
1108 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

Structural Methods for the Synthesis
of Speed-Independent Circuits

Enric Pastor, Jordi Cortadella,Member, IEEE, Alex Kondratyev,Member, IEEE, and Oriol Roig

Abstract—Asynchronous circuits can be modeled as concurrent
systems in which events are interpreted as signal transitions.
The synthesis of concurrent systems implies the analysis of a
vast state space that often requires computationally expensive
methods. This work presents new methods for the synthesis of
speed-independent circuits from a new perspective, overcoming
both the analysis and computation complexity bottlenecks.

The circuits are specified byfree-choice signal transition graphs
(STG’s), a subclass of interpreted Petri nets. The synthesis ap-
proach is divided into the following steps: correctness, binary
coding, implementability conditions, and logic synthesis. Each
step is efficiently implemented by applying a set of structural
techniques that analyze STG’s without explicitly enumerating the
underlying state space.

Experimental results show that circuits can be generated from
specifications that exceed in several orders of magnitude the
largest STG’s ever synthesized—with over 1027 states. Computa-
tion times are also dramatically reduced. Nevertheless, the quality
of results does not suffer from the use of structural techniques.

Index Terms— Asynchronous circuits, Petri nets, speed-
independent synthesis.

I. INTRODUCTION

A SYNCHRONOUS circuits promise a number of impor-
tant advantages for the design of large digital circuits.

Their modularity, potential low-power consumption, average-
case computation time, and elimination of the clock distribu-
tion problem have encouraged their extensive analysis. How-
ever, any asynchronous implementation must satisfy much
more restrictive conditions than its synchronous counterpart.
Asynchronous circuits must be not only functionally equiva-
lent to the specification but also free ofhazards—undesired
switching activity due to the skew of gate delays.

Speed-independent circuits(SI circuits) is a broadly used
design style for asynchronous implementations. SI circuits rely
on theunbounded gate delaymodel, which assumes unknown
but finite delays on the gates, andskewat the wires bounded
by the delay of the fastest gate. Thus, the correctness of
the circuit requires the assumption that some wire forks are

Manuscript received November 13, 1997; revised March 30, 1998. This
work was supported in part by CICYT under Grant TIC98-0410. This paper
was recommended by Associate Editor A. Saldanha.

E. Pastor is with the Department of Computer Architecture, Universitat
Politécnica de Catalunya, Barcelona 08034 Spain (e-mail: enric@ac.upc.es).

J. Cortadella is with the Department of Software, Universitat Politécnica
de Catalunya, Barcelona 08034 Spain (e-mail: jordic@lsi.upc.es).

A. Kondratyev is with the Computer Architecture Laboratory, University
of Aizu, Aizu-Wakamatsu 965 Japan (e-mail: kondraty@u-aizu.ac.jp).

O. Roig is with National Semiconductor Corp., Santa Clara, CA 95052
USA (e-mail: Oriol.Roig@nsc.com).

Publisher Item Identifier S 0278-0070(98)08591-1.

isochronic [1]. SI circuits are robust to parameter variations,
i.e., the response time of an SI circuit subjected to temperature
or voltage modifications may vary, but the circuit keeps
working correctly. Additionally, an SI circuit does not need
any modification to guarantee its correctness after a technology
migration (the validity of isochronic forks must be checked,
however). The most robust delay model,delay-insensitive
circuits, also assumes unbounded wire delays. Unfortunately,
the class of delay-insensitive circuits is very small from the
practical point of view [1].

A wide range of synthesis techniques for asynchronous
circuits rely onevent-basedmodels, such as Petri nets (PN’s)
[2] or change diagrams[3]. PN’s are a powerful formalism to
model concurrent systems that gracefully captures the notions
of causality, concurrency, and conflict between events. As
a model, their most interesting feature is the capability of
implicitly describing a vast state space by a succinct repre-
sentation. Hence, PN’s have been chosen by many authors as
a formalism to describe the behavior of asynchronous circuits
by interpreting the events as signal transitions, thus coining
the termsignal transition graph(STG) [4], [5].

Each reachable marking of an STG has assigned a binary
vector with the value of the circuit signals in that marking.
Deriving logic equations from an STG requires the generation
of the binary codes for all markings. Currently, most synthesis
tools [6]–[8] perform an exhaustive token flow analysis to
obtain the complete reachability graph of the PN and all
binary vectors. Unfortunately, the reachability graph of highly
concurrent systems can be exponential in the size of the
STG that leads to the well-knownstate explosionproblem.
Some efforts have been devoted to propose structural methods
for synthesis [9], [10], but they have been usually devised
for restricted classes of PN’s that compromise the potential
expressiveness of this formalism.

This work presents a structural methodology for the synthe-
sis of SI circuits from STG’s. The proposed techniques have
polynomial complexity if the underlying PN is free choice
[11], [12], and can be efficiently extended to the class of PN’s
that can be covered by state machines [13].

The proposed structural techniques are based on the analysis
of the concurrencyrelations of STG’s [5], and the generation
of covering cubes that approximate the reachable markings.
Additional information obtained from the state machines of the
STG allows one to refine the initial covering cubes, increasing
the accuracy of the approximations. This methodology elim-
inates thestate explosionproblem by avoiding the explicit
generation of all the markings in the STG. Even though

0278–0070/98$10.00 1998 IEEE

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1109

the concurrency relations have been previously applied for
synthesis [10], [14], this work generalizes the use of these
relations, reducing the gap between structural and state-based
approaches.

We aim at complementing the existing tools by providing al-
ternative and efficient synthesis algorithms for state-machine-
coverable STG’s, which account for a large number of STG’s
used for circuit design. The area and delay results of the SI
circuits synthesized by applying our method are presented and
compared with those obtained by previous synthesis tools.

This paper is organized as follows. The formal notions
on Petri nets and signal transition graphs are presented
in Section II. The implementability conditions ofspeed-
independentcircuits are analyzed in Section III. Section IV
illustrates the structural synthesis framework and its efficiency
by means of two examples. To avoid thestate explosion
problem, Section V proposes a method to derive approxi-
mations of the reachability graph from the structure of the
STG. Section VI describes how Boolean functions can be
obtained from these approximations. A strategy to increase the
accuracy of such approximations is introduced in Section VII.
The overall logic-minimization framework is described in
Section VIII, and further minimizations are outlined in the
Appendix. Several experimental results and efficiency analysis
are presented in Section IX. Section X concludes this paper.

II. BASIC NOTIONS AND DEFINITIONS

In this section, we briefly recall some of the basic definitions
on logic functions, Petri nets, and signal transition graphs. For
more detailed information on these topics, we refer the reader
to [5], [12], and [15]–[17].

A. Logic Functions

An incompletely specified -variable logic function is a
mapping . Each element is
called avertex. The set of vertices where evaluates to 1,
0, and are called on-, off-, and dc-sets and are denoted by
on , off , and dc , respectively. Aliteral is either a
variable or its complement . A cube cis a set of literals
such that if , then , and vice versa. Cubes can
also be represented as an element , in which value
“0” denotes a complemented variable, value “1” denotes
a variable , and indicates that the variable is not in the
cube. A cover is a set of implicants that contains the on-set
and does not intersect with the off-set.

B. Petri Nets and STG’s

A PN is a four-tuple , where is the
set of places, is the set of transitions,
is the flow relation, and is the initial marking. Given a
node , its postset and preset are denoted byand

, respectively. Amarking of a PN is an assignment of a
nonnegative integer to each place. Ifis assigned to place
by marking , we will say that is marked with tokens,
i.e., . A path in a PN is a sequence of
nodes such that . A path is
calledsimpleif no node appears more than once on it. A state

machine (SM) is a PN such that each transition has exactly
one input place and one output place. A free choice (FC) net
is a PN such that every arc from a place is either a unique
outgoing arc or a unique incoming arc to a transition.

A transition is enabledin a marking , denoted by ,
when all places in are marked. An enabled transition in
fires, removing one token from each place in and adding
one token to every place in . This produces a new marking

(). A marking is reachablefrom if there
is a sequence offirings that transforms into
(); hence is a feasiblesequence.
The set of reachable markings from is denoted by .
The graphical representation of a reachability set with the
vertices corresponding to markings and arcs corresponding to
transitions between markings is called areachability graph
(RG). Two transitions and are concurrent if there exists
a marking in which both transitions are enabled and the firing
of or does not disable the other.

A PN is live if every transition can be infinitely enabled
through somefeasiblesequence offirings from any marking
in . A PN is safeif no marking in can assign more
than one token to any place. A place isredundantif its removal
preserves the set of feasible sequences in the PN. In the sequel,
we will assume that all the considered PN’s arefree choice,
live, safe, and do not containredundantplaces.1

A PN can be decomposed into a potentially exponential
set of strongly connected state machines, also named SM-
components (SM’s) [11]. In particular, live and safe free-
choice PN’s are covered byone-tokenSM’s; that is, SM’s that
contain exactly one token [11]. Computing SM’s is reduced
to solving a linear programming model, with polynomial
complexity [18]. An SM-cover (SMC) is a subset ofone-
tokenSM’s such that every place in a PN is included at least
in one SM.

An STG is a triple , where is its
underlying PN, is a set of input and output signals,
and is a labeling function , in which the
transitions are interpreted as value changes on circuit signals.
Rising and falling transitions of a signal are denoted
by and , respectively, while denotes a generic rising
or falling transition. Multiple transitions for a signal will be
distinguished by means of indexes, e.g., . (In figures,
instead of indexes for , will be used.) An STG is
autoconcurrentif it contains a pair of concurrent transitions
of the same signal.

An STG is graphically represented as a directed graph with
transitions denoted by their names and places by circles, where
places that have only one transition in its preset and postset
are usually omitted. Also, transitions of input signals are
underlined. Fig. 1(a) depicts a free-choice STG, taken from
[19], that will be used throughout this work. The example
contains input () and output ()
signals. The corresponding reachability graph of the STG is
depicted in Fig. 1(b). Fig. 2 depicts three SM’s that cover
the STG.

1Checking for liveness, safeness, and redundant places can be done in
polynomial time for FC nets [12].

1110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

(a) (b)

Fig. 1. (a) STG example and (b) corresponding reachability graph.

Fig. 2. SM-components of example depicted in Fig. 1(a).

Each marking of an STG is encoded with abinary code
of signal values by means of a labeling function

, where denotes the binary value for signal
. The function must consistently encodethe STG mark-

ings; that is, no marking can have an enabled rising
(falling) transition if

.
In a nonautoconcurrentSTG, transition is apredecessor

of if there exists a feasible sequence that does
not include other transitions of signal. Conversely, is a
successorof —we will also say that the pair is
adjacent. The set of predecessors (successors) ofis denoted
by prev (next . In Fig. 1(b), transition has two

successor transitions and , while at the same time
is a single predecessor to both rising transitions.

An STG is calledoutput semimodularif no output signal
transition enabled at any reachable marking can be disabled
by the transition of another signal [20]. If an STG is output
semimodular, then it can be implemented without producing
unspecified changes of the output signals; that is, without
introducing hazards.

C. Signal Regions

To derive the correspondence among the signal transitions,
the reachable markings, and the properties of the specification,
different signal regionsare defined.

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1111

TABLE I
SIGNAL REGIONS FOR THEEXAMPLE IN FIG. 1

The excitation regionER is the set of markings in
which transition is enabled. It can be shown that, for live
and safe free-choice STG, excitation regions are connected sets
of markings. Thequiescent regionQR is the maximal
set of markings that are reached from ER after firing

without enabling any other transition . The restricted
quiescent regionQR is the subset of the quiescent region
QR that does not contain markings of other QR’s of
signal .

Thegeneralized rising (falling) excitation regionof signal
is the union of all excitation regions ER ER ,
denoted by GER and GER . The generalized
one (zero) quiescent regionof is the union of all
quiescent regions QR QR , and it is denoted
by GQR GQR . Fig. 1(b) depicts the excitation
regions ER , ER , ER for the output
signal .

Regions are collections of markings; hence, we use the
operator to define the characteristic function of the binary
codes of the markings in a set or region. Additionally, we
will define the dc-setas the set of nonused binary codes, i.e.,

. Examples of other regions and binary codes
for signal can be found in Table I.

D. State Coding

An STG is said to satisfy thecomplete state coding(CSC)
property if, when the same binary code is assigned to two
different markings, the output signals enabled at both markings
are identical, i.e.,

. An efficient
technique to verify the CSC property can be derived if instead
of analyzing individual markings, the encoding properties are
checked in terms of sets of markings related to the structure
of the STG, i.e., GER GQR
GER GQR .

A more restrictive property, theunique state coding(USC)
condition, holds if all reachable markings of the STG are
assigned a unique binary code, i.e.,

. The example in Fig. 1 has a USC
conflict because markings and share the binary code
(1111). However, the STG satisfies the CSC property because
output transition is enabled at neithernor (i.e., no CSC
conflict exists).

E. Next-State Function

The derivation of a circuit that implements the behavior
specified by an STG consists in finding a logic-gate realization
of the next-state function for each output signal. The next-state
function, , of a signal is

defined as follows [21]:

if GER GQR
if GER GQR
otherwise.

For any STG that fulfills the consistency and CSC condi-
tions, is consistently defined, i.e.,on off dc
is a complete partition of . Note that for any pair of
output signals and , dc dc DC, where DC
denotes the dc-set of the reachability graph.

An implementation of the next-state function by a cover
is correct if

on on DC (1)

III. SPEED-INDEPENDENCESYNTHESIS CONDITIONS

The derivation of an SI circuit from an STG specification
requires two types of correctness conditions [20].

• Specification correctness conditions:Consistency, output
semimodularity, and CSC. These conditions have been
defined in Section II and guarantee that a correct SI circuit
can be derived from the STG specification.

• Implementation correctness conditions:These conditions
guarantee that a given circuit implements the desired
behavior. We can distinguish two types of conditions.

— Correct next-state function condition (1).

— Conditions for hazard freeness, which depend on
the specific circuit architecture chosen for the im-
plementation. These conditions will be discussed in
Section III-B.

Consistency and CSC are necessary and sufficient condi-
tions for the existence of a consistent next-state function. Out-
put semimodularity is a necessary condition for the existence
of a hazard-free implementation of the behavior. In the case
where all next-state functions can be correctly implemented by
a hazard-free complex gate, the circuit is guaranteed to be SI
[5]. The implementability conditions of SI circuits have been
exhaustively investigated in [7], [17], [19], and [22].

However, it is not always possible to implement each next-
state function with one complex gate. In general, gate libraries
impose constraints on the size and functionality of the logic
functions that can be implemented with only one gate.

This section first introduces three different implementation
architectures and discusses sufficient conditions for obtaining
correct implementations of the next-state functions. It is shown
that these conditions can be formulated in terms of require-
ments for the covers of the corresponding signal regions. The
rest of the section is devoted to discussing the conditions for
hazard freeness that guarantee the synthesis of an SI circuit.

One of the architectures is chosen for the illustration of
the methodology of structural synthesis throughout the paper.
However, the suggested methods are easily adapted to other
architecture styles as well.

A. Implementation Architectures

1) Atomic Complex Gate Per Signal:This is the initial ar-
chitecture for SI circuits studied in [5] and [23]. The circuit

1112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

Fig. 3. Implementation architectures.

is implemented as a network of atomic gates, each one
implementing one output signal. The Boolean function for each
gate can be represented as a sum of products (SOP). A simple
example of such gate is presented in Fig. 3(a). Each atomic
gate contains a combinational part and a possibly sequential
part implemented as an internal feedback. The delay between
its “ANDing” and “ORing” nodes and the internal feedback is
assumed to be negligible. In the figures, the gate representation
is used to denote the implemented logic function, but the actual
implementation is resolved on the transistor level.

The circuit is assumed to be derived by building a correct
cover for [according to (1)] and implemented by a single
complex gate. It was shown in [5] that for correct STG’s,
this equation gives necessary and sufficient conditions for the
speed independence of the implementation (i.e., no additional
architecture-specific conditions are needed). However, the
requirement to implement each cover by a single gate might
be quite unrealistic in practice, which is the weakest point for
this approach.

2) Atomic Complex Gate Per Excitation Function:This
architecture was suggested and studied extensively in a number
of papers, e.g., [20] and [24]. It assumes that a separate
memory element is used to produce an output signal. The
set and reset excitation functionsfor signal

are fed to the memory element. They are implemented as
atomic complex gates. Fig. 3(b) shows an example of such
architecture with a C-latch used as a memory element.

Sufficient conditions that guarantee the implementation cor-
rectness of the next-state function are the following:

GER on

GER off (2)

The set function for signal must be turned on every time
some rising transition is enabled and turned off before
the enabling of any falling transition ; similarly for the
reset function. However, the conditions in (2) do not guarantee
an SI circuit. Sufficient extra conditions for hazard freeness
will be discussed in Section III-B. It is possible to show the
existence of an implementation in this architecture for any
STG satisfying the CSC condition [5].

Fig. 4. Three speed-independent implementations for signald.

3) Atomic Complex Gate Per Excitation Region:Signals in
this architecture are created using networks of atomic complex
gates to implement the set and reset functions of the memory
element. Each transition is implemented by a single gate,
which is then connected to anOR-gate whose output is in turn
fed into the memory element. As a result, smaller complex
gates are used. The basic structure of this architecture is shown
in Fig. 3(c).

In this architecture, every gate at the first level
of the set function implements the behavior of a single
rising transition . This gate must be turned on every time
transition is enabled and turned off before the enabling of
any falling transition ; similarly for the reset function.

In a nonautoconcurrent STG, only one transition of the sig-
nal can be enabled at a certain instant. Therefore, the proposed
architecture evolves under aone-hot encodingdiscipline of the
gates at the first level of the set and reset networks. Only one
of the gates can be “ON” at the same time, being responsible
for the output signal to switch. The rising and falling signal
switching is produced due to the alternate activation of set
and reset networks.

The implementation correctness condition for the covers
is similar to condition (2) but is limited to only use its

excitation and quiescent region

ER ER QR DC (3)

The detailed discussion on the sufficient conditions to ensure
an SI implementation with this architecture can found in [7]
and [19]. A general discussion on these conditions is presented
in Section III-B.

Fig. 4 shows the implementations of signalfrom the STG
in Fig. 1 in all three architectures.

More recent developments aim at the decomposition of
complex gates used to implement each excitation region. The
goal of these techniques is to guarantee the implementability
of the circuit in a particular gate library or with a network of
two-input gates [25], [26].

From the review of the possible architectures, we can
conclude that thearchitecture-specificconditions for correct
implementations can always be formulated in terms of cover-
ing the signal regions. In Section VI, it will be shown how
to obtain approximations for each signal region by using
the information contained in the structure of the STG rather
than its RG. Therefore, the synthesis techniques suggested in

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1113

(a) (b) (c)

Fig. 5. (a) STG and covering cubes for places, (b) reachability graph, and (c) refined covers.

this work can be adapted to any implementation architecture.
Further, we will illustrate the synthesis method in application
to the architecture in Fig. 3(b), when the set and reset functions
are implemented as atomic complex gates. Note, however,
that there are no strict borders between different architecture
styles and, for optimization purposes, we can easily admit the
implementation of one signal of a circuit as an atomic complex
gate while the other is implemented by the set and reset
networks. These issues are mainly addressed in Section VIII,
where the circuit minimization loop is discussed.

B. Conditions for Hazard Freeness

In the previous section, we introduced three main types
of implementation architectures and formulated the conditions
that must be satisfied by Boolean functions of gates to ensure
the proper values of implemented signals. However, this
functional correctness is not sufficient to guarantee the hazard-
free behavior of a circuit. Even when the Boolean functions of
gates are defined according to the requirements of Section III-
A, the behavior of the circuit can be hazardous due to the
delays in the propagation of signals through the gates. This
must be avoided in speed-independent designs. In this section,
we introduce the sufficient conditions that will capture the
absence of hazards during the operation of a circuit.

From now on, unless it is pointed out explicitly, we assume
that each output signal of the STG is implemented by complex
gates for set and reset functions—atomic complex gate per
excitation function—with a C-latch as memory element.

The correctness of the set and reset covers is not sufficient
to guarantee the SI behavior of the implementations. Addition-
ally, these covers must bemonotonic. Intuitively,
is said to bemonotonic if it changes exactly twice in any
sequence of firing transitions, rising at a marking in GER
GER and falling either inside GQR GQR

or before entering GER GER .
For example, (see Fig. 1), assume that covers mark-

ings and . is correct, but if the circuit follows the
sequence , it might produce an undesired

glitch at function that might eventually be
propagated to output.

The following property describes how the set and reset
covers can be verified to be monotonic exploring the reachable
markings of the STG rather than its feasible firing sequences.

Property 1 [Monotonic Covers]:A set function is
said to bemonotoniciff GQR such that its code

is covered by , then GQR ,
the binary code is also covered by . A reset
function is said to bemonotoniciff GQR
such that its code is covered by , then
GQR , the binary code is also covered
by .

For the particular case of the atomic complex gate per
excitation region architecture, each cover must satisfy
an additional monotonic condition designed to guarantee a
hazard-free alternating one-hot activation of set and reset
networks. A cover cannot freely use its QR as dc-set
because some of its markings may be shared by other covers
for signal . In Fig. 1, marking is shared in the QR’s of both
transitions and . If the cover includes
that shared marking, both covers and will
be incorrectly excited (not necessarily at the same time) when-
ever transition is expected to be fired. The additional
condition to guarantee the monotonic alternating activation of
set and reset networks can be expressed by using therestricted
quiescent regionas

ER ER QR DC (4)

Imposing restrictions on the markings that can be covered to
guarantee the one-hot enabling discipline is equivalent to the
single entrance constraintdescribed by other authors [7], [24].
However, in order to verify this restriction, restricted quiescent
regions are easier to build and structurally characterize than
firing sequences.

The result proved in [7] and [19] is the following:“If the
correct set and reset covers satisfy the monotonicity conditions,
the circuit implementation is speed independent.”The main
purpose of the following sections is to show how the correct-
ness and monotonicity conditions can be ensured for the set
and reset covers without generating the reachability graph of
the STG.

IV. A PPLYING STRUCTURAL METHODS TO SYNTHESIS

This section gives an intuitive picture of the proposed
structural methods by using the example depicted in Fig. 5(a).
The techniques here described are fundamental to support the
overall synthesis process keeping its complexity polynomial.

1114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

(a) (b) (c)

Fig. 6. Signal insertion. (a) STG and covering cubes for places, (b) reachability graph, and (c) implementation for signaly.

Let us assume that we wish to derive a logic function to
cover the excitation region of [denoted ER]. This
region corresponds to the set of markings in which place

is marked. The encoded reachability graph obtained from
the STG is depicted in Fig. 5(b), in which ER is also
shadowed.

By a simple structural analysis that takes polynomial time
[12], we can deduce that the STG has an underlying free-
choice PN in which each SM has exactly one token. We
can also derive a set of SM’s that cover the net (SM-cover).
In this case, two SM’s can be obtained, namely, the sets
of nodes SM
and SM .

Our purpose is to calculate a set of cubes that safely
cover ER .2 An initial single cube approximation can be
calculated as follows. If a signal transition can fire while a
given place is marked, without removing the token from the
place, then the value of the signal is unknown while the place
is marked. Since transitions and can fire when is
marked, then the value of and is unknown in . On the
contrary, the value of can be exactly determined by analyzing
the ordering relation of and with . Thus, the cube

can be derived for .
However, we can easily detect that this cube is

an overestimation ofER because the binary code
which is outsideER is also covered. Assuming to
be a cover cube forER leads to the erroneous conclusion
on the enabling of in . Note that overestimation does
not necessarily happen in the approximation process: for places

and , the cubes can be exactly calculated, i.e., and
, respectively. To fight with the possible overestimations,

two strategies can be applied.

1) Cover refinement:Refining the place covers by analyzing
the concurrent relations with other places. To obtain a
multicube approximation, we use the fact that can
only be simultaneously marked with , , or . The

2ER(y+) is the set of binary codes of markings in ER(y+). The cover
must containER(y+) (on-set) and may contain codes from the dc-set.

cover of should be intersected with the conjunction
of the covers of , , and [see Fig. 5(c)]. Then, the
function (10) (01) correctly coversER [see
Fig. 6(c)]. Note that, in general, several refinements may
be needed.

2) Signal insertion:Inserting state signals in the same way
as solving encoding conflicts, disambiguating covers
whose intersection produces contradictions for synthesis.
This is illustrated in Fig. 6, in which a new signal
distinguishes the covers of and . Then, the cube

correctly coversER [see Fig. 6(c)].

In general, both methods can be combined to obtain a correct
set of covers. In this work, we only present the conditions
under which a set of covers can be safely used for synthesis
without the insertion of extra signals. The procedures for
insertion of extra signals are covered in [27].

To give an intuitive idea about the efficiency of the structural
approach, let us consider one illustrative example. Fig. 7
presents an autonomous circuit with a C-latch closed on its
inputs through inverters. A C-latch is the basic cell used for
the synchronization of processes in asynchronous designs. Its
output rises when all its inputs are “1” and falls when all inputs
are “0”; in any other case the output remains unchanged. The
logic function for a C-latch is .
In our example, a change on the output of the C-latch leads to
a concurrent burst of input changes. The number of markings
in an -input circuit is , while the number of places in
the corresponding STG is only .

The use of cover cubes for the places in this example is
extremely efficient because theyexactlydefine the excitation
regions for all signal transitions; that is, the information
provided by the concurrency relations coincides with the
structure of the reachability graph. Given transition , the
cube of its predecessor place is an exact cover
for ER (signal order is used). Given transition

, the intersection of cubes for its predecessor places,
, and gives the single code (1110) where is enabled

.

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1115

(a) (b)

Fig. 7. (a) Generalized-latch circuit and (b) its STG specification.

In this example, we have obtained the functions for signals
from the structural information in the STG rather than by
restoration of its reachability graph. Although the function
derivation procedure is not always so simple, it allows one
to present a general view of complexity reduction while using
the cover cube approximations. In the rest of this paper, we
describe the conditions to determine how the aforementioned
covers can be iteratively improved and when the reached
accuracy is sufficient to be considered correct.

V. STG STRUCTURAL ANALYSIS

This section presents structural methods for analyzing
STG’s [28]. This method will be used in Section VI to find
approximate covers for ER’s and QR’s. ER’s and QR’s will
be approximated by a much simpler region that characterizes
the markings in which a given place is marked, the so-called
marked region. The goal of this section is to derive a single
cube cover for each marked region by using a set of structural
properties that can be computed in polynomial time on the
size of the STG.

Based on the concurrency relations and the analysis of
paths in the PN, we introduce a polynomial algorithm to
verify the consistency of the STG. Consistency is a necessary
condition for the synthesis of SI circuits, but it is also
necessary to guarantee the existence of a consistent next-state
function for the signals in the STG. Using the concurrency
and the interleaving between signals, cubes will be derived
to approximate the binary codes of markings in the marked
regions.

A. Concurrency Relations

The concurrency relation (CR) [5] is a conservative concept
defined in terms of markings in the RG of an STG that
provides a high-level view of its dynamic behavior. When
two transitions can fire from a marking without disabling each
other, the transitions are said to beconcurrent. Since this is
a structural property, its definition must be conservative. Two
transitions may appear to be concurrent in one part of the RG

TABLE II
SCR BETWEEN SIGNALS AND PLACES FOR THE STG IN FIG. 1

while ordered in another. In that case, we should take them as
concurrent because they are not always ordered.

Concurrency relations can be extended to places and signals
[27]. We will refer to the formalization of concurrency between
nodes and signals as signal concurrency relations (SCR).

Definition 2 (Concurrency Relations):The concurrency re-
lation between pairs of nodes of an STG is defined as
a binary relation such that given places , transitions

, exists

Definition 3 (Signal Concurrency Relations):The signal
concurrency relation between a node and a
signal is defined as a binary relation such that

.
Polynomial algorithms for the computation of the concur-

rency relations of a live and safe free-choice PN have been
presented in [29]. As an example, Table II depicts the ’s
for the places of STG in Fig. 1(a) [where indicates those
pairs that are concurrent].

B. Consistency Verification

If an STG is not consistent, it cannot be implemented
by a logic circuit. Therefore, consistency must be checked
before performing the synthesis step. This section presents an
efficient algorithm to verify the consistency of a live, safe,
and irredundant free-choice STG by using the concurrency
relations and the structure of the underlying PN.

1116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

An STG satisfies theconsistencycondition if it does not con-
tain autoconcurrenttransitions and every sequence of signal
transitions isswitchover correct[20]. To avoid autoconcurrent
transitions, no pair and of transitions of the same signal
is allowed to be simultaneously enabled at the same marking.
Switchover correctness requires the value of each signal to
switch from zero to one in response to a rising transition and
from one to zero due to a falling transition.

Nonautoconcurrency can be structurally verified by using
the signal concurrency relations, i.e., by checking that each
transition is nonconcurrent with signal

.
The switchover correctness of a nonautoconcurrent STG can

be verified by checking that all adjacent transitions of the
same signal have alternating switching directions. A pair of
transitions of the same signal can be determined to be adjacent
by finding a particular path in the STG connecting both
transitions. The following property characterizes the relation
between the formal definition of adjacency on the RG and its
efficient computation on the structure of the STG.

Property 4 (Structural Characterization of Adjacency) [Nec-
essary Condition]: In a live and free-choice STG, a transition

next if there is a simple path between and
such that:

1) no place is concurrent to signal ;

2) contains no other transitions of signalexcept
and .

Proof: The proof is done by induction on the length of
the path . (The length of the path is always odd.)

1) . Then (where denote arcs
between STG nodes). If is a choice place, then it is
free choice and the sequence is feasible. If is
not a choice place, then the token incan be consumed
only by transition . From the liveness of the STG, it
follows that there exists a feasible sequence that contains
both and . Suppose that in any such sequence
there is some other transition between and .
Clearly, is concurrent to any transition between and

, and so it is concurrent to , which contradicts the
initial assumption. Therefore, next .

2) From the statement’s being true for , it follows
that it is also true for . Consider the last
transition before , i.e., . The
path between and has length , and by
the induction assumption, there exists feasible sequence

such that does not contain any transition
of signal . Let us show that can be extended as

, where contains no transitions of signal
. This clearly follows from the consideration of item 1)

for , and therefore, next .

Assuming that an STG is nonautoconcurrent, Property 4
provides the necessary conditions to check whether is
adjacent to . To derive the sufficient conditions, we need
to introduce several additional notions.

A path starting at and ending at is calledrealizable
by a feasible sequence if the sequence
includes all transitions in . The reason to introduce the

(a) (b)

Fig. 8. STG showing (a) insufficiency of Property 4 and (b) nonconsistently
interleaved placepk.

realizable paths is to restrict the number of simple paths to be
analyzed when constructing the set next . Actually, it is
sufficient to consider only those simple paths that are realizable
by , where contains no transition of signal.

The necessary conditions that characterize the paths between
adjacent transitions of the same signal (given by Property
4) require any place in the path to be nonconcurrent to all
transitions of the considered signal. This condition is not
sufficient, as can be seen from the example in Fig. 8(a).
In this STG, the sequence is
feasible, and therefore next . However, place

is concurrent to , and the only simple path between
and goes through .

To obtain sufficient conditions for the adjacency between
transitions of the same signal, it is necessary to distinguish
which concurrency relations are not relevant for adjacency.
This analysis can be done on the basis offorward reduction
by concurrent transitions.

Informally, forward reduction of PN by a set of transitions
is obtained by removing from all the nodes starting

from that cannot be reached without the firing of some
transition . We will denote the resulting PN via

. The forward reduction can be obtained by
the following procedure:

Remove transitions from
do until a fixed-point in modifying is reached

if for all transitions have been removedthen
remove from

if has been removedthen remove all .

The mechanism of forward reduction allows one to formu-
late the sufficient conditions for the existence of a realizable
path between pairs of adjacent transitions of the same signal.

Property 5 (Characterization of Adjacency) [Sufficient Con-
dition]: In a nonautoconcurrent, free-choice STG, if
next , then there exists a simple pathbetween and

such that:

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1117

1) for , transition
;

2) contains no other transitions of signalexcept
and .

Proof: If condition (1) is violated for every path between
and , then none of the paths is realizable by a feasible

sequence without firing transitions of signal ,
which are concurrent to places of the path. From this clearly
follows that cannot be in next . Violation of condition
(2) also trivially leads to nonexistence of , which
realizes the path , with containing no transitions of
signal .

The algorithm in Fig. 9 is designed to verify the consistency
of an STG and on the fly keep track of the set of adjacent
transitions next (based on Properties 4 and 5). The
overall process is repeated for each transition. First, the
nonautoconcurrency is checked by analyzing the SCR. Then,
the paths in the STG are explored on testing the necessary
conditions (procedure) for adjacency (see
Property 4). Together with the construction of the set next, the
switchover correctness is analyzed checking that all adjacent
transitions have alternating switching directions. After apply-
ing the necessary conditions for searching adjacent transitions,
the algorithm checks whether it guarantees the sufficiency as
well. If not, the sufficient conditions are checked (procedure

) to search the remaining adjacent tran-
sitions (see Property 5). Procedures and

are similar and can be merged into one.
However, we keep them separately because of the following.

• Procedure has lower complexity:
on the size of the STG against for

;

• From our experiments with STG’s from the known set
of benchmarks (Section IX), the necessary conditions for
adjacency always ensured the sufficiency as well. Even
though the counterexamples can be easily constructed
[e.g., see Fig. 8(a)], it seems that they are rarely met
in practice. Therefore, most likely in checking the
consistency, procedure will not
be invoked at all.

The upper bound of the complexity for both nonautocon-
currency and switchover correctness verification is on
the size of the STG (for the worst case when the necessary
condition does not imply sufficiency).

Other authors have previously addressed the problem of
consistency analysis using structural methods [9], [14]. How-
ever, either the obtained results are only applicable to marked
graphs3 or only sufficient conditions were proposed. To the
best of our knowledge, this is the first proposed polynomial
method to check consistency for any live and safe free-
choice STG.

C. Structural Approximation of the Reachability Graph

Several sets of markings, namedmarked regions,define a
correspondence between the basic structural elements of an

3Marked graphs are a subclass of free-choice Petri nets without choice
places.

Fig. 9. Structural verification algorithm for STG consistency.

STG and its RG. This section defines this basic region, derives
its fundamental properties, and shows how to approximate its
binary codes by using a single cube. In the following sections,
we will show how marked regions can be used to approximate
the signal regions required for synthesis.

Definition 6 (Marked Region):Given a place , its marked
region, denoted MR , is the set of markings in which has
at least one token, i.e., MR .

For the example in Fig. 1(a), some marked regions
are MR and MR

.
Especially useful is the combined utilization of MR’s and

the SM’s of the STG. The whole reachability set of the STG
is contained in the union of the MR’s of the places in any
given SM’s. Additionally, if the SM satisfies theone-token
condition, then the MR’s define a total partition of the RG.

Property 7 (Projection of the Reachability Set onto SM’s):
The following properties are satisfied for any SM-component
SM of a live PN.

1118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

1) The union of the marked regions of every place in
SM is equivalent to the whole reachability set, i.e.,

MR

2) If SM satisfies theone-tokencondition, then the MR’s
of places in SM define a total partition of ,
i.e., MR MR .

Proof:

1) In a live PN, any SM-component contains at least one
token in the initial marking. Also, from its definition, any
SM-component with some token in the initial marking
remains marked at any reachable marking in .
Therefore, any reachable marking marks some place in
every SM-component.

2) If one SM-component satisfies theone-tokencondition,
it will constantly be marked with exactly one token.
Therefore, no marking can place a token on two places
at the same time.

D. Approximation of Marked Regions by Cover Cubes

A cover cube for an MR must cover all the markings of the
region. To make the approximation more accurate, this cube
should be the smallest among those possible (with the largest
number of literals) [19]. Any signal that does not change in the
MR of a place (is not concurrent to the place) is represented
by a corresponding literal in a cover cube. The value of this
signal can be determined by an interleave relation.Interleaving
characterizes the position of a node with respect to a pair of
adjacent signal transitions. For example, in Fig. 1(a), place
is interleaved with , whereas is not.

Definition 8 (Interleave Relation):The interleave relation
is a binary relation between nodes in and pairs
of adjacent transitions and of a signal such that a
node is interleavedwith
if there exists a path from to containing , which is
realized by a feasible sequence , where contains
no transitions of signal .

Property 9 (Consistent Place Interleaving):In a consistent
STG, if a place is interleaved with a pair of adjacent
transitions , then cannot be interleaved with any
other adjacent pair , and vice versa.

Proof: Suppose the opposite: let place be interleaved
with the adjacent pairs and . By def-
inition of interleaving, it means that there exist two simple
paths and containing that are realizable by feasible
sequences and . Suppose that is
chosen in such a way that no other place in after is
interleaved with any .

Let us consider output transitions of .
Case 1: . Then must have different

output places and such that and
(otherwise, we have contradiction to the choice of).

Case 2: There exist such that and
. Then is a free-choice place, and when it is marked

in sequence , both and are enabled. Therefore, from
, we can construct a new sequence, which fires instead

of . Sequence (like) starts after firing , and because
of the consistency of the STG, the first transition of signal

in is positive (, for example). Now, if instead of path
we consider path , corresponding to sequence, we

can reduce our analysis to the consideration of two paths
and , which share not only place but also its output
transition (like in Case 1).

This common case for both Cases 1 and 2 is shown in
Fig. 8(b), where the dotted arcs show the considered subpaths
of and .

Given the general case in Fig. 8(b), let us consider the
sequence , which realizes path . Suppose we
forbid the firing of and instead we fire all fireable
transitions from . Clearly, we cannot fire
because in that case, will be concurrent to , which
contradicts the consistency assumption. Therefore, by firing
the transitions in , we arrive at the “stop transition” (denoted
by) that cannot be fired because one of its input places is
lacking necessary token [place in Fig. 8(b)]. Note that
some other input place is marked (also included
in) due to the firing of transitions from and because

is the first “stop transition” in . Similarly, we can find
the “stop transition” with the corresponding places

and .
Let us construct a sequence of minimal size such that:

1) the sequence contains all transitions
from that follow place (it is always possible due
to the liveness of STG);

2) each time a place in gets a token while firing , we
choose a transition in to consume this token (it is
always possible because the STG is free choice).

Clearly, at some point while firing , the “stop transition”
should be released, i.e., place should get a token. Similarly,
we can construct the feasible sequence in
which some transition from enables the “stop transition”

by marking the place .
From this follows that adding the transitions from to

sequence will produce the token in (we
will denote the sequence corresponding to that via). The
preset of has several places, and any token in a place from
the preset (being not a choice place) can be consumed only
by itself. Therefore, while firing , place should get
a token as well.

Now let us start from the feasible sequence
and fire all the feasible transitions from . This process will
be stopped at transition (according to the definition of
“stop transition”) when is marked while is not. If we
forbid the firing of and will be adding the lacking transition
from , then both and will get tokens. The latter
contradicts the assumption on the STG safeness. Therefore,
the assumption on the consistent interleaving ofis wrong.

Property 9 guarantees that if a placeis nonconcurrent to
signal and it is interleaved between two adjacent transitions

, then all binary codes inMR have
value 1 (0) for signal . This property is the basis to approx-
imating markings by computing a singlecover cubefor each
marked region.

Lemma 10 [19] (Cover Cube for MR’s):The cover cube
for MR is the smallest cube that coversMR such

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1119

TABLE III
COVER CUBES FOR THESTG IN FIG. 1 (SIGNAL ORDER a; b; c; d)

that for every signal :

1) if is nonconcurrent to , then

if in MR
if in MR

2) if is concurrent to , then ;

where indicates the th component bit of .Given a place ,
a literal must appear in the cube for any nonconcurrent signal

to . For any arbitrary place, the value of
the signal in a corresponding cover cube is determined by
checking if is interleaved between pairs of adjacent rise–fall
or fall–rise transitions. Property 9 guarantees that the value of
signal is the same for all the adjacent pairs for whichis
in . Therefore, theinterleave relationgives a polynomial-
time algorithm (for free-choice STG’s) to determine the value
of literal

if adjacent
if adjacent
otherwise.

Table III depicts the cover cubes for the places of the
example in Fig. 1(a). It is also important to remark that
the cover cubes areconservativeapproximations of the bi-
nary codes of the markings in MR’s and that other binary
codes may also be covered, e.g., codes from the dc-set or
other regions.

VI. STRUCTURAL APPROXIMATIONS FORSIGNAL REGIONS

The synthesis approach for SI circuits requires an analysis
of both the excitation and quiescent regions in order to check
the synthesis conditions introduced in Section III (correct-
ness and monotonicity). This section discusses a conservative
technique to structurally approximate signal regions by using
the marked regions of places in the STG [28]. Each signal-
region approximation consists of two elements: 1) its domain
in the STG, consisting of corresponding sets of places and
transitions, and 2) a cover associated to each nodein
the domain, denotedcover function . However, the
approximation based on concurrency relations is imprecise;
it leads to the overestimation of the regions that might induce
synthesis errors. Therefore, this section presents the condi-
tions under which the covers associated to the nodes have
a sufficient level of accuracy to guarantee the correctness
of the synthesis. Section VII will introduce a refinement
technique to increase the accuracy of the cover functions when
such conditions are not satisfied. Algorithms to check the SI
conditions based on these approximations will be proposed
later in Section VIII.

The first part of this section shows how to obtain the set
of places that constitute the domain of the approximations

for GER and GQR. Then the binary codes are approximated.
Initially, this is done by approximating each marked region
of a place by a cover cube. Approximations might overesti-
mate marked regions, which can be acceptable if it concerns
the unreachable binary codes. An unsafe overestimation oc-
curs when the approximation for GQR overlaps with
GER , for example. In these two regions, the implied
value of the next-state function is different and therefore
the overlapping is not acceptable. The techniques to avoid
a particular case of such overlapping (due to the imprecise
approximations of quiescent regions on their boundaries) are
described at the end of this section. Section VII tackles the
general case of the refinement of cover functions to avoid any
“dangerous” overlapping.

A. Initial Approximations

Since we have chosen theatomic complex gate per excita-
tion functionas the target architecture, the analysis of the SI
synthesis conditions will rely on the binary codes of markings
in the generalized signal regions (see Section III). Generalized
signal regions are defined as a union of corresponding exci-
tation and quiescent regions (see Section II). Therefore, they
can be easily derived via approximations of ER’s and QR’s.
Single ER’s and QR’s are the main objects of consideration
in this section. The ground objects to express ER’s and QR’s
are the marked region of places introduced in Section V.

An excitation regionER corresponds to the set of
markings in which transition is enabled. ER is eas-
ily defined as the intersection of marked regions for input
places of : ER MR . Therefore, the
domain required for that region is transition itself. The
binary codes inER are covered by the cover function

containing a single cube that can be directly created
by intersecting the cover cubes for its predecessor places:

.
The definition is more complex for quiescent regions. A

marking is in the quiescent regionQR if it can be
reached by a feasible sequence such that no transition

next is enabled in any prefix of 4

QR

is feasible

From this formalization and the fact that those firing se-
quences characterize all places interleaved between adjacent
transitions and (see the results in Properties 4 and 5),
the domain required to approximate QR should include
all places interleaved between and some next .
This domain will be denotedquiescent place set(QPS), i.e.,

QPS next

The procedure for computing the quiescent place sets is
depicted in Fig. 10. Finally, the binary codes inQR are
covered by the union of the cover functions of any place
in QPS , where .

4That the STG is assumed to be consistent makes the existence of one
sequence (�2) sufficient for a marking to be in QR(ai).

1120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

Fig. 10. Algorithm for the efficient computation of QPS.

The proposed technique approximates the signal regions
by cover functions that are initialized with the values com-
puted for the cover cubes of places. Using cover cubes to
approximate QR’s immediately introduces imprecision at the
boundaries of the regions. By definition, QPS contains
all places interleaved between and next . The
cover function of any place also covers some
binary codes inER ; therefore,QR is overestimated.
This overestimation is unsafe because the implied value for
signal in the quiescent region of is different from that
in the excitation region of [note that in a consistent STG,
transitions and next have different directions].

For example, in Fig. 1, place will be used to approxi-
mate the quiescent region of . The cover function
is initially built as the cover cube . This
function covers not only the binary code of QR
but also ER .

Detection of overlapping between QR and corresponding
ER’s leads to false negatives in the results of checking the
correctness conditions. To avoid this overlapping, places

used in QPS should be modified into
. Therefore, in the previous example, the initial

cover function should be modified into

; that no longer covers the binary code
of .

If, however, thecover functionfor is also overestimated,
its deduction from marked regions of places from may
result in anunderestimationof the cover functions for these
places. Let us assume that there exists a place and
a marking MR , but MR . If ,
the computation of will incorrectly eliminate

from the quiescent region approximation. Underestimation
of quiescent regions is dangerous because the correctness of
covers for the set and reset functions is checked by ER’s and
QR’s, and in case of underestimation, the result of the check
might be erroneous (this is the source of false positives in the
correctness check). In particular, if the synthesis algorithm
detects that all markings in a GQR are covered, it may
incorrectly decide to eliminate the memory element (see
Sections III and VIII).

The domains of the excitation and quiescent regions, as well
as the cover functions for both places and transitions for signal

(see Fig. 1), are depicted in Table IV.

TABLE IV
SIGNAL REGION APPROXIMATIONS FOR THESTG IN FIG. 1

B. Correctness of the Signal Region Covers

Each one of the nodes used in the domain of the structural
approximations has been assigned a logic function, named
cover function. This function is designed to approximate the
binary codes of the markings in the considered signal region.
In general, the complexity of the cover function is directly
related to the accuracy of the approximation. Single cubes
are compact approximations but may overestimate the region.
More complex functions are less compact but have better
accuracy. In any case, overestimating the regions must be
avoided because it may lead to incorrect synthesis.

Property 7 provides the structural information to detect those
cover functions that are overestimated. This result indicates
that every reachable marking is projected into any SM-
component of an STG, and in particular, its binary code
will be covered by at least one cover cube of a place in every
SM-component.

Let us assume that an STG satisfies the USC condition; that
is, no pair of markings share the same binary code. Now, let us
also assume that we have a one-token SM-component of the
STG in which the intersection of the cover cubes and
for two of its places (and) is nonempty. In principle. this
intersection contradicts the USC assumption, since the same
marking cannot be projected into MR and MR at the
same time (see the proof of Property 7). The only reason to
have such an intersection is if one (or both) of the cover cubes
overestimates the binary codes in its marked regions.

The accuracy of the cover functions can be verified by
checking the intersection between cover cubes and
for all pairs of places from the same SM-component
of an SM-cover. An STG satisfying the empty intersection for
all pairs of places within every SM-component in an SM-cover
is said to befree of structural coding conflicts[27], [30].

Definition 11 (Structural Coding Conflicts):Given an SM-
cover SMC, the STG is said to be free of structural coding
conflicts if for all SM SMC the intersection of the cover
cubes for any pair of different places in the SM is empty, i.e.,

SM SMC SM
Let us return to the example depicted in Fig. 1(a). Place

is concurrent to signals and . Therefore, .
Place belongs to QPS , but if takes part in the
approximation of GQR , the quiescent region will be
erroneously overestimated due to the covering of the code

GER . This fact can be observed by the
existence of a structural conflict between placesand :

.

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1121

The absence ofstructural coding conflictsguarantees
the correctness—although conservatively—of the structural
approximations of the ER’s and QR’s. Property 12 states
that under this condition, quiescent regions are properly
approximated and the cover subtractions required to avoid the
overestimation of the QR’s are safe. Property 13 guarantees
the proper approximation of excitation regions. It has also
been proved that for free-choice STG’s, the absence of
structural coding conflicts guarantees the absence of USC
conflicts [30].

Property 12 (Correct QR Approximation):Given an SM-
cover in which the STG is free of coding conflicts, then for
any transition , 1) no binary code of reachable markings
outside QR is covered by the cover function of any place
in QPS and 2) each marking in QR is covered by
the cover function of some place in QPS .

Proof:

1) Let us assume that there exists a marking QR
and a place QPS such that . Take
an SM-component in the SM-cover that contains.
Since is not in QR , then should be covered
by the cover cube of some other place QPS
of the SM-component. Therefore, we are contradicting
the absence of structural coding conflicts.

2) Every marking QR marks some place that
is interleaved with a pair , next .
All these places are included in QPS , and for
all of them [except], the cover cube
is directly used as a cover function. The cover cube

is conservative; that is, it covers all the markings
corresponding to the marked region of, and probably
some vertices in the dc-set or other markings.

The marked region can only be underestimated by the cover
functions for places because of their recomputation
into . If for some reason the cover
function is overestimated, we can incorrectly eliminate
some binary codes from . Suppose a marking
MR and its binary code is covered by both
and . Let us also assume
that marking is not included in ER . This is a case of
ER overestimation, in which the recomputation of
will lead to an underestimation of MR because the binary
code will be incorrectly eliminated from the cover.
Now we will show that this potential situation contradicts the
assumption that structural coding conflicts exist.

Due to the assumption that ER , some place
has to be unmarked in [otherwise ER].

Take one SM from the SM-cover that includes this place.
Because of the liveness of the STG (Property 7), another
place that is marked at MR should also
exist in SM. Then, the intersection of the cover cubes for
both places and in SM is nonempty
because and . Therefore, the
condition on the absence of structural coding conflicts in the
STG is violated.

Property 13 (Correct ER Approximation):Given an SM-
cover in which the STG is free of coding conflicts, for any

transition , no binary code of reachable markings outside
ER is covered by the cover function .

Proof: The proof can be carried out similarly to Property
12. Basically, it is necessary to take a placein the preset
of and a SM-component in the SM-cover that contains

. Then, due to Property 7, any marking outside ER
covered by will be detected as a structural coding
conflict between and some other place in the selected
SM-component.

As an example, take the STG depicted in Fig. 1(a) and its
SM-cover in Fig. 2. Several structural coding conflicts can be
detected in this STG. For SM, , ,
and . For SM , . Last, for
SM ; , and . Therefore, not
enough information is contained in the cover cubes in order
to precisely approximate the signal regions.

From Properties 12 and 13, it follows that if there exists
an SM-cover under which an STG is free from structural
coding conflicts, the approximations of QR’s and ER’s are
safe and can be used for synthesis. If an STG has structural
coding conflicts, we should go for the refinement of the
approximations. Note that the presence of structural coding
conflicts in STG does not necessarily lead to the violation
of the correctness conditions for the covers. The conflicts
may be due to intersections on a vertex in the dc-set, or
the original STG satisfied the CSC condition instead of the
USC (two markings that have the same binary code but that
are valid for the synthesis process). This later possibility
increases the complexity of the analysis and will be addressed
in Section VII. Thus, we have two possibilities in the synthesis
process.

1) To refine the cover functions. The refinement technique
leads to a growth of the number of cubes in the cover
but provides more accurate approximations.

2) When no successful refinements can be applied, to be
conservative(because still the intersection may be at
the dc-set) and consider each cube intersection as a real
structural coding conflict. Then, by adding state signals,
the covers can always be reduced to nonintersecting.

The latter approach was presented in [27]. In the following,
we will concentrate only on the refinement techniques in the
synthesis process.

VII. REFINEMENT OF COVER FUNCTIONS

The previous section has shown that the structural ap-
proximations provided for the signal regions may be either
overestimated or underestimated. The lack of accuracy can
be checked by the existence of structural coding conflicts.
Therefore, before going into the SI synthesis process, the
accuracy of the approximations has to be increased.

This section presents a refinement mechanism that increases
the accuracy of the cover functions. The refinement process
is carried out by taking additional information from the SM-
components of the STG. At first, we provide a general view
on the refinement process that uses SM’s, while the rest of the
section discusses how to check when the refinement process is
needed, which SM’s should be used for each refinement, and

1122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

under which conditions the refinement process guarantees the
desired accuracy of the approximations.

The generation of the structural approximations for ER’s
and QR’s must combine both the creation of the cover func-
tions for places and transitions and its refinement. This process
is carried out in four steps.

1) The domain of the approximations and the initial cover
functions for places are computed.

2) The cover functions are refined in case structural coding
conflicts exist.

3) Cover functions for transitions are constructed by using
covers for places.

4) Cover functions for places at the boundaries of the QR
regions are recomputed by subtracting the necessary
cover functions of transitions.

A. General View of Refinement Process

If two overestimated cover functions corresponding to the
different implied values of the same signal [e.g., one function
for QR while the other for ER] have nonempty
intersection the synthesis process cannot be carried out. These
functions should be refined. The presence of structural coding
conflicts is the condition by which one can check whether
refinement is necessary. If there are no structural coding
conflicts in the STG, then there is no need for the refinement
of cover functions.

Note that the initial approximation for cover cubes of
places or transitions can be rough as they are based on the
concurrency relations between nodes and signals. This relation
is not sufficient for an accurate characterization of the dynamic
behavior of the STG, e.g., from a transition concurrent to

and concurrent to , nothing can be said about the
joint concurrency of , , and (in fact, transitions
and could be ordered). To exploit the structure of causal
relations between STG nodes more exactly, we should refine
the initial approximation for place or transition cover cubes.

The idea of refinement is based on the observation that each
SM-component presents a partial behavior of STG, while the
composition of all SM-components from an SM-cover gives
a complete behavior. Therefore, if we take a cover cube for
some place in one SM-component and intersect this cube with
the cubes for all places of another SM-component, we will get
the refined cover function of the place because intersection of
the cubes in Boolean domain corresponds to the composition
operation in STG domain. Actually, it is sufficient to perform
the intersection only between places of SM-components that
are mutually concurrent because the intersection of marked
regions of nonconcurrent places is empty.

Formally, therefinementof the cover function by an
SM-component SM results in the cover that is obtained after
restricting to the sum of the cover cubes of any place

SM that is concurrent to; that is

The refinement algorithm for a place with respect to
the SM-component SM is described in Fig. 11. Property 7

Fig. 11. Cover function refinement algorithm.

guarantees that the refinement procedure is safe; that is,
no marking in the marked region of a place can be left
uncovered after applying a refinement because all reachable
markings are covered by some in the SM’s used for
refinement. The cover function for transition can be indirectly
refined by recomputing the intersection of its predecessor
places, . Clearly, a large number
of refinements increases the support of the cover functions,
improving the accuracy of the approximations. However, such
an approach has two shortcomings.

1) It increases the number of cubes to be processed that in
the extreme case it may be comparable to the number
of markings.

2) The question about the minimal set of SM-components
that is sufficient to avoid all overestimations is still an
open problem. Even though the number of SM’s that
can be generated for a PN is potentially exponential,
the sufficiency of the refinement process has not been
guaranteed.

B. Elimination of Cover Overestimations

This subsection presents the details of the refinement tech-
nique based on the utilization of an SM-cover. At first,
the conditions under which an SM can be used to apply
a successful refinement are described. Even though these
conditions are not sufficient for the removal of all structural
coding conflicts, their application is quite efficient in practice.
Finally, we show that the absence of structural conflicts
guarantees that STG satisfies the CSC requirement.

1) Cover Function Refinement:This section shows how a
structural coding conflict detected in one SM-component can
be eliminated by refinement of a cover function by another
SM component.

Let us assume that an STG contains an SM-component
SM SM-cover, such that SMhas two places and

, . From Definition 11, we infer that there
might exist markings and such that MR ,

MR , and , implying a structural
coding conflict between places and . However, markings

and may be unreachable, and the structural coding
conflict might actually occur due to the overestimation of the
marked regions by their cover functions. Nevertheless, being
conservative, we must assume that and are reachable
unless it can be disproved.

The information provided by another SM-component in the
SM-cover may help to eliminate the overestimation. Suppose
we could find an SM-component SMthat contains but does
not contain . If both and are reachable markings,
then belongs to MR in SM , while for there
exists a place such that MR . Therefore,

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1123

Fig. 12. Cover function marking coding refinement algorithm.

; which means that place should have a structural
coding conflict in every SM-component (see Property 7). (The
motivation for this fact is that any reachable marking should
be included in some marked region.)

Conversely, if SM contains place but does not contain
any other place for which , then we can
conclude that is not a reachable marking, and the structural
coding conflict between and is fake (happens only due
to an overestimation of) [27], [30]. Additionally, it can
be guaranteed that the SM-component SMcan be used to
effectively refine the cover function of place and eliminate
the overestimation. Since no place SM has a structural
conflict with , no cover cube in SM covers .

The refinement for is computed
SM , and after the refinement, the

cover function does not have structural coding conflicts
in SM . The procedure depicted in Fig. 12 refines the cover
functions of places in the STG when fake structural conflicts
are detected. Note that refinements concern not only the place
with structural conflicts but all the places in the STG. This is
done because we found that in practice, places closer to other
places with fake structural conflicts have also overestimated
cover functions. Even though the overestimation could be
in the dc-set, our experiments show that this more general
application of refinement leads to much better minimization
solutions.

The example in Fig. 1(a) contains three structural coding
conflicts at SM (Fig. 2)

Places and do not have structural coding conflicts at
SM . Therefore, this SM-component can be used to refine the
corresponding cover functions

The technique for the resolving the structural conflict be-
tween and is different and is discussed further.

2) Refinement Technique and CSC Property:Refinement
does not work if the structural coding conflict for places
and (in Fig. 1) corresponds to reachable markings
and MR MR . However, the
correctness of the cover [see (2)] is not violated if a coding
conflict corresponds to markings and that satisfy the
CSC property. The structure of the STG provides a sufficient
condition to find whether the structural coding conflict satisfies
the CSC property.

Theorem 14 (Sufficient Condition for CSC):If an STG has
a CSC violation, then in a given SM-cover SMC, one can find
an SM-component SM containing a pair of placesand
such that:

1) is in the preset of an output transition ;

2) is not in the preset of any other transition of signal;

3) ER MR .

Proof: A CSC violation means that there
exists an output signal such that ER and

ER . Let us assume that is the first
transition of signal that can be enabled in a feasible sequence
starting from , i.e., and no other transition
of signal is enabled in . Since ER , there
is at least one place that is not marked in

. Let us take an SM-component SM including place.
According to the STG liveness, and should hold a
token in places and , respectively (SM, where

is an input place to). Clearly, by the choice of ,
place cannot be in a preset of any transition , and
Condition 2) of the theorem is satisfied. Taking into account
that ER ER and MR , we can
conclude thatER MR .

Theorem 15 (Detection of Fake Coding Conflicts):An STG
satisfies the CSC property if for any place in the preset of
an output signal transition , there exists an SM-component
SM in the SMC including place such that SM does not
contain any structural coding conflict for ; i.e.,

: SM SMC SM SM
MR MR .

Proof: Let us assume the existence of a CSC violation
due to markings and . From Theorem 14, there should
exist an SM-component SM SMC containing two places

, , and a transition such that and
ER , MR , but MR .

We will prove that if there exists SM SMC that contain
both nodes and without coding conflicts for place

, then the assumed CSC violation is contradicted. Since
MR , there should exist a place SM such that
MR . Hence, a coding conflict should exist between

places and . But place does not contain any coding
conflict in SM , which contradicts the assumption about the
CSC violation.

Both Theorems 14 and 15 provide the conditions to elim-
inate structural coding conflicts in specifications that satisfy
the CSC condition.

Let us go back to the structural coding conflict between
places at SM of the STG in Fig. 1(a). This coding
conflict cannot be eliminated by means of refinement because
place has the same coding conflict at SM, and a coding
conflict at SM . However, the conflict between
places and satisfies Theorem 14. Note that

and ; therefore, if it would correspond
to a real CSC conflict, there would exist some other place not
in the preset of any transition of signalholding a conflict
with place . Since that is not the case, this conflict can be
related to markings that satisfy the CSC condition. Last, it
can be concluded that place has no conflicts and SMcan

1124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

be used to determine that the conflict between and is
fake at both SM and SM .

VIII. SYNTHESIS METHODOLOGY

This section completes the synthesis process by applying
the signal region approximations to the design of an SI-
circuit under a particular architecture. For simplicity, we
have selected theatomic complex gate per excitation function
architecture. This work proposes a two-step heuristic synthesis
algorithm. Initially, nonoptimized set and reset excitation
functions that satisfy the implementability conditions (cor-
rectness and monotonicity) are derived. Starting from these
covers, several minimizations are applied to simplify the
functions while maintaining the implementability conditions.
However, every time minimization is applied, the algorithm
must determine whether the final result is speed independence
or not. Therefore, both correctness and monotonicity should
be structurally verified before accepting the minimization.

A. Initial Excitation Functions

The set and reset functions for a signalmust cover all
binary codes in its rising and falling generalized excitation
regions. Since markings in GER’s are obtained by combining
the particular ER’s, set and reset covers can be computed as
the union of covers for transitions, i.e.,
and . Property 13 guarantees that under
the absence of structural conflicts, the cover functions are
correct covers forER ; therefore, and

. Following Theorem 15, a cover cube
does not overestimateER if no predecessor place

needs refinement. Structural coding conflicts are
checked in the SM-cover. If they exist, refining or inserting
state signals is necessary. The absence of structural coding
conflicts guarantees the CSC property [27] and the existence
of correct covers.

By applying this scheme to signal in Fig. 1, we obtain
. As place , corresponding

to , is involved in a structural conflict, its cover
cube is refined into a set of binary codes

. Place , corresponding to , is
free of structural conflicts, and its cover cube does not need any
refinement. As a result, .
Similarly, we can obtain .

B. Checking the Synthesis Conditions

From the initial set of covers, multiple minimization tech-
niques will be tried in order to simplify the final implemen-
tation. Some of these transformations can be directly applied
without further correctness or monotonicity checking because
they are known to preserve these properties. However, any
minimization technique that implies increasing the number of
markings covered by the set/reset covers requires checking the
SI synthesis conditions to guarantee the speed independence
of the result.

1) Correctness:The correctness condition [see (2)] re-
quires all binary codes of markings in GER GER

to be covered by . This condition defines the
on-set on of the function and can be verified as:

, and .
Also, no binary code of markings inside GER

GQR GER GQR can be used in the
minimization of . This condition defines the
off-set off of the function, and can be verified as:

QPS ,
and QPS

.
2) Monotonicity: The monotonicity condition has to be

checked for each cover by using a two-step technique. To
simplify the reasoning, let us assume that contains
exactly one cube.

Assuming the correctness of the cover , it implies that
the cube will be turned on at ER but should be turned off
somewhere inside QR or before reaching the following
ER’s. Then, it cannot be turned on again inside the quiescent
region without violating the monotonicity condition; that is, the
cover can only be switched on to implement transition

(see Definition 1).
The monotonicity condition can be structurally verified by

determining the border places in QPS in which the cover
cube still can be ON, while in their successors it should be
turned OFF.

Let us define as the set of transitions in
[where next] that will turn off

for the first time. Let us also generalize theinterleaving
relation for the pairs and , where .
To guarantee the monotonicity condition, given any place
in QPS that is interleaved in (is reached
after), the intersection between the cover and the
cover function should be empty. This is characterized
formally in the following property.

Property 16 (Structural Checking of Monotonicity):The
correct cover is monotonic if for any next
any and any place , the cover

does not intersect with .
Proof: If a cover is correct (2), then has

to be turned off somewhere inside QPS . By examining the
transitions that are in [where next],
we can find the set of transitions turning off
for the first time. Note that none of the literals corresponding
to transitions before reaching can be present in the
cube .

To be monotonic, once is turned off by a transition in
, the cube cannot be turned on again inside QPS.

The marked region of all sequences of places that are in
is covered by . Conversely, all places that

are in can be reached only after the firing of; that
is, after the cube is turned off. Therefore, monotonicity
is ensured if cube is never turned on again in the
markings that are covered by the marked regions of places

.
As an example, let us assume that we have computed the

cover for the STG in Fig. 1. The set
will contain transitions ; therefore,

is monotonic because it can intersect with the covers

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1125

for place but cannot intersect with the covers of any place
interleaved between and

.
When has several cubes, the monotonic sequences

defined by the set are conservatively computed.
A transition belongs to the set if it is the first
one such that the cover cubes of the places in its postset
are not completely covered by , i.e.,
QPS .

C. Synthesis Algorithm

From the initial set of covers, several minimizations are
heuristically applied. (A detailed description of each minimiza-
tion is described in the Appendix.) For simplicity, we assume
that the STG satisfies the CSC condition; otherwise, state
encoding techniques are applied [30]. Additionally, safeness,
liveness, and consistency on the STG should be checked
beforehand [12], [31]. The selected minimization process is
the following.

1) Each set/reset cover is expanded toward the quiescent
regions and dc-set by eliminating literals.

2) After expansion toward the quiescent region, covers are
checked to be complete; that is, if the set (reset) cover
includes all binary codes inGQR GQR , then
the atomic complex gate per signal architecture can be
used, hence avoiding the use of a C-latch.

3) Signals that cannot be directly implemented by the set
or reset cover, i.e., requiring the memory element, can
be further expanded toward the quiescent region of its
predecessor transitions (see the Appendix).

4) The C-latch can be collapsed with the set and reset
covers, leading to a potential simplification of the circuit.

5) The overall synthesis process is completed by creating
the circuit and mapping its different elements onto a
gate library.

To demonstrate the evolution of the covers through the
minimization process, the synthesis algorithm will be applied
to the output signal in Fig. 1. The previously computed initial
covers are , ,

, and in the first step of the minimization
process are expanded toward the quiescent region and dc-set.

Literal can be eliminated from the support of
including markings in the cover, which results in

. Literal can be eliminated
from both and , generating the cover

. When simplifying the cover
, literal can be eliminated, expanding the

cover toward the dc-set,which results in .
Last, literal can be eliminated from , obtaining

. Both covers are used to implement the
set function . With respect to ,
literal can be eliminated by expanding the cover toward the
quiescent region and obtaining .

For this particular signal, complete cover minimization nor
backward expansion nor memory collapsing can be applied.
The final implementation is depicted in Fig. 4(b).

IX. EXPERIMENTAL RESULTS

This section presents a number of experiments that evaluate
the quality of the proposed synthesis methodology. Four
relevant issues have been analyzed: 1) the influence of mini-
mization on the final area of circuits, 2) area results compared
to previous synthesis methodologies, 3) CPU speedup due to
the structural algorithm compared to state-based algorithms,
and 4) the relation among markings in the STG’s, the number
of cubes required for the structural approximations, and the
quality of area minimizations. Note that all synthesis results
have been formally verified to be speed independent [32].
The CPU times have been obtained on a Sun SPARC20
workstation.

In all tables, columns labeled , , and indicate
the number of places, transitions, and reachable markings.
Columns labeled and SM denote the number of cubes
and SM’s required by structural algorithms. These values
give an intuitive idea about the complexity of each bench-
mark.

A. Heuristics for Area Minimization

This section compares the average area improvement ob-
tained in two benchmark sets (see Fig. 13). In both cases, the
process starts from an initial semioptimized implementation,
in which only expansions toward the quiescent region and dc-
sethave been applied, and progressively evolves toward more
efficient implementations.

Points in the column labeled are the initial semiopti-
mized implementation. Progressively, in column , transi-
tions are allowed to be merged; in , completesignal net-
works are detected. Memory element collapsing is applied at

. Last, region covers are expanded toward the backward qui-
escent regions in (see the Appendix). From a technology-
independent implementation, a Boolean-matching mapping
algorithm is applied [33]. The column labeled presents
the results obtained after the application of a technology-
mapping step that, for example, merges simple gates into
complex ones when available in the library (currently complex
gates up to four inputs such as AOI22).

B. Area of the Circuits

Table V compares the area results of several synthesis tools
including our methodology. The goal of this experiment is to
show that even though structural techniques only approximate
the reachable markings in the STG’s, this methodology does
not negatively influence the quality of the circuits.

Columns labeled SYN and FCG report the area obtained
by the synthesis methodologies developed at Stanford [24]
and Aizu [19]. Columns labeled S3C contain area results
for our methodology without using the backward minimiza-
tion and mapping (left column) and fully minimized (right
column).

The results show that the new logic-minimization techniques
provide significant improvements—23% area reduction with
respect to [24]—in short CPU times—less than 8 s for the
worst case (pe-send-ifc). We also took into account that
some of the new minimization techniques were not fully

1126 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

Fig. 13. Average minimization results for the benchmark sets.

TABLE V
AREA RESULTS COMPARISON WITH TOTALS BY SYN (1) AND BY FORCAGE (2) (� NONFREE-CHOICE—NONAVAILABLE RESULT)

used by SYN and FORCAGE (e.g., backward expansions and
mapping). Thus, for the sake of comparison fairness, we dis-
abled such optimizations, still obtaining a 15% improvement.
Therefore, we can conclude from the experimental results that
structural methods, even being conservative, do not influence
negatively on the quality of the final result.

C. CPU Time: Structural Versus State Based

To illustrate the effectiveness of structural over state-graph-
based methods, we have run some experiments for STG’s
with a large reachability graph, comparing CPU times with
SIS [6] and ASSASSIN [8] (see Table VI). The superiority of
structural methods is evident.

Table VII reports the CPU times for two large scalable
benchmarks. Thedining philosophersbenchmark is one of the
examples that illustrates that nonfree-choice STG’s can also
be synthesized if a cover of state machines can be found for
the net. Another scalable example is theMuller pipeline. Its
STG contains no choice places, and the circuit realization is
a chain of C-latches.

TABLE VI
CPU TIME FOR SYNTHESIS: COMPARISON WITH SIS AND ASSASSIN

D. Efficiency of the Cube Approximations

We have analyzed the efficiency of approximating the
binary codes of a reachability graph by sets of cubes. This is
achieved by comparing the number of required cubes versus
the number of nodes in the STG and the number of reachable
markings versus the number cubes. The cube comparison
is done separately for two classes of STG’s, those with

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1127

TABLE VII
CPU TIME FOR SYNTHESIS: SCALABLE EXAMPLES (�NON-FC STG’s)

TABLE VIII
TRADEOFFS AMONG MARKINGS, NODES, AND CUBES

less than 10 markings and those surpassing this limit (see
Table VIII).

For small benchmarks, we have reached acubes/noderatio
closer to 2.4, while themarkings/cuberatio is closer to 1.7.
Therefore, we can conclude that for small STG’s, there are no
significant differences between using the reachability graph
or the proposed structural techniques. On the other hand, for
larger benchmarks, thecubes/noderatio is closer to 2.6, while
the markings/cuberatio is closer to 4 10 . Thus, each
node requires 2.6 cubes, and each cube approximates up to
4 10 markings—therefore justifying the efficiency of the
cover-approximations methodology.

X. CONCLUSIONS

Structural techniques for the analysis and synthesis of
STG’s are essential when the size of the state space becomes
unmanageable. The proposed structural techniques intend to
fill the gap between the STG’s that can be analyzed by current
state-based techniques and the existing STG’s specifications
of complex systems.

This work has presented new methods to synthesize STG’s
whose underlying PN is free choice. The proposed algorithms
have polynomial complexity in the size of the net and can be
easily extended to the class of PN’s that can be covered by
SM-components, although the existence of a SM-cover cannot
be guaranteed for any nonfree-choice Petri net.

The experimental results show that the proposed methods
obtain area-efficient implementations in short CPU times. Most
of the existing tools were unable to synthesize the largest
circuits, whereas the presented method is able to do it in few
seconds. Future work will be devoted to fully characterize
the class of Petri nets that can be handled by the presented
techniques.

APPENDIX

MINIMIZATION TECHNIQUES

This Appendix will provide an overview of the minimiza-
tion techniques that are structurally applied to simplify the
covers used in anatomic complex gate per excitation region
architecture.

A. Basic Concepts

To efficiently implement this architecture, output signal tran-
sitions are partitioned into sets oftransition clusters[34], [35].
Each cluster implies a complex gate for its implementation.
These complex gates are combined byOR to form the set and
reset functions, respectively.

Definition 17 (Transition Cluster):We define the transition
clusters as a total partition of
the rising and falling transitions of one output signal, which
must satisfy the following conditions.

1) Every rising or falling cluster contains at least one
transition.

2) Every rising (falling) transition must be in one and only
one transition cluster strictly composed of other rising
(falling) transitions of the same signal.

A transition cluster, whether or not it contains rising or
falling transitions, will be simply denoted by . Superscripts
are used to differentiate clusters of the same signal. All signal
region definitions (ER’s, QR’s, QR, etc.) and implementabil-
ity conditions can be easily extended to the usage on transition
clusters.

Fig. 4(b) and (c) shows two different implementations for
output signal in Fig. 1. The first implementation [Fig. 4(b)]
corresponds to the transition cluster partitioning

, , and , which are
implemented by covers , ,
and . This circuit is not SI because if the
AND-OR gate for is slow enough, the pulse on inputcan
propagate to the output . In Fig. 4(c), transitions and

are merged into one cluster . This
makes the overall circuit simpler and SI (the races between
inputs and take place only within oneAND–OR gate).

B. Complete Region Covers

Generating complete covers for all the rising or falling
transitions of an output signal is one of the efficient min-
imization techniques that can be applied. In that case, the
circuit can be exclusively created by using the corresponding
set or reset function [5]. Every cover is checked to becomplete
by analyzing that all markings in QR are covered by

.
If all rising covers are complete, the set function implements

the circuit. Similarly, if all falling covers are complete, the
reset function can be alternatively used. In case both rising and
falling functions are complete, the smallest or faster function
should be selected.

C. Region Expansions

Circuits can be minimized byexpandingthe region covers
toward the quiescent region and the dc-set. All transformations
are characterized by either the elimination of a signal from
the support of the function or the elimination of literals from
the cubes. The main objective of expanding is to simplify
the covers but also to obtaincompleteregion covers with the
subsequent minimization (allows a combinational implementa-

1128 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

tion for the signal). Therefore, this minimization has a higher
priority than other transformations.

Transition clusters aremergedtogether when the complexity
of the resulting region cover decreases. Transition clusters
and are merged, creating a new cluster
with covers , and eliminating
the seminal ones. Merging requires checking whenever the
resulting cover can be positively matched in the gate library.
Merging also allows one to derive an increased number of
complete covers.

D. Collapsing of Memory Elements

The structure of the architecture and the behavior of the C-
latch can be used to further simplify the circuit [24]. Consider
the signal network for an output signal implemented by a
C-latch with equation , and
set and reset networks with one region cover each

. Both cubes can be collapsed into the
C-latch: , obtaining

. Hence, both set and reset region networks
can be substituted by , being and

.
Similarly, if the set and reset networks

, their cubes have the same support
and are at distance one. Again, both cubes can be collapsed
into the C-latch, obtaining . Then, both set and
reset region networks can be substituted by the expressions

, being and the data and
control inputs of a gated latch that replaces the initial C-latch.

E. Backward Region Expansions

The backward quiescent regionBR of a transition is
the maximal connected set of markings that can reach ER
without enabling any other transition .

Further circuit minimizations can be obtained if a cover
is also extended to cover markings in its backward

quiescent region BR . Covering markings in the backward
quiescent regions is only possible because of the characteristics
of the C-latch (as pointed out by [19] and [36]). Maintaining
one of the inputs of the C-latch at 1 (0) while its output is at
1 (0) creates and extraobservabilitydc-set that can be used
to further minimize circuits.

Given the architecture in Fig. 3(c), if both the set cover
and the output are still at 1, activating the reset cover will
not produce a falling transition of the output until the set
cover falls to 0. Hence, the cover of any falling transition
can be activated before reaching its ER, but only if it can
be guaranteed that the set cover will remain at 1 until the
falling transition is excited. Similar conditions apply for rising
transitions.

Similar monotonicityconditions are required in the back-
ward regions; that is, the cover changes exactly twice in
any sequence, where the rising change is at a marking in
BR ER and the falling change in QR .

The backward quiescent regionBR can be structurally
defined by thebackward quiescent place setBPS . A
place belongs to BPS if it is interleaved between

and next , i.e., BPS
next . The same concept can be
extended to transition clusters and to restricted regions, i.e.,
BPS BPS .

Last, it is also essential to determine which are the markings
that the predecessor transition clusters are covering to deter-
mine the subset of the BR region that is allowed to be covered.
For each place in BPS , we will define by the
subset of markings in MR covered by some predecessor
transition :
QPS BPS . Once we
have computed these subsets, the correct covering of markings
in the backward quiescent region is straightforward:
BPS .

F. Technology Mapping

Circuits generated after the overall minimization process
are mapped onto the technology provided by the designer.
Blocks in the signal network can be combined in single cells
when available in the library of existing gates. This cell-
binding process provides an extra degree of minimization
by substituting several logic blocks in the signal network
by a more efficiently implemented cell in the library. A
technology mapper tailored for SI-circuits has been developed
following the Boolean matching techniques proposed in [33].
However, note that it is not possible to apply a generalized
decomposition process of the blocks in the signal network due
to the restrictive correctness conditions imposed by speed-
independent circuits [37].

REFERENCES

[1] A. J. Martin, “Formal program transformations for VLSI circuit synthe-
sis,” in Formal Development of Programs and Proofs,E. W. Dijkstra,
Ed. Reading, MA: Addison-Wesley, 1989, pp. 59–80.

[2] C. A. Petri, “Kommunikation mit Automaten,” Ph.D. dissertation, In-
stitut für Instrumentelle Mathematik, Bonn, 1962, Tech. Rep. Schriften
des IIM Nr. 3.

[3] M. A. Kishinevsky, A. Y. Kondratyev, and A. R. Taubin, “Formal
method for self-timed design,” inProc. Eur. Design Automation Conf.,
Feb. 1991, pp. 197–201.

[4] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From self-timed
to timed ones,” inProc. Int. Workshop Timed Petri Nets,July 1985, pp.
199–206.

[5] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, Cambridge, June 1987.

[6] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuits synthesis,” University
of California, Berkeley/ERL, Tech. Rep. M92/41, May 1992.

[7] P. A. Beerel and T. H. Meng, “Automatic gate-level synthesis of speed-
independent circuits,” inProc. IEEE/ACM Int. Conf. Computer Aided
Design,IEEE Computer Society Press, Nov. 1992, pp. 581–586.

[8] C. Ykman-Couvreur, B. Lin, and H. De Man, “ASSASSIN: A synthesis
system for asynchronous control circuits,” IMEC, Sept. 1994, Tech.
Rep., user and tutorial manual.

[9] K.-J. Lin and C.-S. Lin, “Automatic synthesis of asynchronous circuits,”
in Proc. ACM/IEEE Design Automation Conf.,IEEE Computer Society
Press, June 1991, pp. 296–301.

[10] C. Ykman-Couvreur, B. Lin, G. Goossens, and H. De Man, “Synthesis
and optimization of asynchronous controllers based on extended lock
graph theory,” inProc. Eur. Conf. Design Automation (EDAC),Feb.
1993, pp. 512–517.

[11] M. Hack, “Analysis of production schemata by Petri nets,” M.S. thesis,
Massachusetts Institute of Technology, Cambridge, Feb. 1972.

PASTORet al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 1129

[12] J. Desel and J. Esparza,Free Choice Petri Nets. Cambridge, U.K.:
Cambridge Univ. Press, 1995.

[13] F. Garc´ıa-Vallés and J. M. Colom, “A Boolean approach to the state
machine decomposition of Petri nets with OBDD’s,” inProc. 1995 IEEE
Int. Conf. Systems, Man and Cybernetics,Oct. 1995.

[14] P. Vanbekbergen, “Optimized synthesis of asynchronous control cir-
cuits from graph-theoretic specification,” inProc. IEEE/ACM Int. Conf.
Computer Aided Design,Nov. 1990, pp. 184–187.

[15] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.Nor-
well, MA: Kluwer Academic, 1984.

[16] F. M. Brown, Boolean Reasoning: The Logic of Boolean Equations.
Norwell, MA: Kluwer Academic, 1990.

[17] V. I. Varshavsky,Self-Timed Control of Concurrent Processes.Nor-
well, MA: Kluwer Academic, 1990.

[18] K. Lautenbach, “Linear algebraic techniques for place/transition nets,”
in Petri Nets: Central Models and their Properties, Advances in Petri
Nets 1986,W. Brauer, W. Reisig, and G. Rozenberg, Eds., vol. 254 of
Lecture Notes in Computer Science.Berlin, Germany: Springer Verlag,
1987, pp. 142–167.

[19] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A.
Yakovlev, “Basic gate implementation of speed-independent circuits,”
in Proc. ACM/IEEE Design Automation Conf.,June 1994, pp. 56–62.

[20] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky, “Con-
current hardware. The theory and practice of self-timed design,”Series
in Parallel Computing. New York: Wiley, 1994.

[21] L. Lavagno and A. Sangiovanni-Vincentelli,Algorithms for Synthesis
and Testing of Asynchronous Circuits.Norwell, MA: Kluwer Aca-
demic, 1993.

[22] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli, “A unified
signal transition graph model for asynchronous control circuit syn-
thesis,” in Proc. IEEE/ACM Int. Conf. Computer Aided Design,IEEE
Computer Society Press, Nov. 1992, pp. 104–111.

[23] T. H.-Y. Meng, R. W. Brodersen, and D. G. Messerschmitt, “Automatic
synthesis of asynchronous circuits from high-level specifications,”IEEE
Trans. Computer-Aided Design,vol. 8, pp. 1185–1205, Nov. 1989.

[24] P. A. Beerel, “CAD tools for the synthesis, verification, and testability of
robust asynchronous circuits,” Ph.D. dissertation, Stanford University,
Stanford, CA, Aug. 1994.

[25] S. Burns, “General conditions for the decomposition of state holding
elements,” in Proc. Int. Symp. Advanced Research in Asynchronous
Circuits and Systems,Aizu, Japan, Mar. 1996, pp. 48–57.

[26] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, E. Pastor,
and A. Yakovlev, “Decomposition and technology mapping of speed-
independent circuits using Boolean relations,” inProc. IEEE/ACM Int.
Conf. Computer Aided Design,Nov. 1997, pp. 220–227.

[27] E. Pastor and J. Cortadella, “Polynomial algorithms for the synthesis of
hazard-free circuits from signal transition graphs,” inProc. IEEE/ACM
Int. Conf. Computer Aided Design,Santa Clara, USA, IEEE Computer
Society Press, Nov. 1993, pp. 250–254.

[28] E. Pastor, J. Cortadella, A. Kondratyev, and O. Roig, “Structural
methods for the synthesis of speed-independent circuits,” inProc. Eur.
Design Test Conf. (EDAC-ETC.-EuroASIC),Paris, France, Mar. 1996,
pp. 340–347.

[29] A. Kovalyov and J. Esparza, “A polynomial algorithm to compute the
concurrency relation of free-choice signal transition graphs,” inProc.
Int. Workshop Discrete Event Systems, WODES’96,Aug. 1996, pp. 1–6.

[30] E. Pastor and J. Cortadella, “An efficient unique state coding algorithm
for signal transition graphs,” inProc. IEEE Int. Conf. Computer Design,
Cambridge, MA, Oct. 1993, pp. 174–177.

[31] J. Esparza and M. Silva, “A polynomial-time algorithm to decide
liveness of bounded free choice nets,”Theoretical Comput. Sci.,no.
102, pp. 185–205, Apr. 1992.

[32] O. Roig, J. Cortadella, and E. Pastor, “Verification of asynchronous
circuits by BDD-based model checking of Petri nets,” inProc. 16th Int.
Conf. Application and Theory of Petri Nets,Torino, June 1995, vol. 935
of Lecture Notes in Computer Science,Springer Verlag, pp. 374–391.

[33] F. Mailhot and G. De Micheli, “Technology mapping using Boolean
matching,” in Proc. Eur. Conf. Design Automation (EDAC),Glasgow,
U.K., Mar. 1990, pp. 180–185.

[34] E. Pastor, J. Cortadella, and O. Roig, “A new look at the conditions for
the synthesis of speed-independent circuits,” inProc. 5th Great Lakes
Symp. VLSI,Buffalo, NY, May 1995, pp. 230–235.

[35] A. Kondratyev, M. Kishinevsky, and A. Yakovlev, “On hazard-free
implementation of speed-independent circuits,” inProc. ASP-DAC’95,
Aug. 1995, pp. 241–248.

[36] P. A. Beerel and T. H.-Y. Meng, “Logic transformations and observ-
ability don’t cares in speed-independent circuits,” inACM Int. Workshop
Timing Issues in the Specification and Synthesis of Digital Systems,Sept.
1993.

[37] P. Siegel and G. De Micheli, “Decomposition methods for library bind-
ing of speed-independent asynchronous designs,” inProc. IEEE/ACM
Int. Conf. Computer Aided Design,1994.

Enric Pastor received the M.S. and Ph.D. degrees
in computer science from the Universitat Politécnica
de Catalunya, Barcelona, Spain, in 1991 and 1996,
respectively.

He is an Associate Professor in the Department
of Computer Architecture of the Universitat
Politécnica de Catalunya. He was a Visiting Scholar
at the University of Colorado at Boulder, CO,
and the Inter-university Microelectronics Centre
(IMEC), Belgium, in 1992 and 1994, respectively.
In 1988, he was a Leverhulme Trust Fellow visiting

the University of Newcastle upon Tyne, U.K. His research interests include
formal methods for the computer-aided design of VLSI systems with special
emphasis on synthesis and verification of asynchronous circuits and concurrent
systems.

Jordi Cortadella (S’87–M’88) received the M.S.
and Ph.D. degrees in computer science from the
Universitat Polit́ecnica de Catalunya, Barcelona,
Spain, in 1985 and 1987, respectively.

He is an Associate Professor in the Department
of Software of the Universitat Politécnica de
Catalunya. In 1988, he was a Visiting Scholar at
the University of California, Berkeley. His research
interests include computer-aided design of VLSI
systems with special emphasis on synthesis and
verification of asynchronous circuits, concurrent

systems, computer arithmetic, and parallel architectures. He has coauthored
more than 80 research papers in technical journals and conferences. He has
served on the technical committees of several international conferences in the
field of design automation and concurrent systems.

Alex Kondratyev (M’97), for a photograph and biography, see p. 771 of the
September 1998 issue of this TRANSACTIONS.

Oriol Roig received the engineer in computer science degree in 1991 and
the Ph.D. degree in computer science in 1997, both from the Universitat
Politécnica de Catalunya, Barcelona, Spain.

He was an Assistant Professor at the Universitat Politécnica de Catalunya
until May 1998, when he joined the Methodology group at National Semi-
conductor, Santa Clara, CA. His research interests include asynchronous and
formal hardware verification.

