
D
)

3. Agent-Oriented Methodologies
Part 2:

The PROMETHEUS

em
s

D
es

ig
n

(M
A

S
D The PROMETHEUS

methodology.

Javier Vázquez-Salceda

M
u

lt
ia

g
en

t
S

ys
te

https://kemlg.upc.edu

q

MASD

Methodological Extensions to
Object-Oriented Approaches

 A means for agent technologies to gain traction within
industrial settings may be by being introduced through
well-established technologies

d
M

et
h

o
d

o
lo

g
ie

s The Unified Modeling Language (UML) has gained wide
acceptance for the representation of engineering artifacts
using the object-oriented paradigm

 There are several attempts to extend UML so as to
encompass agent concepts

 In general, building methods and tools for agent-oriented
software development on top of their object-oriented

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 2

software development on top of their object oriented
counterparts seems appropriate
 It lends itself to smoother migration between these different

technology generations
 It improves accessibility of agent-based methods and tools to

the object-oriented developer community which, as of today,
prevails in industry.

D
)

em
s

D
es

ig
n

(M
A

S
D

The Prometheus Methodology

•Phases
•Tools
•From Prometheus to ROADMAP

M
u

lt
ia

g
en

t
S

ys
te

https://kemlg.upc.edu

Prometheus

 Prometheus, is an iterative methodology covering the
complete software engineering process
 Analysis, Design, Detailed design, Implementation

d
M

et
h

o
d

o
lo

g
ie

s Aims at the development of intelligent agents (in
particular BDI agents)
 Uses goals, beliefs, plans, and events.

 The resulting specification can be implemented in any
agent implementation software that covers such
abstractions

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 4

 Specially aimed for implementation with JACK

 It is evolved out of practical experiences

 It is aimed at industrial software development, not
researchers

Prometheus Overview

 Methodology developed over 7-8 years in collaboration
with industry partner (Agent Software). Feedback from
many students and industry partner clients.

d
M

et
h

o
d

o
lo

g
ie

s

 Focus on detailed guidance and structure to facilitate tool
support.

 Mixture of
 graphical notation for overview
 (structured) text notation for detail.

 Hierarchical and modular.

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 5

Hierarchical and modular.

 Prototype tool available and used externally

 The Prometheus methodology covers three phases
 The system specification focuses on identifying the

basic functions of the system, along with inputs

Prometheus
Phases

d
M

et
h

o
d

o
lo

g
ie

s (percepts), outputs (actions) and their processing (for
example, how percepts are to be handled and any
important shared data sources to model the system’s
interaction with respect to its changing and dynamic
environment)

 The architectural design phase subsequent to system
specification determines which agents the system will
contain and how they will interact

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 6

contain and how they will interact
 The detailed design phase describes the internals of

each agent and the way in which it will achieve its tasks
within the overall system. The focus is on defining
capabilities (modules within the agent), internal events,
plans and detailed data structures.

Prometheus
Process Overview

d
M

et
h

o
d

o
lo

g
ie

s
3.

 A
g

en
t-

O
ri

en
te

d

jvazquez@lsi.upc.edu 7

Prometheus
System Specification Phase

Initial system
d i ti

d
M

et
h

o
d

o
lo

g
ie

s

Actions, PerceptsScenarios
Functionality

st
em

st
em

ec
ifi

ca
ti

on

ec
ifi

ca
ti

on

System
goals

description

Stakeholders
(Actors)

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 8

descriptors

Architectural Architectural
designdesign

Sy
s

Sy
s

Sp
e

Sp
e

Prometheus
System Specification phase

 System defined by
 Goals: goal diagramgoal diagram

S i ii

d
M

et
h

o
d

o
lo

g
ie

s Scenarios: user case scenariosuser case scenarios

 Functionalities: functionality descriptorsfunctionality descriptors

 System interface with environment described in terms of

 actions,

 percepts

 external data

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 9

 external data

Prometheus
System Specification phase: Steps (non-sequential!)

 Start with high-level description of the system (textual)

 Identify actors

 Identify top level scenarios for each actor

d
M

et
h

o
d

o
lo

g
ie

s Identify top-level scenarios for each actor

 Identify inputs/outputs (actions/percepts)

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 10

Prometheus
System Specification phase: Steps (non-sequential!)

 Add a corresponding system goal for each use-case

d
M

et
h

o
d

o
lo

g
ie

s

Librarian

check-out books
Admin

Order Books

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 11

process returned books

order books

Prometheus
System Specification phase: Goal Overview Diagram

 Apply Goal Abstraction to system goals

 Refine Goal (OR/AND refinement)

 Link goals to (sub)scenarios

d
M

et
h

o
d

o
lo

g
ie

s

Order books

Maintain large
range of books

Borrow books
f th lib i

why?how? OR

 Link goals to (sub)scenarios

Scenario

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 12

Find cheapest price Organise delivery

from other libraries

Log Order

AND how?

Prometheus
System Specification phase: Goal Overview Diagram

Maintain large
range of books

why?how? OR
Scenario

d
M

et
h

o
d

o
lo

g
ie

s

Order books

Find cheapest price Organise delivery

Borrow books
from other libraries

Log Order

AND how?

 good practices:

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 13

 good practices:
Except in extreme situations, the goal diagram...

 should be a fully-connected graph

 The abstraction level should be balanced in the different
branches.

 All (sub)goals should be linked to scenarios

Prometheus
System Specification phase: Steps (non-sequential!)

 Identify the functionalities of the system
 Idea: identify roles and activities

d
M

et
h

o
d

o
lo

g
ie

s
3.

 A
g

en
t-

O
ri

en
te

d

jvazquez@lsi.upc.edu 14

Prometheus
System Specification phase: Steps (non-sequential!)

 Develop and refine the
Scenarios and sub-
scenarios

d
M

et
h

o
d

o
lo

g
ie

s

 Steps inside a scenario
consist of:

• Incoming event/percept
(receiving functionality)

• Message
(sender receiver)

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 15

• Activity or actions
(functionalities)

Prometheus
Architectural Design Phase

System specification artifacts

Actions,
Percepts

Scenarios
Functionality
descriptors

System
goals

d
M

et
h

o
d

o
lo

g
ie

s

p p

A
rc

hi
te

ct
ur

al
A

rc
hi

te
ct

ur
al

D
es

ig
n

D
es

ig
n

g

System
overview

Agent
descriptors

Interaction
diagrams

Conversation
protocols

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 16

Detailed designDetailed design

A
r

A
r

D
e

D
e

Prometheus
Architectural Design Phase: Agent types

 Option 1: The domain already identifies agent types

 Option 2: Identify the agent typesagent types in the system by
 Grouping functionalities to agent types based on

h i d li

d
M

et
h

o
d

o
lo

g
ie

s cohesion and coupling
 Grouping functionalities that are

• related based on common sense
• group functionalities that require a lot of the same

information:
–– Data Coupling DiagramData Coupling Diagram

 Do not group functionalities that are
clearly unrelated

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 17

• clearly unrelated
• exist on different hardware platform
• security and privacy
• Modifiable by different people

 Evaluate grouping:
• Simple descriptive names (heuristic)
• Generate agent acquaintance diagram

Prometheus
Architectural Design Phase: Data Coupling Diagram

d
M

et
h

o
d

o
lo

g
ie

s
3.

 A
g

en
t-

O
ri

en
te

d

jvazquez@lsi.upc.edu 18

Prometheus
Architectural Design Phase: Agent Descriptors

 Generate Agent Descriptors based on the agent types

 How many agents of a each agent type (one, many,

d
M

et
h

o
d

o
lo

g
ie

s dynamic)?

 What is the life time of the agent?

 What is the initial state of the agent?

 What should be done when agent is killed?

 What is the data used/produced by the agent?

 To which event the agent should react?

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 19

 To which event the agent should react?

Prometheus
Architectural Design Phase: Agent Descriptors

d
M

et
h

o
d

o
lo

g
ie

s
3.

 A
g

en
t-

O
ri

en
te

d

jvazquez@lsi.upc.edu 20

Prometheus
Architectural Design Phase: System Overview Diagram

d
M

et
h

o
d

o
lo

g
ie

s
3.

 A
g

en
t-

O
ri

en
te

d

jvazquez@lsi.upc.edu 21

Key

Design Tip: When agent communication?

 Any protocol interaction should come from some agent

communication needs.

d
M

et
h

o
d

o
lo

g
ie

s Goals for Agent Communication:

 Agents able to request (to other ags.) actions or services

that they cannot perform by themselves

 Agents able to ask for information (to other ags.)

 Agents able to share their beliefs with other ags.

 Agents able to coordinate with other ags. To solve

l k

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 22

complex tasks.

 Design Tip:
 In Prometheus any protocol interaction should be

connected to a (sub)goal.

Prometheus
Detailed Design Phase

Architectural design artifacts

System
overview

Agent
descriptors

Conversation
protocols

d
M

et
h

o
d

o
lo

g
ie

s

ile
d

ile
d

D
es

ig
n

D
es

ig
n

pp

Agent
overviewProcess

diagrams

Capability
descriptors

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 23

ImplementationImplementation

D
et

ai
D

et
ai

Capability
overview

Plan
descr.

Data
descr.

Event
descr.

Prometheus
Detailed Design Phase

 The details of the agent internals are developed
 Defined in terms of capabilities, data, events and plans
 Process diagrams are used as stepping stone between

interaction protocols and plans

d
M

et
h

o
d

o
lo

g
ie

s interaction protocols and plans

 Steps (I)
 Develop the internal structure of individual agents
 Identify the capability of each agent (start with

functionalities)
 Generate capability descriptorscapability descriptors

Name: Delivery Problem Handling

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 24

External interface to the capability: events used/produced
Natural language description: Respond if books are not in stock
Interaction with other capabilities: Transport capability
Data used/produced by the capability: Note problem to transport capability
Inclusion of other capabilities: None

 Generate agent overview diagramsagent overview diagrams

Prometheus
Detailed Design Phase: Agent Overview Diagrams

d
M

et
h

o
d

o
lo

g
ie

s
3.

 A
g

en
t-

O
ri

en
te

d

jvazquez@lsi.upc.edu 25

Key

Prometheus
Detailed Design Phase: Agent Overview Diagrams

d
M

et
h

o
d

o
lo

g
ie

s
3.

 A
g

en
t-

O
ri

en
te

d

jvazquez@lsi.upc.edu 26

Key

Prometheus
Detailed Design Phase: Event, Data & Plan Descriptions

 Steps (II)

 Plan descriptionsPlan descriptions

d
M

et
h

o
d

o
lo

g
ie

s

Name: Delivery Problem Handling
Natural language description: Respond if books are not in stock
Triggering event type: Delivery problem, Delayed delivery
Plan steps: Delivery Query, Register problems
Context of performing the plan: The delivery is delayed
Data used/produced: Produce note problem

 Event descriptionsEvent descriptions

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 27

 Event descriptionsEvent descriptions
• Identify the purpose of events and the data carried by it

 Data descriptionsData descriptions
• Identify the data structure and operations on the data

Prometheus
Tools: the Prometheus Design Tool (PDT)

d
M

et
h

o
d

o
lo

g
ie

s
3.

 A
g

en
t-

O
ri

en
te

d

jvazquez@lsi.upc.edu 28

Prometheus
Tools: the Prometheus Design Tool (PDT)

 System Specification PDT

d
M

et
h

o
d

o
lo

g
ie

s Architectural Design

 Detailed Design

 Implementation

PDT

PDT

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 29

 Debugging

 Testing

Prometheus: summary

 Main strengths:
 Structured processes to refine design.
 Automated consistency checking between (some of) the

d i t f t

d
M

et
h

o
d

o
lo

g
ie

s design artefacts.
 Hierarchical and modular views.

 Actively continuing development…

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 30

ROADMAP

 It is an evolution on Gaia v2 with some ideas coming
from Prometheus and other methodologies

M i h t i ti

d
M

et
h

o
d

o
lo

g
ie

s Main characteristics:
 More abstract and high level than Prometheus.
 Concerned with high level view of models needed.
 Adds elements to deal with requirements analysis in more

detail by using use cases.
 Aims to better model open systems (Gaia’s main limitation)
 It merges the abstract design and detailed design phases

into a single design phase

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 31

into a single design phase

 There exists only partial tool support:
 REBEL (Roadmap Editor Built for Easy Development)

which is designed to help the developer to identify the Goal Goal
ModelsModels and the Role Models Role Models during the analysis stage.

ROADMAP
Overview of Models

d
M

et
h

o
d

o
lo

g
ie

s
3.

 A
g

en
t-

O
ri

en
te

d

jvazquez@lsi.upc.edu 32

ROADMAP
Models (I)

 Use Case Model: discovers requirements in an effective and
sufficient way, by means of scenario identification
 An important part of the requirement elicitation is made by the

id ifi i f h l i h G l M d lG l M d l

d
M

et
h

o
d

o
lo

g
ie

s identification of the system goals in the Goal ModelGoal Model.

 Environment Model: derived from the use case model,
provides a holistic description of the system environment

 Knowledge Model: derived from above, provides a holistic
description of the domain knowledge used in the system

 Role Model identifies the key roles of the system and usually
correspond to individuals, groups or organizations. They are

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 33

p , g p g y
associated to the goals. and are characterized by four attributes:
ResponsibilitiesResponsibilities, PermissionsPermissions, ActivitiesActivities and ProtocolsProtocols.

ROADMAP
Models

 Interaction Model describes the dependencies and
relationships between various roles in a multi-agent organization.
It is defined by means of AUML interaction diagrams.

F th d t il f th tt f i t ti i i b th

d
M

et
h

o
d

o
lo

g
ie

s Further detail of the patterns of interaction is given by the
Protocol Model at the design phase.

 Agent Model: identifies the agent types that make up the
system, and can be thought of as a set of agent roles

 Services Model: identifies the main services, defining the
function of an agent as characterized by input, output, pre-
conditions and post-conditions that are required to realize the

t’ l

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 34

agent’s role

 Acquaintance Model: documents the lines of communication
between the different agents

ROADMAP
Example of new models: Goal Model

Goal

Role

Key
d

M
et

h
o

d
o

lo
g

ie
s

Librarian

User

Borrow book

Soft
goal

FriendlyLarge
choice

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 35

Select
book

Register
borrower

Provide
return date

ROADMAP
Overview of Models (I): comparison with GAIA

d
M

et
h

o
d

o
lo

g
ie

s
3.

 A
g

en
t-

O
ri

en
te

d

jvazquez@lsi.upc.edu 36

ROADMAP
Overview of Models (II): comparison with PROMETHEUS

Goal Model

Domain specific Application specific Reusable service
models

Use Case

d
M

et
h

o
d

o
lo

g
ie

s

G

Role Model

Agent Model

Environment
Model

Knowledge

Service
Model

Model

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 37

Interaction
Model

Model

Prometheus provides
details in these models
-and a little in the
environment model

ROADMAP
Integration with Prometheus

 Since its creation there have been plans to integrate
ROADMAP and Prometheus into a single methodology:
 Prometheus actors/stakeholdersactors/stakeholders and functionalitiesfunctionalities become

l/i l l

d
M

et
h

o
d

o
lo

g
ie

s external/internal roles
 Can identify goalsgoals or scenariosscenarios at top level
 Add soft goals as annotations on all entities
 PerceptsPercepts and actionsactions possibly wait till architectural design

 The integration of both methodologies has been first
described in 2002...

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 38

 ...However, there have been few advances, especially on
the tool support.

 Now-a-days, ROADMAP is presented not as a
methodology but as an agent-based meta-model.

1. N.R. Jennings, “On Agent-Based Software Engineering”, Artificial
Intelligence, 117:227-296, 2000.

2. F. Zambonelli, N. Jennings, M. Wooldridge, “Organizational
Abstractions for the Analysis and Design”, 1st International Workshop
on Agent-oriented Software Engineering, LNAI No. 1957, 2001.

[]

[]

References
d

M
et

h
o

d
o

lo
g

ie
s

on Agent oriented Software Engineering, LNAI No. 1957, 2001.
3. O. Shehory and A. Sturm, “Evaluation of Modelling Techniques for

Agent-Based Systems”, Proceedings of The Fifth International
Conference on Autonomous Agents, pp. 624-631, 2001.

4. L. Padgham, M. Winikoff. “Prometheus: A methodology for developing
intelligent agents”. In Third Int. Workshop on agent-Oriented Software
Engineering, July 2002.

5. L. Padgham, M. Winikoff. “Prometheus: A pragmatic methodology for
i i i lli ” f h OO S A 2002 k h

[]

[]

[]

3.
 A

g
en

t-
O

ri
en

te
d

jvazquez@lsi.upc.edu 39

engineering intelligent agents”. In proc. of the OOPSLA 2002 Workshop
on Agent-Oriented Methodologies, pg. 97-108, Seatle, 2002.

6. Juan, T., Sterling, L.: “The ROADMAP Meta-Model for Intelligent
Adaptive Multi-Agent Systems in Open Environments”. In: Giorgini, P.,
Müller, J.P., Odell, J.J. (eds.) Agent-Oriented Software Engineering IV.
LNCS, vol. 2935, Springer, Heidelberg (2004)

These slides are based mainly in [2], [4], [5] and material from M. Winikoff, L. Padgham,
M. Luck, M. d’Inverno, R. Ashri and M. Dastani

[]

