
D
)

2. Reasoning in Agents
Part 1:

em
s

D
es

ig
n

(M
A

S
D

Introduction to Reasoning

Javier Vázquez-Salceda

M
u

lt
ia

g
en

t
S

ys
te

https://kemlg.upc.edu

q

MASD

What is Reasoning?

 More than thinking

 Taking a set of facts and deriving new ones in a fixed

A
g

en
ts

 Taking a set of facts and deriving new ones in a fixed
way

 More specifically (usefully):

 Reasoning to achieve a goal – planning

 Problem Solving

 Working out how to get world state A to world state B

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 2

 Working out how to get world state A to world state B

What is Reasoning?
An example

 How do I achieve my dream of owning a house by the
seaside?

 Starting world state:

A
g

en
ts

 Starting world state:
• I have X amount of money
• I have many facts about land, the city, planning permission,

the housing market etc.

 How do I achieve my goal state:
• Where I have a house
• (preferably one which is the BEST I could get with my

money)

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 3

y)

 The possibilities in the real world are (nearly!) infinite!

Automated Reasoning

 Objective: carry out such inference automatically -
without the need for human intervention

 This is very hard because:

A
g

en
ts

 The real world is complex (huge number of factors)
• inaccessible

 Resources are bounded (finite time and finite memory)

 Things change (while I am thinking or acting the world
may change)

• dynamic

The world is uncertain (I cannot be sure that an action I

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 4

 The world is uncertain (I cannot be sure that an action I
take will have the expected outcome)

• non-deterministic

 There are other actors that might try to (intentionally or
unintentionally) thwart my plans!

• non-deterministic

D
)

em
s

D
es

ig
n

(M
A

S
D

Reasoning Paradigms

•Key distinctions between paradigms
•Concrete approaches

M
u

lt
ia

g
en

t
S

ys
te

https://kemlg.upc.edu

Key distinctions btw. Reasoning Paradigms
Monotonic vs. Non-Monotonic (I)

 Monotonic
 A logical inference relation is monotonic if and only if, for

all sets of propositions S and T, and for all propositions

A
g

en
ts

p p p p

A, if S entails A (e.g. S A) then (S T) A

 First order logic is monotonic

 Classical deduction - suitable for reasoning in open-
ended situations

 Absence of x implies x is unknown

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 6

 A proposition A is false with respect to a set of

propositions S when S A.

Key distinctions btw. Reasoning Paradigms
Monotonic vs. Non-Monotonic (II)

 Non-monotonic
 Logics in which the set of implications determined by a

given group of premises does not necessarily grow, and

A
g

en
ts

can shrink, when new well-formed formulae are added to
the set of premises

 Absence of x implies x is false - closed world assumption

 Prolog is non-monotonic

 Reasoning to conclusions on the basis of incomplete
information Given more information we are prepared to

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 7

information. Given more information, we are prepared to
retract previously drawn inferences.

 Agents are in general non-monotonic systems.

Key distinctions btw. Reasoning Paradigms
Abductive vs. Deductive

 Abductive
 A form of inference that works forward to the best explanation
 Example:

D i ll ti f d t (f t b ti i)

A
g

en
ts

• D is a collection of data (facts, observations, givens),
• H explains D (or would, if true, explain D),
• No other hypothesis explains D as well as H does.
• Therefore, H is probably correct.

 Good for diagnosis, plan recognition, natural language
understanding, vision

 Explanation is not necessarily true

 Deductive

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 8

 Predictive
 Works from premises to conclusion
 Inference rules drive the process
 Uses the existence of facts to infer (via rules) the existence of

new facts
 Conclusion is proven with respect to available facts

Key distinctions btw. Reasoning Paradigms
Forward Chaining vs. Backward Chaining

 Forward Chaining
 An implementation of deduction

Rules are used to deduce new facts from existing facts

A
g

en
ts

 Rules are used to deduce new facts from existing facts
 Process continues until no more rules apply

 Backward Chaining

 Works backwards from goal to current situation

 Rules are used to infer that a (sub)goal holds then the
preconditions (left hand side of rule) also hold

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 9

 Process moves backwards down chain of reasoning until
no more rules apply

 Prolog style

Reasoning Paradigms: Concrete Approaches
Essential elements

 A descriptiondescription of the world

 A specification of the goalgoal

A
g

en
ts

p gg

 A search spacesearch space of things to do (possibly vast)

 Some way to traverse the search space

 Need of some algorithm/strategy/heuristicalgorithm/strategy/heuristic function to
guide the traversal.

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 10

Reasoning Paradigms: Concrete Approaches

 Approaches
 Case-Based Reasoning
 Model-Based Reasoning

Q lit ti R i

A
g

en
ts

 Qualitative Reasoning
 Planning Systems
 Constraint Satisfaction Reasoning
 Rule-Based Reasoning
 Ontological Reasoning
 Symbolic Reasoning
 Logic Programming

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 11

 These are not disjoint. One can have combined
approaches such as Constraint Logic-Based Planning
Systems.

Reasoning Paradigms: Concrete Approaches
Case-Based Reasoning

 “I remember solving a problem like thislike this some time ago ... “

 Functions:

A
g

en
ts

 A case-base of previous problem-solution pairs
 An indexing scheme which classifies problems and cases

 When a new problem arises:
 Find the closest previous problem(s) and solution(s)
 Try to adapt the solution(s) to the new problem
 Apply the new solution
 Optionally add the new experience to the case-base

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 12

 Challenge is how to create initial case base

Reasoning Paradigms: Concrete Approaches
Model-Based Reasoning

 “I understand howhow this system and its components workwork
based on their input parameters”
 Component models (e.g. failure modes)

A
g

en
ts

 Component models (e.g. failure modes)
 Differential equations, logical models, ...

 Combined:
 Brute force search algorithms

 Often used for system diagnosis:
 Why is my washing machine not working?
 Why is this electric circuit failing?

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 13

Reasoning Paradigms: Concrete Approaches
Qualitative Reasoning

 “Gravity works downwards, if I jump out of this plane I I
will probablywill probably fall”

A
g

en
ts

 Approximate way of reasoning
 Useful to reason about too complex (e.g. chaotic, fractal)

problems

 E.g. physical world properties

 Use “naïeve” (but often useful) deduction rules

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 14

Reasoning Paradigms: Concrete Approaches
Planning

 “From my current world state I can apply a sequence of sequence of
possible actionspossible actions to get to the goal”

 Different types:

A
g

en
ts

 Different types:
 State based planning - we search the combinations of

all actions (Domain driven)
 Hierarchical Task Network - we search the possible

plans (Knowledge based)

 A lot of different search techniques, world models and
reasoning approaches are used

Linear/non linear

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 15

 Linear/non-linear
 Continuous/discrete
 Temporal issues

Reasoning Paradigms: Concrete Approaches
Constraint Satisfaction

 “The world is a set of interdependent choicesinterdependent choices. If I make one, it
may affect another”

 Problem:

A
g

en
ts

 Problem:
 A set of variables V (each with a possible set of values vi1-vin)
 A set of constraints linking variables C(vi1, vi2, vi3) such as “if

my trousers are green my shirt should not be blue”
 What are the legal combinations of values for each variable? Or,

which choices fit together given the constraints

 Many search techniques
 Propagating constraint effects, subdividing the constraint graph

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 16

p g g , g g p
etc.

 Related problems: dynamically changing choices/options,
uncertainty, ...

 But algorithms are typically quite expensive (complexity)
 Domain specific SAT solvers relatively efficient
 Good heuristics

Reasoning Paradigms: Concrete Approaches
Rule-Based Reasoning

 “If the light is red STOP, if it is raining I must be wet, ...”

 Functions by:
 Accumulating a set of rules relating PRE-conditions to

A
g

en
ts

 Accumulating a set of rules relating PRE conditions to
inferences or actions

 A fact base allowing the rules to fire iteratively when the
facts fit the rule preconditions

 Heuristics to select one rule when several satisfy the
preconditions

 Reasoning happens by traversing the facts available

 We will see more of this later

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 17

 We will see more of this later

Reasoning Paradigms: Concrete Approaches
Ontological Reasoning

 There are two approaches

Description logic reasoning over ontological

A
g

en
ts

 Description logic reasoning over ontological
knowledge (e.g. class membership inference) - such as
RACER etc.

 Adapting the data models in each of the other schemes
to use objects in agreed ontologies - that is, using any
of the previous approaches, but the facts are represented
via ontologies

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 18

g

Reasoning Paradigms: Concrete Approaches
Symbolic Reasoning

 The world or a portion of it is represented in terms of
formulae in some logicformulae in some logic

A
g

en
ts

 Reasoning is based on inference.

 Different types of logic are used
 description logic
 temporal logic
 BDI logic
 epistemic logic
 deontic logic

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 19

 …

 We will come back on this later

Reasoning Paradigms: Concrete Approaches
Logic Programming

 “Given this set of rules with pre and post conditions
which information can I obtain from itobtain from it”

A
g

en
ts

 Based in model theoretic principles

 Provides possible views of solutions

 Prolog (with closed world assumption)

 Answer Set Programming (no closed assumption)

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 20

Reasoning Paradigms
Evolution in Agent Architectures

 Originally (1956-1985), pretty much all agents designed
within AI were symbolic reasoning symbolic reasoning agentsagents

 Its purest expression proposes that agents use explicitexplicit

A
g

en
ts

 Its purest expression proposes that agents use explicit explicit
logical reasoninglogical reasoning in order to decide what to do

 Problems with symbolic reasoning led to a reaction
against this — the so-called reactive agentsreactive agents movement,
1985–present

 From 1990-present, a number of alternatives proposed:
hybrid hybrid architecturesarchitectures, which attempt to combine the best

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 21

yy , p
of reasoning and reactive architectures

D
)

em
s

D
es

ig
n

(M
A

S
D

Deductive Reasoning Agents

•Rule-Based Systems
•Simbolic Reasoning Agents
•Deductive Reasoning Agents
•Agent Oriented Programming

M
u

lt
ia

g
en

t
S

ys
te

https://kemlg.upc.edu

Foundations: Rule-based systems
Expert Systems and rules

 Expert Systems provide expert quality advice,
diagnoses and recommendations on real world problems

D i d t f f ti f h t E

A
g

en
ts

 Designed to perform function of a human expert. E.g.
Medical diagnosis - program takes place of a doctor;
given a set of symptoms the system suggests a
diagnosis and treatment

 The knowledge base of an expert system is often rule
based
 the system has a list of rules which determine what should

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 23

y
be done in different situations

 These rules are initially designed by human expert(s)
 The rules are called production rules

Foundations: Rule-based systems
Rules

 Each rule has two parts, the condition-action pair
 Condition - what must be true for the rule to fire
 Action - what happens when the condition is met

A
g

en
ts

 Can also be thought of as IF-THEN rules

 IF sunny(weather) AND outdoors(x)
THEN print “Take your sunglasses x”

 IF >30(temperature)
THEN print “take some water”

 The contents of the working memory are constantly

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 24

g y y
compared to the production rules

 When the contents match the condition of a rule, that rule
is firedfired, and its action is executed

 More than one production rule may match the working
memory - conflict set

Foundations: Rule-based systems
Recognise-Act Cycle

 The system cycles around in the recognise-act cycle

 Whenever a condition is matched, it is added to the
conflict set - all the rules which are currently matched

A
g

en
ts

conflict set all the rules which are currently matched

 The system must then decide which rule within the conflict
set to fire - conflict resolution

Recognise Act

Compare memory
to production rules

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 25

Enable conflict set

Conflict resolution

Fire production rule

Symbolic Reasoning Agents

 The classical approach to building agents is to view them
as a particular type of knowledgeknowledge--based systembased system, and bring
all the associated (discredited?!) methodologies of such
systems to bear

A
g

en
ts

systems to bear

 This paradigm is known as symbolic AIsymbolic AI

 We define a deliberative agent or agent architecture to be
one that:

 contains an explicitly represented, symbolic model of the worldsymbolic model of the world

(f f)

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 26

 makes decisions (for example about what actions to perform)
via symbolic reasoning

Symbolic Reasoning Agents
Problems to solve

 If we aim to build an agent in this way, there are two key
problems to be solved:

A
g

en
ts

1.1. The transduction problemThe transduction problem::
that of translating the real world into an accurate,
adequate symbolic description, in time for that description
to be useful…vision, speech understanding, learning

2.2. The representation/reasoning problemThe representation/reasoning problem:
that of how to symbolically represent information about
complex real world entities and processes and how to get

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 27

complex real-world entities and processes, and how to get
agents to reason with this information in time for the
results to be useful…knowledge representation,
automated reasoning, automatic planning

Symbolic Reasoning Agents
Problems to solve

 Most researchers accept that neither problem is
anywhere near solved

A
g

en
ts

 Underlying problem lies with the complexity of symbol complexity of symbol
manipulation algorithmsmanipulation algorithms in general: many (most) search-
based symbol manipulation algorithms of interest are
highly intractablehighly intractable

 Because of these problems, some researchers have
looked to alternative techniques for building agents...

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 28

Deductive Reasoning Agents

 How can an agent decide what to do using theorem
proving?

Basic idea is to use logic to encode a theory stating thestating the

A
g

en
ts

 Basic idea is to use logic to encode a theory stating the stating the
bestbest actionaction to perform in any given situation

 Let:
  be this theory (typically a set of rules)
  be a logical database that describes the current state of

the world
 Ac be the set of actions the agent can perform

  th t  b d f  i

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 29

    mean that  can be proved from  using 

Deductive Reasoning Agents
Action selection

/* try to find an action explicitly prescribed */
for each a  Ac do

if  Do(a) then

A
g

en
ts

if   Do(a) then
return a

end-if
end-for
/* try to find an action not excluded */
for each a  Ac do

if   Do(a) then
return a

end if

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 30

end-if
end-for
return null /* no action found */

Deductive Reasoning Agents
Example: the Vacuum World

 Goal is for the robot to clear up all dirt

A
g

en
ts

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 31

Deductive Reasoning Agents
Example: the Vacuum World

 Use 3 domain predicates to solve problem:
In(x, y) agent is at (x, y)
Dirt(x, y) there is dirt at (x, y)
Facing(d) the agent is facing direction d

A
g

en
ts

Facing(d) the agent is facing direction d

 Possible actions:
Ac = {turn, forward, suck}

P.S. turn means “turn right”
 Rules  for determining what to do:

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 32

 …and so on!

 Using these rules (+ other obvious ones), starting at
(0, 0) the robot will clear up dirt

Deductive Reasoning Agents
Example: the Vacuum World

 Problems:
 How to convert video camera input to Dirt(0, 1)?
 decision making assumes a static environment: calculative calculative

rationalityrationality

A
g

en
ts

rationalityrationality
 decision making using first-order logic is undecidable!

 Even where we use propositional logic, decision making in
the worst case means solving co-NP-complete problems
(PS: co-NP-complete = bad news!)

 Typical solutions:
 weaken the logic

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 33

g
 use symbolic, non-logical representations
 shift the emphasis of reasoning from run time to design time

 We will look at some examples of these approaches

Agent Oriented Programming

 Yoav Shoham introduced “Agent Oriented Programming” in 1990:
 “new programming paradigm, based on a societal view of computation”.

 Key idea: directly programming agents in terms of intentional notions
lik b li f it t d i t ti

A
g

en
ts

like belief, commitment, and intention.

 The motivation behind such a proposal is that, as we humans use
the intentional stance as an abstraction mechanism for representing
the properties of complex systems.
 In the same way that we use the intentional stance to describe humans,

it might be useful to use to describe the programming of machines.

 Shoham suggested that a complete AOP system will have 3

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 34

components:
 a logic for specifying agents and describing their mental states
 an interpreted programming language for programming agents
 an ‘agentification’ process, for converting ‘neutral applications’ (e.g.,

databases) into agents

 Relationship between logic and programming language is semantics

Agent Oriented Programming
AGENT0

 AGENT0 is the first AOP language.

 AGENT0 is implemented as an extension to LISP

 Each agent in AGENT0 has 4 components:

A
g

en
ts

 Each agent in AGENT0 has 4 components:
 a set of capabilities (things the agent can do)
 a set of initial beliefs
 a set of initial commitments (things the agent will do)
 a set of commitment rules

 The key component, which determines how the agent acts,
is the commitment rule set
Each commitment rule contains

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 35

 Each commitment rule contains
 a message condition
 a mental condition
 an action

Agent Oriented Programming
AGENT0

 On each ‘agent cycle’…
 The message condition is matched against the messages the

agent has received
 The mental condition is matched against the beliefs of the agent

A
g

en
ts

 The mental condition is matched against the beliefs of the agent
 If the rule fires, then the agent becomes committed to the action

(the action gets added to the agent’s commitment set)

 Actions may be
 private:

an internally executed computation, or
 communicative:

sending messages

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 36

g g

 Messages are constrained to be one of three types:
 “requests” to commit to action
 “unrequests” to refrain from actions
 “informs” which pass on information

Agent Oriented Programming
AGENT0

A
g

en
ts

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 37

Agent Oriented Programming
AGENT0

 A commitment rule:
COMMIT(

(agent, REQUEST, DO(time, action)), ;;; msg condition
(B,

A
g

en
ts

[now, Friend agent] AND
CAN(self, action) AND
NOT [time, CMT(self, anyaction)]

), ;;; mental condition
self,
DO(time, action)

)

 This rule may be paraphrased as follows:
if I receive a message from agent which requests me to do

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 38

if I receive a message from agent which requests me to do
action at time, and I believe that:

 agent is currently a friend
 I can do the action
 At time, I am not committed to doing any other action

then commit to doing action at time

Agent Oriented Programming
AGENT0 and PLACA

 AGENT0 provides support for multiple agents to cooperate
and communicate, and provides basic provision for
debugging…

A
g

en
ts

 …it is, however, a prototype, that was designed to illustrate
some principles, rather than be a production language

 A more refined implementation was developed by Thomas,
for her 1993 doctoral thesis

 Her Planning Communicating Agents (PLACA) language
was intended to address 2 severe drawbacks to AGENT0:

the inability of agents to plan

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 39

 the inability of agents to plan,
 the inability of agents to communicate requests for action via

high-level goals

 Agents in PLACA are programmed in much the same way
as in AGENT0, in terms of mental change rules

Agent Oriented Programming
AGENT0 and PLACA

 An example mental change rule:
(((self ?agent REQUEST (?t (xeroxed ?x)))

(AND (CAN-ACHIEVE (?t xeroxed ?x)))
(NOT (BEL (*now* shelving)))

A
g

en
ts

(NOT (BEL (now shelving)))
(NOT (BEL (*now* (vip ?agent))))

((ADOPT (INTEND (5pm (xeroxed ?x)))))

((?agent self INFORM

(*now* (INTEND (5pm (xeroxed ?x)))))))

 This can be paraphrased as follows:
if someone asks you to xerox something, and you can, and
you don’t believe that they’re a VIP or that you’re supposed

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 40

you don t believe that they re a VIP, or that you re supposed
to be shelving books, then

 adopt the intention to xerox it by 5pm, and

 inform them of your newly adopted intention

MetateM

 MetateM is a multi-agent language in which each agent is
programmed by giving it a temporal logic specification
of the behavior it should exhibit

A
g

en
ts

 These specifications are executed directly in order to
generate the behavior of the agent

 Temporal logic is classical logic augmented by modal
operators for describing how the truth of propositions
changes over time

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 41

g

MetateM
Temporal Logic operators

 For example. . .
�important(agents)

means “it is now, and will always be true that agents are important”
important(ConcurrentMetateM)

A
g

en
ts

important(ConcurrentMetateM)
means “sometime in the future, ConcurrentMetateM will be
important”

important(Prolog)
means “sometime in the past it was true that Prolog was important”

(friends(us)) u apologize(you)
means “we are not friends until you apologize”

apologize(you)
means “tomorrow (in the next state) you apologize”

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 42

means tomorrow (in the next state), you apologize .
prepareSlides(me)

means “yesterday (previous run) I prepared my slides”.
post-doc(me) S year(2003)

means “I am a posdoc researcher since 2003”

MetateM
Execution rules

 MetateM is a framework for directly executing temporal logic
specifications

 The root of the MetateM concept is Gabbay’s separation theorem:

A
g

en
ts

 The root of the MetateM concept is Gabbay s separation theorem:
Any arbitrary temporal logic formula can be rewritten in a logically
equivalent past  future form.

 This past  future form can be used as execution rulesexecution rules

 A MetateM program is a set of such rules

 Execution proceeds by a process of continually matching rules
against a “history”, and firing those rules whose antecedents are

ti fi d

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 43

satisfied
 Execution is thus a process of iteratively generating a model for the

formula made up of the program rules

 The instantiated future-time consequents become commitments
which must subsequently be satisfied

MetateM
Example

 An example MetateM program: the resource controller…

A
g

en
ts

 First rule ensure that an ‘ask’ is eventually followed by a ‘give’
 Second rule ensures that only one ‘give’ is ever performed at any

one time

 There are algorithms for executing MetateM programs that appear

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 44

g g p g pp
to give reasonable performance

Concurrent MetateM

 Concurrent MetateM provides an operational framework
through which societies of MetateM processes can operate
and communicate

A
g

en
ts

 It is based on a model for concurrency in executable logics:
the notion of executing a logical specification to generate
individual agent behavior

 A Concurrent MetateM system contains a number of agents
(objects), each object has 3 attributes:
 a name
 an interface

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 45

 an interface
 a MetateM program

Concurrent MetateM
object interface

 An object’s interface contains two sets:
 environment predicates — these correspond to messages the

object will accept
component predicates correspond to messages the object

A
g

en
ts

 component predicates — correspond to messages the object
may send

 For example, a ‘stack’ object’s interface:
stack(pop, push)[popped, stackfull]

{pop, push} = environment preds
{popped, stackfull} = component preds

 If an agent receives a message headed by an

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 46

 If an agent receives a message headed by an
environment predicate, it accepts it

 If an object satisfies a commitment corresponding to a
component predicate, it broadcasts it

Concurrent MetateM
Example

 To illustrate the language Concurrent MetateM in more detail,
here are some example programs…

 Snow White has some sweets (resources) which she will

A
g

en
ts

 Snow White has some sweets (resources), which she will
give to the Dwarves (resource consumers)

 She will only give to one dwarf at a time

 She will always eventually give to a dwarf that asks

 Here is Snow White, written in Concurrent MetateM:

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 47

Concurrent MetateM
Example

 The ‘eager’ dwarf asks for a sweet initially, and then
whenever he has just received one, asks again

A
g

en
ts

 Some dwarves are even less polite: ‘greedy’ just asks
every time

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 48

Concurrent MetateM
Example

 Fortunately, some have better manners; ‘courteous’ only
asks when ‘eager’ and ‘greedy’ have eaten

A
g

en
ts

 And finally, ‘shy’ will only ask for a sweet when no-one else
has just asked

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 49

Concurrent MetateM

 Summary:
 an(other) experimental language
 very nice underlying theory…

f f

A
g

en
ts

 …but unfortunately, lacks many desirable features —
could not be used in current state to implement ‘full’
system

 currently prototype only, full version on the way!

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 50

1. Wooldridge, M. “Introduction to Multiagent Systems (Second
Edition)”. John Wiley and Sons, 2009. ISBN: 978-0470519462

2. Weiss, G. “Multiagent Systems: A modern Approach to Distributed
Artificial Intelligence” MIT Press 1999 ISBN 0262-23203

[]

[]

References
A

g
en

ts

Artificial Intelligence . MIT Press. 1999. ISBN 0262 23203
3. Y. Shoham, “An Overview of Agent-Oriented Programming”, in J. M.

Bradshaw, editor, Software Agents, pages 271–290. AAAI Press / The
MIT Press, 1997.

[]

2.
R

ea
so

n
in

g
 i

n
 A

jvazquez@lsi.upc.edu 51These slides are based mainly in [2] and material from M. Wooldridge, J. Padget and M. de Vos

