoff
between weight
assignment of new
experts in the 10th, 60th

and 100th percentile

