
Elastic Systems

Jordi Cortadella

Universitat Politècnica de Catalunya

Barcelona, Spain

Marc Galceran-Oms

Universitat Politècnica de Catalunya

Barcelona, Spain

Mike Kishinevsky

Strategic CAD Lab, Intel Corporation.

Hillsboro, OR USA

Abstract—Elastic systems provide tolerance to the variations
in computation and communication delays. The incorporation
of elasticity opens new opportunities for optimization using new
correct-by-construction transformations that cannot be applied
to rigid non-elastic systems.

The basics of synchronous and asynchronous elastic systems
will be reviewed. A set of behavior-preserving transformations
will be presented: retiming, recycling, early evaluation, variable-
latency units and speculative execution. The application of these
transformations for performance and power optimization will be
discussed. Finally, a novel framework for microarchitectural ex-
ploration will be introduced, showing that the optimal pipelining
of a circuit can be automatically obtained by using the previous
transformations.

I. INTRODUCTION

Since the early days of Electronic Design Automation,

designers have been using optimization tools to improve the

quality of the circuits (area, delay or power). For example,

the techniques for two-level and multi-level combinational

logic synthesis exploit the properties of Boolean algebra to

transform gate netlists within the boundaries of the sequential

elements of the circuit. With this approach, the behavior of

the primary outputs and state signals is preserved, whereas

the combinational parts are optimized.

A new generation of techniques enabled the crossing of the

sequential boundaries and introduced new optimizations that

can change the behavior of the state signals while preserving

the behavior at the primary outputs. This field is known as

sequential logic synthesis and includes transformations such

as state encoding, redundant latch removal, and retiming.

All the previous transformations still preserve a cycle-

accurate behavioral equivalence of the system: what is ob-

servable at the i-th clock cycle is independent from the

optimizations performed on the system.

The scaling down to nanometric technologies is inherently

associated to an increase of complexity of the systems that

can be integrated in a chip. The clock network becomes more

sophisticated, variability increases and timing closure turns to

be a challenging problem with no trivial solution.

Maintaining the cycle accuracy imposes severe constraints

on the type of optimizations that can be used in a circuit. For

example, changing the structure of a pipeline or modifying the

latency of a functional unit may not be applicable unless the

global architecture of the system is transformed and adapted to

the new timing requirements. This limitation is unacceptable

for large systems that may be susceptible to late-stage re-

design decisions to meet the timing specifications.

Elasticity has emerged as a new paradigm to overcome these

limitations, enabling the design of systems that are tolerant to

(a)

cycle 1 2 3 4 5 6
a 3 1 2 3 1 0
b 5 0 4 6 2 4

a + b 8 1 6 9 3 4

(b)

cycle 1 2 3 4 5 6 7 8 9 10
a 3 1 2 3 1 0
b 5 0 4 6 2 4

a + b 8 1 6 9 3 4

Fig. 1. (a) Non-elastic behavior, (b) Elastic behavior.

the dynamic changes of the computation and communication

delays. The concept of elasticity has been largely used in

asynchronous circuits. For example, the term Micropipeline

was proposed by Sutherland [40] to denote event-driven elas-

tic pipelines. The tolerance to delay variability requires the

incorporation of handshake signals to synchronize the agents

that communicate through a channel. These handshake signals

are often called request and acknowledge.

When elasticity was discretized to work with synchronous

systems, the term Latency Insensitivity was coined [9]. In these

systems, the handshaking is produced at the level of cycle

with events that are synchronized with the clock. A pair of

handshake signals, typically called valid and stop, indicate the

validity of the data in the communication channels and the

back-pressure produced by stalled units. Different variants of

synchronous elasticity have been proposed later [19], [42].

With elasticity, the concept of behavioral equivalence is

relaxed in a way that no cycle accuracy is required. Instead,

the sequence of valid data is observed and preserved, as if

one would connect FIFOs with non-deterministic delays at the

inputs and outputs of the system.

Figure 1(a) shows an example of the timing of a non-elastic

circuit performing additions. The circuit receives inputs and

produces outputs at every cycle. The environment is designed

under the assumption that all operations will take one cycle.

Figure 1(b) shows an example of the timing of an elastic

version of the same circuit, in which the empty cells represent

non-valid data. It can be observed that the traces of valid

data for each signal are the same as in the non-elastic circuit.

Although the timing is elastic, the causality relations between

data items is preserved, e.g., the value a+b is always generated

after having received the corresponding values of a and b.

A. Microarchitectural transformations

Elasticity opens the door to a new avenue of correct-by-

construction behavior-preserving transformations for optimiz-

ing systems that cannot be systematically applied in the non-

elastic context. The insertion of “empty” sequential elements

in a pipeline, the execution of variable-latency computations,

978-1-4244-7886-6/10/$26.00 ©2010 IEEE 149



the addition of bypass circuits or the speculative execution

of operations are some of the transformations that can be

considered to increase the performance of a circuit.
By using an appropriate kit of elastic transformations, differ-

ent architectures can be derived for the same functionality, thus

enabling the capability of creating microarchitectural explo-

ration engines that can guide the design of high-performance

and low-power circuits.
This paper gives an overview of the underlying concepts

that support elastic systems and describes a set of transfor-

mations for microarchitectural exploration that can be used

to obtain efficient pipelines from functional specifications. An

automated microarchitectural exploration engine is discussed

and the efficacy of this approach is illustrated with an example.

II. ELASTIC SYSTEMS

When designing elastic systems one needs to address a few

design decisions.

Granularity. It is possible to use the idea of elasticity at dif-

ferent levels of granularity. On the one extreme, a system can

be composed from large synchronous blocks with elastic com-

munication between them in order to use modularity or power

advantage of running blocks at different clock frequencies or in

anticipation of design variations in communication channels.

On the other extreme, one can consider a synchronous system

as a set of gates. Every gate is then viewed as an elastic

island and the system can be redesigned to become elastic

at the gate level. While such a design can tolerate changes

in latencies or delays at the very low level of granularity, the

cost of elasticity may become prohibitive. In this paper for

illustration purposes we focus at the the intermediate point

within the range of possible design partitioning: we view

design at the register transfer level and consider every register

(and its elastic counterpart, an elastic buffer) as an object of

interest. This view is similar to the one used in retiming.

However, even with focus on RTL level we can easily group

different registers together or decompose them if it is beneficial

for performance or area of the design. The block level view

using different forms of elastic shells around existing blocks

is presented in [10], [41], and [18, §8].

Communication protocol. A particular handshake protocol

between elastic blocks should be selected. Section II-A will

discuss one for synchronous elastic systems.

Elastic FIFOs. They serve as buffers between communicating

elastic islands. Since a back-pressure (or an acknowledgment)

signal that informs the sender that the receiver is busy takes

some latency (or delay) to propagate it is necessary to give the

sender some flexibility in sending data items while the back-

pressure signal is in flight. To guarantee that the sent items

are not lost they must be captured within the elastic buffers

at the boundary between the sender and the receiver or within

the receiver. Multiple constructions of elastic FIFOs have been

studied in asynchronous and synchronous design communities

(see, e.g., [16]). In Section II-B we will give an example of

low overhead implementation of elastic buffers that can be

used for replacing synchronous registers.

Elastic controllers. The data and control flow is managed by

elastic controllers. While in some design styles a controller can

Valid

*

*

S
e
n
d
e
r

R
e
c
e
iv
e
r

Stop

Data

Valid

S
e
n
d
e
r

R
e
c
e
iv
e
r

Data

Valid

StopS
e
n
d
e
r

R
e
c
e
iv
e
r

Transfer (T) Idle (I) Retry (R)

Fig. 2. SELF protocol states

...........

..........
..........

............
.............. ................ ................ .............. ............ ..........

........
..

........
...

........
...

........
..

..................................................................................
............

..........
..........

...........

...........

..........
..........

............
.............. ................ ................ .............. ............ ..........

........
..

........
...

........
...

........
..

..................................................................................
............

..........
..........

...........

...........

..........
..........

............
.............. ................ ................ .............. ............ ..........

........
..

........
...

........
...

........
..

..................................................................................
............

..........
..........

...........
Empty Half Full

.
...........................

..........................
......................... ........................ ......................... ..........................

......................
.....

.
...........................

..........................
......................... ........................ ......................... ..........................

......................
.....

.
......................

.....
.......................... ......................... ........................ .........................

..........................
...........................

.
......................

.....
.......................... ......................... ........................ .........................

..........................
...........................

.......................................
..........

..........
...........

............

............

...........
..........
..........
........ ........ .......... ............

. ............ .......... ........ ........
..........
..........
...........

............

............

...........
..........

..........
.......................................

..............

............

.........
........
.........
.........

........... ............. ............. ........... .........
.........
........
.......
..

.........
...

.........
.....

.
.........
.....

.........
...

.......

..

........
......... ......... ........... ............. ............. ...........

.........
.........
........
.........

............

..............

q q

i i

j ��

�
Vr VrSl

V l Sr

Vl/EmEs VlSr/Em

V lSr Sr/Es

V lSr

VlSr/EmEs

L

L H

D
l

V
l

S
l S

r

V
r

D
r

E
m

E
s

Control

Fig. 3. Control specification for the latch-based EB.

be completely merged with the data-path based on using delay-

insensitive codes, our objective is to use the data-path that is

almost identical with the data-path of a standard synchronous

system. This achieves low overhead and enables the use of

a standard design methodology and tools. In this case a

controller can be viewed as a separate distributed clock-gating

layer that decides on stop and go of the elastic blocks. Note

that even though logically we think of a separate controller,

physically it can be merged with blocks of the data-path. A

few details of such controllers are described in Section II-C.

A. A synchronous elastic protocol

To discuss the characteristics of synchronous elastic proto-

cols, we will focus on the one presented in [19], [27] (SELF:

Synchronous Elastic Flow). This protocol is similar to the one

presented in [24], [34] and it is conceptually similar, but not

equivalent, to the one presented in [12].

The two handshake signals, valid (V ) and stop (S) deter-

mine three possible states in an elastic channel (see Fig. 2):

Transfer, (V ∧ ¬S): the sender provides valid data and the

receiver accepts it.

Idle, (¬V ): the sender does not provide valid data.

Retry, (V ∧S): the sender provides valid data but the receiver

does not accept it.

The sender has a persistent behavior when a Retry cycle is

produced: it maintains the valid data until the receiver is able

to read it. For example, the input channel a of the adder in

Fig. 1(b) is in transfer state during cycle 9, but in idle or retry

state during cycle 10. Not enough information about valid/stop

signals is shown in this figure to distinguish between the two.

We will also differentiate between useful pieces of data

inside elastic channels or elastic buffers (“data tokens”) and

pieces of data that can be ignored (“bubbles”).

Token, (V ): a useful piece of data that should be processed.

Bubble, (¬V ): a don’t care piece of data that can be ignored.

We will depict tokens as dots inside the boxes representing

elastic buffers, while bubbles are depicted as empty boxes.

B. Elastic buffers

Figure 3 depicts the FSM specifications for the control of a

latch-based elastic buffer (EB) and the overall structure of the

design. The transparent latches are shown with single boxes,

labeled with the phase of the clock, L (active low) or H (active

150



Vl

Sl

Em
Es

Vr

Sr

Vl

Sl

Em
Es

Vr

Sr

L

H L

H

(a) (b)
LH

L H

L

Fig. 4. Two implementations of an EB control.

high). The flip-flops are drawn as two transparent latches back-

to-back corresponding to their master-slave implementation.

The control drives latches with enable signals. To simplify the

drawing, the clock lines are not shown. An enable signal for

transparent latches must be emitted on the opposite phase and

be stable during the active phase of the latch. Thus, the Es

signal for the slave latch is emitted on the L phase.

The FSM specification of Fig. 3 is simply the specification

of a 2-slot FIFO. In the Empty state, no valid data is stored

in the latches. In the Half-full state, the slave latch stores

one valid data item. Finally, in the Full state, both latches

store valid data and the EB emits a stop to the sender. The

specification is a mixed Moore/Mealy FSM with some output

emissions associated with the states and some other with the

transitions. For example, the transition from the Half-full state

to the Full state occurs when the input channel carries valid

information (Vl is high), but the output channel is blocked

(Sr is high). An output signal enabling the master latch is

emitted (Em). In addition the valid bit is emitted to the output

channel (Vr = 1), since this Moore style signal is emitted at

any transition from the Half-full state.

After encoding Empty, Half-full, and Full states of this FSM

with (Vr, Sl) = (0, 0), (1, 0), (1, 1) correspondingly we can

derive the implementation shown in Fig. 4(a), where flip-flops

are drawn as two back-to-back transparent latches. By splitting

the flip-flops and retiming the latches, a fully symmetric latch-

based implementation can be obtained (Fig. 4(b)).

Elastic buffers with capacity two can be designed in a

similar way using different constructions of the data-path, e.g.

using ping-pong registers composed to a multiplexer (see [18]

for details). Buffers of larger capacity are typically designed

as a FIFO with read and write pointers and latency of one

clock cycle between the read and the write. For zero latency

elastic buffers, FIFOs with a bypass are used.

C. Join and Fork

In general, EBs can have multiple input/output channels.

This can be supported by using elastic Fork and Join control

structures. Figure 5(a) shows an implementation of a Join.

The output valid signal is only asserted when both inputs are

valid. Otherwise, the incoming valid inputs are stopped. This

construction allows composing multiple Joins together in a

tree-like structure.

Figure 5(b) depicts a Lazy Fork. The controller waits for

both receivers to be ready (S = 0) before sending the data1. A

more efficient structure shown in Fig. 5(c), the Eager Fork, can

send data to each receiver independently as soon as it is ready

to accept it. The two flip-flops are required to “remember”

1This implementation is identical to the one presented in [24].

V
r

S
r

V
l1

V
l2

S
l1

S
l2

(a) Join

V
r1

V
r2

S
r1

S
r2

V
l

S
l

(b) Lazy fork

V
r1

r1S

V
r2

S

1

1

V
l

S
l

(c) Eager fork

r2

Fig. 5. Controllers for elastic Join and Forks.

 

!

 

 

!

 

 !
Fig. 6. Firing of an early evaluation node

which output channels already received the data. This structure

offers performance advantages when the two output channels

have different back-pressures.

D. Early evaluation

The join controller introduced above is based on late

evaluation: the computation in the corresponding block is

initiated only when all inputs are available. Sometimes this

requirement is too strict. Consider a multiplexor with the

following behavior:

o = if s then a else b.

If the value s is known, then it is only necessary to wait for

the required token in order to compute o. If, for instance, s
and a are available and the value of s is true, the result o = a
can be produced without waiting for b to arrive and the value

of b can be discarded when it arrives at the multiplexor.

Early evaluation takes advantage of this flexibility to im-

prove system performance. A care must be taken of the

late arriving irrelevant tokens to avoid spurious enabling of

functional units. When early evaluation occurs, a negative

token, also called anti-token, is generated in the late channels

that were not using for enabling the block, as shown in Fig. 6.

When an anti-token and a token meet in the same channel, they

cancel each other.

Anti-tokens can be passive, waiting for the token to arrive

inside the counters associated with an early evaluation join

controller, or active, traveling backwards through the control

until they meet a token. [17] describes a method of implement-

ing elastic systems with early evaluation (both in the active and

the passive form). [29] suggests a method for implementing

early evaluation based on the analysis of don’t care conditions

of the data-path logic. Their implementation, like the one

proposed in [14], is of a passive form. Implementation of anti-

tokens can be optimized using token cages [15]. Elastic FIFOs

can store and propagate anti-tokens the same way they store

and propagate tokens. There are also some implementations

for asynchronous circuits [5], [36], [1].

151



 

! "

#$

%&

%$

#& ! "

#$

%&

%$

#&

 

  

 '(

 !

 ')*+,-','*'( '( '( '( 

  

)$-./01$22

)3-."45*6*78

)9-.:75*'5;<47."45*6*78.=:">

)&-./?33@4.A724%5*;7.=/A>

)B-.:&&*78.C$1$9*50.=:C>

)4-.:75*'5;<47.A724%5*;7.=:A>

)8-.:75*'5;<47.D%;?1*78.=:D>

Fig. 7. Correct-by-construction transformations [26]

III. TRANSFORMATIONS

One of the major features of synchronous elastic systems

is their tolerance to latency changes. Such tolerance can

be used to introduce novel correct-by-construction transfor-

mations enabling the exploration of new microarchitectural

trade-offs [26]. Figure 7 shows bubble insertion (BI), adding

capacity (AC), anti-token insertion (AI), anti-token grouping

(AG) and anti-token retiming (AR), as well as the elastic

version of classical bypass and retiming. In this figure (and

future ones), elastic channels are represented as arrows, and

elastic buffers as boxes (with a dot if they contain a token).

Control details are not explicitly displayed, only the data

dependencies are drawn.

The transformations presented in this section can modify the

latency of the communications and computations of an elastic

system while preserving its functionality. In some cases, the

cycle time of the system can be reduced by increasing the

latency of some operations. By properly balancing cycle time

and throughput, the system with the optimal effective cycle

time can be achieved2.

A. Latency Preserving Transformations

Most design transformations used in conventional syn-

chronous systems can also be applied in elastic systems.

1) Bypass: At a certain level of abstraction, a register file

can be represented by a monolithic register and additional

logic to write (W ) and read (R) data. In Fig. 7(a), the channels

wd and rd represent data, whereas the channels wa and ra
represent addresses.

Bypasses, which were already used in the late 50s [4],

are widely used to resolve data hazards in processors [23].

Figure 7(a) shows a register file after a bypass transformation.

One EB delays the write operation, and a forwarding path

is added, so that if the read address is equal to the write

address of the previous operation (RAW dependency), the

correct data value can be propagated, even though it has not

been written in the register file yet. The area overhead of the

bypass transformation is one multiplexor, one unit to detect

dependencies by comparing the write and read address, and

two EBs to delay the write data and the write address channels.

2The effective cycle time is a performance measure similar to the time-
per-instruction, TPI, in CPU design. It captures how much time is required
to process one token of information - the smaller the better.

  

! "

# $%#

$

(a)

  

! "

# $%#

$

(b)

Fig. 8. Design optimized using (a) Retiming, (b) Retiming and recycling

The multiplexor selecting between the forwarded data and the

register file data is typically an early evaluation multiplexor.

2) Retiming: Registers can be moved across combinational

logic preserving the functionality, as shown in Fig. 7(b).

Retiming [28] is a traditional technique for sequential area and

delay optimization. It can also be used to reduce the power of

a system [32]. The initial value of the register must be taken

into account if it is important for the correct initialization of

the system.

Figure 8(a) shows an example with an optimal retiming. The

combinational nodes (shown as circles) are labeled with their

delays. The boxes (labeled with a dot) represent the elastic

buffers with tokens of information (i.e. registers with valid

data inside). The cycle time of this design is 17 time units.

B. Recycling

It is always possible to insert and remove an empty EB (a

bubble) on any channel of an elastic system (for formal proof

see [27]). This transformation is shown in Fig. 7(d).

Bubble insertion is also known as recycling, and was

initially introduced in [13]. The concept of inserting empty

buffers for optimizing system performance was long known in

asynchronous design [43], [31]. In [2], [35], exact algorithms

for slack matching on choice-free asynchronous systems were

presented. This problem is similar to solving the recycling

problem. Moreover, in synchronous elastic designs, recycling

can be combined with retiming leading to a more powerful

design optimization [11], [8].

Figure 8(b) shows an optimal configuration combining

retiming and recycling for the example from Fig. 8(a). The

cycle time has been reduced to 11 units. The throughput is

determined by the slowest cycle. The token to register ratios

for each cycle are 1, 4/5 and 2/3. Therefore, the throughput

is 2/3, and the average number of cycles to process a token

is 3/2. This gives an effective cycle time of 16.5 time units

(16.5 = 11 · 3/2). It means that a new token is processed on

average every 16.5 time units - an improvement compared to

the 17 units of the optimally retimed design.

C. Early Evaluation

Introducing early evaluation in some nodes can be consid-

ered an optimization technique that allows firing a token even

if some of the inputs are not available.

The performance of a system with early evaluation is no

longer determined by the slowest cycle, since average-case

performance is achieved instead of worst-case. There is no

known efficient exact method to compute the throughput of a

system with early evaluation. An upper bound method using

linear programming is presented in [25]. Each input must be

152



  

! "

# $%#

$
 !"

 !#
 !$

  

! "

# $%#

$
 !"

 !#
 !$

&!

Fig. 9. Optimal configuration with (a) early evaluation and (b) anti-token
insertion

assigned a probability so that performance can be analyzed.

Such probabilities should be obtained by running a typical

application on the system, and then counting how often each

input is selected.

Figure 9(a) shows the example from Fig. 8 after adding early

evaluation to the node with delay 1, and adding a bubble on

one of the input channels of the multiplexor. Let us assume

that the upper channel of the multiplexor is selected with

probability 0.7, the middle one with probability 0.2 and the

lower one with probability 0.1.

Retiming and recycling can be successfully applied for sys-

tems with early evaluation to achieve better performance [6].

The example from Fig. 9(a) has a cycle time of 10 time units,

which is lower than the 11 units in Fig. 8(b). If there were

no early evaluation, its throughput would be 0.5, determined

by the slowest cycle. Then, the effective cycle time would be

20 units - worse than the 16.5 units obtained for the previous

configuration without early evaluation. However, when early

evaluation is introduced, the cycle with the worse throughput

is only selected by the multiplexor in 10% of the cases. If the

system is simulated using the given probabilities, the obtained

throughput is 0.79. Thus, in this example, early evaluation

allows one to reduce the effective cycle time to 12.65 units

(10/0.79) by using early evaluation.

D. Anti-token Insertion

Anti-tokens are used to cancel spurious computations in

early evaluation nodes, but they can also be used to enable

new retiming configurations. An empty EB is equivalent to an

EB with one token of information followed by an anti-token

injector with one anti-token (drawn as a pentagon), as shown

in Fig. 7(e). When a token flows through a non-empty anti-

token injector, the token and the anti-token cancel each other.

Anti-token counters can be retimed (as in Fig. 7(c)) and

grouped (as in Fig. 7(g)). When retiming anti-tokens, care

must be taken with the initial values of the registers so that

functionality does not change.

Anti-token insertion can be often applied to enable retiming

of EBs that have been initialized with a different number of

tokens. For example, Fig. 9(b) shows a system where anti-

token insertion has been applied to the dashed channel. Then,

the new EB can be retimed backwards. This new configuration

has a cycle time of 11 units, but its throughput is very

high, 0.918, since there is only one cycle with a bubble

(a sum of a token and an anti-token is equal to zero) as

compared to Fig. 9(a), where two of the three cycles have

bubbles. The resulting effective cycle time is 11.98 units. This

configuration can only be achieved by using the anti-token

insertion transformation.

E. Variable-latency units

Variable-latency units can be handled in a natural way in

synchronous elastic systems. A handshake with the datapath

unit is required so that the control can keep track of the status

of operation, as shown in [19].

For example, an ALU may spend one clock cycle to com-

pute frequent operations with small operands (i.e. operands

with few significant digits), and spend two clock cycles for

rare operations involving larger operands. This is a typical

example of a telescopic unit [3], [39]. Variable latency units

can improve the performance by decreasing the overall cycle

time, and they can also improve the area of the design by

reducing the number of logic gates per pipeline stage.

Other examples of variable-latency units are large register

files with access time ranging from one to two cycles for

different partitions, variable hit time caches (so called pseudo-

associative caches), video decoding blocks processing different

video symbols with largely varying probabilities and any other

operation where there is a significant discrepancy between the

typical and the worst case pattern of operation.

In the example from Fig. 9(b), the critical cycle is deter-

mined by the dashed node with delay 9 followed by the node

with delay 2. Assume we can replace the dashed node with a

variable-latency node that has a typical delay of 7 time units

at the cost of spending an extra cycle (i.e. 14 time units) in

rare cases. Then, the cycle time of the system will drop from

11 to 9 units.

Let us assume that the short operation can be applied 95%

of the times. Then, the throughput of the system is 0.881,

estimated by simulating the controller. The resulting effective

cycle time is 10.216 units (9/0.881), compared to the pre-

vious 11.98. Overall, correct-by-construction transformation

that modify latency have provided a 66% improvement in

performance for this example.

F. Buffer Capacities

While the BI rule in Fig. 7(d) is formulated for the elastic

buffer with capacity two, it holds for the elastic buffer of any

capacity k ≥ 0. Moreover, if the latency of the buffer is equal

to 0 (implementable as a FIFO with a bypass), the performance

of the design as measured by the throughput cannot decrease.

The rhombus in transformation AC in Fig. 7(f) stands for a

0-latency buffer (a so called skid buffer) with capacity k.

In some cases, adding capacity can prevent a deadlock or

increase the performance of the system. Consider retiming

as an example. In standard synchronous systems retiming

moves registers through combinational logic. In elastic sys-

tems retiming moves EBs instead of simple registers. Each of

such retiming moves involves moving the data tokens residing

inside the EBs as well as capacity of the EBs. Consider a

fragment of an elastic system shown in Fig. 10(a). After

applying backward retiming through node F, one obtains the

system in Fig. 10(b). This system has a deadlock, as can be

seen by the analysis of the corresponding marked graph shown

in Fig. 10(c)3. There are two back-pressure edges (shown with

3To be more precise this model corresponds to the dual guarded marked
graphs capable of modeling early-evaluation and anti-tokens [25]. However
the intuitive analysis does not require detailed knowledge of this model.

153



 
!"

(a)

 
!"

(b)

 !"

 !

 "

(c)

 
!"  

 

(d)

Fig. 10. (a) Example before retiming, (b) after retiming with deadlock, (c) after retiming with conservative capacity sizing, (d) marked graph that illustrates
why the deadlock appears

 

 
 

!"#$%&'$(

Fig. 11. (a) Logical view of a shared unit, F is considered a variable-latency
unit, (b) physical view of a shared unit, the scheduler of the shared unit grants
access to one of the channels

dotted lines) going from the multiplexor node to node F. The

upper one, b0, is associated with the upper forward arc. The

sum of tokens on the cycle they form is equal to 1 (2 - 1 = 1)

that models the fact that the node F can fire only once without

firing the multiplexor node. The lower backpressure arc, b1,

is associated with the lower forward arc, and it has 1 token

so that the sum of tokens on this cycle is also 1. However,

consider the cycle composed by the upper forward edge and

b1. The sum of tokens on this cycle is zero, a characteristic

property of a deadlock in a marked graph [33].

In order to avoid this deadlock, it is sufficient to add a

skid-buffer of capacity one to the lower channel. Then, b1

would have one more token (with two tokens total) due to the

capacity of the skid-buffer. In general, the optimal capacity

for the skid buffers can be obtained by solving an ILP prob-

lem [30]. Resizing of these capacities can also be combined

with recycling as an optimization procedure [7]. Early evalu-

ation may increase the required size of the buffers for some

examples [26]. However, instead of solving an optimization

problem after each retiming move, we can conservatively add

capacity of 2 to the channels where the EBs were placed

before the retiming, as shown in Fig. 10(d). This corresponds

to applying a correct-by-construction transformation AC(2)

before the retiming move and then performing the move. It

can be guaranteed that the resulting system is deadlock free,

since the capacity of the channels is never reduced. At the end

of the exploration, the optimal buffer sizes can be found by

solving the optimization problem once.

G. Sharing of Functional Units

When a system includes early evaluation, some computa-

tions are not always required, and hence, they can be delayed

for some cycles with no performance penalty or even canceled.

As a result the actual utilization of some units can be way

below 100%.

Different modules with the same behavior (for example, two

adders in the design), can be merged into a single module,

which is then shared by the input channels that compete for

this resource. Sharing may provide a reduction of area and

power in the design, hopefully at a low (or zero) performance

degradation. Using a shared module is like using a module

followed by a buffer with unbounded but finite latency, since

 !"#

$
 !

"#$

#$

Fig. 12. Branch prediction using shared units

each data token may have to wait for a certain number of

cycles until it is allowed to use the shared module.

A local scheduler decides at each clock cycle which input

channel can use the shared resource. The performance varia-

tion compared to using unshared resources depends on whether

the scheduler can distribute the load accurately among the

different users. For better performance, the scheduler should

take into account the elastic protocol: an invalid or a stalled

channel cannot use the shared unit even if selected. For

correctness a scheduler should be fair avoiding starvation of

the channels: every token that reaches the shared module must

eventually be allowed to use it unless it is cancelled by an

anti-token.

For example, Fig. 11(a) shows two channels, each one using

a node called F , which compute exactly the same function. If

both F are shared into a single physical entity, the logical view

remains the same, although the latency of F becomes variable.

Physically, a scheduler selects which channel can use F every

clock cycle, as shown in Fig. 11(b).

H. Speculative Execution

Sharing of functional units can be used to implement

correct-by-construction speculative execution [20]. Consider

the example from Fig. 12(a) showing a possible branch in-

struction in a microarchitectural graph, if the dotted bubble is

ignored. Each time a new instruction address must be gener-

ated, it is chosen between the previous one plus a constant,

the lower input in the multiplexors, or an address coming from

the instruction decoder (ID). The selection depends on the

value generated by the node named BR, which may look at

some register in the ALU or it may perform some operation

indicated by the decoder stage.

Let us assume that ID and BR cannot be executed within one

clock cycle because their total delay is too large. In Fig. 12(a),

the only way to cut this path is to add the bubble between ID

and BR drawn with a dotted line. However, BR, ID and one of

the multiplexors form a cycle, and hence, adding this bubble

limits the throughput of the design to 0.5. Early evaluation

cannot help increasing the throughput in this example.

Given a multiplexor with several inputs, it is possible to

move a functional block from the output of the multiplexor

to its inputs using Shannon decomposition (viewed also as

154



a multiplexor retiming) [37]. The example from Fig. 12(a)

can be transformed into the design in Fig. 12(b) by using

multiplexor retiming and register retiming. In this second

design, there is no critical cycle going through the control

of the multiplexor, and the only combinational path going

through two units is the one formed by BR going to the

upper multiplexor and then to the adder. If this path became

critical, multiplexor retiming could also be applied to the upper

multiplexor.

The performance gain of Fig. 12(b) comes at a cost of

duplicating the ID stage, with the resulting area overhead. Here

is where speculation comes into play. The two ID nodes can

be merged into a single one which is shared by the two inputs

of the multiplexor. Hence, each clock cycle the scheduler

of the shared ID module must perform a branch prediction,

and decide which of the tokens arriving to the ID stage

should be granted access to the unit so that the throughput

is maximized. The scheduler can implement any state-of-the-

art branch prediction algorithms, enhanced to understand the

elastic protocol.

Misprediction and correction are handled naturally by the

handshake between the shared module and the multiplexor. If

the multiplexor requires a channel, and the scheduler predicted

the other channel would be needed, the scheduler will see

back-pressure coming from the predicted channel and will be

able to correct the misprediction.

This speculation framework can also be used to efficiently

integrate into elastic systems telescopic units and error cor-

rection and detection protocols [20]. Using speculation and

anti-token insertion, precomputation [22] can also be added to

the set of possible transformations.

I. Verification

One can verify correctness of the previous transformations

using model checking. Given the subgraph of the system where

the transformation has been applied, it must be verified that

the original subgraph is transfer equivalent to the transformed

subgraph. This can be proven by checking that each channel

complies with the handshake protocol before and after the

transformation, data token order is preserved and the symbolic

function computed by the datapath is preserved at the outputs

of the system even if the latency has changed.

For module sharing, the absence of deadlocks has been

verified for any scheduler that satisfies the fairness assump-

tion [20]. To prove that the fairness of the schedulers is a

sufficient condition for liveness, the refinement verification

is applied. It is proven that a shared module sequentially

composed with an EB that has an undetermined finite response

latency is a refinement of an EB specification itself, provided

that the shared module has a nondeterministic fair scheduler.

In [27], it is proven that an elastic module connected to

another elastic module forms a new elastic module, even if a

feedback loop is added (as long as there is at least one token in

the loop). The result is proven for elastic systems without early

evaluation and anti-tokens. However, it can also be applied

to the designs where early evaluation and token counterflow

can be encapsulated within an elastic sub-module that has a

regular valid/stop handshake interface. In [38] a refinement

technique is suggested for verifying that an optimized elastic

system complies with the original specification.

IV. MICROARCHITECTURAL EXPLORATION

Starting with a functional specification graph of a design,

it is possible to obtain a pipelined design by using elastic

transformations. This section presents a framework to explore

different pipelines automatically, trying to optimize any cost

function that combines effective cycle time and area.

Bypasses with early evaluation multiplexors are essential for

pipelining, since they introduce new EBs that can be retimed

backwards. In order to pipeline a design, bypasses must be

inserted around register files and memories of the functional

model. Then, the graph is modified to enable forwarding to

the bypass multiplexors. Finally, the system can be pipelined

by retiming the EBs inserted with the bypasses and using

other transformations such as recycling or anti-token insertion.

Speculation and insertion of variable-latency units can also be

considered in the exploration framework.

A. Example: Pipelining a Reduced Instruction Set

Figure 13(a) shows a specification of a simple design. The

register file RF is the only state holding block. IFD fetches

instructions and decodes the opcode and register addresses.

ADD and M are arithmetic functions. The results are selected

by the multiplexor for RF write-back. M has been divided

into three nodes. The breaking up of logic to allow pipelining

is a design decision that is typically considered in concert

with pipelining decisions. Thus, the user may try to divide a

functional block into several nodes and let the optimization

algorithm decide the best edges to place the EBs.

In Fig. 13(b), the bypass transform has been applied three

times on RF to build a bypass network. The node DD receives

all previous write addresses and the current read address in

order to detect any dependencies and determine which of the

inputs of the bypass multiplexor must be selected. The con-

ventional use of bypasses is to forward data already computed

to the read port of the bypassed memory element. In addition,

this bypass network can be used as a data hazard controller,

taking advantage of the underlying elastic handshake protocol

with early evaluation to handle stalls.

The right-most multiplexor and the bypass EBs must be

duplicated to feed each bypass path independently, enabling

new forwarding paths, as shown in Fig. 13(c). Once the for-

warding paths have been created, the design can be pipelined

by applying retiming and anti-token insertion, achieving the

system in Fig. 13(d). The final elastic pipeline is optimal in the

sense that its distributed elastic controller inserts the minimum

number of stalls. Furthermore the pipeline structure is not

redundant since there are no duplicated nodes. Therefore, this

is as good as a manually designed pipeline.

Fast instructions that require few cycles to compute, like

ADD in this example, use the bypass network to forward data

avoiding extra stalls, while long instructions use the bypass

network as a stall structure that handles data hazards. In

this example, the only possible stalls occur when the paths

with anti-token counters are selected by the early evaluation

multiplexors. This situation corresponds to a read after write

155



 !"

# $

%&

'(

'&

%(

)* )+),

-./
01

$.

(a)

 !"

# $

%&

'(

'&

%(

)* )+),

-./ //
01

(b)

 !"

# $ %&'&

() (*(+

,-

'. %.
/01 11

(c)

 !"

# $ %&'&

() (*(+  !

 "

,-

'. %.
/01 11

(d)

Fig. 13. (a) Graph model of a simple design, (b) After 3 bypasses, (c)
Duplicate mux, enable forwarding, (d) Final pipeline after transformations

(RAW) dependency involving a result computed by M, which

needs three cycles to complete.

B. Exploration Algorithm

The previous example is small enough to allow a manual

exploration, but if the microarchitectural graph grows, manual

exploration becomes complicated and error-prone.

Most transformations presented in Fig. 7 are captured in

the formal retiming and recycling method from [6], which

can be solved as a mixed integer linear programming problem

(MILP). Capacity sizing and bypassing are the transformations

that cannot be captured.

The optimal capacity for elastic channels can be obtained

at the end of the exploration by running an ILP problem,

as mentioned in Section III-F. Therefore, the parameter to

optimize is the number of bypasses that should be applied

to every memory element before applying the retiming and

recycling optimization.

A heuristic algorithm that explores different number of

bypasses for each memory element, such as the one presented

in [21], is the best solution in order to efficiently browse

through as many configurations as possible. Since the retiming

and recycling method uses an upper bound of the throughput

instead of the exact throughput, the most promising designs

should be simulated at the end of the exploration to identify the

 

! "

#$

" %&'

! "

()(

*+

,-
./0/

01 .1

2341

5"

Fig. 14. DLX initial graph

best one, or to study a possible trade-off between performance

and area or power.

The possibility of using variable-latency units can also be

considered in the exploration framework. In order to do so,

the retiming and recycling MILP can be extended with a

boolean variable for each node which can be implemented as

a variable-latency node, to choose whether the node is used

in variable-latency mode or not. Depending on the value of

the boolean variable, the node is assigned its regular latency

and combinational delay, or it is assigned the latency and

combinational delay of its variable-latency implementation.

Furthermore, speculation can also be added to the explo-

ration framework. The heuristic to solve the retiming and

recycling MILP proposed in [6] provides a set of designs

with different Pareto-point trade-offs between cycle time and

throughput. For the designs with a small cycle time but also

a small throughput, it is easy to determine whether the graph

has a cycle going through the control port of a multiplexor

which is critical in the throughput of the system. If this is

the case, it is possible to try to apply the speculation method

presented in [20] and possibly improve the throughput with a

small cycle time and area overhead.

C. Pipelining of a DLX

We illustrate this exploration method on a simple microar-

chitecture similar to a DLX, shown in Fig. 14 before pipelin-

ing. The execution part of the pipeline has an integer ALU

and a long operation F. The instruction decoder ID produces

the opcode, oc, that goes to the write-back multiplexor and a

target instruction address, ja, that is taken in function of the

previous ALU operation, as stored in the register BR. Table

I shows approximate delays and area of the functional blocks

of the example, taking NAND2 with FO3 as unit delay and

unit area. In order to obtain these parameters, some of the

blocks have been synthesized in a 65nm technology library

using commercial tools (ALU, RF, mux2, EB and +4), and

the rest of the values have been estimated. EB and mux2

delay and area numbers were taken for single bit units. The

delay of bit-vector multiplexors and EBs is assumed to be the

one shown in the table, while area is scaled linearly w.r.t. the

number of bits. Multiplexors with a fan-in larger than two are

assumed to be formed by a tree of 2-input multiplexors.

The register file is 64 bits wide, with 16 entries, 1 write

and 2 read ports. The total footprint of the RF is 6000 units,

(including both cell and wire area). To account for wiring

of other blocks, we assume that 40% space is reserved for

their wiring. Furthermore, we also need to consider the area

overhead of elastic controllers. Based on experiments with

multiple design points, we assume a 5% area is reserved for

the controllers.

156



TABLE I
DELAY, AREA AND LATENCY NUMBERS FOR DLX EXAMPLE

Block Delay Area Lat. Block Delay Area Lat.

mux2 1.5 1.5 1 EB 3.15 4.5 1
ID 6.0 72 1 +4 3.75 24 1
ALU 13.0 1600 1 F 80.0 8000 1
RF W 6 6000 1 RF R 11 - 1
MEM W - - 1 MEM R - - 10

The memory has a read latency of LMEM cycles, which is set

to 10 in Table I (corresponds to a realistic L2 read latency).

Memory reads are assumed to be non-blocking, i.e., a few

reads can be pipelined into a memory subsystem. We do not

account for area of the memory subsystem (as it is roughly

constant regardless of pipelining).

Figure 16 shows one of the best design points found by the

method under the following design parameters: the F unit has

been divided into three blocks, the memory data dependency

probability is 0.5, and register file data dependency proba-

bility is 0.2, the instruction probabilities are: (pALU = 0.35,

pF = 0.2, pLOAD = 0.25, pSTORE = 0.075, pBR = 0.125). Data

dependency probabilities decrease exponentially as the depth

of the dependency increases. Finally, the probability of a taken

branch is 0.5. These values are based on experiments found

in [23], and they are used in the early-evaluated multiplexors.

In Fig. 16, the cycle time is 29.817 time units, due to the

F0, F1 and F2 functional blocks. 3 bypasses have been applied

to RF and then EBs have been retimed to pipeline F . Note

that an extra bubble has been inserted at the output of F2: the

reduction in the throughput due to this bubble, is compensated

by a larger improvement in the cycle time (without this bubble

the critical path would include the delay of the multiplexors

after F2). If F operation was used more frequently, the design

without this bubble might be better in performance, since

the bubble would have a higher impact on the throughput.

Such decisions are made automatically based on the expected

frequencies of instructions and data dependencies.

The bypasses in the memory MEM are used to hide the

memory latency via a load-store buffer, as shown in Fig. 16.

Such structure can be substituted by a more efficient imple-

mentation: an associative memory. The algorithm automati-

cally detects the need for a load-store buffer and its optimal

size.

Figure 15 shows the effective cycle time and area of the

best design point found on different partitions of F, forming a

Pareto-point curve. As the depth of F increases, more bypasses

are needed on the register file in order to completely pipeline

F. The area of the design increases with more bypasses. The

best effective cycle time is achieved with F divided into 6

stages, 8 bypasses applied to RF and 9 to MEM. Design points

(4,5) and (3,4) (circled in the figure) for 4 and 3 stages are sim-

pler and overall might deliver a better design compromise. This

figure illustrates how more parallelism must be introduced

in order to achieve better performance, and how increasing

parallelism has a significant area overhead. Furthermore, there

is some point where the performance cannot be improved by

simply increasing the instruction parallelism in the design.

Fig. 15. Effective cycle time and area of the best pipelined design for
different depths of F. (x,y) and (x,y,z) tuples represent the depth of F, the
number of bypasses applied to RF and to MEM (z = 9 if omitted)

V. CONCLUSIONS

Elasticity enables new opportunities for system optimization

that target the average case performance. By using early

evaluation, the designer can focus on optimizing frequently

used and hence critical parts of the design. Those blocks that

are not critical for the overall performance, can have a relaxed

timing with some extra latency cost. The obtained performance

advantage can also be used for saving power.

This paper has presented a framework for exploration of

microarchitectural designs. This framework uses correct-by-

construction transformations many of which can only be

applied to elastic systems. In particular the optimal pipelining

of a system can be automatically obtained by using these

transformations.

Acknowledgments. This work has been supported by grants

from Intel Corp., CICYT TIN2004-07925 and FI from Gen-

eralitat de Catalunya. We want to thank Alexander Gotmanov

and Timothy Kam for applying ideas presented in this paper

in design experiments and Dmitry Bufistov for developing

methods for optimization elastic systems.

REFERENCES

[1] M. Ampalam and M. Singh, “Counterflow pipelining: Architectural
support for preemption in asynchronous systems using anti-tokens,” in
Proc. International Conf. Computer-Aided Design (ICCAD), 2006, pp.
611–618.

[2] P. Beerel, A. Lines, M. Davies, and N. Kim, “Slack matching asyn-
chronous designs,” in Proc. Int. Symposium on Asynchronous Circuits
and Systems, 2006, p. 11.

[3] L. Benini, G. D. Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino,
“Automatic synthesis of large telescopic units based on near-minimum
timed supersetting,” IEEE Transactions on Computers, vol. 48, no. 8,
pp. 769–779, 1999.

[4] E. Bloch, “The engineering design of the stretch computer,” in Proc.
IRE/AIEE/ACM Eastern Joint Computer Conference, Dec. 1959, pp. 48–
58.

[5] C. Brej and J. Garside, “Early output logic using anti-tokens,” in Proc.
International Workshop on Logic Synthesis, May 2003, pp. 302–309.

[6] D. Bufistov et al., “Retiming and recycling for elastic systems with
early evaluation,” in Proc. ACM/IEEE Design Automation Conference,
Jul. 2009, pp. 288–291.

[7] D. Bufistov, J. Júlvez, and J. Cortadella, “Performance optimization
of elastic systems using buffer resizing and buffer insertion,” in Proc.
International Conf. Computer-Aided Design (ICCAD), Nov. 2008, pp.
442–448.

157



 !
"#

$%&

'('

)*

+,

-./0

#1 #2#3

 !

 "4 "

!!

4 " 5676

!!

8-069:;-5<=>?@@<5

 !

Fig. 16. Pipelined DLX graph (F divided into 3 blocks. RF has 3 bypasses and M 9)

[8] D. Bufistov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar, “A general
model for performance optimization of sequential systems,” in Proc. Int.
Conf. Computer-Aided Design, 2007, pp. 362–369.

[9] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli, “Theory of
latency-insensitive design,” IEEE Trans. on Computer-Aided Design,
vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[10] L. Carloni and A. Sangiovanni-Vincentelli, “Coping with latency in SoC
design,” IEEE Micro, Special Issue on Systems on Chip, vol. 22, no. 5,
p. 12, October 2002.

[11] ——, “Combining retiming and recycling to optimize the performance of
synchronous circuits,” in 16th Symp. on Integrated Circuits and System
Design (SBCCI), Sep. 2003, pp. 47–52.

[12] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanni-Vincentelli,
“A methodology for correct-by-construction latency insensitive design,”
in Proc. Int. Conf. Computer-Aided Design. IEEE Press, Nov. 1999,
pp. 309–315.

[13] L. Carloni and A. Sangiovanni-Vincentelli, “Performance analysis and
optimization of latency insensitive systems,” in Proceedings of the 37th
Annual Design Automation Conference. ACM, 2000, p. 367.

[14] M. Casu and L. Macchiarulo, “Adaptive Latency-Insensitive Protocols,”
IEEE Design & Test of Computers, vol. 24, no. 5, pp. 442–452, 2007.

[15] M. Casu, “Improving synchronous elastic circuits: Token cages and half-
buffer retiming,” in Proc. Int. Symposium on Asynchronous Circuits and
Systems. IEEE Computer Society, 2010, pp. 128–137.

[16] T. Chelcea and S. Nowick, “Robust interfaces for mixed-timing sys-
tems,” IEEE Trans. VLSI Syst., vol. 12, no. 8, pp. 857–873, 2004.

[17] J. Cortadella and M. Kishinevsky, “Synchronous elastic circuits with
early evaluation and token counterflow,” in Proc. ACM/IEEE Design
Automation Conference, Jun. 2007, pp. 416–419.

[18] J. Cortadella, M. Kishinevsky, and B. Grundmann, “SELF: Specification
and design of a synchronous elastic architecture for DSM systems,”
in TAU-2006: International Workshop on Timing Issues in the
Specification and Synthesis of Digital Systems, 2006. [Online].
Available: www.lsi.upc.edu/˜jordicf/gavina/BIB/files/self tr.pdf

[19] ——, “Synthesis of synchronous elastic architectures,” in Proc.
ACM/IEEE Design Automation Conference, Jul. 2006, pp. 657–662.

[20] M. Galceran-Oms, J. Cortadella, and M. Kishinevsky, “Speculation in
elastic systems,” in Proc. ACM/IEEE Design Automation Conference,
Jul. 2009, pp. 292–295.

[21] M. Galceran-Oms, J. Cortadella, M. Kishinevsky, and D. Bufistov,
“Automatic microarchitectural pipelining,” in Proc. Design, Automation
and Test in Europe (DATE), Apr. 2010.

[22] S. Hassoun and C. Ebeling, “Architectural retiming: Pipelining latency-
constrained circuits,” in Proc. ACM/IEEE Design Automation Confer-
ence, Jun. 1996, pp. 708–713.

[23] J. Hennessy and D. Patterson, Computer Architecture: a Quantitative
Approach. Morgan Kaufmann Publisher Inc., 1990.

[24] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster,
E. G. Mercer, and C. J. Myers, “Synchronous interlocked pipelines,” in
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, Apr. 2002, pp. 3–12.

[25] J. Júlvez, J. Cortadella, and M. Kishinevsky, “On the performance eval-
uation of multi-guarded marked graphs with single-server semantics,”
Discrete Event Dynamic Systems, Aug. 2009.

[26] T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Oms, “Correct-
by-construction microarchitectural pipelining,” in Proc. Int. Conf.
Computer-Aided Design, 2008, pp. 434–441.

[27] S. Krstić, J. Cortadella, M. Kishinevsky, and J. O’Leary, “Synchronous
elastic networks,” in Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD), Nov. 2006.

[28] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1, pp. 5–35, 1991.

[29] C.-H. Li and L. Carloni, “Using functional independence conditions to
optimize the performance of latency-insensitive systems,” in Proc. Int.
Conf. Computer-Aided Design, Nov. 2007.

[30] R. Lu and C.-K. Koh, “Performance optimization of latency insensitive
systems through buffer queue sizing of communication channels,” in
Proc. Int. Conf. Computer-Aided Design, Nov. 2003, pp. 227–231.

[31] R. Manohar and A. Martin, “Slack elasticity in concurrent computing,”
in Mathematics of Program Construction. Springer, 1998, pp. 272–285.

[32] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential circuits
for low power,” in Proc. Int. Conf. Computer-Aided Design, 1993, pp.
398–402.

[33] T. Murata, “Petri Nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, pp. 541–580, Apr. 1989.

[34] A. Peeters and K. van Berkel, “Synchronous handshake circuits,” in
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, Mar. 2001, pp. 86–95.

[35] P. Prakash and A. Martin, “Slack matching quasi delay-insensitive
circuits,” in Proc. Int. Symposium on Asynchronous Circuits and Systems,
2006, p. 10.

[36] R. Reese, M. Thornton, C. Traver, and D. Hemmendinger, “Early
evaluation for performance enhancement in phased logic,” IEEE Trans.
on Computer-Aided Design, vol. 24, no. 4, pp. 532–550, Apr. 2005.

[37] C. Soviani, O. Tardieu, and S. Edwards, “Optimizing sequential cycles
through Shannon decomposition and retiming,” in Proceedings of the
conference on Design, automation and test in Europe. European Design
and Automation Association 3001 Leuven, Belgium, Belgium, 2006, pp.
1085–1090.

[38] S. Srinivasan, K. Sarker, and R. Katti, “Token-Aware Completion Func-
tions for Elastic Processor Verification,” Research Letters in Electronics,
2009.

[39] Y.-S. Su, D.-C. Wang, S.-C. Chang, and M. Marek-Sadowska, “An
efficient mechanism for performance optimization of variable-latency
designs,” in Proc. ACM/IEEE Design Automation Conf., 2007, pp. 976–
981.

[40] I. E. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32,
no. 6, pp. 720–738, Jun. 1989.

[41] M. Vijayaraghavan and Arvind, “Bounded dataflow networks and
latency-insensitive circuits,” in Proceedings of the 7th International Con-
ference on Formal Methods and Models for Codesign (MEMOCODE),
July 2009.

[42] M. Vijayaraghavan and A. Arvind, “Bounded dataflow networks and
latency-insensitive circuits,” in MEMOCODE’09: Proceedings of the 7th
IEEE/ACM international conference on Formal Methods and Models for
Codesign, 2009, pp. 171–180.

[43] T. Williams, “Performance of iterative computation in self-timed rings,”
The Journal of VLSI Signal Processing, vol. 7, no. 1, pp. 17–31, 1994.

158


