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Motivation
Electrical feeder cables are an essential part of the network  
that distributes electricity to the boroughs of New York City

The feeders have a significant failure rate, and many 
resources are devoted to their maintenance and repair

We would like to produce a ranking of these feeders   
according to their failure susceptibility, in order to monitor 
them and take preventive action

Since we can gather a lot of data about feeder 
characteristics and performance, it is natural to use 
machine learning for this ranking task

The Problem

Approach The Algorithm
Several parameters can be tuned to improve 
the performance of our algorithm:

β : Learning Rate - a constant (0,1] used in  
the weight update function

N : Max Number of Models - number of 
models which may be considered for use in  
the expert ensemble

M : Max Ensemble Size - the number of 
experts used to make a prediction

α : Age Penalty - rate for exponential decay 
by age, used for dropping models

p : New Models Weight Percentile –
determines what weight to assign new models
as a percentile in the range [min,max] for the 
minimum and maximum weights of the     
existing models

n : New Models - the number of models to 
add in each round
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Build on the notion of learning from expert 
advice as formulated in the continuous 
version of the Weighted Majority algorithm

Each model has a weight, which serves as 
a measurement of its performance 
throughout the algorithm

To predict, we combine the ranking of the 
top performing models by computing the 
weighted average rank per feeder re-sorting 
according to these ranks

The weights are updated at every round to 
reflect the performance of the model in the 
current round with respect to the true labels

We measure performance as a 
normalized average rank of failures. For 
example, in a ranking of 50 items with actual 
failures ranked #4 and #20, the performance 
is: 1 - (4 + 20) / (2*50) = 0.76

We can add new models at every round in 
order to adapt to the changes in the state of 
the system

We also remove poorly performing and old 
models to avoid having to monitor an ever-
increasing set of experts

Let T be the number of rounds and θ=0 the initial 
number of models

For t=1 to T:

Train n new models mθ+1, … ,mθ+n ; θ=θ+n

Assign a weight to each new model: wθ+i = p’th
percentile of current weights

Receive new data and for each model mi , i=1…θ
generate ranking ri

Predict by combining the ranking of the M 
highest-weight models

Compute the weighted average rank per feeder 
and sort to produce the algorithm’s predicted    
ranked list

Receive the actual ranking, compute 
performance score si and suffer loss 
Li = (sbest – si)/(sbest-sworst) for each model mi

Update the weights: wi,t+1 = wi,t * βLi

If total number of models θ > N
Calculate qi = wi,t+1 * α^age for each model 
Drop the (θ-N) models with lowest q value

The feature set for each feeder include

Static data – age, composition of feeder sections
Dynamic data – electrical load on a feeder and its 
transformers

Dynamic data values lead to different models, depending on 
the date and time of training

Models have to be trained frequently to reflect the current 
state of the system 

Need to come up with a strategy for training new models that 
would best adapt to the changing system

An Online-Learning system that treats batch-
trained models as “experts”
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June-August 2005 performance with a weak training strategy 
top: performance of SVMs, MartiRank and Linear 
Regression algorithms measured as the normalized average 
rank of failures per day, new models trained every two weeks
bottom: number of outages per day

Performance of the online system June 2005-August 2006
top: average rank of failures per day
bottom: number of outages per day

Summer 2005 
Variation in 
performance of the 
online system by 
tuning the max 
ensemble size 
parameter

Shows the tradeoff 
between combining the 
advice of 1,5,10 and 20 
experts for the final 
prediction

Summer 2005 
Variation in 
performance of the 
online system by 
tuning the weight 
percentile parameter

Shows the tradeoff 
between weight 
assignment of new 
experts in the 10th, 60th

and 100th percentile


