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Abstract— When time is incorporated in the specification of
discrete systems,the complexity of verification grows exponen-
tially . When the temporal behavior is specified with symbols,
the verification problem becomeseven more difficult. This paper
presentsa formal verification technique for timed circuits with
symbolicdelays.The approachis able to provide a setof sufficient
linear constraints on the symbols that guarantee the correctness
of the circuit. The applicability of the technique is shown by
solving the problem of automatic discovery of linear constraints
on input and gate delays that guarantee the correct behavior of
asynchronous circuits.

I . INTRODUCTION

Thecorrectnessof concurrentsystemsoftendependson the
temporalcharacteristics:responsetimes, timeouts,computa-
tional delays,etc. Several formalismshave beenproposedto
modelsuchsystems,suchasTimed TransitionSystems[13],
Timed Automata[2] andHybrid Automata[1].

In thesemodels,a systemis specifiedasanautomatonwith
annotatedtiming information. Given a property, verification
usually gives an answerof this sort: “ the systemis correct”
or “ the trace � leads to a failure”, where � is a sequence
of eventsannotatedwith time. However, the previous answer
is only valid for the particular timing information provided
for that instanceof the system.Let us assume,for example,
that this informationis the setof gatedelaysof a circuit. The
answerwould only be valid for a particular technology, and
could not be extrapolatedto other technologies.Would it be
possibleto give a characterizationof the circuit as a set of
timing constraintsthat could guaranteethe correctnessof the
circuit and that would be independentfrom the technology?
For example, the following answer would be much more
meaningful:Thecircuit is correct if
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where
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denotesthe delayof the gate
��"

. The advantage
of this type of answeris obvious. However, this requiresan
analysiswith symbolicdelays,that makes verification much
morecomplex.

This paperpresentsan algorithmic approachfor the auto-
matic discovery of linear constraints in timed systemsthat
guaranteetheir correctness. Thetechniqueis basedon the the
paradigmof Abstract Interpretation [8], that was originally
devisedfor thestaticanalysisof programs[9]. Oneof themain
motivationsof this work is thecharacterizationof thebehavior
of asynchronouscontrollers.The correctnessof thesecircuits

oftendependson the actualdelaysof the gates.Undercertain
gatedelays,the circuit may manifesthazardousbehavior that
canbepropagatedto someoutputsignalandproducea failure.
The purposeof the verification is to derive a set of linear
constraintson thegatedelaysthatguaranteeacorrectbehavior.
Eachconstraintusually refersto a pair of structuralpathsin
thecircuit whosedelaysmustbe relatedby an inequality(e.g.
delay(path

�
)
�

delay(path


)).

The complexity of the problem restricts the size of the
circuits that canbe verified with this approach,sinceexplicit
representationsof the states are required. So far, circuits
with up to 20 symbolshave been verified. This makes the
approachspeciallysuitablefor theverificationof smallcircuits
whosebehavior dependson the timing characteristicsof the
components,suchasasynchronouscontrollers.Someexamples
of thesecontrollersare the IPCMOScircuits from IBM [18],
or theGasPFIFO controlcircuitsfrom SunMicrosystems[19]
(seeFigure8). Thetechniqueis alsoapplicableto any level of
granularity. For example,onecould verify RTL specifications
with delaysat the level of functionalblocks(ALUs, counters,
controllers,etc).

The paperis organizedas follows. SectionII presentsan
example of verification with symbolic delays. Section III
discussesrelatedwork in thearea.SectionIV introducestimed
transitionssystemsandsymbolicdelays.The main algorithm
for reachability analysisis presentedin Section V. Finally,
SectionVI illustratestheapplicabilityof theapproachto some
examples.

I I . EXAMPLE: VERIFYING A D FLIP-FLOP

We illustrate the power of symbolic analysiswith linear
contraintsby meansof anexample.Let us take theD flip-flop
depictedin Fig. 1(a) [17]. Eachgate $ " hasa symbolicdelay
in the interval %'& ")(+*,".- . We call /10325476�8 , /19;:;< = and /1>@?BADC
the setup,hold and clock-to-outputtimes, respectively. /1EGF
and /IH�J define the behavior of the clock. Our goal is to
symbolically characterizethe latch behavior in terms of the
internalgatedelays.

Themethodpresentedin this paperis capableof deriving a
setof sufficient linearcontraintsthatguaranteethecorrectness
of the latch’s behavior. The verifiedpropertyis the following:

The value of K after a delay /1>@?BADC from LNM ’s
rising edge mustbeequalto thevalueof

*
at LNM ’s

rising edge.

Any behavior not fulfilling this propertyis consideredto be a
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Fig. 1. (a) Implementationof a D flip-flop [17], (b) descriptionof variablesthat characterizeany D flip-flop and(c) sufficient constraintsfor correctnessfor
any delayof the gates,(d) sufficient constraintsif somedelaysareknown: ������� �G����� and �������������;� .
failure1. Fig. 1(c) reportsthesetof sufficient timing constraints
derived by the algorithm.The most interestingaspectof this
characterizationis that it is technology independent.

As an example, let us focus on two constraints.First,
& �y��*U


is necessaryto prevent the cross-coupledgates$��
and $ � read the wrong value of

*
or enter metastability.

Second,/ 0325476�8 ��*��1
�*U
U� & 
 definesthe setuptime that,
interestingly, dependson the variability of the delayof g2. In
caseof no variability on the delays,the constraintis reduced
to / 0�2)4�6�8 ��*�� , which is the time requiredfor $�� to capture
the valueof

*
.

The degreeof parametrizationcanbe chosenat the design-
er’s will. If somedelaysare known, they canbe usedduring
the verification.As an example,let us assumethat the delay
of $ � and $ 
 are in the intervals % � (	��- and %�� (5��- , respectively.
The sufficient constraintswith theseassumptionsarereported
in Fig. 1(d).

I I I . RELATED WORK

Several techniquesfor computingconservative timing con-
straintsfor the correctoperationof asynchronouscircuits are
available in the literature.The main differencebetweenthis
paperandtheseapproachesis that they arebasedon analyzing
the circuit with known constantmin-maxdelaysin gatesand
wires [4], [5], [7], [15], [16]. The approachpresentedin this
papercan deal with unknowndelaysthat are representedas
symbols. Therefore,the analysiscan be performedwithout
making any assumptionon the delay of the componentsof
the circuit or the eventsof the environment.

The kind of timing constraintsthat can be computedalso
differs from our approach.The first class of constraintsis
metric timing constraints,i.e. constantmin-max boundsfor
the componentsof a circuit. In [15], contraintsare described
as boundeddelays called delay paddings that have to be
introducedin thecircuit to guaranteecorrectness.[5] computes
delay paddings,plus the required delay bounds on input
events. Another group of constraintsis relative timing [4],
[7], [14], [16], i.e. constraintsthat describethe relative order
amongconcurrentevents.Our approachcancomputea wider
classof constraints,linear constraints. Therefore,our analysis
provideslessconservative timing constraints,thatcanyield an
increasein performance.

Our approachusesconvex polyhedraas the abstractionto
representsetsof timedstates.In [9] convex polyhedraareused

1An inertial delaymodel is assumedfor the verification

to analyzelinear relationsamongvariables,in the context of
algorithms for the static analysisof programs.To preserve
closednessin set operations,polyhedra can only represent
approximationsof the statespace.For example,the union is
not closed for convex polyhedra.As an overapproximation,
the convex hull is usedinstead.This strategy has also been
usedby otherauthorsfor the approximateverificationof real-
time systems[11], linear hybrid automataand synchronous
programswith counters [12]. Linear hybrid automataand
synchronousprogramsdiffer from timed transitionsystemsin
the condition requiredfor an event to happen,i.e. thereis no
restrictionon thetime elapsedsinceaneventbecomesenabled
for firing until it is finally fired,contraryto thelowerandupper
boundrequirementsdefinedin timed transitionsystems.

IV. DEFINITIONS

The behavior of a timed circuit can be modeled as a
timed transitionsystem(TTS). A TTS is a transitionsystem
whereeachevent hasa lower andupperdelaybounds.In the
remainderof the paper, the delayof an event will be denoted
by %{&S� (+* � - . For thoseeventswhereno distinctionis madefor
min and max delays,we will simply use the notation

�����w�
.

Intuitively, the lower boundrestrictionstatesthat an event
�

shouldbe fired at least &S� time units after becomingenabled,
and the upperboundrestrictionstatesthat

�
is fired at most* � time units after becomingenabled.

The following definitionspresentthe conceptsof transition
systemandTTS, togetherwith thesemanticsof thesemodels,
i.e. the conceptof “run”.

Definition 4.1: [3] A transitionsystem(TS) is a quadruple� �¢¡�£�(h¤¥( / (§¦;"�¨@© , where
£

is a non-emptysetof states,
¤

is
a non-emptyalphabetof events, /«ª £D¬[¤�¬]£ is a transition
relation, and

¦�"�¨
is the initial state. Transitionsare denoted

by
¦­�® ¦l¯

. An event
�

is enabledat state
¦

if ° ¦­�® ¦l¯I± / .
We will denotethe setof eventsenabledat state

¦
by ² ��¦w� .

Definition 4.2: Let
�³�´¡)£�(	¤¥( / (+¦ "�¨ © be a TS. A run of�

is a sequence
¦w� � g® ¦l
 � Y®¶µ+µ+µ such that

¦w�·�¸¦ "�¨
and¦ " �;¹® ¦ " Z ��± / for all º¥»�� .

Definition 4.3: [13] A timed transition system(TTS) is a
triple

�¼�¼¡�� i ( & (+*½© where
� i �¼¡�£�(	¤¥( / (+¦�"7¨@© is a TS

called the underlying transition system, &¿¾ ¤ ® À Z and* ¾ ¤ ®�À Z ÁGÂ�Ã
respectively associatea minimal and a

maximaldelayboundsto eachevent,suchthat Ä �x±Å¤ ¾�& �ÇÆ* � .
Definition 4.4: [13] A timed statesequenceis a pair È �¡ � (�É§© suchthat � is a sequenceof statesand

É
is a sequenceof



time stampsin À Z ,
É	�

,
É)


,
É)�

, µ+µ+µ suchthat
É	� Æ É)
 Æ É)� Æ µ+µ§µ

(monotonic) and ÄjÊ ± À Z ¾�°	º É " » Ê (progress).
Definition 4.5: [13] Let

�¢�Ë¡)� i ( & (+*½© be a TTS. A run
of
�

is
Ì

a timed statesequenceÈ � ¡ � (�É§© suchthat � is a run
of the underlyingtransitionsystem

� i
and:Í lower bound: Ä �x±·¤¥( º¥»�Î (�Ï »·º ¾ É#ÐÇ�ÑÉ " 
 & � ¾ ��¦�Ð �®¦�Ð Z ��± � � ® ���Ç± ² ��¦ " �)� .Í upperbound: Ä �Ç±·¤¥( º¥»�Î½¾�° Ï »Ñº�¾ É#Ð Æ É " 
Å* � ¾ ��Ò±

² ��¦ " ��Ó���¦�Ð �® ¦�Ð Z ��± � � .
The definition of TTS can be easily extended to allow

symbolicdelaysin addition to constantdelays.

V. TIMING REACHABIL ITY ALGORITHM

A. Overview

Eventsof a TTS canonly be fired if their lower andupper
boundrestrictionsare satisfied.Intuitively, eachevent hasan
associatedevent clock that storesthe amountof time elapsed
since the transition becameenabled.Each time an event is
fired, event clockshave to be modifiedaccordingly. Analysis
of the valuesof event clockscanrevealwhetheran event can
be fired or not in a given state.

This section presentsan algorithm that computesa con-
servative upperapproximationof the event clock values.Ap-
proximationswill be propagatedandcombinedusingfixpoint
techniquesdescribedin abstractinterpretation[8].

The following sectionsdescribethe different parts of the
algorithm:theabstract interpretationtechniquesusedto prop-
agate the approximationsare explained in V-B; the basic
operationson our approximation,convex polyhedra, are de-
fined in V-C; finally, the function that computeshow our
approximationis changedafterfiring anevent,oneof themain
contributionsof the paper, is definedin V-D.

B. Abstract interpretation

Abstract interpretation [8], [9] is a framework of approxi-
matestaticanalysistechniqueswhich canbe appliedto many
kinds of analysisproblemsin different types of systems.In
order to solve a specificproblem,the framework of abstract
interpretationhasto be adaptedto:Í the propertiesbeing studied:We can definea stateof a

systemasthesetof valuesthatdescribetheconfiguration
of the systemat any given point. The statemay contain
information which is not necessaryto check a given
property. Therefore,in our analysiswe can work with
an abstraction, a simplification of the statethat ignores
the information of the configurationthat is not relevant
in the specificproblem.Í the semanticsof the system:The behavior of a system
canbedefinedby identifying a setof locationswherewe
requireinformationaboutthe state.The relationsamong
the stateof the systemin theselocationsestablishesa
systemof equations.

The systemof equationsis solved iteratively usingfixpoint
techniques,yielding an abstractionthat describesan upper
approximationof the statein eachlocationof the system.

Algorithm AbstractInterpretation ( Ô , ÕUÖØ× )
Input: A graph Ô�ÙÛÚdÜ½Ý3Þ�ß with initial nodeàSá andinitial
constraintsÕUÖ�× .
Output: The abstractionâ�ã ä å for all nodesandedges.

foreach node áçæèÜ do â�ã ä å+Údá�ß := é ; endfor
foreach edgeêUæ,Þ do â�ã ä å+Údê�ß := é ; endforâ�ã ä å+ÚdàSá�ß := ÕèÖØ× ;ëSì+í áNîSê�ï := ð�Ü�ñ ;
do á := nodein ëhì§í áNîSê+ï with lowestDFS number;ëSì§í áNîSê�ï := ëSì+í áNîSê�ïxòóá ;

foreach edgeáõôö�÷ æèÞáøê�ùIúüû ÷ ê := ý�þ í áBÿ��	ê�þGÚ�âjã ä�å;Údájß�ß ;
if (áøê�ùIúüû ÷ ê��Åâ�ã ä å+Údê�ß ) continue;âjã ä�å+Údê�ß := áNê�ùIúIû ÷ ê ;
if ( âjã ä�å+Údê�ß��Åâjã ä å+Ú ÷ ß ) continue;
if (ê is a backedge)âjã ä�å+Ú ÷ ß := âjã ä å+Ú ÷ ß�� Ú�âjã ä�å;ÚdêGß���â�ã ä å�Ú ÷ ß�ß ;
elseâjã ä�å+Ú ÷ ß := âjã ä å+Ú ÷ ß	��â�ã ä å+Údê�ß ;ëSì§í áNîSê�ï := ëSì§í áNîSê�ï
�Uð ÷ ñ ;

while (ëSì+í áNîSê�ï��Ùçé );
Fig. 2. Abstractinterpretationalgorithm

For theproblemof timing analysisof aTTS, aconfiguration
is a setof valid assignmentsof constantvaluesto clocksand
symbolicdelays.We will abstractthesetof valid assignments
asa convex polyhedronthat is an upperapproximationof this
set, i.e. all valid assignmentsare includedin the polyhedron.
Theconvex polyhedronwill describethelinearconstraintsthat
are satisfiedamongclock valuesand symbolic delaysin all
thesevalid assignments.

There will be two kinds of locations of interest of our
timing analysisof TTS: statesand transitions.We will note
the abstractionin a given location 
 as ������� � 
 � , even though
the abstractionhas a different meaning for statesthan for
transtions.
Í In states,we areinterestedin the valueof clockswhena

stateis reached,i.e. the preconditionof the state.Í About transitions,we would like to computethe value
of clocks after the transition happens,i.e. after firing
an event. This can be consideredas computing the
postconditionof the transition.

In orderto definethetiming behavior of thesystem,wehave
to build a systemof equationthat defineshow time elapses.
When an state is reached,several events becomeenabled
while othereventsthatwereenabledpreviously continueto be
enabled.Theseeventshave to be fired accordingto its lower
andupperdelaybound,taking into accountthat someevents
have alreadybeenenabledfor sometime. We have defined
a symbolic function called transfer (explained in detail in
sectionV-D) thatadvancestheclockvalueswhile satisfyingall
upperandlower bounds.Using this function, the abstractions
for statesand transitions can be defined as the following
systemof equations:
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Figure 2 describesan algorithm that computesa solution

for this systemof equationsusinga increasingfixpoint. Each
location starts with an empty set of valid assignmentsto
clocks and values,i.e. and empty abstraction.The algorithm
appliesthe equationsiteratively as long as the addnew valid
assignments.The solutionis reachedwhenthereis a fixpoint,
i.e. applyingall equationsanothertime doesnot yield any new
statesin any locationof the system.

Termination,i.e. convergenceof the systemof equations,
is guaranteedby modifying the computationfor loops. A
widening operator[9] is used in the the equationsof those
statesthatarethetargetsof back-edges.Thewideningoperator
(
�$#&%

) is defined as a supersetof
� %

that reaches
convergenceafter being applied a finite number of times.
Using widening in all loops ensuresthe convergenceof the
system of equations,as well as reducing the number of
iterationsrequiredto reacha fixpoint. An in-depthdiscussion
on terminationof fixpoints andthe necessityof wideningcan
be found in [8], [9].

C. Convex polyhedra

This sectionwill introducethe basicconceptsaboutconvex
polyhedrarequired to understandthe implementationof its
operators.The reader can find an in-depth description of
convex polyhedrain [9], [12].

Convex polyhedra can be representedas the set of so-
lutions of a conjunctionof linear inequalities with rational
coefficients.Let ' be a polyhedronover (

¨
, then it can be

representedas the solution to the systemof � inequalities
' � Á*),+ � ) » % Ã

where
� ± (�-/.

¨
and

%«± (0- . Convex
polyhedracan also be representedin a polar representation,
called the systemof generators, as a linear combinationof a
setof vertices 1 (points)anda setof rays 2 (vectors).

The fact that there are two representationsis important,
becausethere are efficient algorithms [9] that translateone
representationto the other, and several of the operationsfor
convex polyhedra are computedvery efficiently when the
properrepresentationof polyhedrais available.

Thesetof operationson convex polyhedrathatarerequired
for timing analysisare the following:Í Test for inclusion ( ' ª¶K ): Inclusion is an exact

operation. ' is included in K only if the generatorsof
' satisfythe constraintsof K , that is, Ä�3 ± 1�¾ � 3�» %
and Ä ��± 2�¾ �4� »�Î .

Í Union ( ' K � ): The union of convex polyhedrais not
necessarilyconvex, andthereforeanupperapproximation
is used. This approximationis called convex hull, the
leastconvex polyhedronthat includes ' and K . ' K
is definedasthe polyhedronwith a systemof generators
that is the union of thosein ' and K .Í Intersection ( ' K ): The intersectionof two convex
polyhedrais necessarilyconvex. ' K can be defined
as the polyhedronwith a systemof linear inequalities
that containsall the inequalitiesin ' and K .Í Widening ( ' # K ): Wideningis theapproximateoperator
usedto guaranteeterminationin loops.Wideningoperator
mustensurethatit will reachfixpoint afterafinite number
of iterations. ' # K is definedas the systemof linear
inequalitieswhich are satisfiedboth by ' and K . As
the number of inequalities in ' and K is finite and
this operatorcan only reduceor maintain the number
of inequalities,terminationin a finite numberof stepsis
ensured.Í Applying a linear assignment( '�%'&]¾ �65 
 
y*�- ): Linear
assignmentsto a dimensionof the polyhedrontransform
the verticesand the edgesof the polyhedronas 1 ¯ �Á 5 3 
�* + 3 ± 1 Ã and 2 ¯B� Á 5
� + ��± 2 Ã .Í Assigning an undefined value to a dimension ( '�%'&]¾ �7 -��

): this operationremoves all constraintsfor a given
dimension of the polyhedron, while keeping all the
implicit constraintsabout the rest of dimensionsintact.
This operationis implementedwith the Fourier-Motzkin
elimination [10] method, i.e. we updatethe systemof
inequalities as follows: First, we add all the possible
linear combinationsof inequalitieswith non-zerocoef-
ficient in & so the coefficient in & becomeszero.For �
inequalities,at most

� � Ò§�ó� 
 linear combinationswill be
addedto the systemof inequalities.Then, inequalities
wheredimension& hasnon-zerocoefficient areremoved.

Figure 3 shows some examples of these operationson
convex polyhedra.It should be noted that the convex hull
and the widening operatorare the only operatorsthat loose
precision.All otheroperatorsareexact.

Convex polyhedrahave been chosenonly becauseof its
goodtrade-off betweenefficiency andexpresiveness.However,
any otherabstractionof asubsetof (

¨
providing thenecessary

operatorscould have beenusedinsteadof convex polyhedra.
An example of an alternative abstractionis finite unions of
convex polyhedra,which aremoreprecisebut lessefficient.



Algorithm transfer( ÿØþ ë , ïøÿØý , ê , 8 )
Input: An event ÿØþ ë ôö ïøÿØý with precondition8 .
Output: The postconditionof ÿØþ ë ôö ïøÿØý .

8 := 8,9]Ú�ÿØý3ê;:=<�>�ß ;8 := 8,9]Ú ë ?A@+ëCB ôED ÿØý3ê;:=<çï ô ß ;8 := 8,9]Ú ë ?A@+ëCB ôED ÿØý3ê;:=FHG ô ß ;foreach event êJIK�Ù ê : êJI@æ�LBÚ�ÿØþ ë ß8 := 8,9]Ú ë ?A@§ë�B ôNM D ÿØý�ê�:�FHG ôNM ß ;foreach event ê I �Ù ê : ê I æDðOL Ú�ÿØþ ë ß�PQLBÚdïøÿ�ý#ß�ñ8�R ëS?T@§ë�B ô M�U Ù ëS?A@+ëCB ô M D ÿØý�ê�:WV ;foreach event ê I �Ù ê : ê I æ�LBÚdïøÿØýlß�9Çê I0Xæ=L Ú�ÿØþ ë ß8�R ëS?T@§ë�B ôNM�U Ù�>WV ;
foreach event êJIK�Ù ê : êJI@æ�LBÚ�ÿØþ ë ßY9 êJI Xæ!LBÚdïøÿØýlß8�R ëS?T@§ë�B ôNM U Ù[Z\V ;
if (êxæ�LBÚdïøÿØýlß ) 8�R ëS?T@§ë�B ô U ÙH>WV ;
else 8�R ë ?A@§ë�B ô U Ù[Z\V ;8�R'ÿØý�ê�: U Ù[Z\V ;
return 8 ;

Fig. 4. Clock transferfunction

a a  P [ clock   :=  clock    + step ]

e  P [ clock   :=  ? ]

b  P [ clock   :=  ? ]

c  P [ clock   :=  0 ]

{ P }

{ Q }

ca

a b

e

    

e
e
a
b

  P := P /\ (step    0)

transfer( e , P ) =

  P [ step :=  ? ]

d
D
D
D

e
e
a
b

  P := P /\ ( clock   + step             )
  P := P /\ ( clock   + step             )
  P := P /\ ( clock   + step             )
  P := P /\ ( clock   + step             )

Á ' Ã � Á �O]�^`_C] Ê � � Î �����O]�^`_C] Ê�a � Î ����� Î Æ ];^`_C] ÊCb Æ � � ÃÁ K Ã � Á �O]�^`_C] ÊCc � Î ���ç��* �Ç» ]�^`_C] Ê a »Ë&S� �����* a » ]�^`_C] Ê a » &S� �@�ç� &S� 
 � Æ * b � Ã
Fig. 5. Exampleof thetransferfunctionfor anevent d , with thepostconditione

obtainedfrom a preconditionf .

D. Theclock transferfunction

The core of the analysis is the clock transfer function
that computessymbolicallythe changesin clock valuesafter
firing an event. Clock values are representedby a convex
polyhedron, with one dimension per event clock and one
dimensionpersymbolicdelay. The restrictionsof this polyhe-
dron representthe restrictionson the clock valuesin a given
state.Intuitively, thepurposeof thetransferfunctionis to make
surethatwhenever anevent

�
is fired, its delaybounds& � and* � aretaken into accountandaddedto the restrictionson the

clock values.
Event clocks for enabledeventsstore the amountof time

elapsedsincetheeventbecameenabled,while disabledclocks
areundefined,i.e. thereis no restrictionon their value.After
firing an event,eventclocksshouldbeupdated,becausesome
time haselapsedsincethe firing of the last event to the firing
of currentevent. This time spentin the stateis called clock
step, and it shouldsatisfy the following properties:Í Stepshouldbe »�Î , i.e. no negative time increments.

Í Stepshouldbe long enoughto ensurethat the firing of�
happensat least & � time units after

�
was enabled.At

the sametime, it shouldbe short enoughto ensurethat�
is fired at most

* � time units after becomingenabled.Í Stepshouldbeshortenoughto ensurethatany transition
that is enabledbeforefiring

�
is not forcedto fire dueto

its upperboundconstraint.
Oncethe clock stephasbeendefined,the updatein event

clockscausedby the firing of an event
�

canbe definedas:Í events that are disabledbefore and after firing
�

keep
their clocksunchanged.Í eventsthatareenabledbeforeandafterfiring

�
have their

event clocks increasedby the clock step.Í eventsthat becomeenabledby the firing of
�

have their
clock set to 0.Í eventsthat becomedisabledby the firing of

�
have their

clock undefined.
Figure4 describesthe algorithmthat computesthe transfer

function using convex polyhedraoperators.Figure 5 shows
an exampleof the computationthat would be performedby
the algorithm.Eventsthat are enabledbeforeandafter firing
event

�
have been increasedby an amount in the interval

%'&h� (§* � - , i.e. the unknown clock step.Also, notice that some
constraintsamongthesymbolicdelaysof differenteventshave
been discovered. These constraintswere imposed over the
clock stepduring the transfer, and implied several restrictions
on the delays that are made explicit when variable step is
undefined.For example, the restriction

* a�»�& � meansthat
event

�
canbe fired only if

�
is not fasterthan

�
. Otherwise,

the postconditionof this transition would be empty, i.e. no
assignmentto clock andsymbolicdelaysis consistentwith the
firing of theevent.This restrictionis impliedby theconstraints]�^g_C] Ê a 
]¦5É+� h Æ * a (;]�^g_C] Êh� 
]¦5É+� h »¢&S� , ]�^g_C] Ê a � Î , ];^`_C] ÊS� �Î .

The clock transferfunction describedin this sectioncanbe
easilymodifiedto dealwith symbolic timed automatainstead
of TTS. Checkinglocationinvariantsandenablingconditions
for transitionscan be modeledas adding linear constraints
to the polyhedron,and resetting clocks can be done with
linear assignments,both of which areavailableoperationson
polyhedra.The transfer function for timed automatawould
be defined as (1) increaseclocks by step, (2) check the
sourcelocation invariant,(3) checkthe enablingconditionof
the transition, (4) resetclocks, (5) check the target location
invariantand(6) undefinestep.

E. Main algorithm

Timing analysisprovides the requiredconstraintsfor the
reachabilityof thestatesandtransitionsof theTTS. However,
we are looking for the complementaryconditions, i.e. the
conditionsthat renderfailuresunreachable.Therefore,an al-
gorithmis neededon top of timing analysisto extractselected
constraintsfrom thoseprovidedby abstractinterpretation.This
algorithmis presentedin Figure6.

The input is the specificationof a TTS: a set of discrete
variables,a transitionrelation,an initial state,and the delays



Algorithm Verification ( i , j , à )
Input: A specificationof a TTS i , a predicatej describing
failure statesand transitions,and a predicate à describing
known restrictionson the symbolicdelays.
Output: A setof constraintson the symbolicdelaysthat is
sufficient to avoid the failuresdefinedby j .

Ô := k¥ê íwëhì§íml û ? û ýonwÕ¥á ím? nzÿØû5ÿ�ÚOiøÝpj,ß�që @ ájÿØý�þ í û áøýlÿ := à ;
do Õ l ÿØý�þ íwë ý�àSáNý3ê+þ;:hþ+ê�ý í ý�û @ ájÚ�Ô�Ý ë @ ájÿØý�þ í û áøýlÿ;ß ;r

:= setof linear constraintsrequiredto reacha
failure that arenot implied by ë @ ájÿØý�þ í û áøýlÿ ;

choosea linear constraintë from
r

;ë @ ájÿØý�þ í û.áNýlÿ := ë @ ájÿØý�þ í û áøýlÿs9ut ë ;
while (any failure is reachable9 ëS@ áBÿØý3þ í û áNý;ÿ/�Ù,� ím? ÿØê );ð ëS@ ájÿ�ý3þ í û áNý;ÿIÙv� ím? ÿØê ö unavoidable failure ñ
return ë @ ájÿØý�þ í û áøýlÿ ;

Fig. 6. Main algorithmfor verification

of eachevent.Additionally, a predicatedescribingthe failure
statesand an invariant of known delay constraintsare also
provided. The output is a set of sufficient constraintsthat
ensurethe absenceof failures.

The first stepis the calculationof the reachablestatespace
using untimed depth-first reachability analysis.During this
stage,failure edgesand stateswill be identified.Also during
this traversal,all back-edgesof loopsareidentifiedandnodes
are numberedin quasi-topologicalorder; this order will be
used to speedup convergenceof the abstractinterpretation
analysis.

Timing analysiscan then be performedon the TTS. The
resultof this stepwill be a polyhedronattachedto eachstate
and transition of the TTS, including the edgesthat lead to
a failure. The polyhedronattachedto each of theseedges
describesconstraintsthatarerequiredto reacha failure.If any
of theseconstraintsis false, the failure will be unreachable.
For example,if onepolyhedronhasthe constraints,��� Æxw 
y]§���ç��� » ���

then, the constraint that makes sure that the failure is
unreachableis the following disjunction���]� w 
y]§��Óç���Ç�x���

The algorithm proceedsby choosingone of theselinear
constraintsat a time andaddingit to the invariant.Currently,
this choice is performedinteractively, even though we have
plans to automatethis procedure.The verification continues
until all failureshave becomeunreachableor the invariant is
false. A false invariant means“cannot find a constraintthat
makes the systemcorrect”. It can happenif the systemhas
an unavoidablefailure or the algorithm cannotfind sufficient
constraintsdue to approximation.On the other hand, the
algorithmmight return the initial invariant,which meansthat
no additional constraintsare requiredfor the correctnessof
the system.
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Fig. 7. Cyclic behavior to illustrate the wideningoperator.

F. Approximateanalysis

The problem of computing the set of feasible clock and
delayvaluesis computationallyexpensive. This is the reason
why we are using an approximateanalysistechnique,such
as abstract interpretation,instead of trying to compute an
exact solution. In the context of our problem, we calculate
an upper approximationof the statespacethat guaranteesno
falsepositives in the verificationof safetyproperties.

The source of approximationcomes from the union of
reconvergent paths. In case of acyclic reconvergence, the
union is approximatedby the convex hull. In caseof cyclic
reconvergence,the widening operatormust also be used to
guaranteethe convergenceof the algorithm. This technique
is crucial when symbolsare usedto representdelays,as the
numberof iterationsof a loopmaydependon theactualdelays
of thecomponents.Sincethedelaysaresymbolic,this number
may be unknown.

Figure 7 depictstwo cyclic behaviors definedby the back
edge

¦l
 � \� ® ¦w�
. Let as assumethat each event

� "
has a

fixed delay
������"#�

. In Fig. 7(a), the correctnessof the system
is independentfrom the delaysof

� 

and

� �
. However, the

absenceof thewideningoperatorwould producethefollowing
sequenceof polyhedrain

¦ �
:

iter. Time(ÿJz )
0 ëCB ô g Ù ë�B ô Y Ù�>{9 ëCB ô ^ ÙH|�Údêm};ß�F�|�ÚdêC~�ß
1 ëCB ô

g FH|GÚdê��#ß D |GÚdê	�lß�FH|GÚdê�z)ß�9 ëCB ô
Y Ù�>{9ëCB ô ^ Ù ë�B ô g D |�Údê } ß�9 ëCB ô ^ F�|�Údê ~ ß�*��� �S�*�û ëCB ô g Fçû�� |GÚdê��5ß D û��O|�Údê	�lß�F�|�Údê�z)ß�9 ëCB ô Y Ù�>�9ëCB ô ^ Ù ë�B ô g D |�Údêm};ß�9 ëCB ô ^ F�|�ÚdêC~�ß�*��� �S�*�

wherethe predicate] Ê � g Æ ºK� �����l
���
 º4� �����l���
resultsfrom the convex union of the samepredicatewith

equality insteadof Æ , for all Î Æ Ê Æ º . With the widen-
ing operatorapplied after the first iteration, the polyhedron
representingTime(

¦w�
) would be reducedto] Êh� g Æ ����� � �Å��] ÊS� Y � Î ��] ÊS� ^ �x] ÊS� g 
������ ~ � Æ ����� � �

This polyhedronwould becomeinvariant in the following
iterations. After verification, the condition for absenceof
failure would be the following:����� � ��� ����� ~ ��
Û����� � �

Figure7(b) depictsa situationof a non-convex conditionfor
the avoidanceof failures.It is easyto prove that the system
is correctif the following predicateholds:



TABLE I

EXPERIMENTAL RESULTS

Example Circuit STG TTS # of # of CPU Time
Signals Gates Places Trans States Trans symbols constraints (seconds)

nowick 10 7 19 14 60 119 10 2 0.5
gasp-fifo 9 7 10 8 66 209 12 10 8.1

sbuf-read-ctl 13 10 19 16 74 157 14 4 1.2
rcv-setup 9 6 14 15 72 187 12 8 2.1

alloc-outbound 15 11 21 22 82 161 19 3 1.3
ebergen 11 9 16 14 83 188 13 5 1.3

mp-forward-pkt 13 10 24 16 194 574 12 6 1.9
chu133 12 9 17 14 288 1082 7 3 1.3
converta 14 12 16 14 396 1341 14 13 20.4

°	º � Î½¾§ºK� ����� 
 ��
 � º � � ������� � �B�­����� � �B� º ������� 
 ��
Û����� � �)�
Unfortunately, theexistentialquantifierrepresentsa disjunc-

tion that cannotbe expressedasa convex polyhedron.In this
case,the predicatefor Time(

¦ �
) would be:] Ê � g »�Î ��] Ê � g Æ �����w�+�·��] Ê � Y � Î

This abstractiondoesnot show dependenciesbetweensym-
bolic delays. Therefore,the verification would not be able
to provide any set of linear constraintsto avoid the failure,
even thoughthereare valuesfor delaysthat make the circuit
correct.

VI . EXPERIMENTAL RESULTS

We have implementedthealgorithmpresentedin this paper
in a verificationtool. In this section,we show someexamples
that have beenverified using this tool.

A. GasPFIFO controller

We have formally verified a GasPFIFO controller from
SunMicrosystems[19]. This circuit handlesthe flow of data
betweenstagesof a pipeline: whenever the previous stage
is FULL and the next stageis EMPTY, the control circuit
(a) producesa pulse to the data latch in order to make it
transparent,(b) declaresthat the next stageis FULL and (c)
declaresthat the previous stageis EMPTY. The state of a
stageis encodedin a single wire, whereEMPTY (FULL) is
encodedasHI (LO). Figure8 shows thecontrollerof onestage
of a pipeline.The environmentof this controller corresponds
to the previous and next stagesof the pipeline. Notice that
wire

^.�
correspondsto thewire

���
in thepreviousstageof the

pipeline. The behavior of the environment is modeledwith
SignalTransitionGraphs(STG) [6]. Environmenteventssuch
as 
 
 or � � describethe rising or falling of signals,and
its delay models the time required to fire an event since it
becomesenabledin the STG.

This asynchronouscontroller is designedto achieve a very
high throughput,so it dependson timing constraintsfor its
correctoperation.In [14], this circuit is verified andsufficient
relative timing constraintsto ensurecorrectnessare derived.
However, it is hardto translaterelative timing constraintsinto
constraintson the delaysof the componentsof the circuit.

The correctnessof the circuit has been verified with re-
spect to three criteria: absenceof short-circuits; absenceof
hazards, i.e. once an event becomesenabled,it does not
becomedisabledbeforebeingfired; andconformance, i.e. all

output events producedby the circuit are expectedby the
environment.Thesecriteria can be satisfiedwith the timing
constraintsthat appearin Figure8.

B. Asynchronouspipeline

We have alsoverifiedan asynchronouspipelinewith differ-
ent numberof stagesand an environmentrunning at a fixed
frequency. The processingtime required by each stagehas
different min and max symbolic delays.The safetyproperty
being verified in this casewas “the environmentwill never
haveto wait beforesendingnew datato thepipeline”. Figure9
shows thepipeline,with anexampleof a correctandincorrect
behavior. The tool discovered that correct behavior can be
ensuredif the following holds:

&C�*� � * � � µ§µ+µ � &C�S� �¢* � � &C�S� � *���� O
where

*,"
is the delayof stageº , and &C�*� and

*=��� O
refer to

environmentdelays.This propertyis equivalentto:

& �*� � � � 
 ��*���( µ+µ+µ (§* � (§* ��� O �
Therefore, the pipeline is correct if the environment is

slower than the slowest stageof the pipeline. CPU time for
the different lengthsof pipelinecanbe found in Figure9.

C. Other examples

We have also verified a set of asynchronouscircuits avail-
able in the literature, definedas a network of simple gates
plus a STG modeling the behavior of the environment. In
these circuits, correctnesshas been defined as absenceof
hazards and conformancewith the STG. Table I shows the
sizeof thecircuits,STGsandthecomputedTTSs, thenumber
of symbolic delays, the number of constraintsrequired for
correctness,and the CPU time usedfor the verification.

VI I . CONCLUSIONS

An algorithm for symbolic timing analysisof concurrent
systemshas beenpresented.The output of the algorithm is
a conservative approximationof the values of clocks and
symbolic delays in the reachablestatesof the system.An
applicationhasbeenshown by computingthe constraintsof
gateandinput delaysin anasynchronouscircuit thatguarantee
correct behavior. Remarkably, the approachworks for more
than15 symbolicdelayswithin a reasonabletime.

The technique is well suited for analyzing small-sized
timedcircuitssuchasasynchronouscontrollers.Thesecircuits
often operateat very high throughputs,and they heavily rely
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# of TTS # of CPU Time
stages States Trans symbols (seconds)

2 36 88 8 0.6
3 108 312 10 2
4 324 1080 12 13.5
5 972 3672 14 259.2

Fig. 9. (a) Asynchronouspipeline with N=4 stages,(b) correctbehavior of the pipeline and (c) incorrectbehavior. Dots representdataelements.On the
right, the CPU timesrequiredto verify pipelineswith differentnumberof stages.

on stringent timing constraintsto ensurea correct behavior.
However, more complex circuits can also be verified if (a)
they are analyzedat a higher level of abstractionor (b) part
of the delaysare definedas rangesof known integer delays
insteadof symbols.Futurework will try to broadentheareaof
applicationof this technique,in orderto handlebiggercircuits
with more symbolic delays.We plan to use representations
basedon Binary DecisionDiagramsto representsetsof states
and timing constraintssymbolically.
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