
SELF: Specification and design of synchronous elastic circuits

Jordi Cortadella
Universitat Polit̀ecnica de Catalunya

Barcelona, Spain

Mike Kishinevsky
Strategic CAD Lab, Intel Corp.

Hillsboro, OR, USA

Bill Grundmann
Strategic CAD Lab, Intel Corp.

Hillsboro, OR, USA

Abstract— A simple protocol for latency-insensitive design is presented.
The main features of the protocol are the efficient implementation of
elastic communication channels and the automatable design methodology.
A latch-based implementation with no storage overhead is also proposed.
With this approach, fine-granularity elasticity can be introduced at the
level of functional units (e.g. ALUs, memories). A formal specification
of the protocol is defined and several schemes for the implementation
of elasticity are discussed. The opportunities that this protocol opens for
microarchitectural design are illustrated with several examples.

I. M OTIVATION

The time discretization imposed by synchronicity forces to take
early decisions that often complicate changes at the latest stages of
the design or efficient migrations to scaled technologies. In DSM
technologies, calculating the number of cycles required to transmit
an event from a sender to a receiver is a problem that cannot be
solved until the final layout has been generated.

Some researchers advocate for the modularity and efficiency
of asynchronous circuits to devise some kind of object-oriented
methodology for complex systems. However, the CAD support for
asynchronous circuits is still in its pre-history.

The question we want to answer in this paper is: can we find
an efficient scheme that combines the modularity of asynchronous
systems with the simplicity of synchronous implementations?.

Other authors have been working into this direction. Latency-
insensitive (LI) schemes [CMSV01] were proposed to separate com-
munication from computation and make the systems insensitive to the
latencies of the computational units and channels. The implementa-
tion of LI systems is synchronous [CSV02], [CN01] and usesrelay
stationsat the interfaces between computational units.

In a different scenario, synchronous interlocked
pipelines [JKB+02] were proposed to achieve fine grained
local handshaking at the level of stages. The implementation
is conceptually similar to a discretized version of traditional
asynchronous pipelines with req/ack handshake signals.

A de-synchronization[HDGC04], [BCK+04] approach automat-
ically transforms synchronous specifications into asynchronous im-
plementations by replacing the clock network with an asynchronous
controller. The success of this paradigm will mainly depend on the
attitude of designers towards accepting asynchrony in their design
flow.

A. Contributions of the paper

The main contributions of the paper are as follows:

• A simple and efficient protocol for latency-insensitive design
and an abstract model for elastic channels and buffers.

• Demonstration of several architectures and control schemes for
the implementation of elastic buffers and channels. Implementa-
tions ofLI systems proposed in [CSV02] and interlock pipelines
in [JKB+02] are two particular solutions in this design space.

• An efficient latch-based implementation with no storage over-
head, clock-gating of all sequential elements and eager forks.

• We demonstrate that the proposed scheme can be applied on
different levels of system granularity and both in the white-
box (e.g. microprocessor design) and black-box scenarios (SoC
IPs). Contrary to [CMSV01] the elastic system before inserting
additional delays has the same sequential latency as the original
synchronous design.

• A design methodology with the automatic correct-by-
construction transformation of a synchronous system into an
elastic one and the analytical performance analysis.

• Sequential optimization of the controllers.

II. T HE STRUCTURE OF AN ELASTIC SYSTEM

Intuitively, an elastic design is a collection of elastic modules and
elastic channels. Every channel can propagate data from one module
to another. As it will be discussed in Section III, channels have control
wires implementing a handshake between the sender and the receiver.

For simplicity in the explanation, we will initially assume that
elastic modules are partitioned into combinational blocks, to do com-
putations, and sequential elements, to store and propagate the results
of the computations. In section VII we will show the generalization
to modules with fixed and variable sequential latencies.

In the low granularity elastic design, all flip-flops are replaced with
Elastic Buffers(EB). EBs can be composed ofElastic Half-Buffers,
(EHB), in the same fashion as flip-flops can be implemented as a
pair of two transparent latches with opposite polarity (master and
slave).Thus, a designer of an elastic system has a choice between
using edge-triggered or transparent elements.

Depending on the state of the associated control wires, a channel
can carry valid or invalid data items. For simplicity, we will talk
abouttokensandbubbles, respectively.

III. SPECIFICATION OF THESELF PROTOCOL

This section describes an elastic protocol calledSELF (Syn-
chronous ELastic Flow) that can be implemented with the following
features:

• Small control overhead that can be effectively used at the level
of medium-grain blocks (ALUs, shifters, register files, etc).

• Scalable in such a way that the delay overhead of the protocol
is independent from the size of the system.

• A method for design automation to transform conventional
synchronous designs into elastic systems.

Fig. 1 depicts an example of an elastic implementation for trans-
mitting data between two units. Each register has an associatedvalid
bit (V ) that keeps track of the validity of the stored data. The clock
signal is not explicitly shown and the enable signal (En) indicates
when new data is stored into the register. The chain of AND gates
manages theback-pressuregenerated by the receiver when it is not
able to accept data (Stop= 1).

The scheme in Fig 1 is not scalable due to the long combinational
path from the receiver to the sender. When the pipeline is full, i.e.
all V ’s are at 1, the delay of theStopchain becomes critical.



V V V V

Data

sender

Data

Valid

Stop

En En En En

Stop

Valid

receiver

Fig. 1. A simple control for elastic data transmission.

Valid

*

*

Se
nd

er

R
ec

ei
ve

r

Stop

Data

Valid

Se
nd

er

R
ec

ei
ve

r

Data

Valid

StopSe
nd

er

R
ec

ei
ve

r

Transfer (T) Idle (I) Retry (R)

Fig. 2. TheSELF protocol.

A. TheSELF protocol

Data transfer between a sender and a receiver is performed by
using the two control signals,Valid (V ) andStop(S), that determine
three possible states in the channel (see Fig. 2):

• Transfer (T), whenV = 1 andS = 0, indicating that the sender
is providing valid data and the receiver is accepting it.

• Idle (I), whenV = 0, indicating that the sender is not providing
any valid data.

• Retry (R), whenV = 1 and S = 1, indicating that the sender
is providing data but the receiver is not able to accept it.

The sender has apersistentbehavior when aRetrycycle is produced:
it maintains the valid data until the receiver is able to read it.

The language observed at aSELF channel can be described by
the following regular expression:

(I∗R∗T )∗ (1)

Absence of a subtraceRI implies the persistency of the behavior.
Table I shows an example of a trace committing theSELF protocol
and transmitting valuesA−D. WhenV = 0, the value at the data
bus is irrelevant (cycles 0, 6 and 7). The receiver can issue aStop
even when the sender does not send valid data (cycle 7). The sender
persistently maintains the same valid data as in the previous cycle
during cycle 3, 4 and 9.

B. Specification of elastic buffers

Figure 3 shows the interface of an elastic buffer (EB) with one
input and one output channels. The extension to multi-input/output
channels will be discussed in Section V-A. There can be different
architectures to implement anEB trading-off area, delay and power

Cycle 0 1 2 3 4 5 6 7 8 9
Data ∗ A B B B C ∗ ∗ D D
Valid 0 1 1 1 1 1 0 0 1 1
Stop 0 0 1 1 0 0 0 1 1 0
State I T R R T T I I R T

TABLE I
A TRACE COMMITTING THE SELF PROTOCOL.

O
ut

pu
t

E
nv

ir
on

m
en

t

In
pu

t

E
nv

ir
on

m
en

t D in

V in V out

D out

SoutS in

Fig. 3. Interface of anEB with one input and one output channels.

...B

rd

i+1i

wr

i+k

State variables:
B : array [0 . . .∞] of data; rd, wr : N; retry : B;

Initial state: rd = wr = 0; retry = false;
Invariant: wr ≥ rd

Combinational behavior:

Vout =

8<:
true if retry
false if rd = wr
∗ otherwise

Dout =


B[rd] if Vout

∗ otherwise
Sin = ∗

Sequential behavior:

rd+ =


rd + 1 if Vout ∧ ¬Sout

rd otherwise
retry+ = Vout ∧ Sout

wr+ =


wr + 1 if Vin ∧ ¬Sin

wr otherwise
B+[wr] = Din

Liveness properties (finite unbounded latencies):

Forward latency: G(rd 6= wr =⇒ F Vout)
Backward latency: G(¬Sout =⇒ F ¬Sin)

Fig. 4. Abstract model for anEB.

consumption. For this reason, it is convenient to have a formal speci-
fication that can be used to verify that a particular implementation is
valid refinement of the specification and can safely substitute another
implementation.

The abstract model for anEB is described in Fig. 4. Briefly, anEB
is modeled as an unbounded FIFO that commits theSELF protocol at
the input and output channels. The notationX+ is used to represent
the next-state valueof variableX. The symbol ’∗’ represents a non-
deterministic value (don’t care).

B is an infinite array that stores the items written into the buffer,
but not sent to the output yet. The variableswr and rd are the write
and read indices of the array, respectively. The valuek = wr− rd is
the current number of items stored in the buffer.

The retry variable remembers whether a transfer was attempted
in the previous cycle. Ifretry is true, the same data item as in the
previous cycle is issued andVout = true. On the other hand, if
the buffer does not contain any item (rd = wr), no transfer can be
performed (Vout = false). Finally, the valueVout = ∗ represents
the non-deterministic behavior of a buffer with finite but unbounded
delay: the items stored in the buffer will eventually be transferred to
the output after a finite unknown delay.Sin can non-deterministically
stop any data transfer at the input channel. The behavior of the indices
of the array is modeled by therd+ andwr+ equations. When a data
transfer is produced at the corresponding channel (V ∧ ¬S), the
value of the index is incremented.

Two liveness properties expressed inlinear temporal logic[Pnu77]
ensure finite response in the forward and backward directions:



D in

S out

Vout

D out

S in

Vin

D in

S in

Vin

D out
Vout
S out

M M M

Fig. 5. The sequential composition ofEBs refines anEB.

D

V

S

l

l

l

Data path

Control

D

V

S

r

r

r

Fig. 6. EB structure.

• data from theEB will eventually be sent to the output, and
• a non-stop at the output will eventually be propagated to the

input.

C. Verification ofEBs

The model in Fig. 4 has been used as specification to check
that every implementation presented in this paper is a refinement
of this model. The proofs have been performed by using the fea-
tures of refinement verification and data type reductions offered by
SMV [McM99].

Let M be an abstract model of theEB. We have also verified
that the sequential composition of twoM is a refinement ofM (see
Fig. 5). This guarantees thatEBs with specific depths can be built by
the sequential composition of any implementations ofEB that refines
M presented in this paper.

IV. I MPLEMENTATION OF ELASTIC BUFFERS

The implementation of anEB can be decomposed into two parts:
data-path and control (see Fig. 6).

A. The data-path of theEBs

Two important parameters of anEB are the forward, Lf , and
backward,Lb, latencies. TheLf is the latency of forward propagation
of the data and the Valid bit in in case the receiver is ready. The
Lb is the backward latency for the stop signals. According to the
unbounded specification of Fig. 4,Lf and Lb can be any value
greater than zero (including non-deterministic values)1. However, for
performance optimization and for the ability to distribute theEBs
across long communication channels and reuse them as sequential
wire repeaters, the following constraint should be satisfied:

Lf = Lb = 1

The capacity of anEB defines the maximal number of data items
that can be simultaneously stored inside the buffer, e.g. the capacity
of a regular flip-flop is 1. The following property holds:

Property 4.1: The capacity of an elastic buffer,C, should satisfy
the following constraint:

C ≥ Lf + Lb

Therefore, for the case of interest (Lf = Lb = 1) the minimal
possible capacity isC = 2. Hence the data path of anEB can be
constructed with two storage cells and different write/read policies,
e.g. the different number of read and write ports. Fig. 7 illustrates
different options for the construction of anEB with respect to the

1Lf = 0 andLb = 0 would reduce theEB to an elastic channel. Having
one of the latencies equal to 0 is possible in parts of the design, but does not
scale, due to the long combinational delays and combinational cycles.

A B

W1R 2

A

B
W2R 2

A B

W2R 1

W1R 1

A B

Fig. 7. Architectures for the data-path ofEBs.

numbers of write and read ports. For example, in the case ofW1R1,
writes always occur to the first cell (A), and reads always occur from
the second cell (B), while in the case ofW2R2 both cells permit
writes and reads.

The following property holds:
Property 4.2: A W1R1 EB with Lf = Lb = 1 cannot be

implemented using single-edge flip-flops controlled by the same
frequency clock as used by the environment.
Intuitively, this is because such a structure would have a latency of
two between the write operation through the input channel and the
read operation from the output channel. However, the construction of
W1R1 is possible withdouble-pumping, which would ensure that two
data moves can occur during a clock cycle of the environment. Several
implementation strategies can be considered: (1) two flops acting on
different edges of the clock, (2) two flops acting on a single edge
of a double frequency clock, and most notably, (3) simply by using
two transparent latches of different polarity, similar to a master-slave
structure, but with theindependent controlof enable signals for two
latches.

Obviously, theW1R1 structure based on transparent latches is
preferable according to most design metrics (area, delay, power).
Other structures, that are based on single edge flops, can be used
for high-level and performance modeling, formal verification (which
often do not support transparent latches) and further be replaced with
the equivalentW1R1 structures in the later design stages. Flop-based
structures can also be used in the design methodologies, which would
not allow transparent latches (e.g., FPGAs).

B. The control of theEBs

As an example, Fig. 8 depicts the FSM specifications for two of
the EBs shown in Fig. 7. The transparent latches are shown with
single boxes, labelled with the phase of the clock,L (active low) or
H (active high). The flip-flops are drawn as two transparent latches
back-to-back. To simplify the drawing the clock lines are not shown.
The signals going from the control units to the flip-flops and latches
are the enable signals. Finally, an enable signal for transparent latches
must be emitted on the opposite phase and be stable during the active
phase of the latch. Thus, theEs signal for the slave latch is emitted
on theL phase.

The FSM specifications are similar to the specification of a 2-slot
FIFO. The two versions of the FSMs are identical with respect to the
protocol of the control channels, but perform different data exchanges
in the data path. Let us consider, as an example, theW1R1 buffer.
In the Emptystate no valid data is captured in the data-path. In the
Half-full state, an output slave latch keeps valid data. In theFull
state, both latches keep valid data and theEB requests the sender to
stop.

Figure 10 shows a linear elastic system with the two types ofEBs
from Fig. 8. Different types ofEBs and controllers can be freely



L

Empty FullHalf

/E0

Vl

!Vl*Sr/E1

!Vl

!Vl*Sr

!Vl Empty

!Vl*!Sr
/Vr

Half

Vl*Sr/Em

/Sl,Vr

Full Sr

Dl

E1 Sel E0

Dr

Vr
Control

Control

Em

Dl
L H

Dr

Es

Vr

Sl Sr

Vl

Sr

Vl

Sl

!Sr/E0 /Sl,Vr,Sel

Vl*Sr/E1

/Vr

Sr

Vl*!Sr/E0

!Vl*!Sr/E0

Vl/Em,Es

!Sr/Es

Vl*!Sr/Em,Es

Fig. 8. Control specification for theW2R1 andW1R1 EBs

Vl

Sl Sr

Vr

Em Es

Vl

Sl Sr

Vr

E0E1Sel

Fig. 9. W1R1 (left) andW2R1 (right) control implementation

mixed since their channel interfaces and protocols are identical and
commit the SELF protocol. TheEB on the left uses theW2R1

data-path. An implementation for theW1R1 control shown in Fig. 9
(left) can be obtained directly from the FSM specification in Fig. 8
(bottom). By further splitting the two flip-flops into transparent
latches and retiming, one can obtain a controller composed of two
V S cells with latches of the opposite phase. The first of theseV S
cells is shown in the middle of Fig. 10. For the second cell, a modified
equivalent implementation,V S′, is shown with the clock gating of
both control latches.

V. A DVANCED ELASTIC CONTROL STRUCTURES

A. Join and fork

In general,EBs can have multiple input/output channels. This
can be supported by using elasticFork and Join control structures.
Figure 11(a) shows an implementation of a Join. The output valid
signal is only asserted when both inputs are valid. Otherwise,
the incoming valid inputs are stopped. This construction allows to
compose multiple Joins together in a tree like structure.

Figure 11(b) depicts alazy fork. The controller waits for both
receivers to be ready (stop = 0) before sending the data2. A more
efficient structure shown in Fig. 11(c), theeager fork, can send data to

2This implementation is identical to the one presented in [JKB+02].

VS VS’

Data

sender

Data

Valid

StopStop

receiver

Valid

Fig. 10. Linear elastic pipeline with three versions of controllers

Vr1

Vr2

S r1

S r2

Vl

S l

(b) Lazy fork

Vr

S r

Vl1

Vl2

S l1

S l2

(a) Join

Vr1

r1S

Vr2

S

1

1

Vl

S l

(c) Eager fork
r2

Vl

S l

(d) Optimized fork

VS

VS

E

Vr1

S r1

Vr2

S r2

Fig. 11. Controllers for elastic Join and Fork structures.

A
D

D M
u
x

Instruction
memory

M
u
x

M
u
x

A
L

U

Zero?

Branch
taken

Register
file

Data
memory

Sign
extend

M
u
x

IR6..10

IR11..15

4

IR

IF/ID ID/EX EX/MEM MEM/WB

16 32

MEM/WB.IR

PC

Fig. 12. The DLX pipeline.

each receiver independently as soon as it is ready to accept it. The two
flip-flops are required to “remember” which output channels already
received the data. This structure offers performance advantages when
the two output channels have different backpressure.

B. Optimization of elastic controllers

Many forms of optimizing the elastic control structures are possible
and some have been implemented by the authors. Local transforma-
tion of controllers have been illustrated in Fig. 10.

Combining adjacent controllers opens up other possibilities for
optimization. For example, anEHB followed by a fork is equivalent
to another eager implementation of the fork shown in Fig. 11(d).
Furthermore, constraints on the environment or the controller topol-
ogy may enable the removal of redundant latches and gates. As an
example, if the stop signal is never emitted by the receiver, the latches
and combinational gates in the backward path of Fig. 10 can be
removed and enable and forward logic can be simplified accordingly.
We have developed a tool for automatic removal of the redundant
transparent latches and flip-flops and logic gates from the elastic
control layer using the SIS logic synthesis system [SSL+92].

VI. A DESIGN EXAMPLE: THE DLX PIPELINE

We use the DLX pipeline [HP90] to illustrate how elasticity can
be used in microarchitectural design and to briefly review the design
flow. Figure 12 depicts a block diagram of a possible implementation.
It is assumed, for simplicity, that delay slots are used for handling data
hazards and no forwarding is used. The shadowed boxes represent the
registers that store the state of the microprocessor. From the control
point of view, the register file and the instruction and data memories
can be considered as combinational units.



H L H L H L H L H L H L

H L H L H L L H L H

(a)

(c)

(b)

H

L

LL H

PC IF/ID ID/EX EX/MEM MEM/WB

Fig. 13. The control layer for the DLX pipeline.

VrVl

D l D r

S rS l

EB EB
clr

Variable Latency Unit
[0−k]

go done

Fig. 14. Handling variable latency.

Figure 13(a) shows an abstraction of the pipeline in which only the
channels among units are shown. The boxes represent the registers
composed of two latches (master/slave). The diagram is equivalent for
the datapath and control layers. The join and forkSELF controllers
must be used when one unit has more than one input or output
channel, respectively.

Figures 13(b) and 13(c) show a latch-based diagram of the same
pipeline after the insertion of “bubbles”. The shadowed latches are
the ones initialized with valid data. This example illustrates that the
insertion of bubbles does not affect the functionality of the system,
although it may affect performance. Thus, the elastic architecture is
correct-by-constructionwith respect to inserting emptyEBs. This
feature is even more interesting when the bubbles can be inserted
dynamically, as it will be discussed in the next section.

The criteria for bubble insertion can be different: break long wires,
cycle time optimization, power reduction, etc. Some of these criteria
have been studied in [CSV03], [LK03] and the discussion on how to
apply them is out of the scope of this paper.

VII. H ANDLING VARIABLE LATENCY

It is possible to insert bubbles dynamically by temporarily injecting
valid = 0 and stop = 1 within any channel. Under the control of
some supervisor algorithm the dynamic bubble insertion can lead to
temporal and gradual shut-down/wake-up of computation and can
be used for trading power vs. performance at different levels of
granularity.

Since the bubble insertion preserves correctness of the behavior it
is also possible to convert some units of the system from fixed to
variable latency. For instance, one could replace the 1-cycle ALU
from the DLX pipeline by a variable-latency ALU optimized for the
typical data case (e.g. short carry propagation). Such a telescopic
ALU (cf. [BML +99]) calculating with latency 1 for the typical data
mix, and with latency 2 for the rare data mix, can lead to performance
improvement by designing the whole pipeline for a faster clock cycle,
and to area reduction by reducing the number of logic gates per
pipeline stage.

W1R1 control

W1 1 controlR

W1 1 controlR

S
V

V
S

V
S(join)

Fig. 15. Coarse-level control of functional blocks.

An exact construction of the variable latency controller depends on
the unit type (e.g. a multi-cycle combinational unit vs. a pipelined
unit) as well as on the exact protocol that the unit follows. An
example is shown in Fig. 14. The unit is assumed to have variable
latency within 0 tok cycles. The valid signal sent at the input channel,
Vl, is connected to thego input of the unit that starts the operation.
The valid output on the right channel,Vr, is asserted when the
unit completes the operation (done). Until then, the input channel
is stopped, which guarantees that the valid data value on the input
channel is not changing (cf. the construction of theV S block). When
the outputEB is enabled the unit receives a clear signal (clr). This
acknowledgement can be used to reset the internal state of the unit
and to prepare it for the next operation.

VIII. F ORMAL METHODS AND CAD TOOL SUPPORT

A. Re-using existing CAD flows

A crucial aspect in the adoption of elasticity by designers is the
capability of using existing CAD flows. As shown in Sect. VI,
the transformation of a synchronous system into an elastic system
is straightforward by simply adding the control layer committing
the protocol. The datapath remains intact, except for the fact that
flip-flops are replaced with slightly different flip-flop cells with
independent enabling for the master and slave latches (assuming
the W1R1 EBs are selected). Since the resulting design is still
synchronous, conventional CAD tools for synthesis, analysis and
simulation can be used.

B. Coarse-level elasticity

Figure 15 depicts an example on how elasticity can be inserted
between blocks that can contain any kind of sequential behavior.
In the example, the global clock is substituted by the gated clock
generated by the elastic controllers (W1R1 in this particular case).
Thus, the elastic controller commands all the registers of the block
with only one enable signal.

To handle the backpressure, “ghost” latches must be added at the
inputs of the blocks. These latches have the same polarity as the
internal input latches of the block and do not introduce any extra
latency, since they are redundant during the normal operation of the
system. In the case that the blocks can be “opened” and optimized,
the internal input latches can be simply removed.

C. Correctness by construction

In Sect. III, a formal model for the protocol and theEBs has
been presented. This model is an abstraction that can be used for
compositional verification of complex systems to guarantee correct
system behavior. In particular, Fig. 13 illustrated the insertion of



Master Slave

tokenbubble

M S

PC IF/ID ID/EX MEM/WBEX/MEM

Fig. 16. A concurrent model for elastic designs.

empty EBs into the DLX pipeline. The following property that
guarantees soundness of this transformation holds:

Property 8.1: The insertion of emptyEBs in an elastic design
preservesflow equivalence.
Informally, flow equivalence[GTL03] between two designs guaran-
tees that for every output the order ofvalid data items is the same3.
An example on what flow equivalence means is illustrated below.

Synchronous
behavior:

a1 a2 a3 a4 · · · ai · · ·
b1 b2 b3 b4 · · · bi · · ·

Elastic
behavior:

a1 τ a2 τ τ τ a3 τ a4 · · · ai · · ·
b1 τ τ b2 τ b3 b4 · · · bi · · ·

The synchronous behavior shows the trace of values observed at
two registers,a andb, at every cycle. After making the design elastic,
some don’t’ care values marked as invalid may appear (denoted as
τ ). However, the order of valid data is preserved. It is important that
the values at different registers may be shifted in time with respect
to the pure synchronous behavior without affecting the functional
correctness of the system, since any observer of both values would
synchronize the corresponding valid tokens.

While bubble insertion (emptyEBs) is correct-by-construction,
token insertion (non-emptyEBs) requires care and possibly partial
re-design similar to the standard pipelining.

D. Performance evaluation

Performance evaluation is another important aspect in system
design. Abstractions of elastic systems can be derived by using
concurrent models. In particular, the behavior of elastic systems
can be modeled by using a subclass of Petri nets calledmarked
graphs [Mur89]. As an example, Fig. 16 depicts the marked graph
model corresponding to the DLX abstraction shown in Fig. 13(a).
Each latch is modeled as a pair of complementary arcs in which
the location of the token indicates whether the latch contains valid
(token) or invalid (bubble) data. The transitions of the marked graph
represent the computations between latches (empty if the transition
is between a master and slave latch). Modeling systems with marked
graphs enables the use of an extensive set of tools for the analytical
performance analysis that can be effectively used at the earliest stages
of the design. The authors have implemented computation of the
effective cycle time for the SELF systems based on the separation
analysis method from [Cha98].

IX. CONCLUSIONS

A novel scheme for latency-insensitive design has been presented.
It combines the modularity of asynchronous design with the efficiency
of synchronous implementations.

3Other authors call this propertylatency equivalence[SBM+05].

The little overhead introduced by the implementation of the elastic
buffers makes this scheme attractive for different levels of granularity.
Additionally, the correct-by-construction paradigm of this method
enables its applicability at the latest stages of the design, when
accurate delay estimations of data transfers have been performed,
without any impact on the functionality of the system.

REFERENCES

[BCK+04] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and
C. Sotiriou. Handshake protocols for de-synchronization. InProc.
International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 149–158. IEEE Computer Society
Press, April 2004.

[BML +99] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, and
M. Poncino. Automatic synthesis of large telescopic units based
on near-minimum timed supersetting.IEEE Transactions on
Computers, 48(8):769–779, 1999.

[Cha98] Supratik Chakraborty.Polynomial-Time Techniques for Approx-
imate Timing Analysis of Asynchronous Systems. PhD thesis,
Stanford University, August 1998.

[CMSV01] L. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design.IEEE Transactions on
Computer-Aided Design, 20(9):1059–1076, September 2001.

[CN01] Tiberiu Chelcea and Steven M. Nowick. Robust interfaces
for mixed-timing systems with application to latency-insensitive
protocols. InProc. ACM/IEEE Design Automation Conference,
June 2001.

[CSV02] L.P. Carloni and A.L. Sangiovanni-Vincentelli. Coping with
latency in SoC design.IEEE Micro, Special Issue on Systems
on Chip, 22(5):12, October 2002.

[CSV03] L. Carloni and A.L. Sangiovanni-Vincentelli. Combining retim-
ing and recycling to optimize the performance of synchronous
circuits. In16th Symp. on Integrated Circuits and System Design
(SBCCI), pages 47–52, September 2003.

[GTL03] P. Le Guernic, J.-P. Talpin, and J.-Ch. Le Lann. Polychrony
for system design.Journal of Circuits, Systems and Computers,
12(3):261–304, April 2003.

[HDGC04] G.T. Hazari, M.P. Desai, A. Gupta, and S. Chakraborty. A novel
technique towards eliminating the global clock in VLSI circuits.
In Int. Conf. on VLSI Design, pages 565–570, January 2004.

[HP90] J.L. Hennessy and D. Patterson.Computer Architecture: a
Quantitative Approach. Morgan Kaufmann Publisher Inc., 1990.

[JKB+02] Hans M. Jacobson, Prabhakar N. Kudva, Pradip Bose, Peter W.
Cook, Stanley E. Schuster, Eric G. Mercer, and Chris J. My-
ers. Synchronous interlocked pipelines. InProc. International
Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 3–12, April 2002.

[LK03] R. Lu and C.-K. Koh. Performance optimization of latency in-
sensitive systems through buffer queue sizing of communication
channels. InProc. International Conf. Computer-Aided Design
(ICCAD), pages 227–231, November 2003.

[McM99] Kenneth L. McMillan. Verification of infinite state systems by
compositional model checking. InCHARME, pages 219–234,
1999.

[Mur89] T. Murata. Petri Nets: Properties, analysis and applications.
Proceedings of the IEEE, pages 541–580, April 1989.

[Pnu77] A. Pnueli. The temporal logic of programs. InProceedings of
the 18th IEEE Symposium on Foundations of Computer Science,
pages 46–57, 1977.

[SBM+05] S. Suhaib, D. Berner, D. Mathaikutty, J.-P. Talpin, and S. Shukla.
Presentation and formal verification of a family of protocols for
latency insensitive design. Technical Report 2005-02, FERMAT,
Virginia Tech, 2005.

[SSL+92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A system for sequential circuit
synthesis. Technical report, U.C. Berkeley, May 1992.


