
Correct-by-construction Microarchitectural Pipelining
Timothy Kam Michael Kishinevsky Jordi Cortadella Marc Galceran-Oms

Strategic CAD Labs, Intel Corp., Hillsboro, Oregon, USA Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract— This paper presents a method for correct-by-construction
microarchitectural pipelining that handles cyclic systems with dependen-
cies between iterations. Our method combines previously known bypass
and retiming transformations with a few transformations valid only for
elastic systems with early evaluation (namely, empty FIFO insertion,
FIFO capacity sizing, insertion of anti-tokens, and introducing early
evaluation multiplexors). By converting the design to a synchronous
elastic form and then applying this extended set of transformations, one
can pipeline a functional specification with an automatically generated
distributed controller that implements stalling logic resolving data haz-
ards off the critical path of the design. We have developed an interactive
toolkit for exploring elastic microarchitectural transformations. The
method is illustrated by pipelining a few simple examples of instruction
set architecture ISA specifications.

I. INTRODUCTION

Pipelining is a powerful microarchitecture transformation for en-
hancing system throughput without requiring massive replication
of hardware [9]. The key impediment to processor performance is
pipeline stalling due to data dependency between instructions. The
concept of bypass was used as early as [2] and was leveraged for
CAD in [8], [20], [15], [19]. Beyond bypassing, dynamic stalling via
pipeline interlocks is crucial for improving throughput.

Standard bypass and retiming cannot pipeline cyclic systems. A
cyclic system writes to a storage array (e.g. register file or memory)
with values functionally dependent on previous reads from the
array. Specifications for ISAs, embedded systems, and most RTLs
are cyclic in nature. To pipeline cyclic systems, we extend known
transformations to synchronous elastic systems and add new correct-
by-construction transformations valid for such systems. Synchronous
Elastic Systems (aka Latency Tolerant Systems) [3], [4], [12], [6], [5]
can tolerate latency changes in computations and communications. In
such systems it is possible to insert empty FIFOs, increase capacity
of FIFOs, introduce early enabling of multiplexor nodes, and insert
anti-tokens to kill irrelevant activities.

Our contribution. This paper presents a novel method for correct-
by-construction pipelining of cyclic systems with dependencies be-
tween loop iterations. Pipelining is achieved by applying the above
listed elastic transformations in addition to standard bypass and
retiming. While our method of pipelining relies on previously
published elastic transformations (inserting empty FIFOs and early
enabling), we demonstrated for the first time how to combine those
transformations to achieve optimal pipelining with low overhead
distributed controller. For enabling this pipelining method, we also
introduced a new transformation, an insertion of anti-tokens onto an
elastic channel, and showed that this transformation is required to
enable optimal retiming. Without this transformation, the resulting
delay-optimal pipelined structure would contain a lot of redundancy
in the data-path. Furthermore we demonstrated that, somewhat un-
expectedly, capacity sizing of FIFOs is required during retiming
moves in elastic systems: without up-sizing of elastic FIFOs, some
retiming moves may lead to deadlocks or performance degradation.
We show that elastic microarchitectural pipelining can resolve all data
hazards found in in-order processors [9]. Instead of implementing a
monolithic stall controller that often resides on a critical path, the
generated elastic control is fully distributed alongside the datapath

0

1

wdrd
rd

=

ra

RW RW

wa ra

wd

wa

wd’

wa’
=

Fig. 1. Bypass transformation for RF or memory

pipeline. While manual crafting of an interlocked pipeline with
bypass network and stall controller can be laborious and error prone,
our formal method enables user-guided pipeline construction which is
provably-correct and as compact as a manual design for our testcases.

In this section we review the classical concepts of pipelining and
bypassing, and motivate our work through an example. Dynamic
stalling is important for implementing efficient pipelines and correct
handling of data hazards. Pipeline stalling is implemented through
synchronous elastic systems in Section II. Different pipelines can be
naturally constructed by applying trusted transformations, including
new elastic transformations proposed in Section III and elastic
versions of standard transforms in Section IV. Beside establishing be-
havoral equivalence between synchronous elastic systems, Section V
shows how their performance can be analyzed and optimized. Two ex-
amples of elastic pipelining are given in Section VI. Pipelining results
are presented with our experimental assumptions and environment.
Related work is referenced in Section VII before we conclude.

A. Facts about pipelining and bypass

For acyclic systems, combinational and sequential logic can be
pipelined via retiming. Flip-flops for bit signals or registers for
data vectors can be introduced at the primary outputs, and retimed
backward to pipeline the datapath. For cyclic systems, naive insertion
of registers may not be correct. E.g. in Figure 3(a) if a register
is inserted between F1 and F2, the new cyclic system will take
one extra cycle to generate results before write-back. So the new
system is not sequential equivalent to Figure 3(a) unless back-to-
back instructions are not data dependent.

The shaded boxes in subsequent figures represent registers. Tokens
inside registers denote valid data. A register with no token represents
a bubble (i.e. invalid data). For control abstraction, a register file
denoted by RF can be viewed as a monolithic register always having
a token. Write select logic W writes data wd at address wa. Data
rd is read via read multiplexor logic R for address ra.

Bypass (Figure 1) transforms a register file (or any storage array)
to another microarchitecture which though more complicated has a
path between the input and the output, independent of the RF latency,
when read and write occur at the same address. Specifically, if the
read address ra is the same as the previous write address wd′, read
data rd is forwarded directly from the previous data written wd′.
As initial condition, the write data register wd′ should be initialized
according to the initial value of the write address register wa′

init as
wd′

init = RF orig
init [wa′

init].
Starting from a register file in a closed loop with a combination

logic F , Figure 2 shows the result of applying bypass transformation
three times recursively to the RF in Figure 3(a). The loop involving

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 434

== =

0

1

0

1

1

rd
0

F=...F2(F1)

RW

RF

wa ra

wd

Fig. 2. Bypass of register file in loop with logic

F1 F2

F1 F2

F1 F2

RW

RF

F1 F2

α

1−α
0

1

wd’

rd

0

1

rd

wd

0

1

wd’

rd

(d)

(b)(a)

(c)

RW

RF

RW

RF

wd rd

ra

RW

RF

ra ra

rawa

wawa

wa

= =

=

Fig. 3. (a) 1-instruction ISA model; (b) RF bypassed; (c) Retimed pipeline;
(d) Bubble inserted

the register file has three additional registers on it so the access of
register file has effectively been pipelined. However, Figure 2 still has
a loop (marked bold) involving the F logic with only one register.
Thus the function F must be computed within one clock cycle and
we cannot pipeline this further. Standard bypass cannot pipeline
logic in closed loop with register file or memory.

B. Motivating example

We illustrate our transformation techniques using simple ISA spec-
ifications because they are clear and well understandable examples.
Within one cycle, an ISA model fetches and executes an arithmetic
(reg-reg) instruction or a memory instruction. Figure 3(a) shows a
model computing RF [wa] = F2(F1(RF [ra])) at every clock cycle.
A couple more complete cyclic examples will be given in Section VI.

Ignoring the delays of register read and write, the cycle time of the
basic architecture (Figure 3(a)) is determined by the sum of delays
of F1 and F2. Assuming the two delays are the same (D), the
cycle time is 2D. The bypass transformation (given by Figure 1)
incorporates new registers in the circuit and extra logic (multiplexor
and comparator) to determine whether the data must be read from
the register file or from the bypass. By retiming the new register, the
circuit can be transformed from Figure 3(b) to Figure 3(c). Still, the
cycle time is determined by a critical path that starts from the input
of F2 and ends at the output of F1 through the bypass. If we assume
that the multiplexor delay is negligible, the cycle time is still 2D.

Here is where elasticity comes into play. A bubble can be inserted
at the bypass input of the multiplexor, as shown in Figure 3(d). Now
the cycle time is D. However, the bubble also has a negative impact
on the performance. The throughput (processed data per cycle) is
determined by the cycle containing two registers and one token. This
results in processing only one data item every 2D time units. Hence
the effective performance does not improve.

By using early evaluation [5], elastic pipelines attain optimal
average-case performance by dynamically selecting bypasses using
early enabling multiplexors. When no data hazards are present (i.e.

RW

RF

F1 F2 F1

wd
0

1

rd

(a)

−1

0

1

rd

(b)

RW

RF

F2

wd

wa ra wa ra

0 1

= =

Fig. 4. Simulation cases: (a) ra 6= wa′; (b) ra = wa′

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.4 0.6 0.8 1

Sp
ee

d−
up

Bypass Probability
 0.2

Fig. 5. Speed-up in Figure 3(d)

ra 6= wa′), the multiplexor propagates the data read from RF and
an anti-token is created in the bypass path to kill the forwarded data,
as shown in Figure 4(a). However, when a bypass must be selected,
the multiplexor cannot be enabled, and the system will stall to wait
for the bypass data, as shown in Figure 4(b).

The exact throughput of the system (computed using Markov
chains) is 1/(1+α), where α is the bypass probability (data hazard).
The speed-up of the pipelined microarchitecture is 2/(1+α). Figure 5
shows the relationship between the bypass probability and the speed-
up in this example.

II. SYNCHRONOUS ELASTIC SYSTEMS

Specification of synchronous systems typically rely on precise
knowledge on latencies (i.e. delays as measured in number of clock
cycles) of different computations. Such knowledge that is often re-
quired from early stages in design specifications may make the design
process highly inflexible to possible changes in communication and
computation latencies or delays. In addition, it makes design specifi-
cations highly non-modular, complicates the system description, and
changes to the specification.

Latency insensitive (aka synchronous elastic) systems [3], [4], [12],
[6], [5] are tolerant to changes in latency of computation and commu-
nication components. Such systems enable design of functional units
optimized for the most frequent cases offering new design trade-offs,
simplifies layout convergence, and provides a practical method to
separate timing and functionality.

A synchronous elastic system is similar to a conventional circuit,
but every data item in it has an associated valid bit. Every functional
unit can also issue a stop bit to stall the activity of the preceding
units when it is not ready to receive information. These control
bits implement a synchronous version of the handshake protocol
optimized in comparison with an asynchronous request/acknowledge
protocol thanks to the presence of the clock reference.

For the purpose of this paper an elastic system can be viewed as
a composition of combinational blocks, register files or memories,
and elastic FIFOs connected by channels (a bundle of data wires
with a (valid,stop) handshake pair) 1. The basic case of an elastic
FIFO, called elastic buffer, EB, has a capacity to store two pieces
of information and a latency of one clock cycle. EBs in an elastic

1The pipelining technique we present in this paper is valid for any
implementation of latency-tolerant systems that support early evaluation.

435

system replace standard synchronous registers. In the absence of a
backpressure stop request, an EB acts like a normal register. In the
presence of stop, however it can store the second data item, unlike a
regular register. [6] demonstrates that an EB can be implemented as
a standard master-slave register with a negligible overhead of adding
a simple handshake controller.

The latency of propagating data and valid bit between two blocks
of the system in the forward direction is equal to the latency of
propagating stop backpressure signals in the backward direction 2.
This makes the systems highly scalable as no global stall is required
to propagate combinationally within the large design area.

[6] describes an algorithm for converting any synchronous system
into a transfer equivalent elastic system 3. This conversion is done by
replacing registers with EBs and augmenting the original design with
a handshake controller whose structure corresponds to a data-flow
between registers of the original design. The handshake controller
is partitioned into small basic blocks: valid-stop control, joins, and
forks. A combination of a join, followed by a valid-stop controller,
followed by a fork can be associated with each EB.

In this paper we will only draw the datapath of the elastic systems.
E.g. Figure 9(a) represents an elastic version of the synchronous
bypass system shown in Figure 2 after removing two redundant by-
passes (because of the simplifying assumption that only back-to-back
dependencies can occur in the design) and splitting the functional
block F into three sub-blocks. We do not draw the details of the
control (e.g. no valid and stop wires are shown). However we project
some control information on the datapath. In particular, we draw EBs
as boxes. The box is empty if the EB contains no valid information.
The box is marked with a dot, if the corresponding EB contains one
token of valid information. In the hardware implementation, presence
and absence of a token of information is encoded as a value of the
valid bit inside the corresponding to the EB handshake controller.

A. Early evaluation

[3], [4], [6] rely on lazy evaluation: the computation is initiated
only when all input data are available. This requirement is often too
strict. Consider a multiplexor with the following behavior:

z = if s then a else b.

Early evaluation can be applied if, for instance, s and a are available
and the value of s is true. In that case, the result z = a can be
produced without waiting for b to arrive and the value of b can be
discarded when it arrives at the multiplexor.

In implementing early evaluation, care must be taken in preventing
the spurious enabling of functional units when the unrequired inputs
arrive later than the completion of the computation. A possible
technique is the use of negative tokens, also called anti-tokens.
Each time an early evaluation occurs, an anti-token is generated at
every unrequired input so that when it meets the positive token they
annihilate. The anti-tokens can be passive, waiting for the positive
token to arrive and accumulated by the up-down counters on the
input channels of the early evaluation nodes, or active, traveling
in the backward direction to meet the positive token. Based on
this idea, [5] describes a method of implementing elastic systems
with early evaluation (both in the active and the passive form). A
similar technique has been proposed for implementing preemption in
asynchronous pipelines [1]. [18] suggests a method for implementing

2This is not a requirement: elastic systems can also be built with different
latencies between the forward and backward propagations.

3Transfer equivalence is discussed in Section V-C. Intuitively it is an
equivalence of sequences of valid data.

early evaluation based on the analysis of the don’t care conditions of
the datapath logic. Their implementation is of a passive form.

The pipelining described in this paper strongly rely on the idea
of the early evaluation (in either passive or active form). All bypass
multiplexors (e.g. in Figure 9(a)) are implemented as early evaluation
nodes. As a result of early evaluation, the bypass multiplexor in
the datapath (even if the latency of the bypass network is long) in
absence of dependencies initiates the next iteration of the computation
immediately without waiting for the delayed bypass network. In the
presence of dependencies as will be explained in Section VI the
multiplexor waits until the result of the previous instruction reaches
the end of the pipeline before issuing the next instruction. This
implements a fully distributed stall controller.

Note that the choice of system nodes to be implemented as early
evaluation can be done based on system performance analysis. If there
is no significant benefit in implementing a particular multiplexor as
an early evaluation node, it can be implemented as a simpler late
evaluation node.

III. NEW ELASTIC TRANSFORMS

Figure 6 shows some of the correct-by-construction transforma-
tions that are valid for synchronous elastic systems (but not for
ordinary synchronous systems) that are used in this paper. The
left box shows four kernel transformations. The box on the right
illustrates two derivative transformations that can be obtained by
applying sequences of kernel transformations. The transformation
rules from top to bottom are as follows:

BI: Bubble insertion. A characteristic property of elastic system is
tolerance to latency changes (for formal proof see [16]). It is therefore
possible to insert and remove an empty EB on any channel of an
elastic system.

AI: Anti-token insertion. An empty EB (and hence a channel)
is equivalent to an EB with one token of information followed by
an anti-token, indeed 0 = 1 − 1. The anti-token injector denoted
by −1 is implemented by a modulo-2 up-down counter placed on
the elastic channel (without changing the latency of the channel).
When the first valid token of information flows across the channel
the anti-token kills it by setting a valid bit to false. The anti-token
simultaneously disappears (the counter resets to 0). The counter sets
back to −1 each time an anti-token is issued by the receiver of the
channel and the following two conditions hold: (a) there is no token to
kill and (b) no backward propagation possible (either because this is
a “passive” implementation without backward propagation, or no free
capacity for accommodating the anti-token exists upfront, or blocking
occurred due to synchronizing anti-tokens at multiple channels).

AG: Anti-token grouping. Summing up anti-tokens is
done by combining modulo-(i+1) and modulo-(j+1) counters
into a single modulo-(i+j+1) counter.

AC: Adding capacity. Similar to the BI rule, one can always insert
an empty elastic FIFO with capacity to hold k items. Moreover, if
the latency of the FIFO is equal to 0 (implementable as a FIFO
with a bypass from write to read), the performance of the design
as measured by the throughput stays the same. Even the effective
cycle, a realistic measure of the performance for an elastic design
(see Section V-A), does not change, provided that the combinational
bypass logic of the FIFO is off the critical combinational path. The
rhombus in Figure 6 stands for a 0-latency FIFO with capacity k. If
the channel already contained some FIFO (perhaps with some tokens
of information) one can always add an extra capacity by appending
to the FIFO’s input another 0-latency FIFO. These two FIFOs can
of course be merged into a single FIFO with bigger capacity. This

436

AC
=

AI

=
AG
= −j

BI

= −1

−(i+j)−i

−1−1

AR
= −1−1

MAI

=
k

−k...
k

Fig. 6. Elastic transforms

=
FR BR
=

i

i

2

i

2

i

i

i
2

2
F F F F

Fig. 7. Elastic retiming moves

operation therefore can be viewed as sizing of elastic FIFOs. Note
that increasing capacity of the FIFOs preserves correctness of the
system, while increasing capacity without increasing the latency also
preserves system performance.

AR: Anti-token retiming. In general retiming of anti-tokens
should be performed with care, else it may kill an information token
incorrectly after retiming. However, in this situation the left anti-token
can be safely retimed forward across the EB with a token, since this
token is intended to be killed by the second anti-token anyway. This
transformation (left to right) can be derived by first applying AI *
BI right to left to remove the second pair of (token, anti-token) and
then applying BI * AI left to right to the intermediate wire between
the token and the anti-token.

MAI: Multiple anti-token insertion. This rule is obtained by
applying BI * AI * AR * AG recursively k times.

IV. ELASTIC VERSIONS OF STANDARD

TRANSFORMS

Well known transformations valid for synchronous systems such as
block splitting and merging, bypass and retiming can also be applied
to elastic systems, although some of them require modifications. We
will call them: SP: split, MR: merge, EBP: elastic bypass, FR:
forward retiming, and BR: backward retiming.

Partitioning of a combinational block into a few sub-blocks is valid
for synchronous elastic systems. Of course, a reverse operation -
block concatenate - works the same way as well.

A. Elastic bypass

A register file or memory block in an elastic system can be seen
by the elastic controller as a block with a token of information
(as indicated by the dot inside RF in Figure 9(a)). Elastic bypass
transform works the same way as a standard bypass shown in
Figure 1 with two exceptions: (a) Registers in the write data and
write address channels are replaced with EBs containing a single
token of information. (b) The bypass multiplexors are implemented
as early evaluation nodes in elastic control.

B. Retiming of elastic buffers

Retiming [17] is a traditional technique for sequential optimization
for area or delay. It moves registers across combinational blocks
preserving functionality. If the registers are initialized, care must be
taken to preserve the correct initial state of the system. If initial
values are ignored, then initial behavior of the system may not be
preserved. In this case retiming is called steady state retiming. There
are efficient methods to separate the steady state retiming from the
initial state computation: first retiming is done ignoring the initial
state, and then the initial state is computed after retiming. In rare

cases, some extra logic must be inserted to compute the initial state
correctly. In this paper we take the same view on retiming of datapath
registers assuming that, if needed, the correct initial state can be
computed after the steady state retiming.

Figure 7 illustrates forward and backward retiming moves for
elastic systems. Two differences with respect to regular synchronous
systems should be noticed.

• Elastic version of retiming moves EBs instead of registers. In
addition to a datapath register an EB also contains an initialized
controller that marks the number of tokens of information that
fills the EB. For a legal retiming move of a pair of EBs across
a combinational node, it is required that both EBs be marked
with the same number of tokens, i, where i ∈ {0, 1, 2} for the
primitive EB with capacity 2.

• Moving EB’s implies moving capacity. In general, reducing
channel capacity may lead to performance degradation and even
to deadlocks as there might be lack of room in elastic buffers to
make progress. E.g., after the FR move the capacity of input
channels are reduced from 2 to 0 (similarly for a BR). As
Theorem 1.(A) states this may lead to a deadlock. To guarantee
that the deadlock does not occur, following Theorem 1.(B) we
conservatively add capacity of 2 to the channels where the
EBs have been placed before the retiming. This corresponds to
applying a correct-by-construction transformation AC(2) before
the retiming move and then performing a move.

Theorem 1: Let S be an elastic system without deadlocks, and S′

be another elastic system obtained from S by a forward or backward
retiming move.

(A) If capacity of channels from which the EBs are moved out is
not changed as part of the retiming move, than S′ may deadlock.

(B) If capacity of channels from which the EBs are moved out are
increased by the capacity of EBs (by 2 in case of simple EBs) as
shown in Figure 7, then S′ has no deadlocks.
To prove the theorem we first prove that the elastic system with early
evaluation deadlocks if and only if the corresponding elastic system
with late evaluation does (this follows from [13]). We then construct
marked graphs that precisely model behavior of the elastic systems
before and after the retiming move and analyze the critical cycles in
the graphs. To avoid deadlocks the sum of marking on every cycle
should be positive. The construction of marked graphs follows [6], but
needs to be extended to handle negative marking and combinational
blocks. The detailed proof is omitted due to the lack of space.

V. ANALYSIS AND OPTIMIZATION

In this section we will informally discuss a few theoretical topics
that underlines the pipelining method. Section V-A explains by exam-
ple how to measure the performance of elastic systems. Section V-
B explains the method of capacity sizing that as a postprocessing
minimizes sizes of the conservatively upsized during retiming elastic
FIFOs preserving performance. Finally, Section V-C presents the
notion of behavioral equivalence in the context of elastic circuits.
This equalence is preserved during all the transformations described
in this paper.

A. Performance analysis

To introduce metrics used for performance analysis of elastic sys-
tems, let us consider a simple example shown in Figure 8. A retiming
graph of the original system is shown in Figure 8(a). The weight on
a node represents the propagation delay of the combinational block
while the edge weight indicates the number of registers along the
interconnection between two blocks. The system computes one value

437

i
1

h
1

g f

1 1a b c

e d

h g f

a b c

e d

i

4

9

10 9

3

8 6

4

4

i
1

h
1

g f

a b c

e d

1

1

1

1

4

9

10 9

3 4 9

44

8 6 10 9 8 6

4

4

3

(c)(b)(a)

Fig. 8. (a) Initial retiming graph, (b) Min-delay retiming configuration, (c)
Retiming and BI.

every clock cycle. Hence its throughput is equal to 1. The critical
path goes through the combinational nodes c, d, e, a and is equal to
21 time units. This value of 21 is called a system cycle time. After
minimal delay retiming as shown in Figure 8(b) the system cycle
time is reduced to 16.

Figure 8(c) shows an elastic version of the system, in which all
registers are replaced with EBs holding one token of information
and the EBs are appropriately retimed. In addition one empty EB is
inserted between nodes f and g. The cycle time of the graph is equal
to 12 time units while the throughput, i.e the number of valid data
items processed on average at every cycle, is equal to 4

5
.

In our example, throughput is determined by the bottom cycle in
which a bubble has been inserted (4 dots in 5 registers). The effective
cycle time of this system configuration is equal to 15 time units
(15 = 12 · 5

4
). It means that a dot item is processed every 15 time

units on average, compared to the 16 time units of the min delay
retimed original design.

The effective throughput = 1/effective cycle time corresponds to the
number of instructions per time unit as used in computer architecture.
The goal of pipelining is to minimize the effective cycle time or
equivalently to maximize the effective throughput.

B. Capacity sizing

Retiming moves with capacity sizing guarantees that after every
move a correct elastic system is obtained. However, as a result of
applying conservative increase in channel capacity some channels
can get oversized. To optimize their sizes we formulate and solve a
buffer sizing problem by encoding it as an ILP optimization problem.

As discussed above an elastic system can be modeled by a Timed
Marked Graph (TMG) extended to handle negative tokens and early
evaluation. Arcs of this graph model both forward flow of information
and the backpressure. The forward arcs model forward propagation
of valid tokens of information through the system, while the back-
pressure arcs model the availability of buffers to store more tokens.

The sketch of the buffer sizing algorithm is as follows.
Find best possible throughput for late evaluation. Drop the

backward arcs from the TMG, which corresponds to a system with
infinite capacities on all channels. View all nodes as late evaluation.
Find optimal throughput, ΘL, of the late evaluation version of the
system by one of the well known fast algorithms (e.g. [14]).

Find minimal buffer sizes for late evaluation. Given
an original TMG with feedback arcs formulate a buffer sizing
problem. This problem is similar to the one described for regular
MGs in [13] (for finding an optimal throughput) with the following
changes: the throughput is assumed to be fixed to ΘL, new integer
variables are added to model capacity of channels. The objective
function is to minimize the sum of capacities. This problem returns
the minimal buffer sizes to achieve fastest possible throughput ΘL

assuming the system has no early evaluation nodes. These sizes also
guarantees absence of a deadlock in the system with early evaluation.

Tune sizes for early evaluation. Add back early evaluation nodes
and formulate a problem similar to the problem in step 2, with

the following differences: for early evaluation nodes use formulation
from [13]. The objective function is a weighted sum of the maximal
throughput and minimal buffer sizes. Additional constraints added on
buffer sizes to insure that they would not go below the sizes found
in step 2 (this guarantees no deadlock in the solution). These extra
constraints are required since the formulation from [13] computes the
upper bound of the throughput for systems with early evaluation, not
an exact throughput value.

C. Behavioral equivalence

Two sequential designs are said to be behaviorally-
equivalent if they produce the same output stream when they
receive identical input streams. In classical sequential designs, this
equivalence holds cycle-by-cycle, i.e. two designs are equivalent
if after receiving the same stream x0x1 . . . xk, they produce an
identical output stream z0z1 . . . zk, where xi and zi represent the
input and output values at cycle i, respectively.

With elastic designs, the time dimension is decoupled from the
calculations. The cycle-by-cycle equivalence may not hold. Instead,
sparse streams of data with void cycles (bubbles) are produced.

Synchronous
behavior:

a1 a2 a3 a4 · · · ak · · ·
b1 b2 b3 b4 · · · bk · · ·

Elastic
behavior:

a1 ◦ a2 ◦ ◦ ◦ a3 ◦ a4 · · · ak · · ·
b1 ◦ ◦ b2 ◦ b3 b4 · · · bk · · ·

The above diagram illustrates the behavior of a design with two
internal registers, a and b. At each cycle, a different value is stored
at the registers. In the elastic behavior, the symbol ◦ denotes those
cycles with non-valid data (bubbles).

For elastic designs, more general notions of equivalence have
been defined in a few slightly different frameworks: latency equiv-
alence [3], flow equivalence [7], or transfer equivalence [16]. These
equivalences guarantee that for every output of the design, the order
of valid data items is the same as in the conventional synchronous
design when equivalent input streams are applied. I.e., the elastic and
non-elastic behaviors are indistinguishable after hiding the bubbles
in the traces of values. This notion of equivalence enables a larger
spectrum of transformations for design optimization.

E.g., the sequence of data items at the rd wire of the functional
specification in Figure 3(a) is behaviorally equivalent to the sequence
of valid data items at rd of Figure 9(c).

VI. PIPELINING EXAMPLES

Continuing on our single instruction example from Figure 2, let
us assume for illustrative purpose that operands are either forwarded
from the previous instruction (i.e. 1-cycle dependency), or read from
the register file after write-backs. As a result, its two innermost bypass
paths in Figure 2 (not in bold) are never mux-selected by the middle
2 comparators. So they can be removed to give Figure 9(a).

Our objective is to structurally pipeline the function F by register
retiming. However no register is available on the (bold) bypass path
of Figure 9(a) for retiming. As argued from Section I-A, standard
bypass cannot introduce registers inside a loop. Though the theory
of elastic systems allows insertion of empty EBs on this bypass, this
won’t help either because legal retiming requires EBs with identical
number of tokens.

By applying BI * AI twice, two EBs and two anti-tokens can be
inserted on the bypass path as shown in Figure 9(b). Now, we can
retime 2 EBs from each fanout path of the fork node. As a result, we
have successfully isolated three EBs for backward retiming to pipeline

438

wd
rd

0

1

F1
RW

RF

ra
=

F2 F3

wa

(a)

wd
rd

0

1

F1

−2

W

RF

R

wa ra =

F2 F3

(b)

rd
0

1

F1 F2 F3

wd’’’
2 RW

RF

−2

=wa ra
(c)

Fig. 9. (a) Bypass assuming 1-cycle dependency; (b) Insertion of anti-tokens
and EBs; (c) After retiming and capacity sizing

F into three stages. These retiming moves result in the pipeline shown
in Figure 9(c).

With Figure 9(c), every instruction executes in three cycles. With-
out data dependency (i.e. ra 6= wa′), the mux will read operand rd
from the register file and the next instruction can start right away.
For the case of back-to-back dependent instructions, the bypass will
be selected because ra = wa′. In this case 2 anti-tokens injected
will cancel with 2 tokens from the data pipe, thus stalling the
pipeline for 2 cycles (bubbles). Stalling by the minimum number of
bubbles is accomplished by the distributed elastic controller. Similar
to Figure 3(d), our cycle time can be further decreased by inserting
an empty EB on the bypass if F is further partitioned. This step will
be omitted from our figures.

Elastic version of retiming increases the capacity of the channel in
bold on Figure 9(c). This ensures system liveness by allowing tokens
to propagate pass the fork node. Global capacity sizing can also be
performed for optimal capacities.

A. From ISA to pipelined microarchitecture

Figure 10(a) shows an ISA spec of four instructions (ADD, MUL,
LD and ST). The dual-port register file RF and the memory M
are the only state holding blocks. IFD fetches instructions and
decodes opcode and register addresses. ADD and MUL are 2-input
arithmetic functions. AG generates memory addresses for LD and ST
instructions. The results are selected by the bottom-right mux for RF
write-back on the next cycle. This model is more complicated than
previous ones in that opcode drives not only the mux select signal
but also controls the enabling of individual read and write ports on
RF and M . The definition of bypass transformation is extended for
multi-ported storage arrays with read and write enable signals, which
is detailed as the logical expression written next to each bypass mux.

Elastic bypass transform is applied three times on RF to construct
a complete bypass network in Figure 10(b), to supply register
operands for any given data dependent instructions. Furthermore three
EBs are retimed backwards through the mux to form three pipeline
stages along the execution datapaths.

Figure 10(b) is not throughput efficient because every instruction
still takes exactly three cycles to execute. Thus the right mux is
duplicated three times to feed each bypass path independently so that

re1

IFD MUL

AG

ADD

oc

ra1

re2

ra2

A

M

L

sd

se

wa

we

sa

le

M

RF

la

ld

wd

rd1

rd2

IFD MUL1

AG

ADD

MUL2 MUL3

oc

rd
1

rd
2

ra1

re2

ra2

re1

A

M

L

sd

se

wa

we

sa

le

M

ra
1=

w
a’

’’·
re

1·
w

e’
’’

ra
1=

w
a’

’·r
e1

·w
e’

’

ra
1=

w
a’

·re
1·

w
e’

ra
2=

w
a’

’’·
re

2·
w

e’
’’

ra
2=

w
a’

’·r
e2

·w
e’

’

ra
2=

w
a’

·re
2·

w
e’

RF

la

0

1

0

1

0

1

0

1

0

1

0

1

ld

wd’’’

-2 -1

IFD MUL1

AG

ADD

MUL2 MUL3

oc

rd
1

rd
2

ra1

re2

ra2

re1

A

M

L

sd

se

wa

we

sa

le

M

ra
1=

w
a’

’’·
re

1·
w

e’
’’

ra
1=

w
a’

’·r
e1

·w
e’

’

ra
1=

w
a’

·re
1·

w
e’

ra
2=

w
a’

’’·
re

2·
w

e’
’’

ra
2=

w
a’

’·r
e2

·w
e’

’

ra
2=

w
a’

·re
2·

w
e’

RF

la

0

1

0

1

0

1

0

1

0

1

0

1

ld

-2

A

M

L-1
wd’’’

-1

-1

-1

-2

-2

-2
A

M

L

IFD MUL1

AG

ADD

MUL2 MUL3

oc

rd
1

rd
2

A

M

L

ra1

re2

ra2

re1

A

M

L

sd

se

wa

we

sa

le

M

ra
1=

w
a’

’’·
re

1·
w

e’
’’

ra
1=

w
a’

’·r
e1

·w
e’

’

ra
1=

w
a’

·re
1·

w
e’

ra
2=

w
a’

’’·
re

2·
w

e’
’’

ra
2=

w
a’

’·r
e2

·w
e’

’

ra
2=

w
a’

·re
2·

w
e’

RF

la

0

1

0

1

0

1

0

1

0

1

0

1

ld

2

1

-2

A

M

L
-1

wd’’’

Fig. 10. Top to bottom: (a) Elastic model of reduced instruction set; (b)
After 3 elastic bypassing and retiming; (c) Duplicate mux, move anti-tokens
across; (d) Final pipelined after transformations

439

anti-tokens, representing stalls, can move upstream across the muxes
as shown in Figure 10(c). As a result, anti-tokens can cancel tokens
in some EBs which improves the throughput of the pipeline. Extra
capacities are assigned to some channel as part of retime transforms.

Our final elastic pipeline in Figure 10(d) is optimal in the sense that
its distributed elastic controller automatically inserts the minimum
number of stall bubbles for every combinations of instructions and
data dependencies. Furthermore the pipeline structure is irredundant
in that no execution unit nor register is duplicated.

B. Tool kit and flow

We have developed a toolkit to explore elastic transformations.
This toolkit, named MAREX, can perform any of the described
transformations on a microarchitectural graph.

MAREX represents microarchitectural graphs as a set of nodes that
perform computations in the system, and a set of edges that represent
elastic channels connecting elastic modules. Edges and nodes can be
labelled with attributes, e.g., an edge may contain an EB, and a node
has an associated delay and can be marked as an early evaluation
node. Input channels of the early-evaluation nodes are labelled with
probabilities. MAREX core is implemented in C++ to ensure high
performance of the toolkit. The front-end is implemented in python
to provide more flexibile and interactive environment.

Transformations are performed one at a time via MAREX python
front-end. Thus, pipelining can be performed either through an
interactive environment or through a python script. Transformations
can be efficiently applied to a microarchitectural graph of arbitrary
size, as they affect only a small sub-graph, typically a single channel
or a set of channels connected to a single node. It is possible to
undo and redo any sequence of transformations. These features enable
better exploration of the design space. Furthermore, it is possible to
test the performance of a system after every transformations and to
display the corresponding graph, such that the user can see the effects
of the transformation.

A synchronous elastic system may not perform meaningful compu-
tation during every cycle. Hence, an important metric is the amount of
computation actually done: the average number of instructions done
per cycle (aka throughput). To compute the throughput of a graph,
we generate an elastic controller in Verilog, and then simulate with
random stimuli.

Throughput of our models are dependent on the instruction stream,
generated according to probabilities specified. Specifically, the four
instructions are assumed an equal probability of occurrence and
data-dependencies between them are assume to be evenly distributed
between 1 to 16 cycles.

Performance (i.e. effective throughput) defined as the
number of instructions executed per unit time is given by
instructions/cycle

time/cycle
= throughput

cycle time
. Cycle time is dependent on the

technology library and the microarchitecture. For our experiments,
the relative delays of mux, EB, RF , M , AG, ADD, and MUL
are assumed to be 1 : 2 : 4 : 10 : 10 : 10 : 100. Based on these
component delays, the cycle time can be computed for a specific
pipeline microarchitecture.

C. Experimental results

The original ISA model in Figure 10(a) represents our base case
with pipeline depth = 0 along the x-axis of Figure 11. On the y-
axis, performance of different pipelines are compared against this
normalized non-pipelined case. The bottommost curve is obtained
by naive pipelining of Figure 10(a) by inserting empty EBs into its
elastic model. Every instruction is stalled by the same depth number

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10
Pipeline Depth

Pe
rf

or
m

an
ce

 (
in

st
r/t

im
e)

ADD only
ADD, MUL, LD, ST
MUL only
stall via empty buffers

Fig. 11. Performance results of elastic pipelines

Depth : 0 2 4 6 8 10
Control : 78 224 360 496 644 780
Datapath : 4224 5824 7616 9920 12736 16064
Percentage : 1.85% 3.85% 4.73% 5% 5.06% 4.86%

TABLE I
AREA SIZE (IN NO. OF LATCHES) OF ELASTIC CONTROLLER COMPARED TO

THE AREA OF A 64-BIT DATAPATH

of cycles. Though correct, its performance decreases monotonically
with pipeline depth due to pipeline overhead.

The upper three curves correspond to the elastic bypassed pipeline
of Figure 10(d) under different mixes of instructions. The top curve
assumes a stream of ADDs while the third assumes MUL instructions
only. As the adder has one tenth the delay of the multiplier, ADD
can be computed within one stage for short pipelines. Thus its
performance improves linearly with pipeline depth for depth ≤ 7.
In contrast, MUL is the slowest instruction. Leveraging the bypass
network and early evaluation of multiplexors, results from most
instructions are available sooner for subsequent instructions, instead
of waiting for MUL. The second curve assumes equal probability
between the four instructions, and its performance lies in between
the fastest case for ADDs and the slowest case for MULs.

Distributed controller for elastic bypass stalls the elastic pipeline
only when necessary and by the minimum number of bubbles, thus
attains high performance. As tradeoff in deciding pipeline depth, on
the one hand the deeper pipeline partitions delay into more stages
resulting in shorter cycle time, but on the other hand it is penalized
more severely by data hazards. Under our experimental assumptions
the optimal pipeline depth of 7 was found delivering 2.4 to 5.7
performance speedup for different benchmarks.

The implementation of the control part of an EB, which manages
the valid/stop handshakes and generates the enabling signals for the
latches in the datapath, has a negligible delay overhead. The number
of gates from the output of an EB to the input of another EB is
tipically small. Thus, the arrival time of these enabling signals should
not have an impact on the cycle time. Furthermore, the area overhead
for the elastic controller is not very large as shown in Table I. Given a
64-bit datapath, the number of latches used for the elastic controller
is around 5% of the number of latches used in the datapath. The
growth of both the size of the datapath and the size of the control
is close to linear as a function of the pipeline depth, although the
sizes of 0-latency FIFOs and the anti-token counters increase as the
number of stages times the number of bypasses. For example for the
depth of 3 both sizes are equal to 1 + 2 = 3.

440

VII. RELATED WORK

As previous work on automatic generation of pipelines, high-
level synthesis community described scheduling and resource sharing
algorithms (e.g. [21]) for functional pipelining and software loop
pipelining, but static schedules cannot handle dynamic dependencies.

[8] shows standard bypass can be applied to register arrays by
inserting a negative/regular register pair. The output of negative
register is precomputed (or predicted) based on signals and logic
spanning multiple cycles. As discussed earlier, logic within a critical
loop cannot be effectively pipelined.

Given a pipelined implementation, [20], [15] addressed its verifi-
cation problem by deconstructing the pipeline via term rewriting to
derive an equivalent ISA model. [20] proves by applying microarchi-
tecture laws, e.g. standard bypass, without giving precise design on
its timing and control.

[15] describes a method to add forwarding logic and stall engine
to a specification already partitioned into stages. The manual design
needs to be proved for correctness afterwards. Their global controller
also relies on immediately propagation of control signals to all pipe
stages whenever necessary.

[19] extracts operations from a specification in the form of term-
rewriting rules [11], and schedules them into stages interconnected
via FIFO queues. Speculation, stalling and forwarding are accom-
plished by specific styles of rewriting. A global controller is generated
that needs to flush all queues or stall all dependent computations in
one clock cycle.

[10] proposes a framework to specify and verify pipelines where
designers follow a template to specify pipeline stages and choose
from a library of control cells. As a result, verification scripts about
pipeline properties can be generated automatically. Their approach
doesn’t use provably-correct transformations and doesn’t generate
optimal stalling and bypass based on data dependencies.

In contrast with the above, our method generates a distributed
controller in which every local block only controls local bounded
queues and local computation blocks. The propagation of control
signals may then take multiple cycles without ever being on a critical
path of the system. Furthermore we demonstrate that pipelining can
be performed correct-by-construction by applying a few well defined
structural transformation starting from the original design spec.

While this paper focuses on design refinement, our set of provably-
correct transformations should be equally valuable for formal verifi-
cation approaches [20], [15], [10] in proving transfer equivalence (as
defined in Section V-C) between a pipeline implementation and its
abstract model (e.g. ISA).

VIII. CONCLUSIONS

We have presented a formal method that can pipeline logic in
closed loop with register files and memories, which is not possible
using standard bypass and retiming alone. This underscores powerful
transformations that can be performed in elastic systems, which
enable designers to refine an untimed function model towards a cycle-
accurate implementation.

By applying a series of correct-by-construction transformations
to ISA models, we We also illustrated that correct-by-construction
transformations can derive microarchitecture features of processor
designs which are not trivial to implement correctly. These includes
operand forwarding with bypass network and automated generation of
stall controller. We have also used similar transformation techniques
to hide memory latency by forwarding stores via load store buffer,
and prefetching instructions.

Although this paper focused on pipelining of synchronous systems,
these techniques can as well be applied to pipelining of asynchronous
systems by implementing (or using already known) asynchronous
versions of the synchronous elastic transformations presented here.

ACKNOWLEDGMENTS

We want to thank Bill Grundmann for discussing the latency
refinement problem with us and the academia. This research has been
partially funded by the research projet CICYT TIN2007-66523.

REFERENCES

[1] M. Ampalam and M. Singh. Counterflow pipelining: Architectural
support for preemption in asynchronous systems using anti-tokens. In
Proc. International Conf. Computer-Aided Design, pages 611–618, 2006.

[2] E. Bloch. The engineering design of the stretch computer. In Proc.
IRE/AIEE/ACM Eastern Joint Computer Conference, pages 48–58, Dec.
1959.

[3] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. Theory of
latency-insensitive design. IEEE Trans. on Computer-Aided Design,
20(9):1059–1076, Sept. 2001.

[4] L. Carloni and A. Sangiovanni-Vincentelli. Coping with latency in
SoC design. IEEE Micro, Special Issue on Systems on Chip, 22(5):12,
October 2002.

[5] J. Cortadella and M. Kishinevsky. Synchronous elastic circuits with
early evaluation and token counterflow. In Proc. ACM/IEEE Design
Automation Conf., pages 416–419, 2007.

[6] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of syn-
chronous elastic architectures. In Proc. ACM/IEEE Design Automation
Conf., pages 657–662, July 2006.

[7] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. Polychrony for system
design. Journal of Circuits, Systems and Computers, 12(3):261–304,
Apr. 2003.

[8] S. Hassoun and C. Ebeling. Using precomputation in architecture and
logic resynthesis. In Proc. International Conf. Computer-Aided Design,
pages 316–323, 1998.

[9] J. Hennessy and D. Patterson. Computer Architecture: a Quantitative
Approach. Morgan Kaufmann, 1990.

[10] J. T. Higgins and M. Aagaard. Simplifying the design and automating
the verification of pipelines with structural hazards. ACM Trans. Design
Autom. Electr. Syst., 10(4):651–672, 2005.

[11] J. C. Hoe and Arvind. Synthesis of operation-centric hardware descrip-
tions. In Proc. International Conf. Computer-Aided Design, pages 511–
518, 2000.

[12] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster,
E. G. Mercer, and C. J. Myers. Synchronous interlocked pipelines. In
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 3–12, Apr. 2002.

[13] J. Júlvez, J. Cortadella, and M. Kishinevsky. Performance analysis of
concurrent systems with early evaluation. In Proc. International Conf.
Computer-Aided Design, Nov. 2006.

[14] R. Karp. A characterization of the minimum cycle mean in a digraph.
Discrete Mathematics, 23:309–311, 1978.

[15] D. Kroening and W. Paul. Automated pipeline design. In Proc.
ACM/IEEE Design Automation Conf., pages 810–815, 2001.

[16] S. Krstic, J. Cortadella, M. Kishinevsky, and J. O’Leary. Synchronous
elastic networks. In Proc. Formal Methods in Computer Aided Design,
pages 19–30, 2006.

[17] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5–35, 1991.

[18] C.-H. Li and L. Carloni. Using functional independence conditions
to optimize the performance of latency-insensitive systems. In Proc.
International Conf. Computer-Aided Design, Nov. 2007.

[19] M.-C. V. Marinescu and M. C. Rinard. High-level automatic pipelining
for sequential circuits. In Proc. International Symposium on Systems
Synthesis, pages 215–220, 2001.

[20] J. Matthews and J. Launchbury. Elementary microarchitecture algebra.
In 11th International Conf. on Computer Aided Verification, Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[21] N. Park and A. C. Parker. Sehwa: a software package for synthesis
of pipelines from behavioral specifications. IEEE Trans. on Computer-
Aided Design, 7(3):356–370, 1988.

441

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

