
Mixing Collaborative and Cognitive
Filtering in Multiagent Systems

Ramon SANGÜESA, Alberto VÁZQUEZ-HUERGA and Javier VÁZQUEZ-SALCEDA
Software Departament,

Universitat Politècnica de Catalunya
Campus Nord, Mòdul C-6, Despatx 204

C/Jordi Girona Salgado, 1-3
08034 Barcelona

SPAIN
E-mail: [sanguesa | avazquez | jvazquez]@lsi.upc.es,

URL: http://www.lsi.upc.es/~sanguesa

Abstract: The combined use of cognitive and collaborative filtering has been advocated as a means
to improve the usefulness of Recommender Systems. This approach has been used in some domains.
In this paper we present the ACE Multi-Agent System, a Recommender System which combines both
approaches and, in addition, is fully domain-independent. Besides describing the main traits of ACE
we also comment on a preliminary experience on the domain of leisure recommendations.

Keywords: Software Agents, Multiagent Systems, Recommender Systems, Collaborative Filtering,
User Modeling.

1. Introduction

Efforts towards the automatization of the information filtering process have delivered
quite a lot of results but still lacked the degree of personalization that is needed to really find
and deliver the rigth information to a specific user. Softbots allowed some type of
personalized searching by using a model of each user’s interests. An agent or a group of
agents were in this way able to automatically build powerfull queries from the ones entered by
the user and then merge and filter the results, giving to the user a, hopefully more relevant,
subset of the found information.

During the last years this idea has evolved from the personalyzed searching agents to the
more powerful Recommender Systems (Resnick,1994). While a personalized searching agent
tries to find documents similar in content to those ones the user has received before, a
Recommender Systems uses also other types of information in order to fine tune the
interestingness of sources of information: apart from previous queries by the same user it can
also take advantage of other cues as, for instance, time devoted to read each previous
document, actions done with it (saving, printing, bookmarking), user’s feedback (Pazzani,
1996) as well as the information of similar behaviour and interests of a group of users related
to the actual one issuing a query. Even more, Recommender Systems try to work as
unobstrusively as possible, and they do issue recommendations even when the user is not
querying but just browsing or navigating through information (Lieberman,1995),
(Munro,1999) in this way acting more as a Personal Digital Assistant (Maes, 1994). Although
there is a wide variety of solutions it can be said that two types of recommender system seem
to have appeared. One type is based solely on content and the observations of a single user
actions. The second one pools behaviour and interests of a community of users

(Terveen,1997) including the recommendations on a set of topics contributed by the same
users that form the virtual community. There are both advantages ans disadvantages in each
type of system. The first one require less actions on the part of the user. Users in the first
systems do not need to contribute with a recommendation issued by the system (as in Syskill
and Webert, see (Pazzani,1996)) but then they have to rely on the automated indexing and
categorization mechanisms used in calculating the relevance or interestingness of information
content. Automatic calculation of relevance may be a crude approximation to the
categorization and evaluation of information that a good human expert can do while
evaluating content. The second type of systems overcomes this last disadventage by relying
on human judgement. In effect, the users in the community issue recommendations on
documents and other sources of information that are based on their expertise in the domain, in
principle a much more elaborated way of rating information. On the negative side, the quality
of a system based on this collaborative approach hinges critically on the quality of each users
recommendations. Other problems include the need to have a critical mass of active and
qualified users/contributors, the cold-start effect and the decaying involvement of users
without any further incentive. Advantages and disadvantages of both approaches have been
analysed in (Balabanovic,1997b), and are summarized in Table 1:

Cognitive Filtering Collaborative Filtering
Each time a new document enters into the
system, it can be recommended (an analisys of
its content can be made).

There’s no way to recommend an incoming
document until it has been voted by a minimun
number of users.

The filtering quality is not affected by the
number of registered users and the number and
the quality of recommendations made by them.

The filtering quality depends on the number of
registered users and the number and the quality of
recommendations made by them.

The content-based analisys of a document can
only manage textual documents. It’s hard to
analyze by its content information such as
images, the style or the layout of a document,
or semanthical information.

It’s based on the opinions made by other users.
Users are entities with huge power of semantical
and visual analysis.

The system only search similar topics to the
documents retrieved before. Is hardly to get
new interesting topics to the registered users.

The taste of the users usually changes in time, in
a very dynamic way. Users commonly
recommend new topics.

Table 1. Characteristics of Cognitive and Collaborative Filtering approaches.

Usually both approaches have been used separately. However, there have appeared some
systems that mix both approaches, getting better results (see (Balabanovic, 1997a),
(Balabanovic,1997b), (Delgado,1998), and (Miyahara,1998)). If we look again on Table 1 we
can see the reason: disadventages in one approach can be counterbalanced by the other
approach, building a system that keeps the adventages of both approaches while minimizing
the disadventages. Several of these systems, however, still do show some limitations in some
aspects, and there are some problems still to be solved. For example, there seems to be a
contradiction in having a fixed keyword set for the content-based side of the system without
expanding it as a response to the introduction of new topics by users through the collaborative
side. Another problem worth menctioning is the very restricted domains and solutions offered
by the current combined systems that don’t seem, in principle, to generalize well to other
domains. In this paper we present ACE, a multiagent recommender system that combines
dinamically both approaches. In Section 2 we give an overall description of the system’s
domain of application, its goals and functionalities; in Section 3 we describe the internal

architecture of the system, describing in some detail the implemented solutions; in Section 4
we describe in greater detail the combined approach to document filtering; in Section 5 the
problem of user modelling is discussed and our solution described; Section 6 discusses a first
test application of ACE and, finally, Section 7 sums upand lists future lines of research,
development and application.

2. Description of ACE

The Electronic Cultural Agency (Agencia Cultural Eletrónica, ACE) is a system
developed for the personalized recomendation of leisure activities offered in a metropolitan
area, in this case Barcelona, Spain. The system is now in the process of being integrated in the
leisure pages of an electronic newspaper (Diari de Barcelona,
http://www.diaridebarcelona.com), giving personalized information to the newspaper’s
registered readers according to their tastes or interests. Although the system was built to give
recommendations on the Barcelona leisure offer, one of our major goals has been to design a
recommender system general enought to be capable of recommending not only leisure but
also other kind of items.

Our goal was to make the system capable of issuing recommendations with very little
information about the recommended items, as for example, is usually the casewith the data
available on movie or theatre shows directories or online reviews: oftenly just a short textual
description. A pure Cognitive Filtering approach based solely on content wouldn’t work
properly, as the information it had on the item to recommend was very poor. This was the
reason why a collaborative suystem seemed a good idea in the first place. A second one was
cited by the newspaper directors which see a collaborative system as a means to user
community building.

Figure 1: The ACE system, just after the incoming user has been authentified.
We comment briefly the overall functionalities of the system from the user’s point of

view. The first time a user enters to the system, he or she must register, choosing an username

and a password. The user can optionally give some information about his or her interests,
choosing the kind of leisure he likes from a list (cinema, theatre or other). The required
information us as less as possible so as not to bother the user with an annoyingly long
questionnaire. This information, however, makes shorter the process of automatic adaptation
of the system to the user’s interests. A user can decide to byass this step. If the user does so,
the system will accept he or she as a new user but it will have to learn his or her interests from
scratch. Subsequent accesses of a user to the system only require the introduction of his or her
username and password. The system then is able to recover whatever information has been
built on the corresponding user profile since the last interaction.

Once ACE has identified the incoming user it shows the window displayed in Figure 1. It’s
a web page with two frames: the menu frame, on the left side, and the information area, on the
right side. The initial options to the user are listed below:

a) See new recommendations: by means of this option the system shows to the user the items
recommended according to the knowledge it has on the user’s interests. All listed items
are sorted by the estimation of user interest calculated for each item. If the user chooses
one item, ACE displays a brief description of it. This textual description helps the user to
decide whether this item is interesting for him. The user has the chance to vote for or
against the item, as shown in Figure 2.

Figure 2: In the left frame, the list of recommended items for the user. In the right frame, the
description of one of them, and below the buttons to vote the item.

b) See previous recommendations: It shows to the user the items he has voted for previously.
The user cannot vote an item twice.

c) See all the suggestions: This option shows all suggestions ACE has retrieved for a given
user. The user can see the item description by clicking the items of the list, and read the
textual description associated with each item. This textual information comes from a
repository of leisure activities’ descriptions including movie and theatrical reviews that
are freely offered by newspaper. If ACE discover a possible interest of the user in that

item then a window prompts the user asking if he wants to vote for or against that item. If
some time passes with no action, ACE assumes that the user feels no special interest
against or in favour of the item.

d) See all users’ suggestions: the user can see all the suggestions submitted by the other
registered users with similar interests. Again the user has the posibility to make a vote.

e) Write a suggestion: This option gives to the user a way to submit a suggestion to the rest
of users. A suggestion is a free-text form where any opinion can be expressed. This is in
contrast with other systems, where a fixed form or a limited range of voting values is
offered. In this way ACE gives more freedom at the expense of further processing of each
suggestion.

f) See the help: Displays the help.
g) Exit: To go out of the ACE system, returning to the main page of the electronic

newspaper.

3. Internal architecture of ACE

Agent-based recommender systems tend to associate a single agent for each user,
working as an assistant ot him or her. These agents usually are resident to th users computers
which are assumed to be continuously connected. In our case, users are supposed to get
connected to the system only for short spans of time each day. So it seemed more natural to
try to locate as many as possible of the underlying processes on the server. It’s important,
then, to come up with an architecture that limits the potential explosion in the number of
agents present on the server. Figure 3 shows the internal architecture of the system:

Figure 3. The internal architecture of the ACE system.

The ACE architecture is composed as several Agencies: Interface, Collector and Central.
All informations, that is, retrieved documents and user’s suggestions (we will call both
documents from now on) is sent to the Central Agency.

3.1 Interacting with the user: the Interface Agency

The Interface Agency is the one which performs the communication among the users and
the ACE system. Each user has three personal agents (see Figure 3.1): the Informant Agent,
which looks into the database for the recommendations suggested by the system to that
particular user; the Feedback Spy Agent, which gets information by “looking over the
shoulder” (Maes,1994) all the actions the user does (navigation among the web pages of the
ACE system, voting, etc...) to create a better profile for him or her; and the Suggestion Spy
Agent, which has as input the suggestions made by the users of the virtual community
growing arround ACE. All these agents are not active anytime but only when the user is on-
line. Having all the agents continuously active for all registered users leads to a huge number
of agents: the number of registered users of an electronic newspaper can grow higher than
10000 users, so the number of agents could be more than 30000. Having only active interface
agents for the users that are on-line in a given moment reduces the number of active agents of
the system, as all the users do not tend to get connected to the system at the same time.
Simultaneously connected users are in the range of 10-900.

Figure 3.1. The components of the Interface Agency.

The actual architecture is an information push architecture: the information recommended
to the user is decided before the user asks for it, as opposite to the information pull models
where user requests are the triggers of the retrieving and filtering processes. So, each time the
user enters ACE, the information to recommend is ready. There is no waiting for it.

All the information these agents need no know about the user or the documents is inside a
database (in figure 3.1 and following it appears divided in Information about users and
Information about documents). This database works as a blackboard for all agents, and it lets
the agents to share information about users and documents instead of having the information
duplicated inside each agent. This also contributes to make ACE a lightweight agency.

3.2 Retrieving useful information: the Collector Agency

The Collector Agency consists of a group of Collection Agents (see Figure 3.2)
specialized in the retrieval of different sources of information, such as web pages or public
databases. There are special agents such as the Suggestion Spy Agents, (that also belong to the
Interface Agency) and who have as input the suggestions made by the users of ACE, and
another agent, the Forum Spy Agent, which search the contributions of the registered users in
the electronic newspaper’s forums, in order to know better these users. All these documents
are sent to the Central Agency.

Figure 3.2. The components of the Collector Agency.

3.3 Managing documents and recommendations: the Central Agency

Finally, the Central Agency receives information from the Interface and Collector
agencies and filters and delivers the documents to the users. The process begins when any
agent in the Collector Agency sends some information to the Document Modelling Agent. This
agent builds the document model from the content of the document (as we said, it is a textual
description of an item), stores it into the database and sends a note to the Dealer Agent to
notify the arrival of a new item to recommend. The Dealer Agent is the one which makes the
filtering of the information, decides which items could be interesting for each user and then
“delivers” the items to the user. But at any time there are not active agents representing all the
users, so the action of “delivery” is not sending a message to an interface’s agent but storing a
record into the database, where the Informant Agent will extract it later as the information to
be recommend to the corresponding user. When the Dealer Agent receives an item written by
a registered user (a suggestion sent to the ACE system, or a contribution in the newspaper’s
forums), a note to the User Modelling Agent is sent in order to learn more information about
that user. The User Modelling Agent modifies the model of that user by using the model of the
document built by the Document Modelling Agent. Here is where the combination of content
and collaboration takes place. This process is further explained in section 5 of this paper.

Figure 3.3. The components of the Central Agency

The Dealer Agent also receives from the Feedback Spy Agents the votes made by the
users. Each vote of user U to item I is useful:
a) to learn more about the user U: The Dealer Agent sends a note to the User Modelling

Agent, which will make use of this information to update the model of user U stored in the
database.

b) to modify the “dealing” of item I to other users, taking into acount the new voting.

The ACE architecture has two more agents: The Garbage Agent , which gets rid of aged
documents in the database, and the Social Agent, which clusters users, grouping them by their
similar interests extracted from the documents they suggested as well as their voting
behaviour.

4. Document Filtering

The ACE system doesn’t work with the entire text of an item’s description, but with a
document model. In our system, the document model is the vector-space model (a list of pairs
{word, weight}) as it has shown to work properly in systems mixing cognitive and
collaborative filtering (see (Balabanovic 1997a, 1997b) and (Miyahara,1998)), composed by
the top words of the item’s description, that is, the words that “define” this document.

The process follwed for obtaining the top words of a description is divided in 4 steps,
done concurrently:
a) Getting the most frequent words: a pair list {word,frequency].
b) Removing unuseful words: there’s a list of stop words (in Spanish, less than 220 words),

words that give very little or null topic-related information, such as articles, adverbs,
conjunctions, prepositions or pronouns.

c) Join different forms of a word into a same word, reducing them to their “stems”.
d) Weighting each word with the frequency of the word in the document. Words in a

document are not weighted by a TF-IDF (Term Frequency – Inverse Document
Frequency), as the IDF is computed in our system for each user.

The Document Filtering process is done entirely by the Dealer Agent, but is based in
information computed by other agents:
- the document model, built by the Document Modelling Agent.
- the user model of his interests, created by the User Modelling Agent
- the clusters of users, computed by the Social Agent.

4.1. Stemming for general contexts

As mentioned before, one of our goals was to design and built a quite general
recommender system, as independent of domain as possible. This goal difficults the stemming
process. Usually, a thesaurus of topic-related terms is needed to reduce each word to its stem.
But having domain independent system makes makes necessary a thesaurus that covers the
whole language domain (for instance, a Thesaurus covering all English words). Having a
system that should be able to be multilingual (something very important in European
Community) makes necessary to have several Thesaurus covering each of them a language
(English, Spanish, French, German...).

There are two approaches to solve this:
- Making the system capable of building his own thesaurus, from the documents it

receives.
- Using no thesaurus in the stemming process.

The ACE system uses the second approach, as the first one is still under development by
other mmebers of our group.

We have developed a new algorithm for stemming, the fusing words algorithm, that
needs no thesaurus to work. It takes adventage of a property present in most languages: the
stem is usually a word’s prefix.

Our algorithm is quite simple: given an alphabetically ordered list of words l and a new
word to add w:
- Searches the position where the word w should be inserted in l.
- Looks into the next words of the list if there are any words w’ which can fuse to w.
- Looks into the previous words of the list if there is a word w’’ the new word w can fuse to.

A word w can fuse to a word w’, if w’ is prefix of w, and if the difference in length of
both words are under a certain threshold. The second condition ensures that it’s not loosing
too much semantic information about the word w when it’s fused to w’. During the testing of
the ACE system, the threshold was that length of word w’ have to be, at least, the 65% of the
length of word w to let w fusing into w’.

With the fusing words algorithm different forms of the same word fuse into one term,
letting other words to enter in the document model. But there are two major problems in this
algoritm: 1) different order of the incoming words lead to different results in fusion, and 2)
the algorithm cannot fuse words that have a same ancestor, but have differences in their
stems(for example, “forget” and “forgotten”). Part of our future work will focus on
improving this algoritm and making some benchmarks, comparing it to the stemming.

4.2. Connecting documents with users

The estimation of the interest of an user u for a document d,),(dupt , is given by:

Where),(dupc is the estimation of the interest of user u for the content of document d
(that we will name the content interest),),(dups is the estimation of the interest of user u for
the document d given the votes made from other users to d (we will name that estimation of
the social interest), and k is a factor to weight the influence of each estimation in the result of
the formula.

4.2.1. Content Interest

The estimation of the content interest for user u and document d is computed by the
comparison of the Document Model and the User Model, both of them lists of pairs {word,
weight}. There are some transformations needed to do this comparison, thought: first of all,
both word lists are reduced to the words present in both models. Next, the words are put in the
same order in both lists, so the word in the position i of the Document Model is the same of
the word in the position i of the User Model. Then, there is an important transformation to be
made: while the User Model weights its words with the TF-IDF, that is, the product of the
word frequency (TF) in all the documents user u has voted, and the inverse document
frequency (IDF) of this word computed for each user, the Document Model weights its words
only by the TF, as IDF is computed for each user and stored in the ACE’s database. So, the
TF-IDF of the words in the document model is computed. Then the words are dropped out of
the lists, so the user and the document are represented by a weight vector. The last
transformation is tonormalize both vectors.

Given the two transformed lists (the User Model vector, u’ and the Document Model
vector, d’), the comparison is made with the cosine-similarity measure, defined by the
following formula:

4.2.2. Social Interest

The estimation of the social interest for user u and document d is given by:

Where iv is the mean vote of user i, jiv , is the vote of user i to document j, and w(u,i) is a
similarity factor between user u and user i. The Dealer Agent finds all the information needed
in this formula stored in the database, and is computed by the User Modelling Agent and the
Social Agent as is explained in the following section.

),()1(),(),(dupkdupkdup sct ⋅−+⋅=

�
=

==
n

i
iic dudusimdup

1
)''()','(),(

))(,(),(
1

, i

n

i
dius vviuwkvdup −+= �

=

5. Learning an User Model

If we want to be able to suggest interesting information for each particular user of the
ACE System we must keep a user model for each one of them. The information used to
obtain a user model are the votes the user has made for the documents presented previosly or
the suggestions written by that user (that are considered as another document voted as
interesting by the user). Votes are useful to get user feedback and make an adaptative model.

There are two ways to get the user vote for each document.

a) Explicit voting: the documents presented for the user can be rated. The user has two
options: he can decide to make a positive vote or, otherwise he can make a negative vote.
The user can decide also not to vote.

b) Implicit voting: In that case the System doesn´t wait for the user to issue a vote. ACE
implements two techniques for implicit voting:
1. when a person wastes too much time reading a document in the general list of

documents, the system average the time wasted with the text length. If the value is
higher than a threshold, a window display is presented to the user, asking if the
document is interested for him or not. The system learns to modify the value of the
threshold. If the user commonly rate positively the documents presented with implicit
vote, it means that this technique works and for this reason the threshold can be lower.
On the other way, if the user don´t vote or vote negatively the votes suggested by the
System, the threshold can be higher.

2. The users can write documents (suggestions)about a topic for the rest of users. These
documents are used as a implicit positive vote for the user who made that vote.

Using implicit an explicit vote the system has for each user a list of the documents he
voted for and against. This information is used to build the User Model. The user model
representation choosed is a very used representation in the area, the space vector model.
However we have to remark that ACE does not uses the classical implementation of the space
vector model. Our vector is split in two subvectors, one of them keeps content-based
information and the other keeping social-based information. The system uses two different
techniques to learn each type of sub-vector.

5.1. Learning the content-based part of the user model

The aim of this process is to learn a basic user model using the textual content of the
documents that the user has rated previously. The resulting vector is the best group of words
than define the user’s interests. A window of five documents is taken into account to build the
user model. Each document is converted into a vector model representation. Each vector uses
a set of words and their frequency for these last five model documents. The classical TF-IDF
algorithm is used. Words present in one vector but not used in another document model are
included in the five documents with zero frecuency. We build five new vector models with
common words, to limit the length of the vectors to 100. To choose these 100 words an
Information Gain (Quinlan,1986) measure was used, which is computed with the following
formula:

where

W is the actual word and S is the set of documents. P(W=present) is the probability that
W was present in a page. Sw=present is the set of pages where word W occurs one or more
times. Sc are all pages of class c. There are two possible classes: the class of documents voted
positively and the class of documents voted negatively.

For each word we keep the tf (term-frequency): the number of times the word appeared in
the documents, and the idf (inverse-document-frequency): the number of documents where
the same word occurred. The TF-IDF algoritm is applied then to those five vector model
corresponding to the window of five documents. We didn´t want to lose the old user model
but just to update it when the five new documents came. So, for this reason, we mantain a user
model and we apply an algorithm to replace words in the old user model with words included
in the new TF-IDF vector being built. The algorithm used is the following for each word
included in the new vector TF-IDF:

IF the new word was included in the old model THEN the new tf, idf and information
gain are averaged with the new values obtained.
IF the new word was not included in the old model but there is space enough to include
that word THEN the new word is included with the tf ,idf and its information gain.
IF the new word was not included in the old model and there is not space enough THEN
we replace the new word with another word that has a tf-idf*Information Gain higher
than that word

5.2. Learning the social part of the user model

This procedure is used to take into account information coming from the activities of the
virtual community of users that have probably common interests. The knowledge that these
users have is used to make recommendations for other users which seem to have common
interests.

The social user model is learnt again by using the space vector model. Each vector
component is a user who has similar interests and a value of similarity. To discover similar
interest between users we used the votes each user has made are used, similar users will be
voted in the same way as in the case of documents.

To find the similarity between any two users, a set of documents who have been voted by
the two users is built. Then by applying the following formula (Breese,1998):

[])()sen()()sen()(),(sensen tprewtprew SItpreWPSItpreWPSISWE ¬== ¬=+=−=

))((log)()(2
},{

c
c

c SpSpSI �
−+∈

−=

�
��

∈∈

=
j

Ik
ki

ji

Ik
ka

ja

ia

v

v

v

v
iaw

2
,

,

2
,

,),(

This formula measures the vector similarity between the two users, a is the actual user
and i is one of the rest of users, and Va,j is the vote a has made to the document j. This formula
computes the cosine of the angle formed by the two vectors. The squared terms in the
denominator are used to normalize votes.

If the value obtained is higher than a fixed threshold, user i is included in the social part
of the vector model for user a, and user a is included in the social vector of the user i.

6. Experimental results

A first implementation of ACE has been tested only on the movie reviews ans
recommendations domain on a small comunity of users. The actual implementation does not
make use of Forum contributions, this us left for further development. In this first test phases
the goal was to check the learning algorithms used to build the user model. Some conditions
were set for this experiment:

- Films were showed to the user in a random way. Therefore the films are voted in the same
way.

- The users don´t see the system estimation for each film.

These two conditions guarantee that the Recomender System doesn’t have any influence
on users’ purposes and their interests. This type of experiment setting point is explained in
more detail for a similar system in (Balabanovic,1997a).

The method used to test the recomender system accuracy was organizing a controlled
group of users that interacted with the system for a given time s. In order to have reliable
estimation of the system’s performance these users had to make a high number of votes in
order to overcome the cold-start and non-cooperative community effects typical to the
collaborative part of any mixed recommendation system. While the users voted, the system
split the group of votes into two sets:

- The Vote Set Ia was used to build the content and social model of the user a, this set was
used to create the examples for training ACE.

- The Vote Set Pa were the votes ACE had to predict for each user a. This became the test
set.

Then, votes in the training set Ia were used to predict the votes for the user in Pa

By using the models built in this first phase, ACE showed films to each user giving an
estimation of the interests of that film for that user. This is a probability of interest of a given
user for a given film. So we adopted the following formula to test if the system was
performing well (see (Breese, 1998) for further justification for this formula):

�
∈

−=
aPj

jaja
a

a vp
m

S ,,
1

Paj is the probabilty estimated by the system for an user a and a film j, and Vaj is the vote
the user a issued for film j. This operation is computed for all the films the user voted for, and
is weighted by ma, the total number of films the user voted. The output obtained measures the
error in the System estimation. This formula is applied for all the users in the database and
averaged over all of them.

Tests have been done with a set of 25 users, in a trial test that lasted one week. They
voted on 40 items randomly chosen from a set of 214 items in the database.

The results are shown in Figure 4:

Figure 4: Evolution of the predictive capability in the ACE system.

The graphic shows in the horizontal axis all votes the users did. And in the vertical axis
the absolute deviation computed for each user averaged and normalized for all the users. The
graphic gives an indication of the system fit to user’s interests. It can be seen that performance
improves with the number of votes, which is the expected performance for this type of
system. Average absolute deviation has a value of 0.27.1

7. Conclusions and future work

We think that experimental results show that ACE learns an user model which is useful to
make accurate predictions. Probably, a wider virtual community could have allowed the
system to home in faster on a lower error prediction rate. The way the users are clustered
arround similar interestys is made not only by using just documents that have been of interest
to them as other system combining cognitive and collaborative filtering do (Grasso, 1999),
(Munro,1999) but also by taking into account explicit recommendations contributed by
theusers. This is a novel approach to the best of our knowledge although some point of
contacts may exist with the approach proposed by (Olsson,1998) and (Grasso,1999). It has

1 each user has voted 40 items but the graphic only displays 35 votes due to the last 5 items are used as a test set
for the vote 35.

been shown that the system, in fact, improves over time by resorting to that type of
combination. In fact, it can be shown that it gives better prediction than by using only content-
based or social-based recommendation.

One aspect of the architecture we want to remark is its lightness, in the sense previously
discussed of imposing little burden to the server and clients by having always the minimum
number of active agents at any time.

Another aspect worth mentioning is that ACE is devised so as to be as independent od the
domain as possible. No special natural language technique reflecting any linguistic knowledge
for the domain has been used as is in other systems. In our view, this approach also reduces
the complexity of the calculations for finding similarities in content. Probably using linguistic
knowledge about each type of domain (leisure, cinema, directories, etc.) would result in a
more precise content retrieval behaviour but at the expense of (a) introducing a lot more of
knowledge and processing (b) making the system less domain independent or, at least,
language independent. Apparently in its present version there is a limitation in that last aspect
in the sense that information about sich things as stop words or the method for fusing words is
devised for the Spanish language. However, the overall modularization of the system ensures
that this aspect can be asily replaced by information for other languages. Further details in
that respect will be available in (Sangüesa,1999a) without having to introduce any complex
natural language information.

Althought further abstraction is envisaged and this is a priority in our agenda for
improvement, we feel that the present distribution of roles and tasks among agents is a first
step in the right direction towards a generic architecture for recommendation (Sangüesa,
1999b). We would like to point that each aspect of the filtering and combining system has
been made as modular as possible.

Further refinements that we are starting to address include the following ones:

- Test the Forum Spy Agent in a real setting.
- Study changing from binary voting (“I like”/”I don’t like the item”) to several degrees of

voting, giving users the chance to express better their interests. We are trying to get a finer
voting scale without introducing too much decision burden to the user (See
(Balabanovic,1997b)(Balabanovic,1998) for an interesting discussion on that point).

- Make the system capable of evaluating intself, in order to know at each moment which of
the two filtering approaches (the content-based or the social-based) is better, and
weighting them automatically.

As we menctioned at the begining of this paper, ACE is now being integrated as a new
service for the users of a resl electronic newspaper and it will be soon into another one. We
want to take adventage of this new experiences to get new insights about aspectssuch as how
the lightweight approach we used can be osed to face scaling un in the number of users.

References

(Balabanovic,1998) Balabanovic, M. An Interface for Learning Multi-topic User Profiles from
Implicit Feedback. Proceedings of the first WorkShop on Recommender
Systems, 1998, Technical Report WS-98-08, AAI-Press, pags. 6-10.

(Balabanovic,1997a) Balabanovic, M. An adaptative web page recomendation service.
Proceedings of the 1st International Conference on Autonomous Agents,
Marina del Rey, California (February 1997), pags. 378-385.

(Balabanovic,1997b) Marco Balabanovic, Yoav Shoham. Fab: Content-Based, Collaborative
Recommendation. Communications of the ACM, vol. 40, nº 3 (March
1997), pags. 66-72.

(Breese,1998) Breese, J. S.; Heckermann, D.; Kadie, C. Empirical Analysis of
Predictive Algorithms for Collaborative Filtering. Proceedings of the 14th

conference on Uncertainty in Artificial Intelligence, Madison, Winsconsin
(July, 1998). Morgan Kaufmann Publisher.

(Delgado,1998) Delgado,J; Ishii, N.; and Ura, T. Intelligent Collaborative Information
Retrieval. 6th Iberoamerican Conference on Artificial Intelligence
(IBERAMIA 98), Lisbon, Postugal (October 1998).

(Grasso, 1999) Grasso, A. Mixing Cognitive and Collaborative Filtering. Proceedings of
the I3net Community of the Future Conference. Sienna, Italy, October
1999.

(Lieberman,1995) H. Lieberman. Letizia; an agent that assists web browsing. Proceedings
of IJCAI-95. AAAI Press.

(Maes,1994) Pattie Maes. Agents that reduce work and information overload.
Communications of the ACM vol. 37, n. 7, pags. 31-40.

(Miyahara,1998) K. Miyahara, T. Okamoto. Collaborative Information Filtering in
cooperative communities. Journal of computer Assisted Learning 14
(1998), pags. 100-109.

(Mundher, 1998) Mundher,M; and Sen, S. Use of voting schemes to tradeoff user
preferences. Proceedings of the first Workshop on Recommender
Systems, 1998, Technical Report WS-98-08, AAAI-Press, pags. 75-76.

(Munro,1999) Munro, A. J.; Hook, K. And Benyo, D. (eds) (1999) Social Navigation of
Information Space. CSCW Series. Springer-Verlag, London.

(Olsson,1998) Olsson, T. Decentralised Filtering based on Trust. Proceedings of the
first Workshop on Recommender Systems, 1998, Tehnical Report WS-
98-08, AAAI-Press, pags 84-86.

(Pazzani,1996) Pazzani, M; Muramatsu, M and Billsus, D. Syskill & Webert: identifiying
interes web sites. Proceedings of the Thirteenth National Conference on
Artificial Intelligence. Portland Oregon (1996).

(Quinlan,1986) Quinlan, J. R. Induction of decision trees. Machine Learning, 1 (1986),
81-106

(Resnick,1994) Resnick, P.; Iancouvou,N; Sushack, M.; Begrstrom, P. And Riedl,J.
Grouplens: An open architecture for collaborative filtering of NetNews.
Proceeedings of the CSCW 1994 Conference.

(Rucker,1997) Rucker, J; Polanco, M.J. Siteseer: Personalized Navigation for the Web.
Communications of the ACM, vol. 40, n. 3 (March 1997), pags. 73-75.

(Sangüesa, 1999a) Sangüesa,R.; Vázquez-Salceda, J. And Vázquez-Huerga, A. The ACE
Recommender System. Universitat Politècnica de Catalunya,
Departament de Llenguatges i Sistemes Informàtics. Tech-Report
(forthcoming).Barcelona, Spain.

(Sangüesa, 1999b) Sangüesa,R.; Abad,A.; Santanach, F.;Vázquez-Salceda, J. And
Vázquez-Huerga. MANDRAS: towards a generic framework for
Recommender Systems.(forthcoming) Universitat Politècnica de
Catalunya, Departament de Llenguatges i Sistemes Informàtics. Tech-
Report (forthcoming).Barcelona, Spain.

(Terveen,1997) Terveen, L; Hill, W.; Amento, B; McDonald, D. and Creeter,J. Phoaks: a
System for Sharing Recommendations. Communications of the ACM,
vol. 40, n. 3 (March 1997), pags. 59-62.

	C/Jordi Girona Salgado, 1-3

