
-

e
 to

s-

been
 under-
s have
ming,

ware).
o extend
o sup-
 engi-
ired.

ion of

at con-
ct away
here is
r certain
pment
s. Note
ence to
roduc-
1

Agent-Oriented Software Engineering

Nicholas R. Jennings and Michael Wooldridge

Department of Electronic Engineering
Queen Mary & Westfield College

University of London
London E1 4NS, United Kingdom

{N.R.Jennings, M.J.Wooldridge}@qmw.ac.uk

Abstract
Agent-oriented techniques represent an exciting new means of analysing, designing and building com
plex software systems. They have the potential to significantly improve current practice in software
engineering and to extend the range of applications that can feasibly be tackled. Yet, to date, there hav
been few serious attempts to cast agent systems as a software engineering paradigm. This paper seeks
rectify this omission. Specifically, it will be argued that: (i) the conceptual apparatus of agent-oriented
systems is well-suited to building software solutions for complex systems and (ii) agent-oriented
approaches represent a genuine advance over the current state of the art for engineering complex sy
tems. Following on from this view, the major issues raised by adopting an agent-oriented approach to
software engineering are highlighted and discussed.

1. Introduction

Designing and building high quality industrial-strength software is difficult. Indeed, it has
claimed that such development projects are among the most complex construction tasks
taken by humans. Against this background, a wide range of software engineering paradigm
been devised (e.g., procedural programming, structured programming, declarative program
object-oriented programming, design patterns, application frameworks and component-
Each successive development either claims to make the engineering process easier or t
the complexity of applications that can feasibly be built. Although there is some evidence t
port these claims, researchers continually strive for more efficient and powerful software
neering techniques, especially as solutions for ever more demanding applications are requ

This paper will argue that analysing, designing and implementing software as a collect
interacting, autonomous agents (i.e., as a multi-agent system [26] [39]) represents a promising
point of departure for software engineering. While there is some debate about exactly wh
stitutes an autonomous agent and what constitutes interaction, this work seeks to abstra
from particular dogmatic standpoints. Instead, we focus on those characteristics for which t
some consensus. From this standpoint, the paper’s central hypothesis will be advanced: fo
classes of problem (that will be defined), adopting a multi-agent approach to system develo
affords software engineers a number of significant advantages over contemporary method
that we are not suggesting that multi-agent systems are a silver bullet [4]—there is no evid
suggest they will represent an order of magnitude improvement in software engineering p

ch can

g form
ccord-
rojects.
uch as
iented
ments
le, real-

 as a
 mar-
stem-
 of
cisely
 paper
nt sys-
compo-
ing the

ent-ori-
ustrial-
pproach,
oftware
 on the
 and
eering
ection
riented

.1) and
section
chniques
2

tivity. However, we believe that for certain classes of application, an agent-oriented approa
significantly improve the software development process.

In seeking to demonstrate the efficacy of the agent-oriented approach, the most compellin
of analysis would be to quantitatively show how adopting such techniques had improved, a
ing to some standard set of software metrics, the development process in a range of p
However, such data is simply not available (as it is still not for more established methods s
object-orientation). However, there are compelling arguments for believing that an agent-or
approach will be of benefit for engineering certain complex software systems. These argu
have evolved from a decade of experience in using agent technology to construct large-sca
world applications in a wide variety of industrial and commercial domains [20].

The contribution of this paper is twofold. Firstly, despite multi-agent systems being touted
technology that will have a major impact on future generation software (“pervasive in every
ket by the year 2000” [17] and “the new revolution in software” [14]), there has been no sy
atic evaluation of why this may be the case. Thus, although there are an increasing number
deployed agent applications (see [5], [19], [20], [27] for a review), nobody has analysed pre
what makes the paradigm so effective. This is clearly a major gap in knowledge, which this
seeks to address. Secondly, there has been comparatively little work on viewing multi-age
tems as a software engineering. This shortcoming is rectified by recasting the essential
nents of agent systems into more traditional software engineering concepts, and by examin
impact on the software engineering life-cycle of adopting an agent-oriented approach.

The remainder of the paper is structured as follows. Section two makes the case for an ag
ented approach to software engineering. It analyses the type of complexity present in ind
strength software, characterises the key conceptual mechanisms of the agent-oriented a
and explains how these mechanisms are well suited to tackling the complexity present in s
development. Section three examines the impact of adopting an agent-oriented approach
software engineering lifecycle—focusing in particular on the specification, implementation
verification phases. Section four deals with the pragmatics of agent-oriented software engin
by presenting some common pitfalls that frequently bedevil agent-oriented developments. S
five concludes by identifying the major open issues that need to be addressed if agent-o
techniques are to reach the software engineering mainstream.

2. The Case for an Agent-Oriented Approach to Software Engineering

This section characterises the essential nature of real-world software systems (section 2
then goes on to present exactly what we mean by the notion of agent-oriented software (
2.2). Using these characterisations, arguments are advanced as to why agent-oriented te
are well suited to developing complex software systems (section 2.3).

ber of
is an
eering
ity. For-

of
of the
 forms
re not

nd is

ize. In
there

-
er of

w that
ost as if
actions
design

ystem
ompo-
ctions
tion of
panded

 to the
sable into
3

2.1 The Nature of Complex Software Systems

Industrial-strength software is complex in nature: it is typically characterised by a large num
parts that have many interactions [37]. Moreover this complexity is not accidental [4]: it
innate property of the types of tasks for which software is used. The role of software engin
is therefore to provide structures and techniques that make it easier to handle this complex
tunately, this complexity exhibits a number of important regularities [37]:

• Complexity frequently takes the form of a hierarchy1. That is, the system is composed
inter-related sub-systems, each of which is itself a hierarchy. The precise nature
organisational relationships varies between sub-systems, although some generic
(such as client-server, peer, team) can be identified. Organisational relationships a
static: they can, and frequently do, vary over time.

• The choice of which components in the system are primitive is relatively arbitrary a
defined very much by the observer’s aims and objectives.

• Hierarchic systems evolve more quickly than non-hierarchic ones of comparable s
other words, complex systems will evolve from simple systems much more rapidly if
are stable intermediate forms, than if there are not.

• It is possible to distinguish between the interactions among sub-systems and the interac
tions within sub-systems. The latter are both more frequent (typically at least an ord
magnitude more) and more predictable than the former. This gives rise to the vie
complex systems are nearly decomposable. Thus, sub-systems can be treated alm
they are independent of one another, but not quite since there are some inter
between them. Moreover, although many of these interactions can be predicted at
time, some cannot.

Drawing these insights together, it is possible to define a canonical view of a complex s
(figure 1). The system’s hierarchical nature is expressed through the “composed of” links, c
nents within a sub-system are connected through “frequent interaction” links, and intera
between components are expressed through “infrequent interaction” links. The variable no
primitive components can be seen in the way that atomic components at one level are ex
out to entire sub-systems at subsequent levels.

1. Here the term “hierarchy” is not used to mean that each sub-system is subordinated by an authority relation
system to which it belongs. Rather, it should be interpreted in a broad sense to mean a system that is analy
successive sets of sub-systems.

order to

e it
ve iso-
 tackle
of the

sises
works
cused

een
of fig-
 tackle
uped

ompo-
ndly, by
. For

partic-

on of
ey corre-
between.
4

Given these observations, software engineers have devised a number of powerful tools in
manage this complexity. The principal mechanisms include [3]:

• Decomposition: The most basic technique for tackling any large problem is to divid
into smaller, more manageable chunks each of which can then be dealt with in relati
lation (note the nearly decomposable sub-systems in figure 1). Decomposition helps
complexity because it limits the designer’s scope: at any given instant only a portion
problem needs to be considered.

• Abstraction: The process of defining a simplified model of the system that empha
some of the details or properties, while suppressing others. Again, this technique
because it limits the designer’s scope of interest at a given time. Attention can be fo
on the salient aspects of the problem, at the expense of the less relevant details.

• Organisation2: The process of identifying and managing the inter-relationships betw
the various problem solving components (note the sub-system and interaction links
ure 1). The ability to specify and enact organisational relationships helps designers
complexity in two ways. Firstly, by enabling a number of basic components to be gro
together and treated as a higher-level unit of analysis. For example, the individual c
nents of a sub-system can be treated as a single unit by the parent system. Seco
providing a means of describing the high-level relationships between various units
example, a number of components may need to work together in order to provide a
ular functionality.

2. Booch uses the term “hierarchy” for this final point [3]. However, hierarchy invariably gives the connotati
control, hence the more neutral term “organisation” is used here. Organisations can be arranged such that th
spond to control hierarchies, however they can also correspond to groups of peers, and anything that falls in-

frequent interaction

sub-system

infrequent interaction

composed of

Figure 1: View of a Canonical Complex System

sub-system
component

oftware
re, clear
ssessing
 dealing

ent, yet
search-

are: (i)
 situ-
at envi-

er be
both
ntext-
 timely
s) and

y their

e agent

lised
eting
ir indi-
ommon

lity to
ctions

ability
e social
 from

) and a
5

The precise nature and way in which these tools are used varies enormously between s
paradigms. Hence when characterising a new paradigm, such as agent-oriented softwa
positions need to be determined on each of these issues (section 2.2). Moreover, when a
the power of a paradigm, arguments need to be advanced as to why the chosen way of
with these issues helps software engineers build systems more effectively (section 2.3).

2.2 What is Agent-Oriented Software?

At present, there is a great deal of ongoing debate about exactly what constitutes an ag
there is nothing approaching a universal consensus. However, an increasing number of re
ers find the following characterisation useful [41]:

an agent is an encapsulated computer system that is situated in some environment,
and that is capable of flexible, autonomous action in that environment in order to

meet its design objectives

There are a number of points about this definition that require further explanation. Agents
clearly identifiable problem solving entities with well-defined boundaries and interfaces; (ii)
ated (embedded) in a particular environment—they receive inputs related to the state of th

ronment through their sensors and they act on the environment through their effectors3; (iii)
designed to fulfil a specific role—they have particular objectives to achieve, that can eith
explicitly or implicitly represented within the agents; (iv) autonomous—they have control
over their internal state and over their own behaviour; (v) capable of exhibiting flexible (co
dependent) problem solving behaviour—they need to be reactive (able to respond in a
fashion to changes that occur in their environment in order to satisfy their design objective
proactive (able to opportunistically adopt new goals and take the initiative in order to satisf
design objectives) [42].

When adopting an agent-oriented view of the world, it soon becomes apparent that a singl

is insufficient4. Most problems require or involve multiple agents: to represent the decentra
nature of the problem, the multiple loci of control, the multiple perspectives, or the comp
interests. Moreover, the agents will need to interact with one another, either to achieve the
vidual objectives or else to manage the dependencies that ensue from being situated in a c
environment. These interactions range from simple semantic interoperation (the abi
exchange comprehensible communications), through traditional client-server type intera
(the ability to request that a particular action is performed), to rich social interactions (the
to cooperate, coordinate and negotiate about a course of action). Whatever the nature of th
process, however, there are two points that qualitatively differentiate agent interactions

3. Typically each agent has a partial view of the environment (that may or may not overlap with that of others
limited sphere of influence through which it can alter the environment.
4. It can be argued that there is no such thing as a single agent system; everything involves multiple agents.

ns gen-
ed on
e level

voca-
lexible
l and
ed the

e of their
een at

s, when
helps

working
eries of
explicit
ational
se rela-
lation-
 number
). The
liver a
 agent
sational
ether in
ctives.

proach
omous
els that
xplicit

lex and
6

those that occur in other software engineering paradigms. Firstly, agent-oriented interactio
erally occur through a high-level (declarative) agent communication language (typically bas
speech act theory [1]). Consequently, interactions are usually conducted at the knowledg
[25]: in terms of which goals should be followed, at what time, and by whom (cf. method in
tion or function calls that operate at a purely syntactic level). Secondly, as agents are f
problem solvers, operating in an environment over which they have only partial contro
observability, interactions need to be handled in a similarly flexible manner. Thus, agents ne
computational apparatus to make context-dependent decisions about the nature and scop
interactions and to initiate (and respond to) interactions that were not necessarily fores
design time.

In most cases, agents act to achieve objectives on behalf of individuals or companies. Thu
agents interact there is typically some underlying organisational context. This context
define the nature of the relationship between the agents. For example, they may be peers
together in a team, one may be the boss of the others, or they may be involved in a s
employer-subcontractor relationships. To capture such links, agent systems often have
constructs for modeling organisational relationships (e.g., peer, boss, etc.) and organis
structures (e.g., teams, groups, coalitions, etc.). It should be noted that in many cases, the
tionships may change while the system is operating. Social interaction means existing re
ships evolve (e.g., an agent awards a new contract) and new relations are created (e.g., a
of agents may form a team to deliver a particular service that no one individual can offer
temporal extent of these relationships can vary enormously: from just long enough to de
particular service once to a permanent bond. To cope with this variety and dynamicity,
researchers have expended considerable effort: devising protocols that enable organi
groupings to be formed and disbanded, specifying mechanisms to ensure groupings act tog
a coherent fashion, and developing structures to characterise the macro behaviour of colle

Drawing these points together (figure 2), it can be seen that adopting an agent-oriented ap
to software engineering means decomposing the problem into multiple, interacting, auton
components (agents) that have particular objectives to achieve. The key abstraction mod
define the “agent-oriented mindset” are agents, interactions and organisations. Finally, e
structures and mechanisms are often available for describing and managing the comp
changing web of organisational relationships that exist between the agents.

hy such
ent has

prob-

 model-

l rela-
st in a

 step is
te of the
s from

s with
psulate
(system

 fashion
f their
ther to
rking
7

2.3 The Case for an Agent-Oriented Approach

Having characterised complex systems and described agent software, we now consider w
agent-oriented techniques are well suited to developing such software systems. This argum
three parts:

• show that agent-oriented decompositions are an effective way of partititioning the
lem space of a complex system (section 2.3.1);

• show that the key abstractions of the agent-oriented mindset are a natural means of
ing complex systems (section 2.3.2);

• show that the agent-oriented philosophy for identifying and managing organisationa
tionships is appropriate for dealing with the dependencies and interactions that exi
complex system (section 2.3.3).

To make the case for agent-oriented software engineering even more compelling, the final
to argue that agent-oriented techniques represent a genuine advance over the current sta
art. To this end, the agent-oriented approach will be compared with leading-edge technique
mainstream software engineering (section 2.3.4). In particular, this involves comparison
object-oriented analysis and design (system is built out of interacting objects that enca
both data and the procedures that operate on that data [3], [23]) and with component-ware
is built by assembling pre-existing components into some overall structure [38]).

2.3.1 Agent-Oriented Decompositions

Complex systems consist of a number of related sub-systems organised in a hierarchical
(figure 1). At any given level, the sub-systems work together to achieve the functionality o
parent system. Moreover, within a sub-system, the constituent components work toge
deliver the overall functionality. Thus, the same basic model of interacting components, wo

Organisational
relationship
Interaction

Environment

Figure 2: Canonical view of a multi-agent system

A1

A2

A3

A4

A5

Ai
Agent i

view of environment/
sphere of influence

of the

ne or
ds are

ns [27].
com-
at they
ctives.

 partial
rm in

.

ctive
ecom-

e rea-
nalyse

ility to
ollows
er.

 engi-
 com-
nner).
enerate
actions
wledge-
sed by
en the
ignifi-
 that is
p-level
comes

n terms
ve. In

uce than
, [23] pg
8

together to achieve particular objectives occurs throughout the system.

Given the above situation, it is entirely natural to modularise the components in terms

objectives they achieve5. In other words, each component can be thought of as achieving o
more objectives. A second important observation is that current software engineering tren
towards increasing the degrees of localisation and encapsulation in problem decompositio
Applying this philosophy to objective-achieving decompositions means that the individual
ponents should have their own thread of control (i.e., components should be active) and th
should encapsulate the information and problem solving ability needed to meet these obje
Since the components typically have to operate in an environment in which they have only
information, they must be able to determine, at run-time, which actions they should perfo
pursuit of their objectives. In short, components need autonomy over their choice of action

In order for the active and autonomous components to fulfil both their individual and colle
objectives, they need to interact with one another (recall complex systems are only nearly d
posable). However the system’s inherent complexity means that it is impossible to a priori know
about all the potential links: interactions will occur at unpredictable times, for unpredictabl
sons, between unpredictable components. For this reason, it is futile to try and predict or a
all the possibilities at design-time. It is more realistic to endow the components with the ab
make decisions about the nature and scope of their interactions at run-time. From this it f
that components need the ability to initiate (and respond to) interactions in a flexible mann

The policy of deferring to run-time decisions about component interactions facilitates the
neering of complex systems in two ways. Firstly, problems associated with the coupling of
ponents are significantly reduced (by dealing with them in a flexible and declarative ma
Components are specifically designed to deal with unanticipated requests and can g
requests for assistance if they find themselves in difficulty. Moreover because these inter
are enacted through a high-level agent communication language, coupling becomes a kno
level issue. This, in turn, removes syntactic level concerns from the types of errors cau
unexpected interactions. Secondly, the problem of managing control relationships betwe
software components (a task that bedevils more traditional functional decompositions) is s
cantly reduced. All agents are continuously active and any coordination or synchronisation
required is handled through inter-agent interaction. Thus, the ordering of the system’s to
goals is no longer something that has to be rigidly prescribed at design time. Rather, it be
something that can be handled in a context-sensitive manner at run-time.

From this discussion, it is apparent that a natural way to modularise a complex system is i
of multiple, interacting, autonomous components that have particular objectives to achie
short, agent-oriented decompositions make it easier to develop complex systems.

5. The view that decompositions based upon functions/actions/processes are more intuitive and easier to prod
those based upon data/objects is even acknowledged within the object-oriented community (see, for example
44).

m. In
priate
e those
ceptu-
blem to
isational

ove (sec-

is most
trac-
igher
ven
gent

tives”,
nted

plex

mpo-
ual unit
 with
y pro-
have
 struc-
lation
s work-

ontrol
 main
 treated
nt enti-
 struc-

fying
hange,
9

2.3.2 The Appropriateness of the Agent-Oriented Abstractions

A significant part of all design endeavours is to find the right models for viewing the proble
general, there will be multiple candidates and the difficult task is picking the most appro
one. Turning to the specific case of designing software, the most powerful abstractions ar
that minimise the semantic gap between the units of analysis that are intuitively used to con
alise the problem and the constructs present in the solution paradigm. In our case, the pro
be characterised consists of sub-systems, sub-system components, interactions and organ
relationships. Taking each of these in turn:

• The case for viewing sub-system components as agents has already been made ab
tion 2.3.1).

• The interplay between the sub-systems and between their constituent components
naturally viewed in terms of high-level social interactions: “at any given level of abs
tion, we find meaningful collections of objects that collaborate to achieve some h
level view” [3] pg 34. This view accords precisely with the knowledge level (or e
social level [18]) treatment of interaction afforded by the agent-oriented approach. A
systems are invariably described in terms of “cooperating to achieve common objec
“coordinating their actions” or “negotiating to resolve conflicts”. Thus, the agent-orie
mindset is entirely appropriate for capturing the types of interaction that occur in com
systems.

• Complex systems involve changing webs of relationships between their various co
nents. They also require collections of components to be treated as a single concept
when viewed from a different level of abstraction. Again, this view matches closely
the abstractions provided by the agent-oriented mindset. Thus, facilities are typicall
vided for explicitly representing organisational relationships. Interaction protocols
been developed for forming new groupings and disbanding unwanted ones. Finally,
tures are available for modeling collectives. The latter point is especially useful in re
to representing sub-systems since they are nothing more than a team of component
ing together to achieve a collective goal.

2.3.3 The Need for Flexible Management of Changing Organisational Structures

Complex systems involve a variety of organisational relationships, ranging from peers to c
hierarchies, from the short-term to the ongoing. These relationships are important for two
reasons. Firstly, they allow a number of separate components to be grouped together and
as a single conceptual entity. Secondly, they enable the high-level links between the differe
ties to be characterised. Given the influence and impact of organisational relationships and
tures on system behaviour, the importance of providing explicit support for flexibly speci
and managing them is self-evident. Moreover, given that these relationships frequently c
the ability to dynamically adapt to prevailing circumstances is also essential.

t struc-
 power,
tems to
onent
s can be
imitive
 provide
 devel-
tional
mental

system
s. How-
sive in
ts encap-
us, any

hod is
 to one
l-con-
e this
ay in
-sided
 matter
ecutor,
 of a

n such
tentially
inent as
 inher-
ntains
n ade-
 1: “for
fficient

ctions.
is too
ion of
ign pat-
y fall

cus on
10

As already indicated, organisations are first-class entities in agent systems. Thus explici
tures and flexible mechanisms are central to the agent paradigm. This representational
when coupled with the supporting computational mechanisms, enables agent-oriented sys
exploit two facets of the nature of complex systems. Firstly, the notion of a primitive comp
can be varied according to the needs of the observer. Thus at one level, entire sub-system
viewed as a singleton, alternatively teams or collections of agents can be viewed as pr
components, and so on until the system eventually bottoms out. Secondly, such structures
a variety of stable intermediate forms, that, as already indicated, are essential for the rapid
opment of complex systems. Their availability means that individual agents or organisa
groupings can be developed in relative isolation and then added into the system in an incre
manner. This, in turn, ensures there is a smooth growth in functionality.

2.3.4 Agents versus Objects and Component-ware

There are a number of similarities between the object- and the agent- oriented views of
development. For example, both emphasise the importance of interactions between entitie
ever there are also a number of important differences. Firstly, objects are generally pas
nature: they need to be sent a message before they come alive. Secondly, although objec
sulate state and behaviour, they do not encapsulate behaviour activation (action choice). Th
object can invoke any publicly accessible method on any other object. Once the met
invoked, the corresponding actions are performed. In this sense, objects are obedient
another. Whilst this approach may suffice for smaller applications in cooperative and wel
trolled environments, it is not suited to either large or competitive environments becaus
modus operandi places all the onus for invoking behaviour on the client. The server has no s
the matter. Insights from both organisation and political science indicate that such one
approaches do not scale well. It is far better to allow the action executor to have a say in the
(i.e., action invocation becomes a process of mutual consent). Thus, for instance, the ex
who by definition is more intimate with the details of the actions to be performed, may know
good reason why the specified behaviour should not be invoked in the current situation. I
cases, the executor should either be able to refuse the request or at least point out the po
damaging consequences of carrying it out. These observations become even more pert
software moves from the realms of being under the control of a single organisation (or an
ently cooperative group of organisations) into open environments in which the system co
organisations that compete against one another. Thirdly, object-orientation fails to provide a
quate set of concepts and mechanisms for modeling the types of system depicted in figure
complex systems we find that objects, classes and modules provide an essential yet insu
means of abstraction” [3] pg 34. Complex systems require richer problem solving abstra
Individual objects represent too fine a granularity of behaviour and method invocation
primitive a mechanism for describing the types of interactions that take place. Recognit
these facts, led to the development of more powerful abstraction mechanisms such as des
terns and application frameworks [13]. Whilst these are undoubtedly a step forward, the
short of the desiderata for complex systems developments. By their very nature, they fo

rmined.
ically
mplex
 but

-
ly the
ftware

 soft-
ll soft-

ypical
f this,
 to build
s from
he best
ntially a
ment”
 when
f a range
, these
e in an
upports,
nviron-

gy, they
ts and

are with
i-
r com-
 “meta-
 about

 under-
e, pro-

onents
m that
ent-ori-
alue of
e engi-
11

generic system functions and the mandated patterns of interaction are rigid and pre-dete
Finally, object- oriented approaches provide minimal support for structuring collectives (bas
relationships are defined by inheritance class hierarchies). Yet as illustrated in figure 1, co
systems involve a variety of organisational relationships (of which “part-of” and “is-a” are
two of the simpler kinds).

A technology that is closely related to that of object-oriented systems is component-based soft
ware [38]. There are a number of motivations for component-based software, but arguab
single most important driver behind component systems is the long cherished dream of so
reuse. In short, industrial software has been bedevilled by the problem of “first principles”
ware development. By and large, most everyday software development projects develop a
ware components from scratch. This is obviously inefficient, as most elements of a t
software project will have been successfully implemented many times before. As a result o
researchers have for several decades been eager to develop methods that will permit them
software from pre-built components in the same way that electronic engineers build system
integrated circuits. Software component architectures, of which Java beans are probably t
known example (see http://java.sun.com/beans/), are one approach to this problem. Esse
component model allows developers to build and combine software as “units of deploy
[38]. The simplest examples of component software are from user interface design. Thus
one constructs a user interface using a language such as Java, one typically makes use o
of pre-defined classes, to implement interface elements. Using a component architecture
elements are available directly to the developer as single units of deployment, for direct us
application. A developer can ask such a user interface component about the methods it s
can customise its properties, and manipulate it entirely through a graphical development e
ment.

As components in the sense described here are descended from object-oriented technolo
inherit all the properties of objects, and in particular, the close relationship between objec
agents also holds true for objects and components. In addition, however, agents also sh
components the concept of a single unit of deployment. Thus, like components, agents are typ
cally self-contained computational entities, that do not need to be deployed along with othe
ponents in order to realise the services they provide. Also, agents are often equipped with
level reasoning” ability in the sense that they are able to respond to requests for information
the services they provide. However, components are not autonomous in the way that we
stand agents to be; in addition, like objects, there is no corresponding notion of reactiv
active, or social behaviour in component software.

In making these arguments in favour of an agent-oriented approach, it is possible for prop
of object-oriented systems, component-ware, or any other programming paradigm to clai
such mechanisms can be implemented using their technique. This is undoubtedly true. Ag
ented systems are, after all, just computer programs. However, this misses the point. The v
different software paradigms is the mindset and the techniques that they provide to softwar

er para-

or engi-
ring. In
iscuss
ented
ussion

s
nting?
nts has
 men-

ber of
resent-

hich

their

ng from
rs to

n on
frame-
-inten-
s and
t,
hnical
t of the
al state
neers. In this respect, agent-oriented concepts are an extension of those available in oth
digms.

3. The Agent-Oriented Software Lifecycle

Now that we understand why agent-oriented techniques represent a promising approach f
neering complex systems, we can turn to the details of agent-oriented software enginee
particular, we examine what specifications for agent systems might look like (section 3.1), d
how to implement such specifications (section 3.2), and explore how to verify that implem
systems do in fact satisfy their specifications (section 3.3). See [41] for a more detailed disc
on these issues.

3.1 Specification

In this section, we consider the problem of specifying an agent system. What are the requirement
for an agent specification framework? What sort of properties must it be capable of represe
Taking the view of agents discussed above, the predominant approach to specifying age
involved treating them as intentional systems that may be understood by attributing to them
tal states such as beliefs, desires, and intentions [9], [42]. Following this idea, a num
approaches for formally specifying agents have been developed, which are capable of rep
ing the following aspects of an agent-based system:

• the beliefs that agents have—the information they have about their environment, w
may be incomplete or incorrect;

• the goals that agents will try to achieve;

• the actions that agents perform and the effects of these actions;

• the ongoing interaction that agents have—how agents interact with each other and
environment over time.

We call a theory that explains how these aspects of agency interact to achieve the mappi
input to output an agent theory. The most successful approach to (formal) agent theory appea
be the use of a temporal modal logic (space restrictions prevent a detailed technical discussio
such logics—see, e.g., [42] for extensive references). Two of the best known such logical
works are the Cohen-Levesque theory of intention [8], and the Rao-Georgeff belief-desire
tion model [31]. The Cohen-Levesque model takes as primitive just two attitudes: belief
goals. Other attitudes (in particular, the notion of intention) are built up from these. In contras
Rao-Georgeff take intentions as primitives, in addition to beliefs and goals. The key tec
problem faced by agent theorists is developing a formal model that gives a good accoun
interrelationships between the various attitudes that together comprise an agent’s intern
12

s using

 speci-
mputa-
at we

using

 agent
w that
e
n be
current
them a
ation
 which
g a Con-
f states.
y execute,
tation;

se the
imple,
 lan-

derably
wn as
ticle:
rpre-
13

[42]. Comparatively few serious attempts have been made to specify real agent system
such logics—see, e.g., [12] for one such attempt.

3.2 Implementation

Once given a specification, we must implement a system that is correct with respect to this
fication. The next issue we consider is this move from abstract specification to concrete co
tional system. There are at least two possibilities for achieving this transformation th
consider here:

• somehow directly execute or animate the abstract specification; or

• somehow translate or compile the specification into a concrete computational form
an automatic translation technique.

In the sub-sections that follow, we shall investigate each of these possibilities in turn.

3.2.1 Directly Executing Agent Specifications

Suppose we are given a system specification, φ, which is expressed in some logical languageL.

One way of obtaining a concrete system from φ is to treat it as an executable specification, and
interpret the specification directly in order to generate the agent’s behaviour. Interpreting an
specification can be viewed as a kind of constructive proof of satisfiability, whereby we sho
the specification φ is satisfiable by building a model (in the logical sense) for it. If models for th
specification language L can be given a computational interpretation, then model building ca
viewed as executing the specification. To make this discussion concrete, consider the Con
MetateM programming language [11]. In this language, agents are programmed by giving
temporal logic specification of the behaviour it is intended they should exhibit; this specific
is directly executed to generate each agent’s behaviour. Models for the temporal logic in
Concurrent MetateM agents are specified are linear discrete sequences of states: executin
current MetateM agent specification is thus a process of constructing such a sequence o
Since such state sequences can be viewed as the histories traced out by programs as the
the temporal logic upon which Concurrent MetateM is based has a computational interpre
the actual execution algorithm is described in [2].

Note that executing Concurrent MetateM agent specifications is possible primarily becau
models upon which the Concurrent MetateM temporal logic is based are comparatively s
with an obvious and intuitive computational interpretation. However, agent specification
guages in general (e.g., the BDI formalisms of Rao and Georgeff [31]) are based on consi
more complex logics. In particular, they are usually based on a semantic framework kno
possible worlds [6]. The technical details are somewhat involved for the purposes of this ar
the main point is that, in general, possible worlds semantics do not have a computational inte

ting” a
rs have
 basis,
, that

ca-
rocess.
iency.
olves
ener-

ation
ational
ne, at
 sym-

mporal/
state
ng tem-
system
oach to
ey
of
tly syn-

d in a
ressive,

erated in
un-
 have

ect with

ivide

e two

14

tation in the way that Concurrent MetateM semantics do. Hence it is not clear what “execu
logic based on such semantics might mean. In response to this, a number of researche
attempted to develop executable agent specification languages with a simplified semantic
that has a computational interpretation. An example is Rao’s AgentSpeak(L) language
although essentially a BDI system, has a simple computational semantics [30].

3.2.2 Compiling Agent Specifications

An alternative to direct execution is compilation. In this scheme, we take our abstract specifi
tion, and transform it into a concrete computational model via some automatic synthesis p
The main perceived advantages of compilation over direct execution are in run-time effic
Direct execution of an agent specification, as in Concurrent MetateM, above, typically inv
manipulating a symbolic representation of the specification at run time. This manipulation g
ally corresponds to reasoning of some form, which is computationally costly. Compil
approaches aim to reduce abstract symbolic specifications to a much simpler comput
model, which requires no symbolic representation. The “reasoning” work is thus done off-li
compile-time; execution of the compiled system can then be done with little or no run-time
bolic reasoning.

Compilation approaches usually depend upon the close relationship between models for te
modal logic (which are typically labelled graphs of some kind), and automata-like finite
machines. For example, Pnueli and Rosner [29] synthesise reactive systems from branchi
poral logic specifications. Similar techniques have also been used to develop concurrent
skeletons from temporal logic specifications. Perhaps the best-known example of this appr
agent development is the situated automata paradigm of Rosenschein and Kaelbling [34]. Th
use an epistemic logic (i.e., a logic of knowledge [10]) to specify the perception component
intelligent agent systems. They then used a technique based on constructive proof to direc
thesise automata from these specifications [33].

The general approach of automatic synthesis, although theoretically appealing, is limite
number of important respects. First, as the agent specification language becomes more exp
then even off-line reasoning becomes too expensive to carry out. Second, the systems gen
this way are not capable of learning, (i.e., they are not capable of adapting their “program” at r
time). Finally, as with direct execution approaches, agent specification frameworks tend to
no concrete computational interpretation, making such a synthesis impossible.

3.3 Verification

Once we have developed a concrete system, we need to show that this system is corr
respect to our original specification. This process is known as verification, and it is particularly
important if we have introduced any informality into the development process. We can d
approaches to the verification of systems into two broad classes: (1) axiomatic; and (2) semantic
(model checking). In the subsections that follow, we shall look at the way in which thes

puter
e can
at rep-
ory is
es to a
uence

less an
n, the

 verifi-
nd col-
ences,

velop a
then be
cifica-
ence

n axi-
matic
s to use
ages.
 could
r two
 need to
use the
nt is a
esired
ations
tized in
 (see
le that
 Con-
approaches have evidenced themselves in agent-based systems.

3.3.1 Axiomatic Approaches

Axiomatic approaches to program verification were the first to enter the mainstream of com
science, with the work of Hoare in the late 1960s [16]. Axiomatic verification requires that w
take our concrete program, and from this program systematically derive a logical theory th
resents the behaviour of the program. Call this the program theory. If the program the
expressed in the same logical language as the original specification, then verification reduc
proof problem: show that the specification is a theorem of (equivalently, is a logical conseq
of) the program theory.

The development of a program theory is made feasible by axiomatizing the programming lan-
guage in which the system is implemented. For example, Hoare logic gives us more or
axiom for every statement type in a simple Pascal-like language. Given the axiomatizatio
program theory can be derived from the program text in a systematic way.

Perhaps the most relevant work from mainstream computer science is the specification and
cation of reactive systems using temporal logic, in the way pioneered by Pnueli, Manna, a
leagues [22] [28]. The idea is that the computations of reactive systems are infinite sequ
that correspond to models for linear temporal logic. Temporal logic can be used both to de
system specification, and to axiomatize a programming language. This axiomatization can
used to systematically derive the theory of a program from the program text. Both the spe
tion and the program theory will then be encoded in temporal logic, and verification h
becomes a proof problem in temporal logic.

Comparatively little work has been carried out within the agent-based systems community o
omatizing multi-agent environments. We shall review just one approach. In [40], an axio
approach to the verification of multi-agent systems was proposed. Essentially, the idea wa
a temporal belief logic to axiomatize the properties of two multi-agent programming langu
Given such an axiomatization, a program theory representing the properties of the system
be systematically derived in the way indicated above. A temporal belief logic was used fo
reasons. First, a temporal component was required because, as we observed above, we
capture the ongoing behaviour of a multi-agent system. A belief component was used beca
agents we wish to verify are each symbolic AI systems in their own right. That is, each age
symbolic reasoning system, which includes a representation of its environment and d
behaviour. A belief component in the logic allows us to capture the symbolic represent
present within each agent. The two multi-agent programming languages that were axioma
the temporal belief logic were Shoham’s Agent0 [36], and Fisher’s Concurrent MetateM
above). Note that this approach relies on the operation of agents being sufficiently simp
their properties can be axiomatized in the logic. It works for Shoham’s Agent0 and Fisher’s
15

 to rule-
 an axi-
tion of
ally).

ifica-
ugh,
 prob-
 been
,
hes are

 once
-state

a-

n-

g the
prob-

e pre-
peci-
alid in

l logics
, and

ning
d above
 BDI
n it be

uld
re, and
 of the
nd the
16

current MetateM largely because these languages have a simple semantics, closely related
based systems, which in turn have a simple logical semantics. For more complex agents,
omatization is not so straightforward. Also, capturing the semantics of concurrent execu
agents is not easy (it is, of course, an area of ongoing research in computer science gener

3.3.2 Semantic Approaches: Model Checking

Ultimately, axiomatic verification reduces to a proof problem. Axiomatic approaches to ver
tion are thus inherently limited by the difficulty of this proof problem. Proofs are hard eno
even in classical logic; the addition of temporal and modal connectives to a logic makes the
lem considerably harder. For this reason, more efficient approaches to verification have
sought. One particularly successful approach is that of model checking. As the name suggests
whereas axiomatic approaches generally rely on syntactic proof, model checking approac
based on the semantics of the specification language.

The model checking problem, in abstract, is quite simple: given a formula φ of language L, and a

model M for L, determine whether or not φ is valid in M, i.e., whether or not M |=L φ. Model check-

ing-based verification has been studied in connection with temporal logic. The technique
again relies upon the close relationship between models for temporal logic and finite

machines. Suppose that φ is the specification for some system, and Π is a program that claims to

implement φ. Then, to determine whether or not Π truly implements φ, we take Π, and from it

generate a model MΠ that corresponds to Π, in the sense that MΠ encodes all the possible comput

tions of Π. To determine whether or not MΠ |= φ, i.e., whether the specification formula φ is valid

in MΠ; the program Π satisfies the specification φ just in case the answer is ‘yes’. The main adva

tage of model checking over axiomatic verification is in complexity: model checking usin
branching time temporal logic CTL [7] can be done in polynomial time, whereas the proof
lem for most modal logics is quite complex.

In [32], Rao and Georgeff present an algorithm for model checking agent systems. Mor
cisely, they give an algorithm for taking a logical model for their (propositional) BDI agent s
fication language, and a formula of the language, and determining whether the formula is v
the model. The technique is closely based on model checking algorithms for normal moda
[15]. They show that despite the inclusion of three extra modalities, (for beliefs, desires
intentions), into the CTL branching time framework, the algorithm is still quite efficient, run
in polynomial time. So the second step of the two-stage model checking process describe
can still be done efficiently. However, it is not clear how the first step might be realised for
logics. Where does the logical model characterizing an agent actually comes from—ca

derived from an arbitrary program Π, as in mainstream computer science? To do this, we wo
need to take a program implemented in, say, Pascal, and from it derive the belief, desi
intention accessibility relations that are used to give a semantics to the BDI component
logic. Because, as we noted earlier, there is no clear relationship between the BDI logic a

l could

n pin-
ollow-
re and
s have

olutions

t in pur-
h sit-
tween
dertak-
rds the
t-term
s there
ue in

hey are
 and the

, which
teract
 num-

s a de-
hrough
ly hon-
social
and the

 emer-
cesses
[24] —
 of the
interac-
 clear
17

concrete computational models used to implement agents, it is not clear how such a mode
be derived.

4. Pitfalls of Agent-Oriented Development

Having highlighted the potential benefits of agent-oriented software engineering, this sectio
points some of the inherent drawbacks of building software using agent technology. The f
ing set of problems are directly attributable to the characteristics of agent-oriented softwa
are, therefore, intrinsic to the approach. Naturally, since robust and reliable agent system
been built, designers have found means of circumventing these problems. However such s
tend to be very much on a case by case basis; more general solutions are a long way off.

Much has been made of the fact that agents are situated problem solvers: they have to ac
suit of their objectives while maintaining an ongoing interaction with their environment. Suc
uatedness makes it difficult to design software capable of maintaining a balance be
proactive and reactive behaviour. Leaning too much towards the former risks the agent un
ing irrelevant or infeasible tasks (as circumstances have changed). Leaning too much towa
latter means the agent may not fulfil its objectives (since it is constantly responding to shor
needs). Striking a balance requires context-sensitive decision making. This, in turn, mean
can be a significant degree of unpredictability about which objectives the agent will purs
which circumstances and which methods will be used to achieve the chosen objectives.

Although agent interactions represent a hitherto unseen level of sophistication and power, t
also inherently unpredictable in the general case. As agents are autonomous, the patterns
effects of their interactions are uncertain. Firstly, agents decide, for themselves at run-time
of their objectives require interaction in a given context, which acquaintances they will in
with in order to realize these objectives, and when these interactions will occur. Hence the
ber, pattern, and timing of interactions cannot be predicted in advance. Secondly, there i
coupling, and a considerable degree of variability, between what one agent first requests t
an interaction and how the recipient ultimately responds. The request may be immediate
oured as is, it may be refused completely, or it may be modified through some form of
interchange. In short, both the nature (a simple request versus a protracted negotiation)
outcome of an interaction cannot be determined at the onset.

The final source of unpredictability in agent-oriented system design relates to the notion of
gent behaviour. It has long been recognised that interactive composition—collections of pro
acting side-by-side and interacting in whatever way they have been designed to interact
results in behavioural phenomena that cannot be generally understood solely in terms
behaviour of the individual components. This emergent behaviour is a consequence of the
tion between components. Given the sophistication and flexibility of agent interactions, it is
that the scope for unexpected individual and group behaviour is considerable.

s that

r sci-
 term

 devel-
agent
way of
ions.
amen-
y has
ption.
plica-

 art
is-

e viv-
to us
pecta-

iversal
 para-
he rel-
gent
such an

agents.
d, not

at pro-
s” will
tanding
them to

ially
rchi-
18

As well as these specific technological problems, we can also identify a number of pitfall
seems to occur repeatedly in agent development projects [43]

• You oversell agent solutions, or fail to understand where agents may usefully be applied.

Agent technology is currently the subject of considerable attention in the compute
ence and AI communities, and many predictions have been made about its long
potential. However, one of the greatest current sources of perceived failure in agent
opment initiatives is simply the fact that developers overestimate the potential of
systems. While agent technology represents a potentially novel and important new
conceptualising and implementing software, it is important to understand its limitat
Agents are ultimately just software, and agent solutions are subject to the same fund
tal limitations as more conventional software solutions. In particular, agent technolog
not somehow solved the (very many) problems that have dogged AI since its ince
Agent systems typically make use of AI techniques [35]. In this sense, they are an ap
tion of AI technology. But their “intelligent” capabilities are limited by the state of the
in this field. Artificial intelligence as a field has suffered considerably from over-optim
tic claims about its potential. Most recently, perhaps, the expert systems experienc
idly illustrates the perils of overselling a promising technology. It seems essential
that agent technology does not fall prey to this same problem. Realistic, sober ex
tions of what agent technology can provide are thus extremely important.

• You get religious or dogmatic about agents

Although agents have been used in a wide range of applications, they are not a un
solution. There are many applications for which conventional software development
digms (such as object-oriented programming) are more appropriate. Indeed, given t
ative immaturity of agent technology and the small number of deployed a
applications, there should be clear advantages to an agent based solution before
approach is even contemplated.

• You don’t know why you want agents

This is a common problem for any new technology that has been hyped as much as
Managers read optimistic financial forecasts of the potential for agent technology an
surprisingly, they want part of this revenue. However in many cases, managers th
pose an agent project do not actually have a clear idea about what “having agent
buy them. In short, they have no business model for agents – they have no unders
of how agents can be used to enhance their existing products, how they can enable
generate new product lines, and so on.

• You want to build generic solutions to one-off problems

This is a pitfall to which many software projects fall victim, but it seems to be espec
prevalent in the agent community. It typically manifests itself in the devising of an a

m to be
 such

atisfy

 an
ewly
f time

 As we
nology
tems.

ssen-
able to
ce pro-
 forget
roject

neering

sses of
s tend
). So,
 con-
d sys-

f con-
ent. If
teness

pting
tecture
19

tecture or testbed that supposedly enables a whole range of potential types of syste
built, when what is really required is a bespoke design to tackle a single problem. In
situations, a custom built solution will be easier to develop and far more likely to s
the requirements of the application.

• You believe that agents are a silver bullet

The holy grail of software engineering is a “silver bullet”: a technique that will provide
order of magnitude improvement in software development. Agent technology is a n
emerged, and as yet essentially untested software paradigm: it is only a matter o
before someone claims agents are a silver bullet. This would be dangerously naive.
pointed out above, there are good arguments in favour of the view that agent tech
will lead to improvements in the development of complex distributed software sys
But, as yet, these arguments are largely untested in practice.

• You forget you are developing software

At the time of writing, the development of any agent system – however trivial – is e
tially a process of experimentation. There are no tried and trusted techniques avail
assist the developer in producing agent software which has a guaranteed performan
file. Unfortunately, because the process is experimental, it encourages developers to
that they are actually developing software. The result is a foregone conclusion: the p
flounders, not because of agent-specific problems, but because basic software engi
good practice was ignored.

• You forget you are developing multi-threaded software

Multi-threaded systems have long been recognised as one of the most complex cla
computer system to design and implement. By their very nature, multi-agent system
to be multi-threaded (both within an agent and certainly within the society of agents
in building a multi-agent system, it is vital not to ignore the lessons learned from the
current and distributed systems community – the problems inherent in multi-threade
tems do not go away, just because you adopt an agent-based approach.

• Your design doesn’t exploit concurrency

One of the most obvious features of a poor multi-agent design is that the amount o
current problem solving is comparatively small or even in extreme cases non-exist
there is only ever a need for a single thread of control in a system, then the appropria
of an agent-based solution must seriously be questioned.

• You decide you want your own agent architecture

Agent architectures are essentially designs for building agents [42]. When first attem
an agent project, there is a great temptation to imagine that no existing agent archi

gn one
often
ibed in
.

 focus
ult is
atural
) to be

nimum

o view
if one
ts for

s an
 and

ution.
enti-

ear not
t com-
lution
 stan-
 should
ct-ori-
ut the

are no
orms
oring,
 result,
nificant
ratch.
imple-
20

meets the requirements of your problem, and that it is therefore necessary to desi
from first principles. But designing an agent architecture from scratch in this way is
a mistake: our recommendation is therefore to study the various architectures descr
the literature [42], and either license one or else implement an “off the shelf” design

• Your agents use too much AI

When one builds an agent application, there is an understandable temptation to
exclusively on the agent-specific, “intelligence” aspects of the application. The res
often an agent framework that is too overburdened with experimental techniques (n
language interfaces, planners, theorem provers, reason maintenance systems, …
usable. In general, a more successful short term strategy is to build agents with a mi
of AI techniques.

• You see agents everywhere

When one learns about multi-agent systems for the first time, there is a tendency t
everything as an agent. This is perceived to be in some way conceptually pure. But
adopts this viewpoint, then one ends up with agents for everything – including agen
addition and subtraction. It is not difficult to see that naively viewing everything a
agent in this way will be extremely inefficient: the overheads of managing agents
inter-agent communication will rapidly outweigh the benefits of an agent-based sol
Moreover, we do not believe it is useful to refer to very fine-grained computational
ties as agents [42].

• You have too few agents

While some designers imagine a separate agent for every possible task, others app
to recognise the value of a multi-agent approach at all. They create a system tha
pletely fails to exploit the power offered by the agent paradigm, and develop a so
with a very small number of agents doing all the work. Such solutions tend to fail the
dard software engineering test of coherence, which requires that a software module
have a single, coherent function. The result is rather as if one were to write an obje
ented program by bundling all the functionality into a single class. It can be done, b
result is not pretty.

• You spend all your time implementing infrastructure

One of the greatest obstacles to the wider use of agent technology is that there
widely-used software platforms for developing multi-agent systems. Such platf
would provide all the basic infrastructure (for message handling, tracing and monit
run-time management, and so on) required to create a multi-agent system. As a
almost every multi-agent system project that we have come across has had a sig
portion of available resources devoted to implementing this infrastructure from sc
During this implementation stage, valuable time (and hence money) is often spent

 mes-
d, there
elves,

e only
 con-
ctively.
ucture.
re sys-
ed to

urately

system
r-
ditional
h seem

mon to
s of an
 sources

r soft-
ystems
e them,
plex
lemen-
 more
s and
losely
.

e wide-
 in soft-
cts will
ed soft-
propri-
me
21

menting libraries and software tools that, in the end, do little more than exchange
sages across a network. By the time these libraries and tools have been implemente
is frequently little time, energy, or enthusiasm left to work either on the agents thems
or on the cooperative/social aspects of the system.

• Your agents interact too freely or in an unorganised way.

The dynamics of multi-agent systems are complex, and can be chaotic. Often, th
way to find out what is likely to happen is to run the system repeatedly. If a system
tains many agents, then the dynamics can become too complex to manage effe
Another common misconception is that agent-based systems require no real str
While this may be true in certain cases, most agent systems require considerably mo
tem-level engineering than this. Some way of structuring the society is typically need
reduce the system’s complexity, to increase the system’s efficiency, and to more acc
model the problem being tackled.

In this section, we hope to have highlighted some of the main pitfalls that await the agent
developer. Note that our intention has emphatically not been to indicate (unintentionally or othe
wise) that agent-based development is any more complex or error-prone than more tra
software engineering approaches. Rather, we recognise that there are certain pitfalls whic
common to agent-based solutions – just as there are certain pitfalls which seem com
object-oriented solutions. By recognising these pitfalls, we cannot guarantee the succes
agent-based development project, but we can at least eliminate some of the more obvious
of failure.

5. Conclusions

In this article, we have described why we perceive agents to be a significant technology fo
ware engineering. We have discussed in detail how the characteristics of certain complex s
appear to indicate the appropriateness of an agent-based solution: as with objects befor
agents represent a natural abstraction mechanism with which to decompose and organise com
systems. In addition, we have summarised some of the key issues in the specification, imp
tation, and verification of agent-based systems, and drawn parallels with similar work from
mainstream computer science. In particular, we have shown how many of the formalism
techniques developed for specifying, implementing, and verifying agent systems are c
related to those developed for what are known as reactive systems in mainstream computing
Finally, we have described some of the pitfalls of agent-based development.

Software engineering for agent systems is at an early stage of development, and yet th
spread acceptance of the concept of an agent implies that agents have a significant future
ware engineering. If the technology is to be a success, then its software engineering aspe
need to be taken seriously. Probably the most important outstanding issues for agent-bas
ware engineering are: (i) an understanding of the situations in which agent solutions are ap
ate; and (ii) principled but informal development techniques for agent systems. While so

r agent

teM:
ent

-129.

ley.

11)

letons
Vol-

icial

ge”

r, H.
-230.

ulti-

f reus-

are”
22

attention has been given to the latter (in the form of analysis and design methodologies fo
systems [21]), almost no attention has been given to the former (but see [43]).

References

[1] J. L. Austin (1962) “How to do things with words” Clarendon Press, Oxford.

[2] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens (1989) “Concurrent Meta
A framework for programming in temporal logic” REX Workshop on Stepwise Refinem
of Distributed Systems: Models, Formalisms, Correctness (LNCS Volume 430), 94
Springer-Verlag.

[3] G. Booch (1994) “Object-oriented analysis and design with applications” Addison Wes

[4] F. P. Brooks (1995) “The mythical man-month” Addison Wesley.

[5] B. Chaib-draa (1995) “Industrial applications of distributed AI” Comms. of ACM 38 (
47-53.

[6] B. Chellas (1980) “Modal Logic: An Introduction” Cambridge University Press.

[7] E. M. Clarke and E. A. Emerson (1981) “Design and synthesis of synchronization ske
using branching time temporal logic” In D. Kozen, editor, Logics of Programs (LNCS
ume 131), 52-71, Springer-Verlag.

[8] P. R. Cohen and H. J. Levesque (1990) “Intention is choice with commitment” Artif
Intelligence, 42 213-261.

[9] D. C. Dennett (1987) “The Intentional Stance” The MIT Press.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995) “Reasoning About Knowled
The MIT Press.

[11] M. Fisher (1997) “An alternative approach to concurrent theorem proving” In J. Gelle
Kitano, and C. B. Suttner, editors, Parallel Processing in Artificial Intelligence 3, 209
Elsevier Science.

[12] M. Fisher and M. Wooldridge (1997) “On the formal specification and verification of m
agent systems” Int. Journal of Cooperative Information Systems 6 (1) 37-65.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides (1995) “Design patterns: elements o
able object-oriented software” Addison Wesley.

[14] C. Guilfoyle and E. Warner (1994) “Intelligent agents: the new revolution in softw
Ovum.

ani-
 in

 the

.

ion of

h and

plica-

. P.
me

ety”

ficial

itor,

Pro-

ngs of

uage”

the 7
23

[15] J. Y. Halpern and M. Y. Vardi (1991) “Model checking versus theorem proving: A m
festo” In V. Lifschitz, editor, AI and Mathematical Theory of Computation—Papers
Honor of John McCarthy, 151-176, Academic Press.

[16] C. A. R. Hoare (1969) “An axiomatic basis for computer programming” Comms. of
ACM, 12 (10) 576-583.

[17] P. C. Janca (1995) “Pragmatic application of information agents” BIS Strategic Report

[18] N. R. Jennings and J. R. Campos (1997) “Towards a Social Level Characterisat
Socially Responsible Agents” IEE Proc. on Software Engineering 144 (1) 11-25.

[19] N. R. Jennings, K. Sycara and M. Wooldridge (1998) “A Roadmap of Agent Researc
Development” Int Journal of Autonomous Agents and Multi-Agent Systems 1 (1) 7-38.

[20] N. R. Jennings and M. Wooldridge (eds.) (1998) “Agent technology: foundations, ap
tions and markets” Springer Verlag.

[21] D. Kinny and M. Georgeff (1997) “Modelling and design of multi-agent systems” In J
Mueller, M. Wooldridge, and N. R. Jennings, editors, Intelligent Agents III (LNAI Volu
1193), 1-20. Springer-Verlag.

[22] Z. Manna and A. Pnueli (1995) “Temporal Verification of Reactive Systems—Saf
Springer-Verlag.

[23] B. Meyer (1988) “Object-oriented software construction” Prentice Hall.

[24] R. Milner (1993) “Elements of interaction” Comms. of ACM 36 (1) 78-89.

[25] A. Newell, (1993) “Reflections on the Knowledge Level” Artificial Intelligence 59 31-38.

[26] G. M. P. O’Hare and N. R. Jennings (editors) (1996) “Foundations of distributed arti
intelligence” John Wiley & Sons.

[27] H. V. D. Parunak (1999) “Industrial and practical applications of DAI” In G. Weiss, ed
Multi-Agent Systems, MIT Press.

[28] A. Pnueli (1986) “Specification and development of reactive systems” In Information
cessing 86, Elsevier Science Publishers.

[29] A. Pnueli and R. Rosner (1989) “On the synthesis of a reactive module” In Proceedi

the 16th ACM Sym. on the Principles of Programming Languages, 179-190.

[30] A. S. Rao (1996) “AgentSpeak(L): BDI agents speak out in a logical computable lang

In W. Van de Velde and J. W. Perram, editors, Agents Breaking Away: Proceedings of th

AI

 situ-

,

vable
tical

ntrol”
n and

all.

ddi-

s”

ngi-

 The

Pro-

N.
24

European Workshop on Modelling Autonomous Agents in a Multi-Agent World, (LN
Volume 1038), 42-55. Springer-Verlag.

[31] A. S. Rao and M. Georgeff (1995) “BDI Agents: from theory to practice” Proc. of the 1st Int.
Conf. on Multi-Agent Systems, 312-319, San Francisco, CA.

[32] A. S. Rao and M. P. Georgeff (1993) “A model-theoretic approach to the verification of

ated reasoning systems” Proc. of the 13th Int. Joint Conf. on Artificial Intelligence, 318-324
Chambery, France.

[33] S. Rosenschein and L. P. Kaelbling (1986) “The synthesis of digital machines with pro
epistemic properties” In J. Y. Halpern, editor, Proc. of the 1986 Conf. on Theore
Aspects of Reasoning About Knowledge, 83-98. Morgan Kaufmann.

[34] S. J. Rosenschein and L. P. Kaelbling (1996) “A situated view of representation and co
In P. E. Agre and S. J. Rosenschein, editors, Computational Theories of Interactio
Agency, 515-540. The MIT Press.

[35] S. Russell and P. Norvig (1995) “Artificial Intelligence: A Modern Approach” Prentice-H

[36] Y. Shoham (1993) “Agent-oriented programming” Artificial Intelligence, 60 (1) 51-92.

[37] H. A. Simon (1996) “The sciences of the artificial” MIT Press.

[38] C. A. Szyperski (1997) “Component software: beyond object-oriented programming” A
son Wesley.

[39] G. Weiss (1999) “Multi-agent systems” MIT Press.

[40] M. Wooldridge (1992) “The Logical Modelling of Computational Multi-Agent System
Ph.D. thesis, Department of Computation, UMIST, Manchester, UK.

[41] M. Wooldridge (1997) “Agent-based software engineering” IEE Proc. on Software E
neering, 144 (1) 26-37.

[42] M. Wooldridge and N. R. Jennings (1995) “Intelligent agents: theory and practice”
Knowledge Engineering Review 10 (2) 115-152.

[43] M. Wooldridge and N. R. Jennings (1998) “Pitfalls of agent-oriented development”

ceedings of the 2nd Int. Conf. on Autonomous Agents, 385-391, Minneapolis/St. Paul, M

	Agent-Oriented Software Engineering
	Nicholas R. Jennings and Michael Wooldridge
	Department of Electronic Engineering
	Queen Mary & Westfield College
	University of London
	London E1 4NS, United Kingdom
	Abstract
	1. Introduction
	2. The Case for an Agent-Oriented Approach to Software Engineering
	an agent is an encapsulated computer system that is situated in some environment, and that is cap...
	3. The Agent-Oriented Software Lifecycle
	4. Pitfalls of Agent-Oriented Development
	5. Conclusions
	[2] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens (1989) “Concurrent MetateM: A fram...
	[3] G. Booch (1994) “Object-oriented analysis and design with applications” Addison Wesley.
	[4] F. P. Brooks (1995) “The mythical man-month” Addison Wesley.
	[5] B. Chaib-draa (1995) “Industrial applications of distributed AI” Comms. of ACM 38 (11) 47-53.
	[6] B. Chellas (1980) “Modal Logic: An Introduction” Cambridge University Press.
	[7] E. M. Clarke and E. A. Emerson (1981) “Design and synthesis of synchronization skeletons usin...
	[8] P. R. Cohen and H. J. Levesque (1990) “Intention is choice with commitment” Artificial Intell...
	[9] D. C. Dennett (1987) “The Intentional Stance” The MIT Press.
	[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995) “Reasoning About Knowledge” The MI...
	[11] M. Fisher (1997) “An alternative approach to concurrent theorem proving” In J. Geller, H. Ki...
	[12] M. Fisher and M. Wooldridge (1997) “On the formal specification and verification of multi- a...
	[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides (1995) “Design patterns: elements of reus�abl...
	[14] C. Guilfoyle and E. Warner (1994) “Intelligent agents: the new revolution in software” Ovum.
	[15] J. Y. Halpern and M. Y. Vardi (1991) “Model checking versus theorem proving: A mani�festo” I...
	[16] C. A. R. Hoare (1969) “An axiomatic basis for computer programming” Comms. of the ACM, 12 (1...
	[17] P. C. Janca (1995) “Pragmatic application of information agents” BIS Strategic Report.
	[18] N. R. Jennings and J. R. Campos (1997) “Towards a Social Level Characterisation of Socially ...
	[19] N. R. Jennings, K. Sycara and M. Wooldridge (1998) “A Roadmap of Agent Research and Developm...
	[20] N. R. Jennings and M. Wooldridge (eds.) (1998) “Agent technology: foundations, applica�tions...
	[21] D. Kinny and M. Georgeff (1997) “Modelling and design of multi-agent systems” In J. P. Muell...
	[22] Z. Manna and A. Pnueli (1995) “Temporal Verification of Reactive Systems—Safety” Springer-Ve...
	[23] B. Meyer (1988) “Object-oriented software construction” Prentice Hall.
	[24] R. Milner (1993) “Elements of interaction” Comms. of ACM 36 (1) 78-89.
	[25] A. Newell, (1993) “Reflections on the Knowledge Level” Artificial Intelligence 59 31-38.
	[26] G. M. P. O’Hare and N. R. Jennings (editors) (1996) “Foundations of distributed artificial i...
	[27] H. V. D. Parunak (1999) “Industrial and practical applications of DAI” In G. Weiss, editor, ...
	[28] A. Pnueli (1986) “Specification and development of reactive systems” In Information Pro�cess...
	[29] A. Pnueli and R. Rosner (1989) “On the synthesis of a reactive module” In Proceedings of the...
	[30] A. S. Rao (1996) “AgentSpeak(L): BDI agents speak out in a logical computable language” In W...
	[31] A. S. Rao and M. Georgeff (1995) “BDI Agents: from theory to practice” Proc. of the 1st Int....
	[32] A. S. Rao and M. P. Georgeff (1993) “A model-theoretic approach to the verification of situ�...
	[33] S. Rosenschein and L. P. Kaelbling (1986) “The synthesis of digital machines with provable e...
	[34] S. J. Rosenschein and L. P. Kaelbling (1996) “A situated view of representation and control”...
	[35] S. Russell and P. Norvig (1995) “Artificial Intelligence: A Modern Approach” Prentice-Hall.
	[36] Y. Shoham (1993) “Agent-oriented programming” Artificial Intelligence, 60 (1) 51-92.
	[37] H. A. Simon (1996) “The sciences of the artificial” MIT Press.
	[38] C. A. Szyperski (1997) “Component software: beyond object-oriented programming” Addi�son Wes...
	[39] G. Weiss (1999) “Multi-agent systems” MIT Press.
	[40] M. Wooldridge (1992) “The Logical Modelling of Computational Multi-Agent Systems” Ph.D. thes...
	[41] M. Wooldridge (1997) “Agent-based software engineering” IEE Proc. on Software Engi�neering, ...
	[42] M. Wooldridge and N. R. Jennings (1995) “Intelligent agents: theory and practice” The Knowle...
	[43] M. Wooldridge and N. R. Jennings (1998) “Pitfalls of agent-oriented development” Pro�ceeding...

