Why shall we do this?

Organizational awareness as an approach
to create dynamic, flexible and
context-aware eBusiness applications
(the CONTRACT and ALIVE projects)

Javier Vazquez-Salceda
SMA-UPC

Q6

Knowledge Engineering and Machine Learning Group
UNIVERSITAT POLITECNICA DE CATALUNYA

https://kemlg.upc.edu

Contents

e Introduction

= Problems in SOA for e-Business applications

e Distinguishing WHAT from HOW
= Contract-Based Business Process Descriptions

= Norms to describe (acceptable) behaviour

e Distinguising WHY from WHAT
= Bring experience from human societies/organisations

= Organisational modelling

e Conclusions and Future Challenges

Introduction

Q6

Knowledge Engineering and Machine Learning Group
UNIVERSITAT POLITECNICA DE CATALUNYA

https://kemlg.upc.edu

Towards distributed business

e Now a days, computing trends move toward distributed
solutions

= computer systems are networked into large distributed systems;

e e-Business technologies are also moving from intra-
organization or limited B2B into flexible, multiple inter-
organization relations

= The ability to seamlessly exchange information between
companies, business units, customers, and partners is vital for the
success of companies

« Problem: most organizations employ a variety of applications that
store/exchange data in dissimilar ways, and cannot “talk” to one
another productively.

e |tis expected that soon most e-Business applications will
require dynamic integration of a large number of complex
services.

Current trend: Service Orientation

Technical progress in the area of Service-Oriented Architectures
(SOAs) has been based on many sources
= enterprise interoperability, grid computing, software engineering,
database and knowledge-base theory, artificial intelligence, object-
oriented systems.

e Main areas of progress include:
= interoperability (SOAP WSDL and OGSl);
= discovery and management (UDDI and WS-Management)
= orchestration and choreography (WS-BPEL , XPDL , ebXML and
WS-CDL);
= association of semantics with Web-services (OWL-S and WSMO).
e These developments have raised the possibility of

= deploying large numbers of services
= inintranets and extranets of (private/public) organizations, and the
public Internet,

All these forms the baseline environment for software applications.

SOA, e-Business and the ‘Future Internet’

e Visions of Service Oriented Business Environments are well
established
= Systems able to communicate and reconfigure at runtime
= Systems able to adapt to their environment and identify new
(business) opportunities
= Systems able to dynamically combine sets of building block
services into new applications

e huge challenges remain, in particular:
= Greater scale and openness conflict with standard assumptions
about the behaviour of actors in the world
= Increased Autonomy / Flexibility conflict with our ability to ensure
predictable execution
= Dynamic discovery / late binding conflict with the need for Sound
Legal Guarantees

e Is current SOA technology prepared for these challenges?

Problem 1: Services without memory

One important limitation in (most) current implementations of
SOA comes from their initial focus on interoperability
requirements, and especially the principle of stateless services

= Services as stateless components offering very simple
functionalities that composed may bring complex computation.

= All the required information to operate goes in the invoking
message

Although this stateless approach eases interoperability, it makes
it difficult (if not impossible) to have services that can
dynamically detect and adapt their behavior to contextual
changes or opportunities.

Some patches have been made to have statefull services, but
the SOA framework has not been adapted properly to manage
application states.

Problem 2: Where is my organisation?

Existing technologies for the web mostly ignore organizational
aspects of the application domain:

=« They provide designs of low abstraction level, based on
 (static) descriptions of tasks,
» or even, the actual (remote) method invocations

= They loose track of the underlying aims and objectives that
motivate the interaction among the different peers.

Current web technologies are not organization-oriented but
rather task- or method-centric.

Some researchers treat workflows as ‘business logic’, but
these are really static models that give no room for adaptation.

= Every single exception must be foreseen for the whole distributed
system to operate without errors.

Problem 3: Where is my context?

Another important limitation of both Web service and Semantic
Web service technologies is that they do not fully cover one of
the identified requirements to support both the Web 2.0 and
the Future Internet: context-awareness.

If services are to behave flexibly in dynamic, changing
environments they should be aware of their context in order to
= identify new opportunities,
= detect relevant changes
= adapt their internal behavior and/or the way they interact with
others.

In many cases correct, adaptive behavior is (arguably) nearly
impossible to guarantee without effective information about
context.

Context in SOA

Business Process Descriptions

In order to bring context into a distributed service computation,
current approaches are often based on the use of (static)
business process models as a basic mechanism to support
service composition.

A business process specifies, among others:

= the potential execution order of operations from a collection of
Web services,

= the data shared between these Web services,

= Wwhich partners are involved and how they are involved in the
business process,

= joint exception handling for collections of Web services.

There are competing initiatives for developing business
process definition specifications which aim to define Web
services composition: orchestration and choreography.

10

Context in SOA

Orchestration

Orchestration defines the workflow between services from the
"perspective of a single party", specifying the sequence and
conditions in which one Web service invokes other Web
services.

Orchestration describes how services can interact at the
message level, including the business logic and execution
order of the interactions.

Standard-de-facto: Business Process Execution Language
(BPEL)
= alayer on top of the Web services Description Language (WSDL)
= BPEL defining how the operations can be sequenced to support
business transactions

Problem: BPEL specifications only indicate the orderings of
different tasks in a centralized and rigid way.

11

Context in SOA
Choreography

Choreography is described from the perspective of all parties
(common view) and defines the complementary observable
behavior between participants in a business process
collaboration.
= A common view defines the shared state of the interactions
between business entities
= It can be used to determine specific deployment implementation
for each individual entity.
= The choreography tracks the sequence of messages that may
involve multiple parties/multiple sources, and each party
describes the part they play in the interaction.
Main approach: Web Service Choreography Description
language (WS-CDL), specifies collaboration in terms of roles
and work units
= A role enumerates the observable behavior a party exhibits to
collaborate with others
= Work units consist of activities (incl. interaction activities) and
ordering structures

12

Problems of Orchestration/Choreography in SOA

e The limitations in current orchestration and choreography
approaches to capture context are:

= They tend to be
* static,
 prone to failure (the failure of one service in the chain typically
makes the workflow to fail)
- very difficult to design and debug (the designer needs to foresee
all possible execution paths and specify them in the workflow).

= They model systems at a single level of granularity
« services offered by individuals, corporations, multinationals, or
departments within companies are modeled all with the same
abstractions and with the same granularity.

=« They tend to have very little knowledge about the interaction
context.

» For instance, they lack explicit knowledge of regulations in the
environment.

13

Problems of Orchestration/Choreography in
e-Business applications

e There are some additional issues to solve when trying to model
and build e-Business applications:
= How to manage workflows in non-trivial open environments, where
not all services are owned by the same organization?
» we cannot assume that all parties are either benevolent or that they will
deliver results unless explicit obligations are defined and enforced.
» should workflows be agreed upon by all parties before they can be
executed?
= What if critical applications simply cease to function if services
provisioned from third parties disappear or malfunction?
= If e-Business applications (and their business processes) are
meant to change/adapt/evolve through time, how are such
applications going to be:
» Designed (without foreseeing all possible interactions),
» Deployed (with dynamic composition in mind)
» Managed (with change/adaptation/evolution being natural).

e Therefore, this is not a good approach to tackle new generations
of service technologies, able to dynamically adapt and
reconfigure in an ever-changing environment.

14

Steps towards future e-Business

e |dea: to use advances in Artificial Intelligence, Institutional
and Organisational theories to create the next generation
of Business technologies

e In my view, first two steps:

= Provide more flexible ways to specify business interactions,
abstracting away from the low-level details.

¢ Distinction between WHAT to do and HOW to do it

= Add ways to better describe context and the interaction
between the system activity and the context changes.

e Our approach: to add motivational drives to these business
systems, so they can reconsider their actions and identify new
opportunities if context changes

» Distinction between WHY do things and WHAT to do

15

CONTRACT

Step 1: Distinguishing between
what to do and how.

(Business interactions guided by
high-level contractual specifications)

QO

Knowledge Engineering and Machine Learning Group
UNIVERSITAT POLITECNICA DE CATALUNYA

https://kemlg.upc.edu

SLA’s as a (Business) Process Description

e In SOA, there exist more powerful mechanisms to

e One trend: Service-Level Agreements (SLA’S)

= They represent (contractual) agreements between service
providers and consumers

= They may specify the levels of availability, serviceability,
performance, operation, or other attributes of the service.

= Typically encompass

« the SLA contract definition (basic schema with the QoS
(quality of service) parameters),
e SLA negotiation,

e SLA monitoring,
* SLA enforcement (according to defined policies).

describe processes than workflow-oriented technologies.

17

Existing contracting/agreement approaches (I)

e WS-Agreement
= Agreements and templates, agreement lifecycle processes
= No third parties, no multiparty contracts, penalties miss ‘finalizing
process’ and do not allow extension, no formal semantics, lack of
expresiveness for full contracts

e Web service Level Agreement (WSLA)
= Service-Level agreements and objectives, third parties, extensible
language

= No agreement handling mechanisms, no formal semantics, no notion of

interaction context
e Web services Conversation Language (WSCL)

= Used in electronic commerce to agree on how services will communicate
= Only covers message structure and protocols for execution, no definition

of what to do if something goes wrong

Existing contracting/agreement approaches (1)

e Rule-Based Service Level Agreement (RBSLA)
= Logic-based, includes the use of deontic notions
= No support from industry (PhD), limited semantics based on events,
actions and goals, lack of expressiveness for full contracts
e OASIS eContracts
= Computational representation of human contracts, very expressive
= Too complex for computational monitoring and verification

e We need more flexible ways to specify the expected behaviour in
multi-party business setups, including the expectations of the
different parties.

= Obligations, prohibitions...

e There is also a need for mechanisms that ease the engineering of
applications in Cross Organisational Service Oriented Computing
environments

Contract-based SOA Governance

e Contracts are the explicit, tangible representation of service
interdependencies

e Contract-based approaches promise two clear med/long term
benefits in Service Oriented Business environments:

= Closer linkage between technical implementation and
responsibilities / obligations

= Abstraction away from internal execution details in order to
support formal verification of distributed enterprise systems

e |dea: formal verification over contracts, obligations etc.
rather than over internal code is the way to build sound
distributed applications in service oriented environments.

How to express contractual obligations?

e Norms are a flexible way to specify the boundaries of
acceptable (legal) behaviour
= They specify WHAT is acceptable and WHAT is not, but not
HOW
= Agents have autonomy to reach their goals as far as they
“move” within the acceptable boundaries.

e Norms ease agent interaction:

reduce uncertainty of other agents’ behaviour
reduce misunderstanding in interaction . .
allows agents to foresee the outcome of an interaction
simplify the decision-making (reduce the possible actions)

e To ensure acceptable behaviour, a safe environment is
needed: Electronic Institutions
= Safe agent interaction environments
= They include definition of norms and enforcement mechanisms

21

But, how to connect agent abstractions with services?

Service Oriented Architectures framework
= Broad definition of service as component that takes some inputs
and produces some outputs.
= Services are brought together to solve a given problem typically
via a workflow definition that specifies their composition.

e Every application is made up of actors

e Every change that happens is an action by an actor
e Actors communicate by sending messages
e Every action is triggered by a message

e The outputs of (messages sent by) an actor are caused by the
inputs to (messages received by) the actor

» Direct mapping to multiagent systems

22

Idea: Intelligent Contractual Environments

e Contracts:
= Make explicit the obligations of each of the parties in the

transactions

= Make explicit what each system can expect from another

e Bind together:
= The electronic interaction (web services) with

The business obligation with

= Prediction as to whether the system will function to get the

job done

e A contract instantiation creates a contracting environment

= Monitors contractual clauses (Deontic statements = norms!)

= Thisis, in fact, an electronic institution!

Norm Representation (1)

e Formal representation of norms needed

e Which logic?

Norms permit, oblige or prohibi

Norms may be conditional
Norms may have temporal asps
Norms are relativized to roles

OBLIGED, PERMITTED, FORBIDDEN
IFC

BEFORE D, AFTER D

C— > variant of Deontic Logic

e The representation should be easily parseable
and usable by agents

24

Norm Representation (I1)

e Unconditional norms about predicates
= the norms on the value of P are active at all times:

OBLIGED(a. P) PERMITTED(a. P) FORBIDDEN(a. P)

e Unconditional norms about actions
= the norms on the execution of A are active at all times:

PERMITTED(az DO A) FORBIDDEN(n DO A)

e Conditional norms

= the activation of the norms is conditional under C

= C may be a predicate about the system or the state of an
action:

OBLIGED((a, P) IF C') OBLIGED((a DO A) IF ()
PERMITTED((a. P) IFC') PERMITTED((a DO A) IF ()
FORBIDDEN((a. P) IF (') ~ FORBIDDEN((a DO A) IF ()

25

Norm Representation (l11)

e Conditional norms with Deadlines
= the activation of norms is defined by a deadline
OBLIGED((a.) BEFORE 1)

PERMITTED((« DO A) AFTER D)
FORBIDDEN((a. I’) BEFORE D))

= absolute and relative deadlines:

23:59:00 09/05/2004

time(done(assign(organ, recipient))) + Smin
e Examples:
OBLIGED((allocator DO assign(heart. recipient))

BEFORE (time(done(extraction(heart. donor))) + Ghours))

FORBIDDEN((allocator DO assign{organ, recipient))
IF NOT(JrJrJ.-'pHuf DONE e'HHrrf'a'.q:m“f_{j(rn“f}:m 1))

26

Norm Representation
Abstraction problem

« Problems:

Norms are more abstract than the procedures (in purpose)

Deontic expressions do not have operational semantics

Example:

mtion: “It is forbidden to discriminate potential recipients of %W

based on their age (race, religion,...)"
Formal norm: F(discriminate(x,y,age))

’ure: does not contain action “discriminate”

27

Norm Representation
Filling the gap

Laws,
regulations

J

Language for norms
(Formal & Computational)

Norms in

delliberation
cycle

Filling the gap

Norm Representation

Laws,
regulations

J L

Normative Description
(Deontic, Forrﬂil)

ability

\7 nance
pa—
Operational Description

(Operational, Computational)

Norms in Norm enforcement

delliberation

cycle mechanisms

Filling the gap

Contract Representation

Laws,
regulations,
Business rules

WHAT?
(states, possible actions, plans)

HOW?
(workflows, service invocations)

== =

Bringing flexibility to contractual interactions

Norm enforcement and violations

e Implementation of a safe environment (norm enforcement)

e 2 options depending on control over agents

= Defining constraints on unwanted behaviour

= Defining violations and reacting to these violations

® our assumptions:

= Norms can be sometimes violated by agents

= The internal state of agents is neither observable nor

controlable

 actions cannot be imposed on an agent’s intentions

* agents as black boxes

« only their observable behaviour and actions

31

Bringing flexibility to contractual interactions

Boundaries for Safety and Soundness

e In our view Norms define the
boundaries for acceptable
behaviour

= wanted (legal) and
unwanted (illegal) behaviour

= acceptable (safe) and
unnacceptable (unsafe) states

w

violation,

sanction

e Violations when agents breaks one or more norms,

entering in an illegal (unsafe) state.

Safety

e Sanctions are actions to make agents become legal (safe)

again.

e Sanctions include the actions to recover the system from a

Soundness

violation

32

Bringing flexibility to contractual interactions
Landmarks

e Problem: if we ennumerate all the states of the system, divide
them in acceptable and unaceptable, and define an ordering...
= We will have something as expressive and fragile as a WS
workflow!
= We have again the problem of foreseeing all states!

e |dea: not define acceptable behaviour at the level of system
states, but at the level of landmarks

(e = Landmarks as meaningful (i.e. important) states in the system
=« Landmark patterns: partial accessibility relations from landmark to
landmark

e Contracts usually define only those important states, and what
should/should never happen among them
= We can define landmarks in the normative level in terms of
acceptable/unacceptable states of affairs
= We can define landmarks in the operational level as states in the
state machine

33

Bringing flexibility to contractual interactions
Landmark Patterns and monitorization

e |dea: do not try to map ALL states-of-affairs, _ __ _ __
only the landmarks uttered(S,W,F) IF C

e Hypothesis: an execution is nhorm-compliant if s
the landmark patterns hold.

Si5
(L it

Iy < Iy 'y

I
- ~,.

uttered(S,W,R) uttered(S,W,D)

34

The IST CONTRACT Project results

ﬂ 5 Electronic business transaction . ﬂ
- L

WEB Applications
for dynamic

cross-organizational

s’
:
- o

_ll—

Contracting language(l)
Contract Language components

message contract
XmL] [XmML]
/woﬂd model
message
content
[FIPA-SL XML]
. is included in

36

Contracting language(ll)
Communication Model

Interaction ! ost !

Context Layer context: 1 Req¥ !
i :

1 1

1 1

1 1

AE——— protocol
handling:

L
~ Message envelope + intentionality:
from service S1 to service S2 ...
Coon'{ra}ctual Message Layer Request[cancel(contract C1)]
ntology .
Statements / actions related to
contracts:

A contract:

Contract Layer “the workshop is obliged to
repair the car in 2 days”

Domain

S Domain Ontology Layer Domain terms: car, workshop, repair

37

Contracting language (lI)
Contract expressions

OBLIGED (Operator
DO PayForEngine(amount, engine, Operator, EngineManufacturer)

<ISTContract]

Contra

Startir BEFORE (2008-07-1T15:30:30+01:00)

Ending||)

Xmlns: DUUTCT T APTCSSTUTT

xsi:noN Before(2008-07-1T15:30:30+01:00 L
<Contextualizal </BooleanExpression>

</ExplorationCondition>
</Contextualizal| <DeonticStatement>

<Definitions> <Modality><OBLIGATION></Modality>
<Who> <RoleName>Operator</RoleName> </\Who>
</Defi <What>
<Clausg <ActionExpression>
PayForEngine(amount, engine, Operator, EngineManufacturer)
</Clause </ActionExpression>
</ISTContract> </What>

</DeonticStatement>
</Clause>

Contracting language (1V)
Predefined protocols

Initiator ‘ Participant

‘ - | -

suggest{commit) inform (violated) I

disconfirm (violated)

I consant-suggestion w

Participant Notary ‘

Initiator

=N ==

propose

reject-proposal
inform(end-of-contract)

inform(reject-end-of-contract)

accept-proposal inform (|

I infarm (commit)

inform (all-signed) inform

inform (g

inform

Contracting Architecture

s,
it
%8

Contract Monitorization

Actions performed /
messages sent

Rolls Royce LM
(Engine
Manufacturer) (Operator)

~ Sensor

Sensor

- N
Action performance /
message received

report

Action initiation /
message sent
report

@, L

Contract
manager

cl Contract
ause related
Violation! changes

Novel features

e Contracting Language based in Normative Systems research

= Includes semantic-rich service-to-service interaction, based on
intentions and commitments
= This allows the definition of formal semantics > ease verification

e Language covers all levels of communication

= Not only centered in the expression of electronic contracts

= A language to express statements about contracts

= Protocols for contract handling

= Includes connection with domain (context) models and ontologies

...But we need more!

e CONTRACT has created concrete methods and tools
which enable the use of contracts, obligations and
agreements in order to structure the design and
execution of sound applications in Digital Business
environments

e But this is not enough:

= hot clear WHY to do things (other than to fulfill the terms of
the contract)

= Cannot adapt to changes in the environment

43

\ r'4
nlive
Step 2: Distinguishing between
why do things and what to do

(Context-awareness through
Organisational-awareness)

QO

Knowledge Engineering and Machine Learning Group
UNIVERSITAT POLITECNICA DE CATALUNYA

https://kemlg.upc.edu

The problem: Engineering flexible, adaptive
Service Oriented applications for the Future Internet

e New generations of networked service applications should be
able to:
= communicate and reconfigure at runtime
= adapt to their environment
= dynamically combine sets of building block services into new
applications

e This requires profound changes in the way software systems
are designed, deployed and managed...
= from existing, top-down, “design in isolation”...

= ... to new approaches based on integrating new
functionalities/behaviours into existing running systems

Idea: bring experience from human societies/organisations

The mechanisms used today to organise the vastly
complex interdependencies found in human, social,
economic behaviour will be essential to structuring
future distributed software systems

e Such mechanisms provide

=« Robust descriptions of distributed systems

= Account for the individual autonomous nature of service
providers/consumers

=« Define a wide range on strategies and mechanisms with
known properties

The ALIVE Approach

e To bring together the leading edge methods from
Coordination Technology, Organizational theory with new
technologies on Model Driven design to create a framework
for software and services engineering addressing the new
reality of “live”, open systems of active services.

e To close the gap between theoretical approaches and
existing web services technologies

The ALIVE Approach

e Splitting the design process in three separate layers

« Service layer
e augments service models to make components aware
of their social context

« Coordination layer
* specifying patterns of interaction

« Organisational layer
* specifying organisational rules that govern interaction

WHY?
(motivations)

Organizational level:

- norms and regulations

- organizational structure
- communication ontology
- evaluation indicators

— Functional instantiation

WHAT?
(possible actions, plans)

Coordination level:

- coordination patterns
- task allocation

- actor expectation

dynamic assignment

HOW?
(available services)

Service level:

- semantic service
description (SD)

- standards specification

actual deployment

Existing platforms
Existing services
New services
Service interactions

Of-line architecture On-line architecture

Organisationa|
Level

Coordination
Level

Service
Level

______________ Global Monitor

event

/

/
Alllevents
/

—_—
Event Log

Level

Coordination
Level

Organisational

ALIVE Off-line Architecture

Of-line architecture

Tools to create organisation and
coodination specifications, create
agentified webservices, annotate
existing services and set-up the

running components of the system.

Service
Level
Matchmaker
—_
Of-line architecture
o Create and manage the
Organisationa) organisational model (objectives,
Level roles, obligations, violations,
— sanctions...)
------ 5y =
Bordinaton
Model Rep Design the coordination level of a distributed
system (actors, tasks, workflows). and
Coordination
Level

Service
Level

workflow coordination mechanisms.

Supports the generation of agentified services
to dinamically coordinate service composition.

Generates plans (workflows that can be S
then used by agents to compose services to
achieve some organisational goal.

Service
ModelRep.
empran Generate and inspect service
Repository des_criptions, t_edit servic_e templates and
register them in th Service Directory.
Matchmaker
—_—

Check and modify the set-up
of the running services and
facilitator components

Of-line architecture On-line architecture

Organisational
Level

Coordination

Service
Level

Event Bus

Do
bntology Repl ~ ~ ~ " """ T - TTT------------==
[
ord on|

AI

Template
Repository

Run-time components enabling the
dinamic management of service
dependencies and failures, on the
basis of the coordination patterns, the
organisational context and the
autonomous decision making ability of

ALIVE On-line Architecture

On-line architecture

Event Bus

agents to adapt to unexpected failures.

Tools to inspect the state of the
running system.

ALIVE On-line Architecture: service composition

On-line architecture

Coordination Level Agents:

Agentified webservices which: D
1) are organisational-aware
2) can compose a plan and —

coordinate its distributed - — - - oo ooooooooooooooooooooon
execution in order to meet :
organisational objectives

3) can find and select other
services to fulfill the tasks in
the plan

Global Monitor

Event Bus

Assists the Coordination
Level Agents in the
discovery of (new)
services to achieve a
given task.

“’A =

g wolki ob
Service %
Dlrectow

/ I'Eleter

1) If a service fails, others
are sought for the task.

2) If there is no service to
fulfill a task, an alternative
plan is generated to fulfill
the goal.

3) If there is no other plan
for the goal, it is dropped or
postponed.

)

ALIVE On-line Architecture: event handling

On-line architect

Analises (brute) events generated by different
actors , makes higher-level interpretations

(organisational events) and detects norm violations
or deviations from objectives...

Collects all run-time
events generated by the
actors and distributes
them to other actors
listening to these events
(via a subscription
mechanisms)

Event Bus

Inspect system status and
keep track of (unexpected)
events and the way the
system handles them

< Q
adator C/,E@

reg ister

Of-line architecture On-line architecture

Organisational
Level

—————— -[Ontology |- -
Editor

Coordination
Level

_______________________________ Global Monitor

event

[

Al I,/events

—
atchmakel - -

Agent

i .
ontology | = === = 2mm e e e e e e e e X — - - = =
Editor L

Service
ModelRep.

Senvice Teplate
Level Repository

Benefits of ALIVE for SOA

e Mapping human organisations to service-based solutions

= models are defined at a level of abstraction that allows non-

expert end-users to support better the design and the
maintenance of the system

Provides an organisational context (such as, e.g., objectives,

structures and regulations) that can be used to select, compose and
invoke services dynamically.

e Multi-layer approach allows for:

= Traceability (why is something done in this way on this level?)

= Adaptivity (moving up in abstraction to solve problems at a
specific level)

Change and adaptation in ALIVE

« Adaptation in 3 levels:

— Changes in system functionalities

— Changes in environmental conditions

— Changes in stakeholders needs

e.g., changes in laws and norms that regiment particular |
organisational protocols and responsibilities

: 1
Service |
1

e.g., services that become unavailable or are not used correctly 1

Coordination |

. . I
e.g., changes (sensed symptoms) that can lead to potential failure ,
during the achievement of objectives

Ex.1: Interactive Community Displays

Social
modeler

Recommendation

Legal body

System

Interface
A

feed

User
feedback modeler

_4

:tmtfactory>

Weather Cinemas Restaurants

Public Transport

\‘\\ Traffic

Map generator Route planner Booking/payment

Ex.1: Interactive Community Displays :tmtfactory>

A set of services - S 1 e
is selected to fulfill a 0 - - |
user request. s

The service selected for s

the “find museum info” ozt

task fails

TUEe G TRTS

Time-out

Find
BuSsUIn Hfo

fime-out

No alternate service is
found for the task
= re-plan —gtmmeee | e cenee

Re-organize

Compose |

General services

A new set of
services
is invoked and the
results merged to
fulfill the user
request. ‘

Ex.2: Dynamic Crisis Management THALES

« (non-local) Inter-agency
Cooperation

- Different services mean
different priorities.

« Different policies for different
crisis scenarios.

« Disaster profile changes

Ex.2: Dynamic Crisis Management THALES
Fire_Station
(fs) ~
emergency
extinguish location
First Aid_ " —— . pulance il)~y
Station _service ——_ &
(fas) fas) g
Firefighter_ Emergency
Team _Call_Center
/ (ft) \ (ecc)
deal_with, deal_with_
tratfic big_tires
SN
& Firefighti
Police_Station Irf;g‘ dl(ﬂg
(ps) (F1)
6/07/2012
Ex.2: Dynamic Crisis Management THALES
environment
threaten
! (Ex.2,
| (. -— { -
ambulance - T &
_service'
=" "J | Fire_Station
- »~ dependency creation * - ~
& ¥ " ?g"lg‘;ﬁ"‘" extinguish P g m;gcrg;:gy_
" X
First M -~ ambulance supervising & \ g
Station —senvies ——v-_ - — — objective (Ex.3)
- e
. - P, El
avoid_traffic - Firefighter P inhibition C:]Trg;:zr
- Jam Team _Call_
Ex.2, " deal_with_
P A
Helicopter
Firafighting _Team

¥
A

Police_Station

)
A

Firafighting
Truck

Emergency Scalation Handling = Changes in Stakeholders’ Relationships in
6/07/2012

Various Situations

ALIVE contributions

e Sound Organisational framework
New framework incorporates both organisational and
institutional concepts for design, deployment and
management of distributed systems.

e New design and methodological approaches
Design methods and tools based on Model-Driven
Engineering.

= Automatic transformations from specifications in one level to
the other levels, easing design and providing coherence
among levels

ALIVE contributions

e New engineering techniques and components
Provide concrete modelling languages and their
implementations to capture organisational, coordination and
service levels, generating executable code from specifications.

= Organisational Normative Agents: agents that can keep track
of multiple instantiations of norms and use them in their
goal-oriented task selection and plan formation.

= Real-time, flexible Organisational Monitoring Architecture:
a monitoring architecture capable of:
» collecting great amounts of low-level events,
 interpreting them in terms of the organisational concepts
» detecting behavioural deviations and non-compliance to horms.

Conclusions

Q6

Knowledge Engineering and Machine Learning Group
UNIVERSITAT POLITECNICA DE CATALUNYA

https://kemlg.upc.edu

Conclusions

Most e-Business applications will require dynamic integration of
a large number of complex services.
= Need for technologies able to dynamically adapt and reconfigure in
an ever-changing environment.

Current SOA technology is not prepared for the challenge
= Stateless services
= Low-level, static (business) process models, prone to failure.

Need to decouple

= WHAT to do from HOW to do it
« Action Descriptions vs Service Descriptions
« Landmark patterns vs Workflows
* Planning to bridge the gap.

=« WHY do things from WHAT to do
< Organisational aims vs Actions
< Organisational aims drive adaptation

Have presented two approaches
= Institutional Approach:
» Contracts and a Contractual e-Institution
« Contract agreement, deplyment and management
= Organisational Approach:
« Includes design, deployment, management and maintenance

68

Some thoughts for the future

e Technological shift:
= Future Internet Platforms will have new ways for functional
discovery (things, services...) across multiple platforms (www, cell
phone network, ad-hoc networks..)
[Source: EU FP7 Future Internet Platform White Paper]
= How will we be able to (describe and) discover business in this
new setup?

e Business shift:
= Shift from business- or product-centric view towards customer-
centric view
» Adapt to user needs, consumer-centric strategies
= The new business services should be flexible to adapt to different
markets within Europe.
It should be supported by ICT tools.
= Main role of ICT in Future e-Business is not about chain
optimisation or efficiency, or differenciation, but on innovation.
[Source: EU Fines Cluster Position Paper]

69

Vision Statement:
Future Internet based Enterprise Systems 2025
e “Specifically, the Future Internet will enable enterprises to:”

“Be empowered by a new participative Web, hosting a new wave
of services and using userfriendly technologies.”

= ‘“Create new value by leveraging the Internet as the platform
through which knowledge is exploited dynamically, experienced in
the business context and represented in a radically different way.”

= “Have the required capability that enables and supports
collaboration with other enterprises, new dynamic relationships,
Q- discovery of partnerships, new opportunities and markets, and the
management of the new risks and uncertainties involved.”

= “Operate in a new set of business environments that provide
support for quality measures, guarantees, persistence, safety,
trust, arbitration and other mechanisms for reducing risks on both
the customer and the provider side.”

= “Become the WYSIWYG [What You See Is What You Get]
enterprise, where Web-based applications become as rich as their
desktop equivalents.”

70

http://www.Isi.upc.es/~jvazquez

71

