
2.2 Reasoning about Intentional Notions

Suppose one wishes to reason about intentional notions in a logical framework. Consider the following statement
(after [73, pp210–211]):

Janine believes Cronos is the father of Zeus. (2.1)

A naive attempt to translate (2.1) into first-order logic might result in the following:

Bel(Janine, Father(Zeus, Cronos)) (2.2)

Unfortunately, this naive translation does not work, for at least two reasons. The first is syntactic: the second
argument to the Bel predicate is a formula of first-order logic, and is not, therefore a term. So (2.2) is not a
well-formed formula of classical first-order logic. The second problem is semantic, and is more serious. The
constants Zeus and Jupiter, by any reasonable interpretation, denote the same individual: the supreme deity of
the classical world. It is therefore acceptable to write, in first-order logic:

(Zeus = Jupiter). (2.3)

Given (2.2) and (2.3), the standard rules of first-order logic would allow the derivation of the following:

Bel(Janine, Father(Jupiter, Cronos)) (2.4)

But intuition rejects this derivation as invalid: believing that the father of Zeus is Cronos is not the same as
believing that the father of Jupiter is Cronos.

So what is the problem? Why does first-order logic fail here? The problem is that the intentional notions —
such as belief and desire — are referentially opaque, in that they set up opaque contexts, in which the standard
substitution rules of first-order logic do not apply. In classical (propositional or first-order) logic, the denotation,
or semantic value, of an expression is dependent solely on the denotations of its sub-expressions. For example,
the denotation of the propositional logic formula p ∧ q is a function of the truth-values of p and q. The operators
of classical logic are thus said to be truth functional.

In contrast, intentional notions such as belief are not truth functional. It is surely not the case that the truth
value of the sentence:

Janine believes p (2.5)

is dependent solely on the truth-value of p7. So substituting equivalents into opaque contexts is not going to
preserve meaning. This is what is meant by referential opacity. The existence of referentially opaque contexts
has been known since the time of Frege. He suggested a distinction between sense and reference. In ordinary
formulae, the “reference” of a term/formula (i.e., its denotation) is needed, whereas in opaque contexts, the “sense”
of a formula is needed (see also [147, p3]).

Clearly, classical logics are not suitable in their standard form for reasoning about intentional notions: altern-
ative formalisms are required. A vast enterprise has sprung up devoted to developing such formalisms.

The field of formal methods for reasoning about intentional notions is widely reckoned to have begun with the
publication, in 1962, of Jaakko Hintikka’s book Knowledge and Belief: An Introduction to the Logic of the Two
Notions [87]. At that time, the subject was considered fairly esoteric, of interest to comparatively few researchers
in logic and the philosophy of mind. Since then, however, it has become an important research area in its own
right, with contributions from researchers in AI, formal philosophy, linguistics and economics. There is now an
enormous literature on the subject, and with a major biannual international conference devoted solely to theoretical
aspects of reasoning about knowledge, as well as the input from numerous other, less specialized conferences,
this literature is growing ever larger.

Despite the diversity of interests and applications, the number of basic techniques in use is quite small.
Recall, from the discussion above, that there are two problems to be addressed in developing a logical formalism
for intentional notions: a syntactic one, and a semantic one. It follows that any formalism can be characterized
in terms of two independent attributes: its language of formulation, and semantic model [100, p83].

There are two fundamental approaches to the syntactic problem. The first is to use a modal language, which
contains non-truth-functional modal operators, which are applied to formulae. An alternative approach involves
the use of a meta-language: a many-sorted first-order language containing terms which denote formulae of
some other object-language. Intentional notions can be represented using a meta-language predicate, and given

7Note, however, that the sentence (2.5) is itself a proposition, in that its denotation is the value true or false.
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ungrounded
[87]
[52]
[29]
[83]

grounded
[142]
[143]
[58]

[105]
[53]

[124]

OTHER [100]
[153]

[121]
[98]
[125]
[35]

Table 2.1: Some Intentional Logics

whatever axiomatization is deemed appropriate. Both of these approaches have their advantages and disadvant-
ages, and will be discussed at length in the sequel.

As with the syntactic problem, there are two basic approaches to the semantic problem. The first, best known,
and probably most widely used approach is to adopt a possible worlds semantics, where an agent’s beliefs, know-
ledge, goals, etc. are characterized as a set of so-called possible worlds, with an accessibility relation holding
between them. Possible worlds semantics have an associated correspondence theory which makes them an at-
tractive mathematical tool to work with [28]. However, they also have many associated difficulties, notably the
well-known logical omniscience problem, which implies that agents are perfect reasoners. A number of minor
variations on the possible-worlds theme have been proposed, in an attempt to retain the correspondence theory,
but without logical omniscience.

The commonest alternative to the possible worlds model for belief is to use a sentential, or interpreted symbolic
structures approach. In this scheme, beliefs are viewed as symbolic formulae explicitly represented in a data
structure associated with an agent. An agent then believes φ if φ is present in the agent’s belief structure. Despite
its simplicity, the sentential model works well under certain circumstances [100].

Table 2.1 characterizes a number of well known intentional logics in terms of their syntactic and semantic
properties (after [100, p85]). The next part of this chapter contains detailed reviews of some of these formalisms.
First, the idea of possible worlds semantics is discussed, and then a detailed analysis of normal modal logics is
presented, along with some variants on the possible worlds theme. Next, some meta-language approaches are
discussed, and one hybrid formalism is described. Finally, some alternative formalisms are described.

Before the detailed presentations, a note on terminology. Strictly speaking, an epistemic logic is a logic of
knowledge, a doxastic logic is a logic of belief, and a conative logic is a logic of desires or goals. However,
it is common practice to use “epistemic” as a blanket term for logics of knowledge and belief. This practice is
adopted in this thesis; a distinction is only made where it is considered significant. Also, the reviews focus on
knowledge/belief to the virtual exclusion of goals/desires; this is because most of the principles are the same, and
little work has addressed the issue of goals (but see the comments on Cohen and Levesque’s formalism, below).
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2.3 Possible Worlds Semantics

The possible worlds model for epistemic logics was originally proposed by Hintikka ([87]), and is now most
commonly formulated in a normal modal logic using the techniques developed by Kripke ([103])8.

Hintikka’s insight was to see that an agent’s beliefs could be characterized in terms of a set of possible worlds,
in the following way. Consider an agent playing the card game Gin Rummy9. In this game, the more one knows
about the cards possessed by one’s opponents, the better one is able to play. And yet complete knowledge of an
opponent’s cards is generally impossible, (if one excludes cheating). The ability to play Gin Rummy well thus
depends, at least in part, on the ability to deduce what cards are held by an opponent, given the limited information
available. Now suppose our agent possessed the ace of spades. Assuming the agent’s sensory equipment was
functioning normally, it would be rational of her to believe that she possessed this card. Now suppose she were
to try to deduce what cards were held by her opponents. This could be done by first calculating all the various
different ways that the cards in the pack could possibly have been distributed among the various players. (This is
not being proposed as an actual card playing strategy, but for illustration!) For argument’s sake, suppose that each
possible configuration is described on a separate piece of paper. Once the process was complete, our agent can
then begin to systematically eliminate from this large pile of paper all those configurations which are not possible,
given what she knows. For example, any configuration in which she did not possess the ace of spades could be
rejected immediately as impossible. Call each piece of paper remaining after this process a world. Each world
represents one state of affairs considered possible, given what she knows. Hintikka coined the term epistemic
alternatives to describe the worlds possible given one’s beliefs. Something true in all our agent’s epistemic
alternatives could be said to be believed by the agent. For example, it will be true in all our agent’s epistemic
alternatives that she has the ace of spades.

On a first reading, this technique seems a peculiarly roundabout way of characterizing belief, but it has two
advantages. First, it remains neutral on the subject of the cognitive structure of agents. It certainly doesn’t posit
any internalized collection of possible worlds. It is just a convenient way of characterizing belief. Second, the
mathematical theory associated with the formalization of possible worlds is extremely appealing (see below).

The next step is to show how possible worlds may be incorporated into the semantic framework of a logic.
This is the subject of the next section.

2.3.1 Normal Modal Logics

Epistemic logics are usually formulated as normal modal logics using the semantics developed by Kripke [103].
Before moving on to explicitly epistemic logics, this section describes normal modal logics in general.

Modal logics were originally developed by philosophers interested in the distinction between necessary truths
and mere contingent truths. Intuitively, a necessary truth is something that is true because it could not have been
otherwise, whereas a contingent truth is something that could, plausibly have been otherwise. For example, it is
a fact that as I write, the Conservative Party of Great Britain hold a majority of twenty-one seats in the House
of Commons. But although this is true, it is not a necessary truth; it could quite easily have turned out that the
Labour Party won a majority at the last general election. This fact is thus only a contingent truth.

Contrast this with the following statement: the square root of 2 is not a rational number. There seems no
earthly way that this could be anything but true, (given the standard reading of the sentence). This latter fact is
an example of a necessary truth. Necessary truth is usually defined as something true in all possible worlds. It is
actually quite difficult to think of any necessary truths other than mathematical laws.

To illustrate the principles of modal epistemic logics, a normal propositional modal logic is defined.

Syntax and Semantics

This logic is essentially classical propositional logic, extended by the addition of two operators: “ ” (necessar-
ily), and “◊” (possibly). First, its syntax.

Definition 1 Let Prop =
�
p, q, … � be a countable set of atomic propositions. The syntax of normal propositional

modal logic is defined by the following rules:

1. If p ∈ Prop then p is a formula.

8In Hintikka’s original work, he used a technique based on “model sets”, which is equivalent to Kripke’s formalism, though less elegant.
See [88, Appendix Five, pp351–352] for a comparison and discussion of the two techniques.

9This example was adapted from [81].
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�
M, w � |= true�
M, w � |= p where p ∈ Prop, iff p ∈ π(w)

�
M, w � |= ¬ φ iff

�
M, w � ⁄|= φ

�
M, w � |= φ ∨ ψ iff

�
M, w � |= φ or

�
M, w � |= ψ

�
M, w � |= φ iff ∀w′ ∈ W ⋅ if (w, w′) ∈ R then

�
M, w′ � |= φ

�
M, w � |= ◊φ iff ∃w′ ∈ W ⋅ (w, w′) ∈ R and

�
M, w′ � |= φ

Figure 2.1: The Semantics of Normal Modal Logic

2. If φ, ψ are formulae, then so are:
true ¬ φ φ ∨ ψ

3. If φ is a formula then so are:
φ ◊φ

The operators “¬ ” (not) and “∨” (or) have their standard meaning; true is a logical constant, (sometimes called
verum), that is always true. The remaining connectives of propositional logic can be defined as abbreviations in
the usual way. The formula φ is read: “necessarily φ”, and the formula ◊φ is read: “possibly φ”. Now to the
semantics of the language.

Normal modal logics are concerned with truth at worlds; models for such logics therefore contain a set of
worlds, W, and a binary relation, R, on W, saying which worlds are considered possible relative to other worlds.
Additionally, a valuation function π is required, saying what propositions are true at each world.

Definition 2 A model for a normal propositional modal logic is a triple
�
W, R, π � , where W is a non-empty set of

worlds, R ⊆ W × W, and

π : W → powerset Prop

is a valuation function, which says for each world w ∈ W which atomic propositions are true in w. An
alternative, equivalent technique would have been to define π as follows:

π : W × Prop →
�
true, false �

though the rules defining the semantics of the language would then have to be changed slightly.

The semantics of the language are given via the satisfaction relation, “|=”, which holds between pairs of the
form

�
M, w � , (where M is a model, and w is a reference world), and formulae of the language. The semantic rules

defining this relation are given in Figure 2.1. The definition of satisfaction for atomic propositions thus captures
the idea of truth in the “current” world, (which appears on the left of “|=”). The semantic rules for “true”, “¬ ”,
and “∨”, are standard. The rule for “ ” captures the idea of truth in all accessible worlds, and the rule for “◊”
captures the idea of truth in at least one possible world.

Note that the two modal operators are duals of each other, in the sense that the universal and existential
quantifiers of first-order logic are duals:

φ ⇔ ¬ ◊¬ φ.

It would thus have been possible to take either one as primitive, and introduce the other as a derived operator.

Correspondence Theory

To understand the extraordinary properties of this simple logic, it is first necessary to introduce validity and
satisfiability. A formula is satisfiable if it is satisfied for some model/world pair, and unsatisfiable otherwise. A
formula is true in a model if it is satisfied for every world in the model, and valid in a class of models if it true in
every model in the class. Finally, a formula is valid simpliciter if it is true in the class of all models. If φ is valid,
we write |= φ.

The two basic properties of this logic are as follows. First, the following axiom schema is valid.

|= (φ ⇒ ψ ) ⇒ ( φ ⇒ ψ )
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CONDITION FIRST-ORDER

NAME AXIOM ON R CHARACTERIZATION

T φ ⇒ φ Reflexive ∀w ∈ W ⋅ (w, w) ∈ R

D φ ⇒ ◊φ Serial ∀w ∈ W ⋅ ∃w′ ∈ W ⋅ (w, w′) ∈ R

4 φ ⇒ φ Transitive ∀w, w′, w′′ ∈ W ⋅ (w, w′) ∈ R ∧
(w′, w′′) ∈ R ⇒ (w, w′′) ∈ R

5 ◊φ ⇒ ◊φ Euclidean ∀w, w′, w′′ ∈ W ⋅ (w, w′) ∈ R ∧
(w, w′′) ∈ R ⇒ (w′, w′′) ∈ R

Table 2.2: Some Correspondence Theory

This axiom is called K, in honour of Kripke. The second property is as follows.

If |= φ then |= φ

Proofs of these properties are trivial, and are left as an exercise for the reader. Now, since K is valid, it will
be a theorem of any complete axiomatization of normal modal logic. Similarly, the second property will appear
as a rule of inference in any axiomatization of normal modal logic; it is generally called the necessitation rule.
These two properties turn out to be the most problematic features of normal modal logics when they are used as
logics of knowledge/belief (this point will be examined later).

The most intriguing properties of normal modal logics follow from the properties of the accessibility relation,
R, in models. To illustrate these properties, consider the following axiom schema.

φ ⇒ φ

It turns out that this axiom is characteristic of the class of models with a reflexive accessibility relation. (By
characteristic, we mean that it is true in all and only those models in the class.) There are a host of axioms which
correspond to certain properties of R: the study of the way that properties of R correspond to axioms is called
correspondence theory. In Table 2.2, we list some axioms along with their characteristic property on R, and a
first-order formula describing the property. Note that the table only lists those axioms of specific interest to this
thesis; (see [28] for others). The names of axioms follow historical tradition.

The results of correspondence theory make it straightforward to derive completeness results for a range of
simple normal modal logics. These results provide a useful point of comparison for normal modal logics, and
account in a large part for the popularity of this style of semantics.

A system of logic can be thought of as a set of formulae valid in some class of models; a member of the set is
called a theorem of the logic (if φ is a theorem, this is usually denoted by

�
φ). The notation KΣ1 … Σn is often

used to denote the smallest normal modal logic containing axioms Σ1, … , Σn (recall that any normal modal logic
will contain K; cf. [78, p25]).

For the axioms T, D, 4, and 5, it would seem that there ought to be sixteen distinct systems of logic (since
24 = 16). However, some of these systems turn out to be equivalent (in that they contain the same theorems),
and as a result there are only eleven distinct systems. The relationships between these systems are described in
Figure 2.2 (after [100, p99], and [28, p132]). In this diagram, an arc from A to B means that B is a strict superset
of A: every theorem of A is a theorem of B, but not vice versa; A = B means that A and B contain precisely the
same theorems. Because some modal systems are so widely used, they have been given names:

KT is known as T
KT4 is known as S4
KD45 is known as weak-S5
KT5 is known as S5

Normal Modal Logics as Epistemic Logics

To use the logic developed above as an epistemic logic, the formula φ is read as: “it is known that φ”. The
worlds in the model are interpreted as epistemic alternatives, the accessibility relation defines what the alternatives
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Figure 2.2: The Modal Systems Based on Axioms T, D, 4 and 5

are from any given world. The logic deals with the knowledge of a single agent. To deal with multi-agent
knowledge, one adds to a model structure an indexed set of accessibility relations, one for each agent. A model
is then a structure:

�
W, R1, … , Rn, π �

where Ri is the knowledge accessibility relation of agent i. The simple language defined above is extended by
replacing the single modal operator “ ” by an indexed set of unary modal operators

�
Ki � , where i ∈

�
1, … , n � .

The formula Kiφ is read: “i knows that φ”. The semantic rule for “ ” is replaced by the following rule:
�
M, w � |= Kiφ iff ∀w′ ∈ W ⋅ if (w, w′) ∈ Ri then

�
M, w′ � |= φ

Each operator Ki thus has exactly the same properties as “ ”. Corresponding to each of the modal systems
Σ, above, a corresponding system Σn is defined, for the multi-agent logic. Thus Kn is the smallest multi-agent
epistemic logic and S5n is the largest.

The next step is to consider how well normal modal logic serves as a logic of knowledge/belief. Consider
first the necessitation rule and axiom K, since any normal modal system is committed to these.

The necessitation rule tells us that an agent knows all valid formulae. Amongst other things, this means
an agent knows all propositional tautologies. Since there are an infinite number of these, an agent will have
an infinite number of items of knowledge: immediately, one is faced with a counter intuitive property of the
knowledge operator.

Now consider the axiom K, which says that an agent’s knowledge is closed under implication. Suppose φ is a
logical consequence of the set Φ =

�
φ1, … , φn � , then in every world where all of Φ are true, φ must also be true,

and hence

φ1 ∧ ⋅ ⋅ ⋅ ∧ φn ⇒ φ

must be valid. By necessitation, this formula will also be believed. Since an agent’s beliefs are closed under
implication, whenever it believes each of Φ, it must also believe φ. Hence an agent’s knowledge is closed
under logical consequence. This also seems counter intuitive. For example, suppose, like every good logician,
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our agent knows Peano’s axioms. It may well be that Fermat’s last theorem follows from Peano’s axioms —
although, despite strenuous efforts, nobody has so far managed to prove it. Yet if our agent’s beliefs are closed
under logical consequence, then our agent must know it. So consequential closure, implied by necessitation and
the K axiom, seems an overstrong property for resource bounded reasoners.

The Logical Omniscience Problem

These two problems — that of knowing all valid formulae, and that of knowledge/belief being closed under logical
consequence — together constitute the famous logical omniscience problem. This problem has some damaging
corollaries.

The first concerns consistency. Human believers are rarely consistent in the logical sense of the word; they
will often have beliefs φ and ψ , where φ

�
¬ ψ , without being aware of the implicit inconsistency. However,

the ideal reasoners implied by possible worlds semantics cannot have such inconsistent beliefs without believing
every formula of the logical language (because the consequential closure of an inconsistent set of formulae is
the set of all formulae). Konolige has argued that logical consistency is much too strong a property for resource
bounded reasoners: he argues that a lesser property, that of being non-contradictory is the most one can reasonably
demand [100]. Non-contradiction means that an agent would not simultaneously believe φ and ¬ φ, although the
agent might have logically inconsistent beliefs.

The second corollary is more subtle. Consider the following propositions (this example is from [100, p88]):

1. Hamlet’s favourite colour is black.

2. Hamlet’s favourite colour is black and every planar map can be four coloured.

The second conjunct of (2) is valid, and will thus be believed. This means that (1) and (2) are logically equivalent;
(2) is true just when (1) is. Since agents are ideal reasoners, they will believe that the two propositions are logically
equivalent. This is yet another counter intuitive property implied by possible worlds semantics, as: “equivalent
propositions are not equivalent as beliefs” [100, p88]. Yet this is just what possible worlds semantics implies. It
has been suggested that propositions are thus too coarse grained to serve as the objects of belief in this way.

The logical omniscience problem is a serious one. In the words of Levesque:

“Any one of these [problems] might cause one to reject a possible-world formalization as unintuitive
at best and completely unrealistic at worst”. [112]

Axioms for Knowledge and Belief

We now consider the appropriateness of the axioms Dn, Tn, 4n, and 5n for logics of knowledge/belief.
The axiom Dn says that an agent’s beliefs are non-contradictory; it can be re-written in the following form:

Kiφ ⇒ ¬ Ki¬ φ

which is read: “if i knows φ, then i doesn’t know ¬ φ”. This axiom seems a reasonable property of know-
ledge/belief.

The axiom Tn is often called the knowledge axiom, since it says that what is known is true. It is usually
accepted as the axiom that distinguishes knowledge from belief: it seems reasonable that one could believe
something that is false, but one would hesitate to say that one could know something false. Knowledge is thus
often defined as true belief: i knows φ if i believes φ and φ is true. So defined, knowledge satisfies Tn.

Axiom 4n is called the positive introspection axiom. Introspection is the process of examining one’s own
beliefs, and is discussed in detail in [100, Chapter 5]. The positive introspection axiom says that an agent knows
what it knows. Similarly, axiom 5n is the negative introspection axiom, which says that an agent is aware of
what it doesn’t know. Positive and negative introspection together imply an agent has perfect knowledge about
what it does and doesn’t know (cf. [100, Equation (5.11), p79]). Whether or not the two types of introspection
are appropriate properties for knowledge/belief is the subject of some debate. However, it is generally accepted
that positive introspection is a less demanding property than negative introspection, and is thus a more reasonable
property for resource bounded reasoners.

Given the comments above, the modal system S5n is often chosen as a logic of knowledge, and weak-S5n is
often chosen as a logic of belief.
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Computational Aspects

Before leaving this basic logic, it is worth commenting on its computational/proof theoretic properties. Halpern
and Moses have established the following ([83]):

1. The provability problem for each of the key systems Kn, Tn, S4n, weak-S5n, and S5n is decidable. Halpern
and Moses sketch some tableaux decision procedures for these logics.

2. The satisfiability and validity problems for Kn, Tn, S4n, (where n ≥ 1), and S5n, weak-S5n (where n ≥ 2)
are PSPACE complete.

The first result is encouraging, as it holds out at least some hope of automation. Unfortunately, the second result
is extremely discouraging: in simple terms, it means that in the worst case, automation of these logics is not a
practical proposition.

Discussion

To sum up, the basic possible worlds approach described above has the following disadvantages as a multi-agent
epistemic logic:

• agents believe all valid formulae;

• agents beliefs are closed under logical consequence;

• equivalent propositions are identical beliefs;

• if agents are inconsistent, then they believe everything;

• in the worst case, automation is not feasible.

To which many people would add the following:

• “[T]he ontology of possible worlds and accessibility relations …is frankly mysterious to most practically
minded people, and in particular has nothing to say about agent architecture”. [147]

Despite these serious disadvantages, possible worlds are still the semantics of choice for many researchers,
and a number of variations on the basic possible worlds theme have been proposed to get around some of the
difficulties. The following sections examine various topics associated with possible worlds semantics.

2.3.2 Common and Distributed Knowledge

In addition to reasoning about what one agent knows or believes, it is often useful to be able to reason about
“cultural” knowledge: the things that everyone knows, and that everyone knows that everyone knows, etc. This
kind of knowledge is called common knowledge. The famous “wisest man” puzzle — a classic problem in
epistemic reasoning — is an example of the kind of problem that is efficiently dealt with via reasoning about
common knowledge (see, e.g., [100, p58] for a statement of the wisest man problem)10.

The starting point for common knowledge is to develop an operator for things that “everyone knows”. A
unary modal operator EK is added to the modal language discussed above; the formulae EKφ is read: “everyone
knows φ”. It can be defined as an abbreviation:

EKφ
�

K1φ ∧ ⋅ ⋅ ⋅ ∧ Knφ

or it can be given its own semantic rule:
�
M, w � |= EKφ iff

�
M, w � |= Kiφ for all i ∈

�
1, … , n �

The EK operator does not satisfactorily capture the idea of common knowledge. For this, another derived
operator CK is required; CK is defined, ultimately, in terms of EK. It is first necessary to introduce the derived
operator EKk; the formula EKkφ is read: “everyone knows φ to degree k”. It is defined as follows:

EK1φ
�

EKφ
EKk+1φ

�

EK(EKkφ)

10The discussion that follows was adapted and expanded from [73, Chapter 9] and [83].
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