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Abstract
A technique for the verification of concurrent paramet-

ric timed systems is presented. In the systems under study,
each action has a bounded delay where the bounds are ei-
ther constants or parameters. Given a safety property, the
analysis computes automatically a set of constraints on the
parameters sufficient to guarantee the property. The main
contribution is an innovative representation of the paramet-
ric timed state space based on bit-vectors. Experimental re-
sults from the domain of timed circuits show that this repre-
sentation improves both CPU time and memory usage with
respect to another parametric approach, convex polyhedra.

1. Introduction

The behavior of many concurrent systems depends on
their temporal characteristics. Many real-time formalisms
describe these characteristics using bounded delays (e.g.
timed transition systems [16]) or clocks whose value can
be read or reset (e.g. timed automata [2]). In these for-
malisms, the delays and clock thresholds are usually de-
fined as known constants. A more general class of mod-
els is that of parametric real-time systems [3], where these
values become parameters of the problem. In addition to
simply checking whether a temporal property is satisfied by
a parametric system, it is also possible to compute which
values of the parameters satisfy the property.

For example, let us consider the timed Petri Net in Fig-
ure 1 depicting the railroad crossing problem. The subnet
on the top describes the behavior of a train as it approaches
a crossing. The subnet on the bottom depicts the behavior
of the gate at the crossing. Each event has a delay bounded
by an interval [d, D], which captures the amount of time
elapsed since the event becomes enabled until it occurs.
Some bounds of the intervals are parameters of the prob-
lem: the time required to lower and raise the gate ([dL, DL]
and [dR, DR] respectively), the time required by the con-
troller of the gate to issue a command ([dC , DC ]) and the
time between the sensor detects the proximity of the train
until the train enters the crossing ([dE , DE ]). The following
safety property should be satisfied: “whenever the train is
inside the crossing, the gate should be closed”. The anal-
ysis described in this paper is able to discover the safety
requirement (dE > DL + DR + DC) automatically.
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Figure 1. The railroad crossing problem

Techniques used in real-time systems such as Differ-
ence Bound Matrices (DBMs) [14] cannot be used to study
parametric systems. These methods can only handle con-
straints that involve at most two variables, while in paramet-
ric systems several parameters may appear in the same con-
straint. Furthermore, many interesting problems for para-
metric timed systems are undecidable. As such, it is only
possible to address them using approximate techniques (e.g.
[1]) or semi-decision procedures (e.g. [5]).

This paper focuses on the verification of a specific class
of timed systems: timed circuits [18]. They rely on timing
constraints to ensure a correct operation. Timing constraints
limit the degree of concurrency in the circuit: some behav-
iors valid in the untimed domain become forbidden in the
timed domain. The results presented in this paper extend
the approach presented in [10]. This method, based on ab-
stract interpretation [11], discovers a very general class of
timing constraints that can be used later to:

• Efficiently check if an implementation of a circuit with
specific delays satisfies the timing constraints.

• Choose which delays should be used in the implemen-
tation in order to improve performance, while ensuring
a correct functionality.

This method does not impose a priori any restriction on
the delays of the elements of the circuit. Instead, delays are
modeled as symbols. The output timing constraints are lin-
ear inequalities describing a set of sufficient constraints on
these symbols that guarantee a correct behavior. Notice that
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Figure 2. GasP FIFO controller [22]. Each shaded area has been modeled with a different symbolic delay. On
the right, the timing constraints that ensure a correct operation of the circuit.

this kind of timing constraints is less restrictive than metric
timing constraints1 [6,7] and easier to validate than relative
timing constraints2 [19, 21]. This additional freedom can
be used to select more aggressive delays for larger perfor-
mance gains.

1.1. Motivating example: GasP FIFO controller

The approach presented in this paper is suitable for the
verification of small controllers, typically designed by hand
or by sophisticated synthesis tools, whose behavior depends
on the timing characteristics of the components, such as
asynchronous controllers (e.g. [20, 22]).

For example, Figure 2 shows a GasP FIFO controller
[22]. The environment of this controller is modeled with
Signal Transition Graphs (STG) [8]. Gates, transistors and
environment events have a delay specified as a symbol (δ).

The correctness of the circuit has been verified with
respect to three criteria: absence of short-circuits; ab-
sence of hazards; and conformance, i.e. all output events
produced by the circuit are expected by the environ-
ment. These criteria can be satisfied with the timing con-
straints that appear in Fig.2. For example, the constraint
(δ(x−) > δ(B)) models the fact that changes in the in-
put signal x must be slow enough to let the transistor
B discharge the signal le. On the other side, the con-
straint (δ(B) + δ(not) + δ(F ) > δ(x−)) establishes that
the event x− must be faster than the path defined by the
transistor B, the inverter and the pair of transistors in F .
Otherwise, there is a short-circuit as transistors B and C
may be both on.

1.2. The contribution

The main contribution of this paper is the innovative
representation for the linear timing constraints presented

1Setting the lower and upper bound delays of each element, or intro-
ducing constant delay paddings to ensure correctness.

2Restrictions on the relative order of concurrent events.

in Section 3. Instead of using linear constraints, only
unit constraints, i.e. linear constraints with coefficients
{−1, 0, +1}, are considered. This restriction is useful be-
cause most timing constraints are implicitly comparing the
delay of two paths in the circuit:

(δ1 + · · · + δi︸ ︷︷ ︸
delay(path1)

) − (δi+1 + · · · + δn︸ ︷︷ ︸
delay(path2)

) ≥ k

The encoding of unit constraints is based on bit-vectors and
it improves memory and time usage with respect to previous
representations based on convex polyhedra [10] and deci-
sion diagrams [9], although it may generate more restrictive
timing constraints. Using this new method, larger circuits
which were not analyzable previously can be successfully
studied. Furthermore, the analysis of other types of para-
metric timed systems, such as parametric timed automata,
can also benefit from this enconding.

2. Timing analysis algorithm

2.1. Overview

The timing analysis algorithm is presented using the ex-
ample in Figure 3. The input of the algorithm consists of
three elements:

• An implementation of a circuit, described as a netlist
of gates. In the case of Fig. 3(a), it is a circuit with two
inputs a and b, and one output x.

• A description of the expected interaction with the en-
vironment. Fig. 3(b) shows a Signal Transition Graph
describing how the environment changes the inputs ab
and how it expects the circuit will modify the output x.

• A correctness criterion. Typically, it is defined as con-
formance to the specification and absence of hazards.
However, any safety property can be used as the cor-
rectness criterion.
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From the first two elements, it is possible to compute the un-
timed state space of the circuit, as shown in Fig. 3(c). In this
untimed state space, failure transitions that do not satisfy
the correctness criterion can be identified. For example, the
transition x+ from the state abtx does not satisfy the crite-
rion, as the rising of x is not expected after the rising of b.
Therefore, this transition is a failure that should be avoided
by the timing constraints computed by the algorithm.

Timing analysis uses the following delay model. Wires
are considered to have zero delay. Gates and events from
the environment are given a bounded delay [d, D], where d
and D are symbols s.t (0 ≤ d ≤ D). If an event e is given
a fixed delay, i.e. (de = De), the notation δ(e) will be used
instead (as in Fig. 2). Other gates/events might fire in be-
tween, as long as the upper delay bound is not exceeded. If
the absence of hazards is a part of the correctness criterion,
any gate/event that becomes enabled must be fired before
becoming disabled (otherwise it is considered a hazard).

In order to characterize the timed behavior of the circuit,
a clock is defined for each gate and each environment event.
In our example from Fig 3, there would be a clock for the
OR gate (clockOR), another for the AND gate (clockAND)
and one clock for each event from the environment (a and
b). These clocks keep track of the amount of time that a
gate/event has been enabled. Its value is reset to zero when
it becomes enabled. When time elapses while a gate/event
is enabled, its clock must be incremented. The values of the
clocks can be represented using different formalisms, such
as convex polyhedra [12,15], a system of linear inequalities.

Fig. 3(d) shows a part of the timing analysis algorithm.
In state abtx, there are only two enabled events: the en-
vironment event b+ and the OR gate (t-). The clocks for
these events are set to zero, as the events have become en-
abled in this state. After a period of time, one of the two
events should occur. If b+ occurs before the OR gate fires,
the state becomes abtx. In this state, the following holds:

db+ ≤ clockOR ≤ Db+

as the amount of time spent firing b+ is [db+, Db+]. Also,
the upper bound of the OR gate has not been reached, as the
OR gate is still enabled. Therefore, (clockOR ≤ DOR) also
holds. In abtx the AND gate becomes enabled. Without
timing constraints, this gate can fire before the OR gate,
leading to the previously mentioned failure. This failure
can only happen if the following holds:

db+ + dAND ≤ clockOR ≤ Db+ + DAND

as the OR gate has remained enabled during the firing of
both b+ and the AND gate. Again, (clockOR ≤ DOR)
should also be satisfied.

The goal of the algorithm is the discovery of timing con-
straints among the symbolic delays that can avoid the failure
transitions. These constraints are the complement of the in-
equalities required to reach the errors. In Fig. 3(d) there

are only two constraints on the symbolic delays required to
reach the error (abstracting the clock variable). These con-
straints are:

db+ + dAND ≤ Db+ + DAND ∧
db+ + dAND ≤ DOR

The first constraint is always true as (0 ≤ db+ ≤ Db+)
and (0 ≤ dAND ≤ DAND) hold by definition. There-
fore, the complement (false) is not a valid timing con-
straint. However, the complement of the second constraint,
(db+ + dAND > DOR), is feasible. Intuitively, it means
that the circuit is correct if the OR gate is not slower than
the rising time of b followed by a change in the AND gate.

The following subsections describe the fundamental
parts of the algorithm: how the values of clocks are up-
dated when an event occurs (Section 2.2); how the values
of clocks from different paths are combined (Section 2.3);
and how the timing constraints are chosen (Section 2.4). A
detailed description of the algorithm can be found in [10].

2.2. Updating clocks values

Firing an event modifies the state of the system at two
levels: untimed and timed.

At the untimed level, the new values of signals change
the enabled/disabled condition of environment events and
gates. Events may become enabled, become disabled, re-
main enabled or remain disabled. Each of these scenarios
implies a different change to the clocks.

Enabled before t Disabled before t
Enabled after t Increase Reset to zero
Disabled after t Abstract No change

At the timed level, some time elapses between reaching
a state and firing a transition towards a new state. This
amount of time, called step, is restricted by the lower and
upper delay bounds of the enabled transitions and the val-
ues of its clocks. More precisely, this step should satisfy the
following properties:

• If the event being fired is x, then its lower and up-
per delay bounds should be fulfilled: (dx ≤ clockx +
step ≤ Dx).

• The upper delay bound of the other enabled events
should not be exceeded:(∀y : y is enabled : clocky +
step ≤ Dy).

From these principles, the algorithm to update the clocks
when an event is fired can be formulated as:

1. Define a temporary variable step.

2. Add the restrictions on step required by the event be-
ing fired and the events enabled/disabled in the previ-
ous/next state.

3. Reset the clocks of events that become enabled in the
next state: clock := 0.
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Figure 3. Example of the timing analysis algorithm: (a) Implementation of a circuit; (b) Signal Transition Graph
describing the interaction with the environment; (c) Untimed state space, highlighting a transition that does not
fulfill the specification (d) Timing constraints computed by the algorithm.

4. Increase all clocks of events that remain enabled in the
next state: clock := clock + step.

5. Existentially abstract all clocks of events that become
disabled (these clocks are no longer relevant).

6. Existentially abstract the variable step.

2.3. Combining clocks

The timing analysis computes the set of values that
clocks can take in each untimed state of the system. Com-
puting the exact set is not practical because the set may be
very complex or even infinite. Instead, an upper approxima-
tion of this set will be computed. Upper approximations are
conservative, so safety properties like the correctness crite-
rion can still be checked.

The computation of this upper approximation follows the
abstract interpretation paradigm [11]. In abstract interpre-
tation, the behavior of the system is encoded as a set of fix-
point equations that can be solved iteratively. The method
guarantees that (i) the solution can be found in a finite num-
ber of steps and (ii) the discovered solution is an upper ap-
proximation of the exact solution.

The system of fixpoint equations for an asynchronous
circuit the following: For each state, there is one equation
that defines the clock values in terms of the clock values
from the incoming transitions. For example, let TS de-
note the set of possible clock valuations in a state S and
let (TS

x→) denote the possible clock valuations after firing
an event x from an state S. Then, the system of equations
for the circuit in Figure 3 can be defined as follows:

Tabtx = InitV alues ∪ (Tabtx
x+−→)

Tabtx = (Tabtx

b+−→) ∪ (Tabtx
t−−→)

Tabtx = (Tabtx
b−−→) Tabtx = (Tabtx

x−−→)

Tabtx = (Tabtx

a−−→) Tabtx = (Tabtx

t−−→)

Tabtx = (Tabtx

b+−→) Tabtx = (Tabtx
a+−→)

Tabtx = (Tabtx
t+−→)

Intuitively, each equation defines the clock values in a state
as the union of clock values after its incoming transitions.

In the initial state, the enabled clocks are set to zero, while
the delays can have any value that satisfies the following
invariant: for each event x with delay [dx, Dx], (0 ≤ dx ≤
Dx). In the example from Figure 3 the values for clocks
and delays in the initial state are:

InitV alues = { InitClocks ∧ Invariant }
InitClocks = { clockb− = 0 }

Invariant = { (0 ≤ da+ ≤ Da+) ∧ (0 ≤ da− ≤ Da−) ∧
(0 ≤ db+ ≤ Db+) ∧ (0 ≤ db− ≤ Db−) ∧
(0 ≤ dAND ≤ DAND) ∧ (0 ≤ dOR ≤ DOR) }

A solution to these equations can be computed using for-
ward increasing [11] propagation. Initially, all states ex-
cept the initial state do not have any reachable clock values.
Then, all equations are applied, propagating some clock val-
ues from the initial state to its successors, using the algo-
rithm in Figure 4. Each iteration increases the solution in
the sense that new reachable clock values are discovered.
This computation continues until a fixpoint is reached: fur-
ther iterations do not discover new values. For instance the
computation for state abtx would proceed as follows:

T 0
abtx

= ∅
T 1
abtx

= (T 0
abtx

b−−→) = { (clockAND = 0) ∧ Invariant }
T 2
abtx

= (T 1
abtx

b−−→) = T 1
abtx

→ Fixpoint!

Figure 3(d) shows some of the timing constraints that
appear during the computation of these fixpoint equations.
For the sake of brevity, the constraints from the invariant do
not appear.

When a cycle in the state graph is translated into the
equivalent equations, cyclic dependencies among equations
may appear, e.g. T1 = f(T2) and T2 = g(T1). These de-
pendencies are solved with a special operator called widen-
ing (∇), which extrapolates the result of applying the equa-
tions of the cycle an infinite number of times. Using a
widening is required to guarantee that a solution can be
reached in a finite number of iterations. A typical widen-
ing operator removes the constraints that are modified after
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i := 0
do {

for all states S

T i+1
S := T i

S ∪ (equation for T i+1
S using T i)

if (cycle) T i+1
S := T i

S ∇ T i+1
S

i := i + 1
} while (∃S : T i+1

S 
= T i
S);

Figure 4. Abstract interpretation algorithm.

the cycle, assuming that they possibly could be modified
again after another iteration of the cycle. For instance, if
the valuation of clocks are:

T i
S = { (clock1 ≤ 0) ∧ (clock2 ≤ x) }

T i+1
S = { (clock1 ≤ 1) ∧ (clock2 ≤ x) }

the widening T i
S ∇ T i+1

S will be {clock2 ≤ x}. The
constraint (clock1 ≤ 1) is removed assuming that the next
iterations may alter it indefinitely, as in (clock1 ≤ 2)
. . . (clock1 ≤ n). Notice that the removal of constraints
may lead to a loss in precision, but the result is always an
upper approximation.

2.4. Choosing timing constraints

In each failure transition, a set of constraints required for
the reachability is computed by the timing analysis. Ab-
stracting the values of the clocks, a set of necessary con-
straints on the symbolic delays is obtained:

ineq1 ∧ ineq2 ∧ . . . ∧ ineqn

The timing constraints that avoid the failures are the com-
plement of these inequalities:

¬ineq1 ∨ ¬ineq2 ∨ . . . ∨ ¬ineqn

These disjunctions can be used directly to check whether
a set of known bounded delays satisfies the timing con-
straints. However, other uses of the timing constraints may
require a selection of specific constraints from the disjunc-
tions to present the output of the verification as a conjunc-
tion of linear inequalities. This choice must be performed
for each failure transition in the system, and it should at-
tempt to select the least restrictive timing constraints. Also,
the selected set of constraints should be non-contradictory.

Several heuristics are used to select the best timing con-
straints among the candidates. These heuristics favor the
following kinds of constraints:
• Constraints where a long sequence of delays must be

slower than a shorter path, e.g. (δx + δy + δz > δt).
• Constraints where environment events must be slower

than internal events, e.g. (δb+ > δNOT + δAND).
• Constraints that avoid several failure transitions of the

circuit. Due to the concurrency in the circuit, a single
error might be the cause of different failure transitions.
For instance, if a transition where “a+ happens before
b+” is an error, there can be several failure transitions
derived from this single conceptual error.

Currently, the timing constraints are selected automati-
cally by a backtracking procedure based on these heuristics.
This procedure computes the best k sets of consistent timing
constraints according to the heuristics. Computing all the
possible combinations would also be possible but very inef-
ficient. This procedure is executed after the timing analysis,
and it does not require repeating the timing analysis phase.
In contrast, some related approaches [24] select one timing
constraint at a time and repeat the timing analysis phase to
detect new timing constraints.

3. Parameters in timing analysis

3.1. Related work

In order to study properties in a timed system, the com-
putation of the possible valuations of clocks is required. As
considering each clock valuation individually is not feasi-
ble, sets of clock valuation are analyzed collectively. For
example, zones [14] are sets of clock valuations that can be
characterized by constraints of the form (c1 ≤ clki ≤ c2)
and (clki− clkj ≤ ci). In parametric timed systems, sets of
clock valuations similar to zones are difficult to represent, as
more than two variables may appear in the same constraint.
Some formalisms like convex polyhedra [15], Presburger
arithmetics [4] and Parametric Difference Bound Matrices
[5] can be used to represent these parametric zones. A hy-
brid approach presented in [24] uses linear programming to
compute conservative constant bounds on the values of the
parameters, reducing the problem to regular timing analysis
at the expense of computing metric timing constrants. Fi-
nally, other approaches are based on decision diagrams [23].
All these approaches have a very high complexity, which is
very sensitive to the number of parameters.

This section presents a formalism to represent parametric
timed zones called octahedra [9]. An octahedron is a spe-
cial class of convex polyhedra, defined by linear inequal-
ities with the following restriction: all coefficients except
the constant term must be unitary, i.e. {−1, 0, +1}. The
original implementation of octahedra was based on a de-
cision diagram data structure called Octahedron Decision
Diagram (OhDD). This implementation reduces the mem-
ory usage with respect to convex polyhedra; this reduction
is achieved by sacrificing precision in the analysis, and also
leads to large increase in CPU time. In this paper, a new
set-based implementation is proposed, taking advantage of
the time and memory efficiency of bit-vectors. Again, the
improvements in time and memory will require a loss of
precision with respect to convex polyhedra.

3.2. Unit inequalities

Definition 1 (Unit inequality) A unit inequality over a set
of variables X is a constraint of the form∑

x∈P

x − ∑
y∈N

y ≥ k
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where P and N are sets of variables (P ⊆ X, N ⊆ X) and
k is the constant term (k ∈ �). Any unit inequality can be
characterized by the triple 〈P, N, k〉.

Example: The constraint (x+z−y ≥ 2) is a unit inequal-
ity than can be characterized as the triple 〈{x, z}, {y}, 2〉.
Only well-formed unit inequalities where the sets P and N
are disjoint will be considered. For instance, (a+b−b−d ≥
3) can be rewritten into the equivalent (a − d ≥ 3).

In the remaining of the paper, we will only consider unit
inequalities over non-negative values (∀xi ∈ X : xi ≥ 0).
This restriction can be imposed because the variables of X
model clocks and delays which cannot have negative values.
Using this restriction will allow convenient definitions and
an efficient implementation of the underlying operations.

Definition 2 (Implication) A unit inequality A =
〈PA, NA, kA〉 implies a unit inequality B = 〈PB, NB, kB〉,
noted A → B, if B is true whenever A is true. If both
inequalities are defined over non-negative variables, then
A implies B if and only if PA ⊆ PB , NB ⊆ NA and
kA ≥ kB .

Example: The inequality (x − y − z ≥ 7) implies the
inequality (x + t − y ≥ 0) because

(x − y − z ≥ 7) ∧ (z ≥ 0) → (x − y ≥ 0)
(x − y ≥ 0) ∧ (t ≥ 0) → (x + t − y ≥ 0)

However, the inequality (x + t − y ≥ 0) does not imply
(y ≥ 3), for example.

Definition 3 (Trivial and infeasible inequalities) A unit
inequality I = 〈PI , NI , kI〉 over a set of non-negative
variables is trivial (always true) if and only if NI = ∅ and
k ≤ 0. Conversely, it is infeasible (always false) if and only
if PI = ∅ and k > 0.

Example: The unit inequality (−x ≥ 2) is infeasible
because (x ≥ 0). On the other side, a unit inequality like
(x + y ≥ −1) will always be true as (x ≥ 0) and (y ≥ 0)
imply (x + y ≥ 0).
Definition 4 (Unit combination) The unit combination of
two unit inequalities A and B (noted A⊕B) is the inequal-
ity obtained by adding the left-hand sides and the right-
hand sides of A and B, e.g.

∑
x∈PA

x − ∑
y∈NA

y ≥ kA

⊕ ∑
x∈PB

x − ∑
y∈NB

y ≥ kB

∑
x∈PA

x +
∑

x∈PB

x − ∑
y∈NA

y − ∑
y∈NB

y ≥ kA + kB

A ⊕ B will be a unit inequality iff (PA ∩ PB = ∅) and
(NA ∩ NB = ∅). However, if A and B are defined over
non-negative values, the restriction (NA ∩ NB = ∅) is
not required (see the example below). If A ⊕ B is a
unit inequality, then it can be characterized as the triple
〈(PA\NB)∪(PB \NA), (NA\PB)∪(NB \PA), kA+kB〉.
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Figure 5. A graphical example of the semantics of
a strongest common constraint

Example: The unit combination is a restricted version
of the widely used linear combination of inequalities. For
instance, the unit combination of inequalities (x + w − t ≥
2) and (t−y−z ≥ 4) is (x+w−y−z ≥ 6). In some cases,
the unit combination will lead to non-unit inequalities. For
example, the unit combination of (x + y ≥ 2) and (x −
z ≥ 0) is the inequality (2x + y − z ≥ 2), which is not a
unit inequality. When the non-unit coefficient is negative,
the non-negativity of the variables can be used to remove
the non-unit coefficient. For example, the unit combination
of (x − y ≥ 2) and (t + w − y ≥ 7) is the inequality
(x + t + w − 2y ≥ 9) which is not unit. However, as
(y ≥ 0):

x + t + w − 2y ≥ 9
⊕ y ≥ 0
x + t + w − y ≥ 9

a unit inequality can be obtained. Notice that this strategy
cannot be used when the non-unit coefficient is positive, as
a constraint of the form (−y ≥ 0) is not available.

Definition 5 (Strongest common constraint) The stron-
gest common constraint of two unit inequalities A and B
(noted as A � B) is another inequality C such that:
• (A → C) ∧ (B → C)
• ∀ D : (A → D ∧ B → D) ⇒ (C → D).

If the two unit inequalities A = 〈PA, NA, kA〉 and B =
〈PB , NB, kB〉 are defined over non-negative variables, then
the strongest common constraint C can be defined as C =
〈PA ∪ PB, NA ∩ NB, min(kA, kB)〉.

Example: Given (x ≥ 3) and (y ≥ 2), the strongest
common constraint is (x + y ≥ 2), as:

(x ≥ 3) ∧ (y ≥ 0) → (x + y ≥ 2)
(y ≥ 2) ∧ (x ≥ 0) → (x + y ≥ 2)

The values represented by these constraints can be seen
graphically in Figure 5. Notice that A�B does not compute
a exact union of the inequalities, but an upper approxima-
tion of that union similar to a convex hull. Contrary to a
convex hull, the resulting area can be described using only
unit inequalities. This notion will be extended in the follow-
ing section as the octahedral hull. Another small example
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is (x+ z− y− t ≥ 9) and (y + z− t ≥ 5), whose strongest
common constraint is (x + y + z − t ≥ 5).

3.3. Octahedra

An octahedron is the set of solutions to a system of unit
inequalities over non-negative variables. Octahedra can be
seen as a restricted case of convex polyhedra (system of lin-
ear inequalities) or as a generalization of octagons [17] (unit
inequalities with at most two variables). Figure 6(a) shows
an example of a system of unit inequalities and the octahe-
dron it represents.

Several operations required in the timing analysis al-
gorithm can be defined over octahedra like a test of in-
clusion, the intersection or the widening (see Fig. 6(b)-
(c)). Defining the union of octahedra is more complex,
as octahedra are convex objects and therefore not closed
under union. The result of the union operation is an up-
per approximation: the smallest octahedra that includes the
union. This approximation is similar to the convex hull
(C-hull) used in convex polyhedra, and it is called octa-
hedral hull (O-hull). Figure 7 shows an example of this
approximation. Notice that the convex hull is always an
upper approximation of the union, and the octahedral hull
is always an upper approximation of the convex hull, i.e.
A ∪ B ⊆ C-hull(A, B) ⊆ O-hull(A, B).

A more detailed presentation of octahedra and its opera-
tions, together with proofs, can be found in [9]. Also in [9],
an implementation based on decision diagrams is proposed.
The next section presents another representation, based on
bit-vectors, with a much better time/memory trade-off.

3.4. Implementation of Octahedra

An octahedron will be implemented as a finite list of unit
inequalities, where each inequality 〈P, N, k〉 is represented
by two bit-vectors (encoding P and N respectively) plus
the constant term. All transformations and tests that operate
with inequalities will use the set-based definitions from Ta-
ble ??. These definitions allow an efficient implementation
using the bit-wise operations of bit-vectors.

The operations required in the timing analysis are: union
(∪), intersection (∩), test for inclusion (⊆), widening (∇),
unit assignment of a variable and existential quantification
of a variable. In octahedra, these operations can be defined
as transformations of the system of unit inequalities.

Most of these operations require a satisfiability test:
given a unit inequality I = 〈PI , NI , kI〉 and an octahedron
O, does O satisfy I? A possible implementation of this test
is the following:

1. If I is trivial, then O satisfies I .

2. If I is infeasible, then O does not satisfy I .

3. Let NO be the union of all the sets N from the inequal-
ities in O. If NI 
⊆ NO then O does not satisfy I .

4. If the inequality I is implied by any inequality from O,
then O satisfies I .

5. If the inequality I is implied by a unit combination of
up to n inequalities from O, then O satisfies I .

The intuitive meaning of step 3 is that a constraint with a
variable that does not appear in any inequality of O will not
be satisfied by O. For instance, (x − y − z ≥ 4) cannot be
satisfied by (x ≥ 4)∧ (t ≥ 4) as there are no restrictions on
y or z. However, this shortcut can only be used for variables
appearing with a negative coefficient (N ) in the inequality.
The non-negativity of variables allows us to add new vari-
ables with a positive coefficient. For example, (x + y ≥ 4)
is satisfied by (y ≥ 8) even though the variable x does not
appear explicitly, as the constraint (x ≥ 0) is implicit.

Step 5 also deserves additional comments. If all the com-
binations of constraints in O are considered, then the satis-
fiability test is exact. However, considering all possible unit
combinations is too computationally expensive. Instead, a
good trade-off between precision and efficiency is achieved
when n = 2, i.e. only the combinations of pairs of inequal-
ities of O are considered. As a consequence, the satisfiabil-
ity test will be approximate, while still being conservative:
some satisfied constraints might be reported as unsatisfied,
but not the other way around. In the timing analysis al-
gorithm, this approximation may cause false negatives (in-
ability to find sufficient timing constraints, even if they ex-
ist) but it will never cause false positives (timing constraints
will always avoid all errors).

Intersection. The intersection of two octahedra
A = B ∩ C is defined by the system of unit inequalities
with all the inequalities from A and all the inequalities from
B. This is the only exact operation on octahedra.

Union. The union of two octahedra A ∪ B can be ap-
proximated as a system of unit inequalities that contains:

• The inequalities from A satisfied by B.

• The inequalities from B satisfied by A.

• The strongest common constraint of all pairs of in-
equalities from A and B.

Test of inclusion. An octahedra A is included in an oc-
tahedron B (A ⊆ B) if all the inequalities of B are satisfied
by A. Notice that the approximation in the satisfiability test
might lead to false negatives in the test of inclusion.

Widening. Widening is the extrapolation operator used
to guarantee the termination of the analysis in the presence
of loops [11]. The widening of two octahedra A∇B, where
A is the initial property and B is the property after one iter-
ation, extrapolates the result of future iterations based on A
and B. The widening A∇B can be defined as:

• If all the constraints in A and B have a constant term
k = 0, then A ∪ B is a widening operator.

• Otherwise, A∇B contains all the inequalities from A
that are also satisfied by B.
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A = {(4 ≥ x ≥ 2) ∧ (7 ≥ y ≥ 4)}
B = {(5 ≥ x ≥ 1) ∧ (3 ≥ y ≥ 1)}

C-hull = {(5 ≥ x ≥ 1) ∧ (7 ≥ y ≥ 1) ∧
(4x − y ≥ 1) ∧ (−4x − y ≥ −23)}

O-hull = {(5 ≥ x ≥ 1) ∧ (7 ≥ y ≥ 1) ∧
(x − y ≥ 5) ∧ (−x − y ≥ −11)}

Figure 7. Two upper approximations of the union: convex hull (C-hull) and octahedral hull (O-hull)

Unit assignment. Assignments of the form x′ := x + y
are required in order to perform the timing analysis. After
the assignment, we know that (x ≥ y) and we also know
that the old value of x can be characterized as x′−y. There-
fore, the assignment should add the constraint (x ≥ y) to
the system of inequalities of O, and replace each instance of
x in the system of inequalities by x − y. This replacement
is implemented in the following way:
• Inequalities where x 
∈ P and x 
∈ N are not modified.
• The unit combinations of all pairs of inequalities A⊕B

of O such that x ∈ PA and x ∈ NB are added to
the system of linear inequalities. This step attempts
to minimize the loss of precision: some inequalities
might already contain x and y so replacing x by x − y
could produce a non-unit inequality. Considering these
unit combinations reduces the loss of information.

• The inequalities I = 〈PI , NI , kI〉 where x ∈ PI are
transformed according to y:

– If y ∈ PI , then P ′
I = PI \ {y}.

– If y ∈ NI , then I is not modified.
– Otherwise, N ′

I = NI ∪ {y}.
• The inequalities I = 〈PI , NI , kI〉 where x ∈ NI are

transformed according to y:
– If y ∈ PI , then I is not modified.
– If y ∈ NI , then N ′

I = NI \ {y}.
– Otherwise, P ′

I = PI ∪ {y}.
After these changes, the constraint (x ≥ y) can be added to
the system of inequalities.

Existential quantification. The quantification of a vari-
able x will attempt to remove all the known restrictions on
x while keeping as much information as possible on the rest
of variables. This procedure is implemented using a process
called Fourier-Motzkin elimination [13].

Inequalities where x 
∈ P and x 
∈ N are unaffected
by this procedure. Regarding the remaining inequalities,
Fourier-Motzkin proceeds by selecting one constraint where
x ∈ P and one constraint where x ∈ N . The unit combi-
nation of these constraints will not contain variable x; if the

combination is a unit inequality, it is added to the system
of inequalities of O. The final step is the removal of the
inequalities of O that do not hold after the quantification.
All inequalities where x ∈ P must be removed, while those
with x ∈ N can be just modified so that N ′ = N \ {x}.
Again, the different behavior of P and N appears from the
implicit constraint (x ≥ 0) in O.

Figures 6(b) and (c) and Figure 7 show graphical exam-
ples of some of the operations on octahedra.

4. Experimental results

4.1. Asynchronous pipeline

In order to compare the results with the previous ap-
proaches, an example with a high degree of concurrency
will be studied. The example is an asynchronous pipeline
with a variable number of stages. The environment in-
troduces data elements into the pipeline at a fixed rate
[dIN , DIN ]. Each stage i of the pipeline performs some
computation on the data which takes some time [di, Di].
After this computation, the stage i passes the data to the
next stage i + 1, provided that it is empty. Otherwise, the
data remains in stage i until stage i + 1 becomes empty. Fi-
nally, the environment reads the data from the last stage, a
process that requires [dOUT , DOUT ] time units.

The correctness criterion for this example is that the en-
vironment should not be slowed down by the pipeline. More
formally, this translates into the following safety property:
“whenever the environment sends new data to the pipeline,
the first stage of the pipeline must be empty”. Figure 8
shows an example of a pipeline with 4 stages, together with
states that satisfy or fail to satisfy the safety property. A
set of timing constraints that is sufficient to guarantee this
safety property is the following:

dIN > D1 ∧ . . . ∧ dIN > DN ∧ dIN > DOUT

These constraints are equivalent to:

dIN > max(D1, . . . , DN , DOUT )
which means that the pipeline works correctly if the gener-
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Figure 8. (a) Asynchronous pipeline with N=4
stages, (b) correct behavior and (c) incorrect be-
havior. Dots represent data elements.

ation of data elements from the environment is slower than
the slowest stage of the pipeline.

These timing constraints can be computed using our ap-
proach for pipelines with a different number of stages. Ta-
ble 2 compares the results obtained with the bit-vector rep-
resentation of octahedra to those obtained the decision dia-
gram representation (OhDD) and convex polyhedra. The
bit-vector representation offers better memory and CPU
time results than convex polyhedra. Remarkably, octahe-
dra represented with bit-vectors can be used to analyze
pipelines with state spaces one order of magnitude larger
than those analyzable with convex polyhedra. When com-
pared to OhDD, bit-vectors are only inferior in terms of
memory for the larger examples, but the much inferior CPU
times outweighs this disadvantage.

4.2. Asynchronous controllers

Several asynchronous controllers from the literature have
also been verified with our timing analysis algorithm. Like
the GasP example, these circuits are described as a netlist of
gates, plus an environment specified with a STG. Gate and
environment delays are described with a symbolic interval
[d, D], while wire delay is assumed to be negligible.

Figure 9 shows an asynchronous controller with the gen-
erated timing constraints for correctness. The highlighted
areas in the implementation correspond to the first timing
constraint. Notice that timing constraints enforce that a path
in the circuit must be slower than another path.

Table 1 shows the experimental results for the verifica-
tion of these controllers. For each circuit, the table describes
the size of the circuit (number of signals and gates), the size
of the STG that describes the interaction with the environ-
ment, the size of the untimed state space and the number
of symbolic delays (Σ) in the example. Regarding the solu-
tion, polyhedra and octahedra implemented with bit-vectors
are compared using two criteria: efficiency and precision.

With respect to efficiency, CPU time and peak memory
usage are listed. The comparison is favorable to octahedra
both in terms of memory and time. There is one example in
the table with better CPU time results for convex polyhedra:
the last entry, converta. In this specific circuit, timing con-
straints with non-unit coefficients are very useful, as some
failures are reached when a specific path in the circuit is
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(D4 + D5 < d1 + d6 + 2) ∧ (D1 < d2 + d7 + 4)

Figure 9. The nowick example.
traversed more than once. Even in this scenario, sufficient
unit timing constraints can be found. Moreover, the analysis
with convex polyhedra must use additional approximations
for this example, as it generates too many constraints and
runs out of memory (as it happens in the desynch example),
while octahedra do not have this problem.

Quantifying the precision of the two approaches is not
simple. Obviously, the timing constraints computed by con-
vex polyhedra will be more precise and, therefore, less re-
strictive. Two indicators have been measured to quantify
the difference of precision: the number of constraints re-
quired for correctness (C) and the number of states that sat-
isfy these constraints (Sat). Intuitively, the second value
hints the degree of restriction imposed by each set of con-
straints. In five examples, both approaches compute exactly
the same constraints (noted as = in the Table). For the other
examples, the constraints computed by octahedra are more
restrictive. However, the collected data point out that the
quality of the constraints computed by both methods is com-
parable: there are not many additional constraints, nor they
are overly restrictive.

5. Conclusions
A technique for the generation of gate-level timing con-

straints in asynchronous circuits has been presented. Gate
delays are parameters of the problem and the output tim-
ing constraints describe the linear inequalities that should
be satisfied by the parameters to ensure correctness. Ex-
perimental results have shown that the kind of linear con-
straints that appear when analyzing timed circuits are repre-
sented more efficiently using octahedra than convex polyhe-
dra. Still, the complexity is very dependent on the number
of symbolic delays. Future work will attempt to improve the
current representation so that it scales up for larger circuits.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H.
Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems. Theoretical Com-
puter Science, pages 3–34, 1995.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theo-
retical Computer Science, 126(2):183–235, 1994.

Proceedings of the Fifth International Conference on Application of Concurrency to System Design (ACSD’05) 
1550-4808/05 $ 20.00 IEEE



Table 1. Experimental results for the asynchronous controllers
Example Circuit STG State space Σ Octahedra - This paper Convex polyhedra

Wires Gates Places Trans States Trans C Sat CPU Mem C Sat CPU Mem
nowick 10 7 19 14 60 119 20 = = 0.0s 2.6Mb 2 45 0.8s 83Mb

gasp-fifo 9 7 10 8 66 209 12 11 22 4.1s 3.9Mb 10 28 8.1s 87Mb
sbuf-read-ctl 13 10 19 16 74 157 14 = = 0.1s 2.9Mb 4 52 1.2s 83Mb

rcv-setup 9 6 14 15 72 187 12 = = 0.4s 3.0Mb 8 49 2.1s 83Mb
alloc-outbound 15 11 21 22 82 161 19 4 61 0.1s 2.9Mb 3 62 1.3s 83Mb

ebergen 11 9 16 14 83 188 5 = = 0.1s 2.9Mb 5 61 1,3s 83Mb
D flip-flop 6 4 16 22 146 448 8 = = 1.6s 4.4Mb 7 112 5.8s 85Mb

mp-forward-pkt 13 10 24 16 194 574 12 8 82 0.3s 3.8Mb 6 89 1.9s 85Mb
chu133 12 9 17 14 288 1082 7 5 56 1.3s 5.5Mb 3 61 1.3s 85Mb
desynch 11 8 12 8 304 934 13 6 50 8.0s 4.4Mb O/M O/M O/M O/M
converta 14 12 16 14 396 1341 14 13 180 138s 15.0Mb 13 188 20.4s 92Mb

Table 2. Comparison of CPU time and peak memory in the asynchronous pipeline example.
Pipeline example Convex Polyhedra [10] OhDD [9] This paper

Stages Σ States Trans CPU Mem CPU Mem CPU Mem
2 8 36 88 0s 64Mb 1s 5Mb 0s 1Mb
3 10 108 312 2s 67Mb 17s 8Mb 2s 3Mb
4 12 324 1080 13s 79Mb 249s 39Mb 12s 9Mb
5 14 972 3672 259s 147Mb 1h5min 57Mb 123s 48Mb
6 16 2916 12312 O/M O/M 39h44min 83Mb 18min 245Mb
7 18 8748 40824 O/M O/M T/O T/O 2h6min 1183Mb

Σ = number of symbolic delays O/M = out of memory (> 1.5Gb) T/O = timeout (> 48h)

[3] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-
time reasoning. In ACM Symposium on Theory of Comput-
ing, pages 592–601, 1993.

[4] T. Amon, G. Borriello, T. Hu, and J. Liu. Symbolic timing
verification of timing diagrams using Presburger formulas.
In Proc. Design Automation Conf., pages 226–231, 1997.

[5] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic tech-
niques for parametric reasoning about counter and clock sys-
tems. In Computer Aided Verification, pages 419–434, 2000.

[6] W. J. Belluomini and C. J. Myers. Timed circuit verifica-
tion using TEL structures. IEEE Transactions on Comput-
ers, 20(1):129–146, 2001.

[7] S. Chakraborty, D. L. Dill, and K. Y. Yun. Min-max timing
analysis and an application to asynchronous circuits. Pro-
ceedings of the IEEE, 87(2):332–346, 1999.

[8] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-
theoretic specifications. PhD thesis, MIT, June 1987.
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