
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013 1569

Architectural Exploration of Large-Scale
Hierarchical Chip Multiprocessors
Nikita Nikitin, Javier de San Pedro, and Jordi Cortadella, Member, IEEE

Abstract—The continuous scaling of nanoelectronics is in-
creasing the complexity of chip multiprocessors (CMPs) and
exacerbating the memory wall problem. As CMPs become
more complex, the memory subsystem is organized into more
hierarchical structures to better exploit locality. To efficiently
discover promising architectures within the rapidly growing
search space, exhaustive exploration is replaced with tools that
implement intelligent search strategies. Moreover, faster analyt-
ical models are preferred to costly simulations for estimating
the performance and power of CMP architectures. The memory
traffic generated by CMP cores has a cyclic dependency with
the latency of the memory subsystem, which critically affects
the overall system performance. Based on this observation, a
novel scalable analytical method is proposed to estimate the
performance of highly parallel CMPs (hundreds or thousands
of cores) with hierarchical interconnect networks. The method
can use customizable probabilistic models and solves the cyclic
dependencies between traffic and latency by using a fixed-
point strategy. By using the analytical model as a performance
and power estimator, an efficient metaheuristic-based search is
proposed for the exploration of large design spaces. The proposed
techniques are shown to be very accurate and a promising
strategy when compared to the results obtained by simulation.

Index Terms—Analytical modeling, chip multiprocessing, de-
sign space exploration, metaheuristics, numerical methods.

I. Introduction

THE CONTINUOUS shrinking of CMOS technology has
enabled the integration of multiple cores and distributed

memory in one chip. Parallelism has also been one of the
paradigms to make computations more power efficient. In the
last few years, multicore systems have evolved from having
few cores to complexity of chip multiprocessors (CMPs) with
hundreds of computing units [1], [2].

Tiled CMPs are an effective approach to architect general-
purpose processors under the intense time-to-market pres-
sure [3], [4]. The replication of tiles provides a rapid way
of floorplanning many computing units in one chip and com-
municating them with scalable interconnect fabrics. Fig. 1(a)

Manuscript received October 7, 2012; revised May 29, 2013; accepted June
6, 2013. Date of current version September 16, 2013. This work was supported
in part by a gift from Intel Corporation, the Project FORMALISM under
Grant CICYT TIN2007-66523, the Generalitat de Catalunya under Grant
ALBCOM-SGR 2009-2013, and FPI Grant BES-2008-004612. This paper
was recommended by Associate Editor Y. Xie.

N. Nikitin was with the Department of Software, Universitat Politècnica
de Catalunya, Barcelona 08034, Spain. He is now with the Department of
Computer and Information Science, Norwegian University of Science and
Technology, Trondheim 7491, Norway (e-mail: nikita.nikitin@idi.ntnu.no).

J. de San Pedro and J. Cortadella are with the Department of Soft-
ware, Universitat Politècnica de Catalunya, Barcelona 08034, Spain (e-mail:
jspedro@lsi.upc.edu; jordi.cortadella@upc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2272539

Fig. 1. CMP layouts. (a) Flat. (b) Hierarchical.

shows an example of a CMP with 16 tiles, each including
a computing core (C) with private L1 cache, a larger on-
chip cache (L2), and a router (R) that communicates with
the on-chip interconnection network (a mesh). Four memory
controllers (MC) provide access to the off-chip memory.

To exploit the locality of memory references, hierarchical
interconnects have been proposed [4], [5]. Several cores can
be grouped into one cluster to share the on-chip cache,
accessible through a local interconnect (e.g., bus, crossbar,
ring, etc.). Hierarchy increases the intracluster hit-ratio and
reduces the traffic in the top-level interconnect. Fig. 1(b) shows
an implementation of a CMP with four clusters. Each cluster
has two cores with private caches, a shared cache (L3), a local
interconnect (IC), a router, and a network interface (NI).

Given the vast space of design parameters, CMP designers
are faced with the complex problem of selecting the best ar-
chitecture subject to a set of constraints. Many design options
must be explored, such as the variety of core implementations,
interconnect types, topologies, cache hierarchies, and memory
management policies. Moreover, the amount of configurations
increases drastically as the technology advances, allowing
more cores and memory to fit into the chip area.

The complexity of the search space makes simulation-
driven exhaustive exploration of all design points prohibitively
expensive. One of the ways to handle this problem is to
decrease the number of points to be considered. Exhaustive
exploration is therefore replaced with an intelligent search
strategy, e.g., leveraging the methods of machine learning [6]
or design of experiments [7].

Another option to shorten the exploration time is to re-
duce the cost of evaluating every design point, by using the
analytical models. Along this line, several models for CMP
exploration have been recently proposed in [8] and [9].

The goal of this paper is to develop a scalable and param-
eterizable methodology for efficient architectural exploration
of large-scale hierarchical CMPs within vast design spaces
that are far from being explorable exhaustively. The proposed
approach is built on top of an analytical power-performance

0278-0070 c© 2013 IEEE

1570 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

model for CMPs, and performs an accurate metaheuristic-
based search that does not require simulation.

Analytical models for CMPs are based on the models
for their components, mainly the cores and the memory
subsystem. The fundamental problem in evaluating the CMP
performance is the calculation of the latency for memory
requests, given the parameters of the interconnect fabrics
and memory hierarchy. This latency critically depends on
the interconnect contention—a phenomenon that cannot be
underestimated when exploring the architectural design space.
In fact, ignoring contention leads to optimistic values for
latency and throughput, and may overestimate architectures
with saturated interconnects [10]. Accounting for contention is
particularly important for hierarchical CMPs, as it is essential
to verify that the required bandwidth is delivered at all levels.

The efficiency of the analytical models for CMP exploration
is typically traded off with their quality, ranging from rapid
high-level performance estimators for a complete CMP [9], to
nonstationary multifractal traffic models for workload charac-
terization [11]. In this direction, the model introduced in this
paper takes an intermediate position. On one hand, it is built
under the assumption of average-case modeling, in both spatial
and timing domains, contributing to the model efficiency. On
the other hand, guided by the importance and complexity of
contention modeling, we aim at applying analytical methods,
which can be parameterized with arbitrary models for CMP
components.

The developed model is shown to be a light-weight power-
performance estimator, which can be used in exploration
frameworks for rapidly pruning the design spaces with sub-
stantial accuracy. At the same time, it retains modularity and
allows replacement of individual models for cores, memories
or the interconnect, without the need to change the overall
approach. Section II explains some of the possible directions,
in which the proposed model can be improved.

More precisely, the contributions of the paper are as follows.
1) An analytical method for estimating the performance

and power of hierarchical CMPs is proposed. The model
not only captures the behavior of various core architec-
tures and cache hierarchies, but also estimates the traffic
and contention of different interconnect topologies.

2) To model the contention in the interconnect, the cyclic
dependency between latency and memory traffic is
formulated as a system of nonlinear equations. Two
numerical methods are used to solve it efficiently: fixed-
point iteration and bisection. These methods can be
parametrized with any black-box model for latency,
making the approach flexible to incorporate new inter-
connect models.

3) Two metaheuristics, simulated annealing (SA) [12] and
extremal optimization (EO) [13], are customized for ar-
chitectural exploration. They use the proposed analytical
model as the cost function of every design point. The
experiments demonstrate the effectiveness of the method
for power-performance exploration.

II. Related Work

The field of CMP design space exploration has been
widely studied in the last few years. Many simulation-based
frameworks extensively investigate the parameters of multicore

architectures and memory hierarchies. Exhaustive simulations
were previously used for performance-oriented exploration
of core and cache organizations and the off-chip memory
bandwidth [14]. Other works emphasize the importance of
the joint optimization for power, performance and thermal
characteristics [15], and the impact of chip floorplan [16].

Efficient simulation-driven exploration was investigated by
the means of intelligent search techniques. In [17], predictive
modeling is used to reduce the search space by simulating
sample points and teach the models to describe relationships
among design variables. The design of experiments paradigm
for architectural exploration is proposed in [7]. The work
in [6] compares the application of several metaheuristics with
machine-learning methods, reporting orders of runtime savings
compared to exhaustive simulation.

Analytical models appeared to replace costly simulations
and provide quick estimations of the performance of the
architectures. The model in [8] studies the trade off be-
tween the number of cores and the on-chip memory size
for throughput optimization. However, it ignores contention
in nonuniform memory architectures, typical for many-core
systems. In [18], the authors introduce an energy-performance
analytical model for CMP architectures, however, they only
consider bus interconnects with a simplified contention model.
The work in [19] analyzes finite cache penalties in memory
hierarchies, but the interconnects are also restricted to buses.
McPAT [20] is another powerful tool with low-level analytical
models for area, timing, and power of multicore architectures.
However, the lack of traffic and throughput models makes it
unsuitable for characterization of hierarchical interconnects.

Combining simulation with analytical modeling was also
considered for trading off the accuracy and efficiency in
CMP performance analysis. In this direction, FIST proposed
approximating the behavior of network-on-chip (NoC) routers
with load-delay curves, replacing the need for modeling packet
propagation [21]. Reservation-based timing models developed
in [22] represent another approach to modeling contention in
virtual cut-through networks, by tracking the periods of link
acquisitions.

In this paper, we propose a generic method for analyt-
ical modeling of hierarchical CMPs. Our method can be
parametrized by arbitrary models for CMP components. As
such, we apply the mechanistic model in [23] to reflect archi-
tectural properties of the cores. We consider the application of
the latency model in [24] due to its flexibility. However, other
models can also be considered, such as [25]. It introduces an
accurate model for heterogeneous NoCs that can be useful
for modeling a variable number of virtual channels and link
capacities at different levels of the hierarchical interconnect.
In [26], an approach similar to [24] is proposed, offering an
accurate backpressure analysis at the cost of model efficiency.

Queueing approaches were shown to have limitations, such
as the assumption of modeling system in equilibrium and the
inability to capture the multifractal nature of the workload
traffic [27], [11]. These recent works propose alternative
nonstationary traffic models, which are based on considering
the behavior of interconnect queues using a statistical physics
approach. However, the analysis in [27] and [11] considers
the traffic pattern in dependence of an inseparable combina-
tion of the architecture and the workload. For the problem
of architectural exploration, the separation of workload and

NIKITIN et al.: ARCHITECTURAL EXPLORATION OF LARGE-SCALE HIERARCHICAL CHIP MULTIPROCESSORS 1571

architectural parameters is required in order to find the best
candidate architecture for the given workload application. This
separation remains an open question, which is however out
of scope of this paper. Finally, we refer the interested reader
to [28] for a comprehensive analysis of the research problems
and techniques in interconnect modeling.

This paper is also the first one to integrate an analytical
model for CMP with metaheuristic optimization, thus bringing
additional degree of speed-up for exploration. One of the
benefits of metaheuristics with respect to analytical optimiza-
tion methods proposed by [18] is the ability to generate a
moderately-sized set of nearly optimal configurations. These
can be further simulated to reduce the chance of choosing
suboptimal architectures due to inaccuracy of the model.

Heterogeneous architectures are considered as a promis-
ing strategy for engineering energy-efficient many-core sys-
tems [29], [30]. In addition to incorporating different
instruction-set architectures on a chip, in [31], it was shown
that technological heterogeneity is another dimension for
exploring energy-efficient computation beyond the CMOS.
While homogeneous tiled CMPs are at the focus of the analysis
presented in this paper, the proposed technique can also be ap-
plied for heterogeneous systems. However, in order to capture
the benefits of heterogeneity, elaborated workload models are
essential, which is the primary objective of future work.

III. Analytical Performance and Power Models

This section introduces the models for the evaluation of
CMP performance and power and formulates the cyclic de-
pendency between traffic and latency.

A. Assumptions and Input Parameters of the Models

This paper focuses on systems with two-level hierarchical
interconnect fabrics. However, the approach can be applied for
an arbitrary number of hierarchical levels. Several components
are grouped into a cluster: cores, components of the memory
subsystem and the local interconnect. The top-level intercon-
nect provides communication between the clusters and access
to the off-chip memory [Fig. 1(b)].

The system has in total N cores with parametrizeable
architectures: in-order, out-of-order, single-, or multithreaded.
The workload model assumes that every core is executing an
application, characterized by two parameters. IPC0 is the ideal
throughput of the core for the application, i.e., the amount of
instructions per cycle executed by the core, assuming zero-
latency memory. MPI is the average number of memory
references generated per instruction.

There are several ways how exploration can be performed
for multiple applications. In the first scenario, all cores can
execute only one type of application simultaneously, which
can change in time. In this case, it is possible to evaluate the
performance of every configuration with a weighted objective
function. For example, if two types of applications are exe-
cuted, A1 and A2, some configuration delivers performance
IPC(A1) and IPC(A2), respectively, then the aggregate per-
formance can be defined as

IPC = a1 · IPC(A1) + a2 · IPC(A1) (1)

where a1 and a2 are the user-defined weights. In the other
scenario, when several types of applications can be executed in

parallel, they have to be assigned to the cores assuming some
predefined mapping algorithm. The exploration procedure, in
this case, can be applied by executing the mapping algorithm
for each configuration generated during the exploration.

Without loss of generality, we assume that the memory
subsystem has four hierarchy levels. Every core has a private
L1 cache and possibly, a private L2 cache of larger size
but higher latency. The clusters incorporate modules of a
distributed L3 cache, shared by all cores. The off-chip memory
is accessible via a set of memory controllers. The latencies of
the caches and off-chip memory are parameters of the model.

The term memory flow is used to denote a feasible com-
munication between a core and a component of the memory
subsystem. For example, each core may access its own L1 or
L2 caches, or any of the L3 modules or MCs. For simplicity of
the analysis, in this section, we only consider the request and
reply flows between the cores and the memories. However,
a specific coherence protocol can be modeled by adding the
traffic of synchronization flows. The experiments for this paper
are performed using an abstraction of a cache coherency
protocol, as described in Section VI-B.

The set of all possible memory flows for core c is denoted
as F (c). Every flow f ∈ F (c) is realizable with probability
pf , that defines the probability for c to request data from a
certain memory component. In our paper, we calculate these
probabilities using a model of cache miss behavior for the
workload in consideration, which represents the dependency
between miss ratio and cache size. A power-law model was
proven to be a good approximation [32]

Miss(S) = κS−α (2)

where S is the cache size, and κ, α are the model parameters
(Fig. 2). Alternatively, the miss model can be precharacterized
using simulation and specified as a set of points in the cache-
size/miss-ratio plane.

Since L3 is a distributed cache, its access latency depends on
the cluster where the requested data is stored. The algorithms
for data allocation are typically implemented in the operating
system and are out of scope of this paper. Hence, we assume
a smart allocation algorithm, which favors the locality of
communication. The probability to find the data in a particular
cluster is assumed to be inversely proportional to the distance
between the requesting core and the cluster. This assumption
increases the total throughput of the system, since it decreases
the average memory access latency. In general, the method can
be parameterized with any other model for distributed cache.

B. Static Latency

In this section, we describe how to calculate the average
static latency of memory accesses for a core c in the presence
of memory hierarchy. Given the probability pf for each
particular flow f ∈ F (c) and its static latency Lf , the average
static latency Lst

c is

Lst
c =

∑
f∈F (c)

pf Lf . (3)

Since requests to L3 and MC are sent via the communication
network, its delay must also be considered. This delay is
defined using the routing function R : f → π(f), that for any
flow f returns its routing path π(f). The total latency to access

1572 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

Fig. 2. Power-law cache miss model.

an L3 instance is the sum of the network traversal latency
along the path π(f) and the L3 latency. The total latency of
the off-chip memory accesses is calculated likewise.

Note that the routing function and memory latency depend
on the interconnect topology. The proposed model can be
applied to arbitrary topologies, including hierarchical mul-
tilevel interconnects. In this paper, we consider two-level
interconnects with mesh at the top level and buses or rings
in clusters. For rings, shortest-path routing is assumed, while
for meshes XY-routing is used [33]. Dateline with two virtual
channels guarantees deadlock freedom in rings. To support
a different routing function, one should modify the routing
procedure, which calculates the traffic distribution according
to the selected routes. In general, any deterministic or even
adaptive routing can be used, specifying the probabilities for
selecting every path.

The flow probabilities pf are obtained using the depen-
dency of miss ratio on the cache size, Miss(S), given by (2).
Assuming the sizes SL1, SL2 of the two low-level caches, the
probabilities to access them are

pL1 = 1 − Miss(SL1),
pL2 = (1 − pL1)(1 − Miss(SL2)).

As L3 is shared, the miss ratio is defined by the effective
L3 size, S

eff
L3, seen by each core [34]. To estimate S

eff
L3 we use

the concept of the average number of cores sharing each line,
as proposed by [34]. The probability to access L3 is then

pL3 = (1 − pL1)(1 − pL2)(1 − Miss(Seff
L3)).

Finally, pL3 should be multiplied by the probability to find
the data in a particular L3 instance (cluster). A similar strategy
is used to calculate the probabilities of flows to every memory
controller.

C. Queueing Model for the On-Chip Interconnect

Equation (3) describes the static latency of memory ac-
cesses. Another important part of the communication delay is
the dynamic or contention latency [33]. Contention happens
in the interconnect fabrics when several packets compete for
the same shared resource, such as a bus or an NoC link.
This results in additional delays experienced by packets in
the buffers distributed over the on-chip interconnect. One of
the approaches to estimate the contention delays is to model
the CMP as a system of queues and apply queuing theory to
calculate the buffer delays.

In this paper, two-level hierarchical interconnects are as-
sumed, with a 2-D mesh at the top level. At the lowest (cluster)
level, buses, uni- and bi-directional rings are used for the
interconnection. Fig. 3(a) shows the queueing representation of

Fig. 3. Queueing model for (a) mesh NoC and (b) cluster.

the top-level mesh. The mesh routers (R) have up to five input-
buffered ports to store the incoming flits. The primary ports of
the routers are connected to the clusters (CL), which in case of
a flat CMP organization may consist of one device [e.g., a core
with private caches in Fig. 1(a)]. Fig. 3(b) presents an example
of queueing model for a bus-based cluster, corresponding to
one tile of the hierarchical CMP. This cluster consists of
five devices, communicating via a shared bus: two cores with
private caches, an instance of an L3 shared cache, a directory
and a network interface. Every device has a buffer to store
the requests to the bus. To distribute the off-chip memory
traffic uniformly over the mesh and avoid high contention
of certain routers, we assume that memory controllers have
multiple connections to the mesh, as shown in Fig. 3(a).

D. Total Memory Latency

The average total latency for core c, Lc, is calculated by
adding the static latency (Lst

c) and the queue delays along the
communication paths (wq). Hence, given the paths π(f) for
every flow f , we extend equation (3) accordingly

Lc = Lst
c +

∑
f∈F (c)

⎛
⎝pf

∑
q∈π(f)

wq

⎞
⎠. (4)

To find the values for wq, an analytical model for the on-chip
interconnects can be used. In this paper, we apply the model
from [24], which offers a convenient definition of queue delays
via the injection rates in closed form. The method calculates
the probabilities of the packets coming from different bus (or
router) inputs to move toward the same output. It represents an
efficient generalization of the M/G/1 queueing model [35]. The
efficiency of this model is essential for our iterative procedure,
described in Section IV. Another advantage of this model is
the capability to deal with a variety of interconnect types, such
as buses and router-based topologies (including meshes, uni-
and bi-directional rings, and other topologies).

Given the vector of injection rates into the interconnect,
λ ∈ RN , the model in [24] proposes to express queue delays
in the form of a system of equations with a matrix W

wq = W × λ (5)

where wq is the vector of delays for all queues of the
interconnect. The exact form of the matrix W is given by
the expressions (5) and (18) in [24]. What only remains is to
compute the rates λ, which is covered in the next section.

E. Throughput Model

The throughput of a CMP and the traffic in the interconnect
are closely related. To derive the exact dependencies, we start
with the performance model for a single core, given in [36].

NIKITIN et al.: ARCHITECTURAL EXPLORATION OF LARGE-SCALE HIERARCHICAL CHIP MULTIPROCESSORS 1573

For a core with the average rate of accesses to remote memory
(RemRate), and the cost of an access (RemCost), the average
number of cycles for executing an instruction, CPI, is

CPI = CPI0 + RemRate · RemCost (6)

where CPI0 = 1/IPC0 is the ideal CPI, derived under the
assumption of zero-latency memory. Note that IPC0 is a
function of both the core and the workload. For a single-
threaded strictly in-order core, the cost of a remote access
is the average latency, given by (4), and the remote rate is
given by the MPI value. As throughput is typically measured
in IPC, the reciprocal of CPI, from (6) we obtain

θc =
1

CPI
=

1
1

IPC0
+ MPI · Lc

. (7)

The throughput of the entire CMP, �, is then calculated as the
total performance of individual cores: � =

∑
c θc.

The rate of memory accesses, λc, is the probability for a core
to issue a remote memory request per cycle. λc is proportional
to the core throughput and the MPI

λc = θc · MPI =
MPI

1
IPC0

+ MPI · Lc

. (8)

F. Multithreaded and Out-of-Order Cores

Equation (8) can be extended for the case of multithreaded
and out-of-order cores. A multithreaded core can be modeled
as a group of single-threaded cores. The latency for each thread
remains Lc, but the total memory rate becomes λmt

c = Mλc,
where M is the number of threads.

The difference in modeling an out-of-order core is that
the remote memory access does not force the core to stall,
hence, the effective remote latency Lc decreases [36]. Fol-
lowing the techniques in [23], we make two adjustments
to capture this behavior in our model. First, the authors
in [23] consider the short latencies of access to L1 and L2
hidden by instruction reordering. In our model, it can be
modeled by excluding the flows between the core and the
first two levels of local cache from the memory-flow set.
FOoO(c) = F (c) \ {f (c, L1), f (c, L2)}. Equation (4) is used
with the new FOoO(c) to calculate the average total latency.

The second adjustment to the model is done by considering
memory-level parallelism of the workload (MLP), which is the
average number of memory requests issued in parallel [37].
When a core issues several requests in parallel, the latency
penalty is amortized due to overlapping of the requests. We
capture this fact by adjusting the MPI value to reduce the
fraction of memory requests per instruction (and hence the
penalty)

MPIOoO =
MPI

MLP
.

The average MLP can be obtained by workload profiling.
This new MPI value is used with (7) and (8) to obtain the
throughput and traffic of the out-of-order cores.

Although the applied core model is simplistic, it can be
extended straightforwardly with microarchitectural aspects,
e.g., as discussed in [23]. The separation of the models for
core and workload is desirable, since we would be able to
explicitly extract the instruction- and thread-level parallelism

of the applications. Note that modifying the core model
independently of the interconnect model is possible due to
the modularity of the proposed approach.

G. Cyclic Dependency Between Memory Latency and Traffic

In order to calculate the buffer delays, (5) requires the
injection rates at every input (source) of the interconnect, while
(8) gives the rates of request generation per core. Note that
the injection rates in a flat interconnect are directly defined by
the core rates: for a CMP with N cores, λ = {λ1, .., λN}. In
case of a hierarchical interconnect fabric, the core rates will
correspond to the injection rates at the sources of the cluster-
level interconnects, such as the bus in Fig. 3(b). The injection
rates to the top-level mesh can be calculated, given the fraction
of intercluster traffic. The latter is defined by the probabilities
of access to the L3 and the off-chip memory, discussed in
Section III-B. Below we directly consider the dependency of
memory latency on the core rates.

From (4), (5), and (8) we observe the following system of
dependencies:

∀c = 1, .., N :

{
Lc = Lc(λ, wq)
λc = λc(Lc)

(9)

where Lc is the total memory latency for core c, defined by (4)
as the function of the injection rates of all cores, λ, and queue
delays wq in (5). λc is the injection rate for core c, the function
of its proper latency, Lc (8). Hence, the dependencies (4), (5),
and (8) create a system of equations with respect to the vectors
of variables L, λ, and wq.

This result is quite intuitive: the latency of the memory
requests traversing the interconnect depends on the injection
rate of requests, due to the network contention. On the other
hand, the request rate is determined by the latency, as no
new memory requests are issued if the execution of cores
stalls due to the absence of data. System (9) emphasizes the
cyclic dependency between the latency and rate of memory
requests. In Section IV, we describe the methods to resolve
this dependency.

H. Power Model

In this paper, we model power analytically using a first-order
approximation of leakage and dynamic power for individual
components, such as cores, caches and interconnects. Leakage
power of component c is proportional to the unit leakage pleak,c

and the area Ac

Pleak,c = pleak,c · Ac. (10)

Dynamic power is primarily defined by the utilization of
components. For cores, it is proportional to the throughput of
the core θc, the energy of executing single instruction Einst,c,
and the core frequency Freqc

Pdyn,c = Einst,c · θc · Freqc. (11)

Similarly, the cache power depends on the number of accesses
to the cache per cycle (e.g., traffic), �c, and the energy per
access Eacc,c

Pdyn,c = Eacc,c · �c · Freqc. (12)

1574 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

Dynamic power for the components of on-chip interconnect,
such as routers and links, is proportional to the traffic through
the component, �c, and the energy per flit transmission Eflit,c.

Pdyn,c = Eflit,c · �c · Freqc.

Here the areas Ac and the performance metrics θc and �c

of the components are calculated by the analytical model.
Frequency is a parameter of exploration. To find the power
and energy coefficients, we employ the data obtained from [38]
for the cores, CACTI 5.3 model [39] for caches and Orion 2.0
model [40] for on-chip routers and links.

The energy per instruction is approximated using (10)–(12)
and the values for the core thermal design power, nominal
throughput, and frequency are obtained from [41].

IV. Analytical Methods for Latency Estimation

The solution of a nonlinear system (9) can be found using
one of the Newton-based methods [42], typically available in
a generic solver, such as MATLAB [43]. The downside of this
approach is the need for the calculation of function derivatives,
which is a computationally expensive process. Apart from that,
this approach only works for analytical models that can be
represented with closed-form equations.

In this section, we propose two numerical methods to
efficiently resolve the cyclic dependency (9). The first method,
fixed-point iteration, delivers the exact solution in case of
convergence and can be applied to arbitrary configurations.
The second approach, based on bisection, always converges
for our problem but finds an approximate solution. However,
it resulted to be a good approximation for tiled homogeneous
CMPs (Section IV-B).

The subgradient method [44] was also considered as an
alternative to bisection. Although it is more accurate, it is also
significantly slower. In this paper, we focus on the first two
methods, since their performance and quality represent the best
compromise for the evaluation of homogeneous architectures.

A. Fixed-Point Iteration

The algorithm proposed, in this section, is a popular numer-
ical method for solving systems of nonlinear equations [42].
While the theoretical speed of convergence of this method is
relatively slow, it performs well in practice due to its low cost
for a single iteration. Given a system of equations in the form

x = F (x) (13)

where x is the vector of variables and F is the system matrix,
and an initial guess x0, the following iterative procedure can
be used to find a solution x∗ (fixed point) of the system:

xn+1 = F (xn), n ≥ 0.

In our setting, x is composed of the variables {L, λ, wq}
and matrix F is defined by the right-hand terms of (4), (5),
and (8). For the initial guess, x0, we use static latencies (3) and
compute other values using the same equations: L0 = L

st
, λ0 =

λ(L0), wq,0 = W(λ0).
The benefit of the proposed method is that it does not require

closed-form analytical expressions for latencies. Furthermore,
any black-box model for the dependency of interconnect

latency on injection rate can be used. The method hence main-
tains the modular structure of hierarchical interconnects and
permits plugging independent models for different topologies.

As a numerical method, fixed-point iteration is subject
to convergence issues. For a system in the form (13), the
sufficient condition for convergence is [42]∑

i

∣∣∣∣∂F∂xi

∣∣∣∣ < 1.

In our case, this requires the latency to grow slowly with the
injection rate, and vice versa. This condition holds for the
communication fabrics that perform far from their saturation
throughput (for instance, see chapter 23 in [33]). Although this
is a sufficient condition, it is not necessary for convergence.
In practice, we observe that for the majority of configurations
the iterative procedure converges.

A second issue of the fixed-point iteration is due to the
analytical models based on queueing theory: the queueing
models work under the assumption of the system being in the
steady state [35]. This means that for any router with service
time T and the sum of arrival rates to its inputs λ, the following
condition must hold: λT < 1. In other words, there should be
no unbounded packet accumulation in the input queues of the
router. Unfortunately, this requirement may be not satisfied
by the initial solution, due to the underestimated latency, and
hence overestimated λc. To handle this situation as well as the
configurations for which the fixed-point iteration diverges, we
propose a method based on the bisection search of λc, to find
a reasonable and fast approximation to the solution.

B. Bisection Search for Traffic Rate

The advantage of the bisection method is that it always
converges for our model (due to the intermediate value the-
orem [42]). Since every core generates traffic at certain rate,
λc, multidimensional bisection [45] can be applied to find the
exact rates. However, a good approximation to the exact rates
can be obtained by using the less complex unidimensional
bisection. By simulation, we observed that the traffic rates
of the cores of tiled CMPs with homogeneous clusters change
proportionally to their estimates, obtained by the static latency.
Hence, we initialize the vector of injection rates λ with the
values estimated by static latency, and on every bisection step
adjust all rates in the same proportion.

To introduce the bisection more formally, let us rewrite (8)
by isolating Lc, and using the star symbol to distinguish from
the latency in (4)

L∗
c (λc) =

1

λc

− 1

MPI · IPC0

. (14)

Notice that as opposed to the latency Lc in (4), which in-
creases with the injection rate, the latency L∗

c in (14) decreases
with λc. The reason is that (4) models the interconnect con-
tention, disregarding its impact on the performance of cores.
In turn, (14) models the throughput of cores, neglecting the
impact of contention on the memory latency. This emphasizes
the cyclic dependency between the memory latency and traffic,
and the need to solve the system (9).

From (4) and (14), we define the average latencies L(λ) and
L∗(λ) as the functions of the vector λ

L(λ) =
1

N

N∑
c=1

Lc(λ), L∗(λ) =
1

N

N∑
c=1

L∗
c (λc).

NIKITIN et al.: ARCHITECTURAL EXPLORATION OF LARGE-SCALE HIERARCHICAL CHIP MULTIPROCESSORS 1575

Fig. 4. Behavior of the latency functions L(λ) and L∗(λ).

Finally, we introduce the latency difference function, F(λ)

F (λ) = L(λ) − L∗(λ).

Fig. 4 shows the typical behavior of these functions. To
depict a 2-D view of this behavior, we plot L(λ) and L∗(λ) as
a function of the average rate � = 1

N

∑N
c=1 λc. The curve L∗(λ)

shows that the average rate of memory requests increases as
the latency decreases. On the contrary, L(λ) shows that the
average latency increases with the injection rate. The real
values for latency and traffic are defined by the intersection
point A of these curves, that can be found as a root of F (λ).
Hence, we use the bisection as a root-finding method, that does
not require the exact knowledge of the function F (λ) and can
be used with any black-box analytical model for latency.

Bisection searches for λ that satisfies the condition
|F (λ)| < ε, where ε is the solution tolerance. The initial range
for λ is limited by the traffic, obtained with static latency.
λmin = 0, λmax = λ(Lst

c). Assuming the proportionality in vari-
ation of the individual components of λ, all components are
updated simultaneously. For any pair of consecutive iterations
i and i + 1, either λ

i+1
min = λ

i
when F (λ

i
) < 0, or λ

i+1
max = λ

i

when F (λ
i
) > 0. The iteration is continued until the required

tolerance for F (λ) or λ is met [42].

V. Metaheuristics for Architectural

Exploration

The architectural exploration for CMPs must be performed
on a highly discrete design space. For this reason, hill-climbing
strategies for combinatorial optimization are a promising ap-
proach, as it was shown in [6].

In this paper, we consider two metaheuristics based on
probabilistic extensions of hill climbing: SA [12] and EO [13].
Both methods are inspired by statistical physics and are
commonly used to solve complex combinatorial problems.
The benefits of SA are the ability to escape from local
optima during the exploration of solutions and the easiness of
customizing the algorithm for every particular combinatorial
problem by defining local transformations. These are the
main reasons why it has been successfully applied in various
complex design automation problems [46]. In the context of
CMP exploration, SA can be efficiently used by defining local
transformations that can progressively modify the variables of
the system.

EO has recently emerged as a very competitive alternative
to SA. For our problem, both heuristics exhibit similar per-
formance and results, although for some design spaces one
behaves more efficiently than the other.

TABLE I

Configuration Parameters for Two Types of Cores

Fig. 5. Configuration example and its variables.

SA and EO are much easier to customize than other strate-
gies like evolutionary algorithms [47], in which the crossover
operators of configurations with heterogeneous variables often
generate inconsistent solutions.

A. Configuration and Transformations

We have a design space S that contains all possible architec-
tural configurations. Each configuration is uniquely determined
by the values of the variables shown in Table I. These variables
include dimensions of the top-level mesh (X, Y), type of
interconnect within a cluster (I), and for every type of core i,
the number of cores per cluster (Ni) and the sizes of the L1
and L2 caches (L1i, L2i). Table I shows the complete list of
variables when the design space contains two types of cores.

Fig. 5 shows an example of configuration. Here, we assume
that the L3 cache is used to fill all the area that is left after
placing the cores, private caches, and interconnect. For this
reason, the size of the L3 cache is computed using the area
constraint and is not a variable.

The concept of configuration neighborhood has a key
importance for metaheuristics. The neighborhood of some
configuration C is defined using a set of rules to obtain
neighbors from C. We refer to these rules as transformations.
More precisely, every transformation identifies one or several
variables of C that are modified to create a neighbor.

As an example, consider the IncX transformation, which
increments the X-dimension of the top-level mesh by one. If
C is a configuration with a 4×3 mesh [as in Fig. 5(a)], then
IncX defines a neighbor of C, which is a 5×3 mesh with the
same values for the other variables.

Selecting the neighborhood size is another important aspect
of metaheuristics. Small neighborhoods may cause metaheuris-
tics to get stuck in the local optima and lead to suboptimal
solutions. Large neighborhoods may become the reason for
slow advance through the design space and significantly
increase the algorithm execution time. The neighborhood
size for C is primarily determined by the cardinality of the
transformation set. Hence, an important question to solve is
to find a moderately sized set of transformations to balance
performance and quality.

Three types of transformations are proposed for efficient ex-
ploration, as described below. To provide a visible example of

1576 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

TABLE II

List of Transformations for Two Types of Cores

the transformation set, Table II enumerates all transformations
for two types of cores.

1) First-Order Transformations: First, we define a group
of basic transformations, each affecting only one variable of
the configuration. They are referred to as first-order transfor-
mations. With every variable V (from Table I) we associate
a pair of transformations, IncV and DecV, that increase and
decrease the value of V to the next available value in the
domain, respectively. For example, if X is allowed to take any
integer value between 2 and 10, then the IncX transformation
applied to a 4×4 mesh [Fig. 6(a)] will produce a 5×4 mesh
[Fig. 6(b)]. DecY applied to a 4×4 mesh will produce a 4×3
mesh [Fig. 6(c)]. The other variables remain unchanged.

For the other variables, the next available values may be
different. For example, the next available value for a memory
of 128 KB can be 256 KB. The first-order transformations
are summarized in the left column of Table II. Every type
of core implies independent transformations. Thus, for two
different types of cores, IncN1 and IncN2 are different
transformations. If some transformation produces an illegal
configuration, the latter is excluded from the search space.

2) Second-Order Transformations: First-order transforma-
tions still define small neighborhoods that may impede the
search to escape from local optima. This fact is particularly
important for highly constrained design spaces, when the
penalty for violating a constraint is too high.1

Consider again the configuration with 4×4 mesh shown in
Fig. 6(a). IncX produces a 5×4 mesh with 25% more area
and a low probability to be accepted if the area penalty is
high [Fig. 6(b)]. On the other hand, DecY yields a 4×3 mesh
that has 25% less area [and hence less computing cores and
cache, Fig. 6(c)]. It is not likely to be accepted either, since
the performance of this configuration is significantly lower,
compared to the original solution. However, if we apply both
transformations simultaneously, we obtain a 5×3 mesh, as
shown by Fig. 6(d). This solution has comparable area and
performance, and hence higher probability to be accepted.

We refer to the transformations that perform a simultaneous
update of two variables in the current configuration as second-
order transformations. Rather than proposing transformations
for all pairs of variables, we select a small group of variables,
which we observe to enhance the neighborhood effectively.
In particular, we create second-order transformations for the
mesh dimensions (X and Y) and the number of cores of each
type (Ni). For any pair of these variables, one is increased,

1The mechanism of penalty functions used for constraint modeling is
explained in Section V-B.

Fig. 6. Transformations applied to a 4×4 mesh.

Fig. 7. Reclustering of the 2×2 mesh.

while the other is decreased. An example of the IncX-DecY
transformation was shown in Fig. 6(d). The right column of
Table II enumerates the second-order group.

3) Reclustering: Finally, we introduce the third type of
transformation, reclustering, which decreases the search time
notably, as it extends the neighborhood with promising config-
urations that were previously achievable only after a sequence
of steps.

The idea of reclustering is illustrated in Fig. 7. Assume the
original configuration is a 2×2 mesh with 30 cores per cluster,
i.e., 120 cores in total [Fig. 7(a)]. The IncX transformation
will result into a 3×2 mesh, as in Fig. 7(b). However, as
the number of cores per cluster has not changed, the new
configuration will have 180 cores with a 50% area increase.
This is likely to cause unacceptable area (and power) penalties
and prevent the exploration from ever escaping the 2×2
size neighborhood. To compensate, we propose adjusting the
number of cores accordingly, so that the total number of cores
remains constant. In the example, the new number of cores
per cluster becomes � 30·2

3 � = 20. Fig. 7(c) shows the new
configuration. We refer to this procedure as reclustering, as
it permits changing the number of clusters without causing
strong penalties for any of the metrics.

There are four reclustering transformations, which are de-
fined by either increasing, or decreasing any of the mesh
dimensions. They are listed in the right column of Table II.

B. Exploration Problem

We consider architectural exploration as a constrained op-
timization problem. In addition to optimizing the value of
objective function we have to satisfy a number of constraints
for other metrics. For simplicity, in this paper, we focus on the
following formulation: maximize the overall chip performance
(IPC), subject to the resource budget, i.e., area and power
constraints. The methodology described here applies to other
formulations of the exploration problem and also allows the
incorporation of additional metrics.

To enforce the satisfaction of constraints we use penalty
functions. For every constrained metric, the objective is pe-
nalized once the metric value exceeds the constraint value.

Let us consider an area constraint indicating that the total
area cannot exceed the value MaxArea. We define the relative
excess of Area as

Ex(Area) =
max(0, Area − MaxArea)

MaxArea
. (15)

NIKITIN et al.: ARCHITECTURAL EXPLORATION OF LARGE-SCALE HIERARCHICAL CHIP MULTIPROCESSORS 1577

The excess is zero when the area constraint is satisfied.
Otherwise, it gives a relative degree of area violation. Next,
we define the area penalty in the objective function

Pen(Area) =
1

1 + μ · Ex(Area)
(16)

where μ is a penalty factor that grows as exploration advances.
This decreases the probability of accepting infeasible config-
urations as the exploration evolves toward the final solution.
Now, consider the objective function in the form

Obj = IPC · Pen(Area).

If the area constraint holds (Area ≤ MaxArea), then
Pen(Area) = 1 and the objective is equal to the IPC of
configuration. If Area > MaxArea, then Pen(Area) < 1 and
the IPC value in the objective function is degraded.

Penalty functions in the form of (16) allow adjusting the ob-
jective of infeasible configurations with respect to the violation
degree. This mechanism makes the design space smoother and
allows leaving the feasibility region temporarily, rather than
stopping at its boundaries. When the exploration is out of the
feasibility region, the penalty grows with the distance to the
region, thus forcing the exploration to progressively return to
the feasibility region.

The complete objective function used in this paper contains
the penalty terms for area, power, and aspect ratio of the top-
level mesh, AR. These terms are defined similar to (16), so
the final equation is

Obj = IPC · Pen(Area) · Pen(Power) · Pen(AR). (17)

C. Exploration With Simulated Annealing

The SA algorithm is outlined in procedure 1. It starts with
some initial configuration, that can be chosen randomly. We
typically assign the lowest feasible value for every variable of
configuration to prevent the constraints from being violated.

The algorithm implements a conventional annealing sched-
ule. Given an initial temperature Tinit and cooling factor
α < 1, a new configuration (NewC) is generated (lines 1–1).
It may be accepted probabilistically, depending on the current
temperature Tcur (line 1). The value of Tcur decreases as the
system evolves in time (line 1). Penalization weight μ grows
in time to decrease the probability of accepting infeasible
solutions (line 1). For every temperature, a number of moves
that depends on the size of the problem (P , the number of
transformations) is generated.

NewC is obtained by selecting some transformation ti and
applying it to CurC. The probability distribution for the selec-
tion of ti can be specified by the user. In this paper, we used
uniform probabilities for all ti and selected the transformation
to be applied at every iteration randomly.

The new configuration is accepted probabilistically accord-
ing to Procedure 2. Configurations with better objective value
[calculated using (17)] are always accepted (line 2), other
configurations are accepted with probability Pa

Pa = e−γ , γ =
Obj(CurC)

Obj(NewC)
· 1

Tcur
. (18)

This probability depends on two exponent factors. The for-
mer avoids the acceptance of solutions with high degradation
of the objective function. The latter reduces the probability of

Procedure 1 SimulatedAnnealing

1: CurC← BestC← "Some initial solution"
2: Tcur = Tinit

3: while improvement in last k iterations do
4: for P iterations do
5: select ti randomly with uniform probability
6: generate NewC by applying ti to CurC
7: if Accept(CurC, NewC) then CurC← NewC
8: if Obj(CurC) > Obj(BestC) and Feasible(CurC)

then BestC← CurC
9: end for

10: Tcur = α · Tcur

11: μ = μ/α

12: end while
13: return BestC

Procedure 2 Accept(CurC, NewC)

1: if Obj(NewC) > Obj(CurC) then return true
2: else return true with probability Pa, defined by (18)

hill climbing as the temperature cools down. To find the value
for Tinit, we apply a common strategy to calculate the average
cost variance and use (18) to obtain a high initial acceptance
probability, such as 0.95 [46].

Note that the best solution is updated only when the CurC is
feasible as given by the Feasible(CurC) procedure in line 1.
This procedure returns true if and only if CurC satisfies all
constraints (for area, power, and aspect ratio in our case).

D. Exploration With Extremal Optimization

Extremal optimization is inspired by the principle of evo-
lution in ecosystems, which were observed to evolve by
selecting against its worst components (or features). We draw
here an analogy with the exploration problem, by considering
every configuration to be determined by the conjunction of
its variables, P , similarly to the components (features) of the
ecosystem.

Given a configuration, EO evaluates the fitness of its vari-
ables by comparing the current objective value with that of the
neighbors, defined by the transformation set. A variable is well
fit if the configuration objective cannot improve significantly
by applying any of the transformations changing this variable.
EO focuses on improving the status of variables with low
fitness.

Since there are transformations that update several vari-
ables simultaneously, it is more convenient to work with
the transformation fitness. As opposed to variables, well-fit
transformations are those that cause higher improvement of
the objective, when applied. More precisely, given the current
configuration CurC, the fitness of transformation ti is

� = Obj(NewC) (19)

where NewC is the configuration obtained by applying ti to
CurC. To maximize the objective function, at every iteration
EO algorithm selects a transformation with high fitness and
applies it to the current configuration.

Local optima are avoided by randomizing the selection
process. The transformations are ranked according to their
fitness in descending order (the best transformations have

1578 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

Procedure 3 ExtremalOptimization

1: CurC← BestC← "Some initial solution"
2: while some improvement in the last k iterations do
3: local search: evaluate P randomly selected transforma-

tions and accept only those that improve the Obj(CurC);
4: sort all transformations in descending order of �;
5: select ti according to equation (20);
6: apply ti to CurC;
7: if Obj(CurC) > Obj(BestC) and Feasible(CurC) then

BestC← CurC;
8: μ = μ · βτ ;
9: end while

10: return BestC

lower indices in the rank). The transformations are randomly
selected by some probability distribution biased toward the
ones with highest fitness values. The power-law distribution
is a typical one for EO. For example, if the system has N

transformations ranked from 1 to N in descending order of
their fitness, the index i of the selected transformation can be
calculated as follows:

i = �N · pτ� (20)

where p is a random number obtained from a uniform distri-
bution in the interval [0, 1] and τ is the power-law exponent.

The EO algorithm is described in Procedure 3. In this
paper, we use a variation of EO called continuous extremal
optimization [48]. This variant combines EO with a local
search at the beginning of each iteration, contributing to
improve the objective value of the final solution and the speed
of the algorithm.

To select a transformation ti, all transformations are sorted
according to their fitness value (19). The power-law described
by (20) is used to randomize the selection. Finally, ti is
accepted unconditionally and BestC is updated if the objective
is better than any other configuration visited so far. Penaliza-
tion weight μ increases as the system evolves, as in the SA
algorithm. Since EO does not have the notion of temperature,
we select the following law to update μ (line 3), where β

is a constant, slightly greater than one (such as 1.01). The
selection of β has to assure that μ grows slow enough for an
efficient exploration, which implies a periodical acceptance of
infeasible configurations.

VI. Experimental Results

This section presents the experiments performed to validate
the contributions of this paper. We first start by describing the
simulation environment that has been used to compare with
the results obtained by the models.

A. Simulation Environment

A cycle-accurate simulator for hierarchical interconnect
networks has been designed [49]. It uses BookSim 2.0 [33]
as underlying infrastructure. The simulator can model the
contention of the interconnect network at flit level.

Three enhancements were made to BookSim. First, the
probabilistic traffic injection patterns were replaced by state-
machine models for cores, caches, and memory controllers.
The cores inject memory requests according to parameters

characterizing the average workload of the system. Cores
are stalled when they are waiting for responses from mem-
ory. Both in-order and out-of-order cores can be modeled.
Memories accept requests from cores and send replies after
a predefined latency.

Support for hierarchical topologies was added, thus enabling
the simulation of multilevel interconnect networks with an ar-
bitrary number of levels. Finally, models for bus and multibus
topologies were also created.

Each simulation was run long enough to obtain a 2% relative
error (the same value used for the analytical model) with
a 95% confidence degree. The 95% confidence interval is
guaranteed using the batch means method [50].

B. Validation of the Analytical Model

This section describes the experiments used to validate the
analytical performance model for CMPs. The experiments
demonstrating the efficiency of fixed-point iteration and bisec-
tion methods for resolving the cyclic dependency have been
extensively discussed in [10].

To validate the quality of the model in estimating perfor-
mance, we carry out a CMP design space exploration experi-
ment. For every configuration of the design space, we obtain
the throughput using both analytical modeling and simulation.
The search space in this experiment is made intentionally small
in order to allow an exhaustive simulation of all configurations.
With this experiment, we demonstrate that the analytical model
selects a set of best-throughput architectures very similar to
the simulator, but in much shorter time.

The parameters of the exploration space S1 for this ex-
periment are listed in Table III. The value chosen for chip
area is typical for CMP exploration studies [8], [18]. The
estimates for the area of each component are derived from
the parameters of the Intel Core 2 Duo E6400 processor [41].
We scale the core area and memory density down to 16 nm to
allow hundreds of cores within the chip area. Table IV shows
the area-performance model for cache memory.

In the studies of this section we consider three types of
cores. Fig. 8(a) plots the ideal performance of every type
of core (C1, C2, and C3) as a function of the core area.
The parameters for C2 are obtained from [38], whereas the
parameters for C1 and C3 are generated by applying Pollack’s
rule [51] to the parameters of C2. We also assume that
the smallest core, C1, is in-order (IO), while the other two
are out-of-order (OoO). For this particular experiment, only
the C2 cores are considered (the other cores will be used in
subsequent experiments).

Without loss of generality, we select two applications for
the workload model, namely, soplex and namd from SPEC
CPU2006. Fig. 8(b) depicts the miss ratio produced by these
applications as a function of cache size, and emphasizes the
difference in their cache requirements. We assume that only
one type of application is run by all cores simultaneously
and apply the strategy described in Section III-A to select
configurations optimizing the throughput for both applications.
The weights in the aggregate cost function (1) are ai = 0.5,
giving equal priority to both workloads.

A simple abstraction of a cache coherency protocol is
considered, under the following assumptions. There are three
classes of messages: requests, replies, and acks, which are
sent through dedicated physical subnetworks to favor traffic

NIKITIN et al.: ARCHITECTURAL EXPLORATION OF LARGE-SCALE HIERARCHICAL CHIP MULTIPROCESSORS 1579

Fig. 8. Exploration setup. (a) Core types. (b) Cache miss model of soplex
and namd applications.

separation [1]. The L3 directory is distributed and cores have
to access the L3 cache to retrieve data, in case of a hit, or to
redirect their requests to MC, otherwise. The invalidation flows
are not modeled, since their traffic is assumed to be minor.
Finally, the cache model is inclusive, so any miss generates
write-back traffic to the next cache level or MC.

The number of cores and cache sizes are varied to explore
the trade off between computing units and on-chip memory.
Three types of local interconnects are considered inside the
clusters: buses, uni-, and bi-directional rings. The exploration
of the mesh dimensions compromises the number of clusters
and processors per cluster. The maximum power of all con-
figurations is limited to 200 W.

Given these parameters, our framework exhaustively gen-
erates all feasible configurations in S1, producing 1262 con-
figurations in total. The simulation of all configurations takes
about 22 h, while the analytical model takes 62 s, delivering
more than a 1200× speedup. The best configuration obtained
by simulation has a throughput of 60.41 IPC. This architecture
has a 4×3 mesh (12 clusters with uni-ring interconnect, eight
cores per cluster), a total of 96 cores with 128 Kb L1, 1 Mb
L2 private caches, and 108 Mb shared L3 cache.

In Fig. 9, we sort the configurations by throughput along the
horizontal axis, as estimated by simulation. One can see that
the analytical model tracks the simulation curve with reason-
able accuracy. The analytical model underestimates contention
and, for this reason, the discrepancy with simulation increases
with higher values of contention. Configurations with similar
throughput may have different contention values, hence the
noisy behavior of the modeling curve. The average absolute
error in throughput is 4.3%, which corresponds to the error
reported by the latency model [24].

The worst-case error for all nearly-optimal configurations
does not exceed 10% (low-error zone), although it grows as
we move away from the optimum. This is explained by the
fact that architectures with balanced interconnects tend to have
higher throughput and less contention. The precision of the
analytical model drops when the contention increases, hence
the error grows for configurations which are far from the
optimum. Since the design exploration problem is aimed at
selecting configurations with the highest throughput, this loss
of precision is not critical.

What really matters for exploration are the relative, rather
than the absolute values of throughput. When exploring a huge
design space we would like to discard suboptimal architectures
and keep a moderate subset of promising solutions. These
configurations can be further simulated to select the best
one. Hence, we are interested in comparing the order of

Fig. 9. Throughput comparison for analytical model and simulation.

Fig. 10. Order comparison for analytical model and simulation.

configurations by the highest throughput, as delivered by
the analytical model and the simulation. Here is where our
technique demonstrates very accurate results: Fig. 10 shows
the comparison for the best-throughput order. To make the
picture illustrative, we only consider the 50 best configura-
tions, although this tendency is maintained for the whole set
of configurations. The horizontal axis specifies the number
N of best configurations chosen by simulation. The vertical
axis indicates the minimum number of best configurations
chosen by the analytical model that include the N best ones
by simulation. For example, the point with coordinates (1;2)
means that the best configuration by simulation is the second
best by modeling. The rightmost point on the plot (50;62)
means that the 62 best configurations by modeling include the
50 best by simulation. This is actually a very accurate result
for the analytical model, considering that more than a thousand
of configurations are compared.

We also demonstrate that estimations based on static latency
deliver a deficient order. It biases the exploration toward
configurations with large bus-based clusters, given the fact that
the long contention latency in the buses is not considered. The
point (1;25) in Fig. 10 means that the best configuration is on
the 25th position when not considering contention.

C. Exploration With Metaheuristics

In this section, we present the experiments used to validate
the quality and efficiency of metaheuristics. For this purpose,
we consider a substantially larger search space S2, containing
about 1.5 · 109 configurations. The parameters of S2 as well
as its comparison with S1 are given in Table III.

1580 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

TABLE III

Parameters of the Exploration Spaces S1and S2

TABLE IV

Cache Area-Performance Model

Fig. 11. Evolution of best discovered throughput in time.

1) Evolution of Search in Time: Fig. 11 shows the evo-
lution of the best throughput discovered by the heuristics as
the exploration evolves. To emphasize the need for intelligent
search, we compare SA and EO with a naive random best
(RB) strategy. RB simply generates random solutions, without
tracking any history, keeping only the best known result.

The exploration is performed with a maximum power
Pmax = 180W , which was found to be a reasonable value
to explore the trade off between throughput and power. The
metaheuristic parameters are α = 0.995 and τ = 1.6.

One can observe that SA discovers the optimum,2

50.40 IPC, in about 100 s (total time ≈ 160 s). EO reaches the
optimum in just 70 s (total time ≈ 130 s). However, for RB
it takes almost 300 s to find a configuration with 41.71 IPC,
21% worse than the optimum. The exhaustive exploration of
all configurations in S2 would have taken more than 100 days
using a single-core machine. These facts justify the importance
of the metaheuristics in the exploration.

2) Power-Performance Exploration: This study shows
how our model can be used to explore power-performance
trade offs. Fig. 12 depicts configurations with best throughput
(x-axis) discovered by metaheuristics with different power

2We have computed the optimum by exhaustively running the model for all
configurations in S2. A high-performance computing cluster was used, which
effectively reduced the exploration time to five days.

Fig. 12. Power-performance trade off in S2.

budgets (y-axis). We start with the power limit that delivers
highest performance (80.73 IPC at 300 W) and reduce the
budget in amounts of 20 W until we reach 140 W. This plot
illustrates the expected decrease in performance for configu-
rations with lower power budgets.

The configuration with highest performance (80.73 IPC)
has a power of 300 W. The block diagram of this configuration
is shown in Fig. 13(a) and represents a 5×4 mesh with six C2
cores and bi-ring interconnect in clusters. As we reduce the
power budget, the mesh dimensions are reduced, decreasing
the number of high-performance but power-hungry routers.
The clusters incorporate more cores, resulting into higher
latencies of memory access. Therefore, performance of con-
figurations decreases. Note that the ring-based interconnects
are preferred for budgets > 180 W.

Bi-rings deliver the best performance, however they are less
power-efficient when compared to buses. Hence, buses replace
rings as soon as the power budget drops significantly (below
180 W). The layout of the first configuration with a bus, at 180
W limit, is shown in Fig. 13(b). It has a 5×5 mesh, two C2 and
two C3 cores per cluster. With further decrease in the budget,
power is saved by either reducing the number of cores, or
by selecting more power-efficient cores (e.g., C1). Thus, the
configuration for 140 W limit contains 15 bus-based clusters
with six cores, totaling 90 cores per chip [Fig. 13(c)].

3) Comparison With Simulation: The main question this
section tries to answer is: how can we check that the accuracy
of the results given by metaheuristics is acceptable for a huge
search space? To answer this question, one would need to
simulate all configurations exhaustively. This task is intractable
due to enormous computational cost. What we propose is
to run the exploration and store the n best configurations
discovered by the search (n is a parameter). Afterward, we
simulate those n configurations and check whether the best
configuration retains its rank after simulation.

In this experiment, we run the EO algorithm with τ = 1.6.
As the search evolves, a set of n = 100 best configurations
is maintained. Upon the algorithm termination these configu-
rations are simulated. The dashed line in Fig. 14 shows the
throughput values in descending order, as calculated by the
analytical model, with the maximum being 80.73 IPC (#1) and
the minimum 71.35 IPC (#100). Then, all 100 configurations
are simulated, and for each one the throughput obtained by
simulation is plotted (solid line in Fig. 14).

The best configuration by simulation is #3, with a through-
put of 81.87 IPC. Although this configuration is assigned the

NIKITIN et al.: ARCHITECTURAL EXPLORATION OF LARGE-SCALE HIERARCHICAL CHIP MULTIPROCESSORS 1581

Fig. 13. Layouts of best configurations, discovered by exploration for some power budgets.

Fig. 14. Throughput of 100 best configurations.

third place in the order created by model, the difference in
throughput of #1 and #3 is less than 2%. The maximum error
between modeling and simulation is within 3.8%. Certain de-
viations in this experiment are inevitable due to the simplifying
assumptions of the analytical model. However, for the majority
of configurations the tendency for the throughput is to decrease
as the rank id increases, indicating a good correlation between
the simulator and the model.

VII. Conclusion

Analytical models become essential for the characterization
of CMP interconnects within vast design spaces of architec-
tural parameters. This paper shows that such models need
to incorporate the contention factor in order to adequately
estimate performance. We have presented an analytical method
to model the contention of hierarchical interconnects, by
resolving the cyclic dependency between memory latency and
traffic. Furthermore, we have shown how to efficiently reduce
the number of configurations considered during the exploration
by using metaheuristics for the combinatorial optimization.
Both contributions are indispensable to make the architectural
design space exploration of future hundred- and thousand-core
CMPs tractable. The validity and efficiency of the proposed
methodology were proved through extensive simulation and
with the examples of architectural exploration.

Acknowledgments

The authors would like to thank J. Carmona, F. Guim,
M. Kishinevsky, and U. Ogras for insightful comments and
helpful discussions.

References

[1] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, B. Liewei, J. Brown, M. Mattina, M. Chyi-Chang,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D.
Khan, F. Montenegro, J. Stickney, and J. Zook, “TILE64—Processor:
A 64-core SoC with mesh interconnect,” in Proc. Solid State Circuits,
Feb. 2008, pp. 88–98.

[2] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips, “GPU computing,” Proc. IEEE, vol. 96, no. 5,
pp. 879–899, May 2008.

[3] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, L. Jae-Wook, W. Lee, A. Ma, A. Saraf, M.
Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A.
Agarwal, “The Raw microprocessor: A computational fabric for software
circuits and general-purpose programs,” IEEE Micro, vol. 22, no. 2,
pp. 25–35, Mar. 2002.

[4] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip
networks,” in Proc. Intl. Conf. Supercomputing, 2006, pp. 187–198.

[5] R. Das, S. Eachempati, A. Mishra, V. Narayanan, and C. Das, “Design
and evaluation of a hierarchical on-chip interconnect for next-generation
CMPs,” in Proc. High Performance Comput. Arch., Feb. 2009,
pp. 175–186.

[6] S. Kang and R. Kumar, “Magellan: A search and machine learning-
based framework for fast multi-core design space exploration and
optimization,” in Proc. Design Autom. Test Eur., 2008, pp. 1432–1437.

[7] D. Sheldon, F. Vahid, and S. Lonardi, “Interactive presentation: Soft-core
processor customization using the design of experiments paradigm,” in
Proc. Design Autom. Test Eur., 2007, pp. 821–826.

[8] T. Oh, H. Lee, K. Lee, and S. Cho, “An analytical model to study optimal
area breakdown between cores and caches in a chip multiprocessor,” in
Proc. ISVLSI, May 2009, pp. 181–186.

[9] A. Cassidy, K. Yu, H. Zhou, and A. Andreou, “A high-level analytical
model for application specific CMP design exploration,” in Proc. Design
Autom. Test Eur., Mar. 2011, pp. 1–6.

[10] N. Nikitin, J. de San Pedro, J. Carmona, and J. Cortadella, “Analytical
performance modeling of hierarchical interconnect fabrics,” in Proc. Int.
Symp. Netw. Chip, May 2012, pp. 107–114.

[11] P. Bogdan and R. Marculescu, “Non-stationary traffic analysis and
its implications on multicore platform design,” Comput. Aided Design
Integr. Circuits Syst., vol. 30, pp. 508–519, Apr. 2011.

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[13] S. Boettcher and A. G. Percus, “Extremal optimization: Methods derived
from co-evolution,” in Proc. Genetic Evol. Comput. Conf., 1999, pp.
825–832.

[14] J. Huh, D. Burger, and S. W. Keckler, “Exploring the design space
of future CMPs,” in Proc. Int. Conf. Parallel Arch. Compilation Tech.,
2001, pp. 199–210.

[15] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP design space
exploration subject to physical constraints,” in Proc. High Performance
Comput. Arch., Feb. 2006, pp. 17–28.

[16] M. Monchiero, R. Canal, and A. Gonzalez, “Power/performance/thermal
design-space exploration for multicore architectures,” Parallel Distrib.
Syst., vol. 19, no. 5, pp. 666–681, May 2008.

[17] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz,
“Efficiently exploring architectural design spaces via predictive mod-
eling,” SIGARCH Comput. Arch., vol. 34, no. 5, pp. 195–206,
Oct. 2006.

[18] A. S. Cassidy and A. G. Andreou, “Beyond Amdahl’s law: An objective
function that links multiprocessor performance gains to delay and
energy,” IEEE Trans. Comp., vol. 61, no. 8, pp. 1110–1126, Aug. 2012.

[19] R. E. Matick, T. J. Heller, and M. Ignatowski, “Analytical analysis
of finite cache penalty and cycles per instruction of a multiprocessor
memory hierarchy using miss rates and queuing theory,” IBM J. Res.
Dev., vol. 45, pp. 819–842, Nov. 2001.

[20] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. Int.
Symp. Microarch., 2009, pp. 469–480.

[21] M. Papamichael, J. Hoe, and O. Mutlu, “FIST: A fast, lightweight,
FPGA-friendly packet latency estimator for NoC modeling in full-system
simulations,” in Proc. ACM/IEEE Int. Symp. Netw. Chip, May 2011,
pp. 137–144.

[22] J. Navaridas, B. Khan, S. Khan, P. Faraboschi, and M. Lujan,
“Reservation-based network-on-chip timing models for large-scale ar-
chitectural simulation,” in Proc. ACM/IEEE Int. Symp. Netw. Chip, May
2012, pp. 91–98.

1582 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

[23] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM Trans.
Comput. Syst., vol. 27, pp. 1–37, May 2009.

[24] U. Ogras, P. Bogdan, and R. Marculescu, “An analytical approach for
network-on-chip performance analysis,” Comput. Aided Design Integr.
Circuits Syst., vol. 29, pp. 2001–2013, Dec. 2010.

[25] Y. Ben-Itzhak, I. Cidon, and A. Kolodny, “Delay analysis of wormhole
based heterogeneous NoC,” in Proc. NOCS, May 2011, pp. 161–168.

[26] S. Foroutan, Y. Thonnart, R. Hersemeule, and A. Jerraya, “An analytical
method for evaluating network-on-chip performance,” in Proc. Design
Autom. Test Eur., Mar. 2010, pp. 1629–1632.

[27] P. Bogdan and R. Marculescu, “Statistical physics approaches
for network-on-chip traffic characterization,” in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synthesis, 2009, pp. 461–470.

[28] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote,
“Outstanding research problems in NOC design: System, microarchi-
tecture, and circuit perspectives,” IEEE Trans. Comput. Aided Design,
vol. 28, no. 1, pp. 3–21, Jan. 2009.

[29] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture optimiza-
tion for heterogeneous chip multiprocessors,” in Proc. Int. Conf. Parallel
Architectures Compilation Tech., 2006, pp. 23–32.

[30] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip
heterogeneous computing: Does the future include custom logic, FPGAs,
and GPGPUs?” in Proc. Int. Symp. Microarch., 2010, pp. 225–236.

[31] V. Saripalli, G. Sun, A. Mishra, Y. Xie, S. Datta, and V. Narayanan,
“Exploiting heterogeneity for energy efficiency in chip multiprocessors,”
J. Emerging Select. Topics Circuits Syst., vol. 1, no. 2, pp. 109–119, Jun.
2011.

[32] A. Hartstein, V. Srinivasan, T. Puzak, and P. Emma, “On the nature
of cache miss behavior: Is it square root of 2,” J. Instruction Level
Parallelism, vol. 10, pp. 1–22, Jun. 2008.

[33] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Mateo, CA, USA: Morgan Kaufmann, 2003.

[34] A. R. Alameldeen, “Using compression to improve chip multiprocessor
performance,” Ph.D. dissertation, Dept. Comp. Sci., Univ. Wisconsin,
Madison, WI, USA, 2006.

[35] L. Kleinrock, Queueing Systems, vol. 1. New York, NY, USA: Wiley,
1975.

[36] J. L. Hennessy and D. A. Patterson, Computer Architecture, 4th Edition:
A Quantitative Approach. San Mateo, CA, USA: Morgan Kaufmann,
2006.

[37] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations for
exploiting memory-level parallelism,” in Proc. ISCA, 2004, pp. 76–87.

[38] T. K. Prakash and L. Peng, “Performance characterization of SPEC
CPU2006 on Intel Core 2 Duo processor,” in Proc. ISAST, 2008,
pp. 36–41.

[39] CACTI. An integrated cache and memory access time, cycle time, area,
leakage, and dynamic power model [Online]. Available: http://www.hpl.
hp.com/research/cacti/

[40] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast and
accurate NoC power and area model for early-stage design space
exploration,” in Proc. Design Autom. Test Eur., Apr. 2009, pp. 423–428.

[41] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz.
(2012, Apr.). Parameters of Intel Core 2 Duo E6400 Processor at CPU
Database [Online]. Available: http://cpudb.stanford.edu/processors/1088

[42] R. Burden and D. Faires, Numerical Analysis. Pacific Grove, CA, USA:
Brooks Cole, 2010.

[43] MATLAB. The Language of Technical Computing [Online]. Available:
http://www.mathworks.com

[44] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA:
Athena Scientific, Sep. 1999.

[45] G. Wood, “The bisection method in higher dimensions,” Math. Program.,
vol. 55, Jun. 1992.

[46] D. F. Wong, H. W. Leong, and C. L. Liu, Simulated Annealing for VLSI
Design. Norwell, MA, USA: Kluwer Academic Publishers, 1988.

[47] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Germany: Springer, 2003.

[48] T. Zhou, W.-J. Bai, L.-J. Cheng, and B.-H. Wang, “Continuous extremal
optimization for Lennard-Jones clusters,” Phys. Rev. E, vol. 72, no. 1,
p. 016702, Jul. 2005.

[49] J. de San Pedro, “A simulation framework for hierarchical network-
on-chip systems,” Master’s thesis, Dept. Software, Univ. Politècnica de
Catalunya, Barcelona, Spain, 2012.

[50] G. S. Fishman, “Grouping observations in digital simulation,” Manage.
Sci., vol. 24, no. 5, pp. 510–521, Jan. 1978.

[51] F. J. Pollack, “New microarchitecture challenges in the coming
generations of CMOS process technologies,” in Proc. IEEE Micro,
1999, p. 2.

Nikita Nikitin received the B.S. and M.S. degrees in
computer science from Moscow Institute of Physics
and Technology, Moscow, Russia, in 2005 and 2007,
respectively. He received the Ph.D. degree in com-
puter engineering from the Universitat Politècnica de
Catalunya, Barcelona, Spain, in 2013.

He is currently a Researcher with the Depart-
ment of Computer and Information Science, Norwe-
gian University of Science and Technology, Trond-
heim, Norway. His current research interests in-
clude system-level design exploration, synthesis, and

physical-aware optimization of many-core on-chip systems.

Javier de San Pedro received the M.S. degree in
computer science from the Universitat Politècnica
de Catalunya, Barcelona, Spain, in 2012, where he
is currently pursuing the Ph.D. degree.

He previously focused on the simulation of chip
multiprocessors and co-authored a few research pa-
pers on architectural exploration. His current re-
search interests include the physical aspects of of
large-scale chip multiprocessor design.

Jordi Cortadella (M’88) received the M.S. and
Ph.D. degrees in computer science from the Uni-
versitat Politècnica de Catalunya, Barcelona, Spain,
in 1985 and 1987, respectively.

He is currently a Professor with the Department
of Software, Universitat Politècnica de Catalunya.
In 1988, he was a Visiting Scholar with the Uni-
versity of California, Berkeley, CA, USA. He has
co-authored numerous research papers and has been
invited to present tutorials at various conferences.
His current research interests include formal meth-

ods and computer-aided design of Very Large Scale Integration systems, with
a special emphasis on asynchronous circuits, concurrent systems, and logic
synthesis.

Dr. Cortadella has served on technical committees of several international
conferences in the field of design automation and concurrent systems. He
was a recipient of the Best Paper Awards at the International Symposium
on Advanced Research in Asynchronous Circuits and Systems in 2004, the
Design Automation Conference in 2004, and the International Conference on
Application of Concurrency to System Design in 2009. In 2003, he was the
recipient of a Distinction for the Promotion of the University Research by the
Generalitat de Catalunya.

