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Abstract— When time is incorporated in the specification of
discrete systems,the complexity of verification grows exponen-
tially. When the temporal behavior is specified with symbols,
the verification problem becomeseven more difficult. This paper
presentsa formal verification technique for timed circuits with
symbolic delays.The approachis ableto provide a setof sufficient
linear constraints on the symbolsthat guaranteethe correctness
of the circuit. The applicability of the technique is shown by
solving the problem of automatic discovery of linear constraints
on input and gate delays that guarantee the correct behavior of
asynchronous circuits.

I. INTRODUCTION

The correctnes®f concurrensystemsften dependon the
temporal characteristicsresponsetimes, timeouts, computa-
tional delays,etc. Several formalismshave beenproposedto
model suchsystemssuchas Timed Transition Systemg13],
Timed Automata[2] and Hybrid Automata[1].

In thesemodels,a systemis specifiedasan automatorwith
annotatedtiming information. Given a property verification
usually gives an answerof this sort: “the systemis correct’
or “the trace o leadsto a failure”, where s is a sequence
of eventsannotatedwith time. However, the previous answer
is only valid for the particular timing information provided
for that instanceof the system.Let us assumefor example,
that this informationis the setof gatedelaysof a circuit. The
answerwould only be valid for a particulartechnology and
could not be extrapolatedto other technologiesWould it be
possibleto give a characterizatiorof the circuit as a set of
timing constraintshat could guaranteehe correctnes®f the
circuit and that would be independenfrom the technology?
For example, the following answerwould be much more
meaningful: The circuit is correct if

0(G1) +0(G2) < 6(G3) 4+ 6(Gy) +0(G5)
5(G2) < 35(G6)+26(G7)

whered(G;) denoteghe delayof the gateG;. The advantage
of this type of answeris obvious. However, this requiresan
analysiswith symbolicdelays,that makes verification much
more complex.

This paperpresentsan algorithmic approachfor the auto-
matic discovery of linear constaints in timed systemsthat
guaranteetheir correctnessThe techniques basedon the the
paradigmof Abstract Interpretation [8], that was originally
devisedfor the staticanalysisof programg9]. Oneof themain
motivationsof this work is the characterizatiotf the behavior
of asynchronougontrollers.The correctnes®f thesecircuits
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often dependson the actualdelaysof the gates.Undercertain
gatedelays,the circuit may manifesthazardousehaior that
canbe propagatedo someoutputsignalandproducea failure.
The purposeof the verification is to derive a set of linear
constrainton thegatedelaysthatguarantee correctbehaior.
Eachconstraintusually refersto a pair of structuralpathsin
the circuit whosedelaysmustbe relatedby aninequality (e.g.
delay(path) < delay(path)).

The compleity of the problem restricts the size of the
circuits that can be verified with this approach since explicit
representation®of the statesare required. So far, circuits
with up to 20 symbols have been verified. This makes the
approactspeciallysuitablefor the verificationof smallcircuits
whosebehaior dependson the timing characteristicof the
componentssuchasasynchronousontrollers.Someexamples
of thesecontrollersarethe IPCMOS circuits from IBM [18],
or the GasPFIFO controlcircuitsfrom SunMicrosystemg19]
(seeFigure8). Thetechniqueis alsoapplicableto ary level of
granularity For example,one could verify RTL specifications
with delaysat the level of functionalblocks (ALUs, counters,
controllers,etc).

The paperis organizedas follows. Sectionll presentsan
example of verification with symbolic delays. Section IlI
discusseselatedwork in thearea.SectionlV introducedimed
transitionssystemsand symbolic delays.The main algorithm
for reachability analysisis presentedn SectionV. Finally,
SectionVI illustratesthe applicability of the approachto some
examples.

Il. EXAMPLE: VERIFYING A D FLIP-FLOP

We illustrate the power of symbolic analysiswith linear
contraintsby meansof anexample.Let ustake the D flip-flop
depictedin Fig. 1(a) [17]. Eachgateg; hasa symbolicdelay
in the interval [d;, D;]. We call Tseup, Thoa and Torx— g
the setup,hold and clock-to-outputtimes, respectiely. 17,0
and Ty; define the behaior of the clock. Our goal is to
symbolically characterizethe latch behaior in terms of the
internal gatedelays.

The methodpresentedn this paperis capableof deriving a
setof sufficient linear contraintsthat guarantee¢he correctness
of the latch’s behaior. The verified propertyis the following:

The value of ) after a delay Tcx—.¢ from CK's
rising edge mustbe equalto thevalueof D at CK's
rising edce.

Any behaior not fulfilling this propertyis consideredo be a
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(a) Implementatiorof a D flip-flop [17], (b) descriptionof variablesthat characterizeary D flip-flop and(c) sufficient constraintsfor correctnesgor

ary delay of the gates,(d) sufficient constraintsf somedelaysareknown: g1 = [4,7] andg2 = [1, 3].

failure!. Fig. 1(c) reportsthe setof sufficienttiming constraints
derived by the algorithm. The mostinterestingaspectof this
characterizations thatit is technology independent

As an example, let us focus on two constraints.First,
d1 > D- is necessaryo prevent the cross-coupledjatesg1
and ¢g2 read the wrong value of D or enter metastability
Second Tserp > D1+ D2 — do definesthe setuptime that,
interestingly dependon the variability of the delayof g2. In
caseof no variability on the delays,the constraintis reduced
t0 Tsetup > D1, Which is the time requiredfor g1 to capture
the valueof D.

The degreeof parametrizatiorcanbe chosenat the design-
er's will. If somedelaysare known, they canbe usedduring
the verification. As an example,let us assumehat the delay
of g1 andg, arein theintervals [4, 7] and [1, 3], respectiely.
The sufficient constraintswith theseassumptionsre reported
in Fig. 1(d).

I1l. RELATED WORK

Several techniquedor computingconserative timing con-
straintsfor the correctoperationof asynchronousgircuits are
available in the literature. The main differencebetweenthis
paperandtheseapproachess thatthey arebasedon analyzing
the circuit with known constantmin-maxdelaysin gatesand
wires [4], [5], [7], [15], [16]. The approachpresentedn this
papercan deal with unknowndelaysthat are representedas
symbols Therefore,the analysiscan be performedwithout
making arny assumptionon the delay of the componentsof
the circuit or the eventsof the environment.

The kind of timing constraintsthat can be computedalso
differs from our approach.The first classof constraintsis
metric timing constraints,i.e. constantmin-max boundsfor
the componentof a circuit. In [15], contraintsare described
as boundeddelays called delay paddingsthat have to be
introducedn thecircuit to guaranteeorrectnesg5] computes
delay paddings, plus the required delay bounds on input
events. Another group of constraintsis relative timing [4],
[7], [14], [16], i.e. constraintsthat describethe relative order
amongconcurrentevents.Our approachcan computea wider
classof constraints|inear constaints Therefore our analysis
provideslessconsenrative timing constraintsthatcanyield an
increasein performance.

Our approachusescornvex polyhedraas the abstractionto
represensetsof timedstatesin [9] corvex polyhedraareused

1An inertial delay modelis assumedor the verification

to analyzelinear relationsamongvariables,in the context of
algorithmsfor the static analysisof programs.To presere
closednesdn set operations,polyhedracan only represent
approximationsof the statespace.For example,the union is
not closedfor corvex polyhedra.As an overapproximation,
the corvex hull is usedinstead.This stratgy hasalso been
usedby otherauthorsfor the approximateverificationof real-
time systems[11], linear hybrid automataand synchronous
programswith counters[12]. Linear hybrid automataand
synchronougprogramsdiffer from timed transitionsystemsn
the conditionrequiredfor an eventto happen,.e. thereis no
restrictionon thetime elapsedsinceaneventbecomesnabled
for firing until it is finally fired, contraryto thelowerandupper
boundrequirementslefinedin timed transitionsystems.

IV. DEFINITIONS

The behaior of a timed circuit can be modeled as a
timed transitionsystem(TTS). A TTS is a transitionsystem
whereeachevent hasa lower andupperdelay bounds.In the
remainderof the paper the delay of an eventwill be denoted
by [d., D.]. For thoseeventswhereno distinctionis madefor
min and max delays,we will simply use the notation é(e).
Intuitively, the lower boundrestriction statesthat an event e
shouldbe fired at leastd, time units after becomingenabled,
and the upperboundrestriction statesthat e is fired at most
D, time units after becomingenabled.

The following definitionspresentthe conceptsf transition
systemandTTS, togethemwith the semanticof thesemodels,
i.e. the conceptof “run”.

Definition 4.1: [3] A transitionsysten(TS) is a quadruple
A= (8,%,T,s;n), whereS is anon-emptysetof states X is
a non-emptyalphabebf events 7' C S x X x S is atransition
relation, and s;,, is the initial state Transitionsare denoted
by s = s’. An evente is enabledat states if 3s = s’ € T.
We will denotethe setof eventsenabledat states by £(s).

Definition4.2: Let A = (S, X, T, s;,) bea TS. A run of
A is a sequences; = s; = ... suchthats; = s;, and
s; =5 si41 € T forall i > 1.

Definition 4.3: [13] A timedtransition system(TTS) is a
triple A = (A~,d, D) where A~ = (5,5, T,s;,) isa TS
called the underlying transition systemd : ¥ — Rt and
D : ¥ — R J{oo} respectiely associatea minimal and a
maximaldelay boundsto eachevent, suchthatVe € ¥ : d. <
De.
Definition 4.4: [13] A timed statesequenceés a pair p =
(o, t) suchthato is a sequencef statesandt is a sequencef



time stampsn R, ¢y, t, t3,... suchthatt; <t, <t3<...
(monotoni¢ andVk € R* : 3i t; > k (progress.

Definition 4.5: [13] Let A= (A~,d, D) beaTTS. A run
of A is a timed statesequence = (o, t) suchthato is arun
of the underlyingtransitionsystemA~— and:

« lowerbound Ve € 2,0 > 0,5 > i:t; <t;+de: (s; >

Sj+1 € 0’) — (6 S 8(81))
o upperbound Ve e 3,i>0:3j >i:t; <t;+Dc.:e¢
E(s;) vV (Sj 5 Sjt+1 € o).

The definition of TTS can be easily extendedto allow

symbolicdelaysin additionto constantdelays.

V. TIMING REACHABILITY ALGORITHM
A. Overviav

Eventsof a TTS canonly befired if their lower andupper
boundrestrictionsare satisfied.Intuitively, eachevent hasan
associateavent clock that storesthe amountof time elapsed
since the transition becameenabled.Each time an event is
fired, event clocks have to be modified accordingly Analysis
of the valuesof event clocks canrevealwhetheran eventcan
be fired or notin a given state.

This section presentsan algorithm that computesa con-
senative upperapproximationof the event clock values.Ap-
proximationswill be propagatedind combinedusing fixpoint
techniguegdescribedn abstractinterpretation[8].

The following sectionsdescribethe different parts of the
algorithm:the abstract interpretationtechniquesisedto prop-
agate the approximationsare explained in V-B; the basic
operationson our approximation,convex polyheds, are de-
fined in V-C; finally, the function that computeshow our
approximatioris changedafterfiring anevent,oneof the main
contritutions of the paper is definedin V-D.

B. Abstiact interpretation

Abstract interpretation [8], [9] is a framework of approxi-
mate static analysistechniguesvhich canbe appliedto mary
kinds of analysisproblemsin different types of systems.n
orderto solve a specific problem, the framework of abstract
interpretationhasto be adaptedo:

« the propertiesbeing studied: We can definea stateof a
systemasthe setof valuesthatdescribethe configuration
of the systemat ary given point. The statemay contain
information which is not necessaryto check a given
property Therefore,in our analysiswe can work with
an abstraction, a simplification of the statethat ignores
the information of the configurationthat is not relevant
in the specificproblem.

« the semanticsof the system:The behaior of a system
canbe definedby identifying a setof locationswherewe
requireinformation aboutthe state.The relationsamong
the state of the systemin theselocations establishesa
systenmof equations

The systemof equationss solved iteratively usingfixpoint
techniques,yielding an abstractionthat describesan upper
approximationof the statein eachlocation of the system.

Al gor i t hmAbstractinterpetation (G, Arx)

I nput : A graphG = (N, E) with initial nodeIrn andinitial
constraintsAr,.

Qut put : The abstractionTime for all nodesand edges.

f oreach noden € N do Time(n) := (); endf or
f oreach edgee € FE do Time(e) := 0; endf or
Time(In) := Arn;
changed = {N};
do
n := nodein changed with lowest DFS number;
changed := changed \ n;
foreach edgen > m € E
newTime = transfer(Time(n));
i f (newTime C Time(e)) conti nue;
Time(e) = newT'ime;
i f (Time(e) C Time(m)) conti nue;
i f (e is abackedge)
Time(m) = Time(m) 7 (Time(e) | Time(m));
el se
Time(m) = Time(m) |J Time(e);
changed = changed|J{m};
whi | e (changed # 0);

Fig. 2. Abstractinterpretationalgorithm

For the problemof timing analysisof aTTS, a configuration
is a setof valid assignment®f constantvaluesto clocks and
symbolicdelays.We will abstracthe setof valid assignments
asa corvex polyhedronthatis an upperapproximationof this
set,i.e. all valid assignmentsre includedin the polyhedron.
Thecorvex polyhedronwill describethelinearconstraintghat
are satisfiedamong clock valuesand symbolic delaysin all
thesevalid assignments.

There will be two kinds of locations of interest of our
timing analysisof TTS: statesand transitions.We will note
the abstractiorin a givenlocationx as Time(z), eventhough
the abstractionhas a different meaningfor statesthan for
transtions.

« In stateswe areinterestedn the valueof clockswhena
stateis reachedj.e. the preconditionof the state.

« About transitions,we would like to computethe value
of clocks after the transition happens,i.e. after firing
an event. This can be consideredas computing the
postconditionof the transition.

In orderto definethetiming behaior of thesystemwe have
to build a systemof equationthat defineshow time elapses.
When an state is reached,several events become enabled
while othereventsthatwereenabledpreviously continueto be
enabled.Theseeventshave to be fired accordingto its lower
and upperdelay bound,taking into accountthat someevents
have alreadybeenenabledfor sometime. We have defined
a symbolic function called transfer (explained in detail in
sectionV-D) thatadvanceghe clock valueswhile satisfyingall
upperandlower bounds.Using this function, the abstractions
for statesand transitions can be defined as the following
systemof equations:
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Fig. 3. Several operationson convex polyhedra:(a) intersectionof polyhedra, (b) union of polyhedraasthe convex hull, (¢) widening of polyhedraand (d)

assignmenbf a linear expressionor an undefinedvalue.

o Yn 5 m €T : Time(e) = trans fer(Time(n))

e« YmeT,n S meT: Time(m) = J Time(e)

Figure 2 describesan algorithm that computesa solution
for this systemof equationsusinga increasingfixpoint. Each
location starts with an empty set of valid assignmentgo
clocks and values,i.e. and empty abstraction.The algorithm
appliesthe equationsteratively aslong asthe add new valid
assignmentsThe solutionis reachedvhenthereis a fixpoint,
i.e. applyingall equationsanothertime doesnot yield any new
statesin arny location of the system.

Termination,i.e. corvergenceof the systemof equations,
is guaranteedby modifying the computationfor loops. A
widening operator[9] is usedin the the equationsof those
stateghatarethetargetsof back-edgesThewideningoperator
(A v B) is defined as a supersetof A|JB that reaches
corvergence after being applied a finite nhumber of times.
Using widening in all loops ensuresthe corvergenceof the
system of equations,as well as reducing the number of
iterationsrequiredto reacha fixpoint. An in-depthdiscussion
on terminationof fixpoints andthe necessityof wideningcan
be foundin [8], [9].

C. Corvex polyheda

This sectionwill introducethe basicconceptsaboutcornvex
polyhedrarequiredto understandthe implementationof its
operators.The reader can find an in-depth description of
corvex polyhedrain [9], [12].

Corvex polyhedracan be representedas the set of so-
lutions of a conjunctionof linear inequalitieswith rational
coeficients. Let P be a polyhedronover Q, thenit canbe
representedhs the solution to the systemof m inequalities
P ={X|AX > B} whereA € Q*" and B € Q™. Corvex
polyhedracan also be representedn a polar representation,
called the systemof geneators, as a linear combinationof a
setof verticesV (points)anda setof rays R (vectors).

The fact that there are two representationss important,
becausethere are efficient algorithms|[9] that translateone
representationio the other, and several of the operationsfor
corvex polyhedraare computedvery efficiently when the
properrepresentatioof polyhedrais available.

The setof operationson corvex polyhedrathatarerequired
for timing analysisare the following:

o Test for inclusion (P C @): Inclusion is an exact

operation.P is includedin @ only if the generatorsof
P satisfythe constraintsof @, thatis, Vv € V : Av > B
andVr € R: Ar > 0.

« Union (P ®)): The union of corvex polyhedrais not
necessarilorvex, andthereforean upperapproximation
is used. This approximationis called corvex hull, the
leastcornvex polyhedronthatincludesP and Q. P|JQ
is definedasthe polyhedronwith a systemof generators
thatis the union of thosein P and Q.

« Intersection (P () Q): The intersectionof two corvex
polyhedrais necessarilycornvex. P\ Q can be defined
as the polyhedronwith a systemof linear inequalities
that containsall the inequalitiesin P and Q.

« Widening (Pv7Q): Wideningis theapproximateoperator
usedto guarante¢erminationin loops.Wideningoperator
mustensurehatit will reachfixpoint afterafinite number
of iterations. P 7 () is definedas the systemof linear
inequalitieswhich are satisfiedboth by P and Q. As
the number of inequalitiesin P and @ is finite and
this operatorcan only reduceor maintain the number
of inequalities,terminationin a finite numberof stepsis
ensured.

« Applying alinear assignment(P[d := Cx+ D]): Linear
assignmentso a dimensionof the polyhedrontransform
the verticesand the edgesof the polyhedronas V' =
{Cv+ Dlv € V} and R’ = {Cr|r € R}.

« Assigning an undefined value to a dimension (P[d :=
?])): this operationremoves all constraintsfor a given
dimension of the polyhedron, while keeping all the
implicit constraintsaboutthe rest of dimensionsintact.
This operationis implementedwith the Fourier-Motzkin
elimination [10] method,i.e. we updatethe system of
inequalities as follows: First, we add all the possible
linear combinationsof inequalitieswith non-zerocoef-
ficientin d sothe coeficientin d becomeszero.For m
inequalities,at most (1,/2)? linear combinationswill be
addedto the systemof inequalities. Then, inequalities
wheredimensiond hasnon-zerocoeficient areremoved.

Figure 3 shavs some examples of these operationson
corvex polyhedra.lt should be noted that the corvex hull
and the widening operatorare the only operatorsthat loose
precision.All otheroperatorsare exact.

Corvex polyhedrahave beenchosenonly becauseof its
goodtrade-of betweerefficiency andexpresvenessHowever,
ary otherabstractiorof asubsebf Q" providing thenecessary
operatorscould have beenusedinsteadof cornvex polyhedra.
An example of an alternatve abstractionis finite unions of
corvex polyhedra,which are more precisebut lessefficient.



Al gori t hmtransfe(src, dst, e, P)
| nput : An eventsrc = dst with preconditionP.
Qut put : The postconditionof src = dst.

P := P A (step > 0);

P := P A (clocke + step > d.);

P := P A (clocke + step < De.);

foreach evente’ # e: e’ € E(sre)
P := P A (clocker + step < D.);

foreach evente’ # e: €' € {E(src) NE(dst)}
Plclocker := clocker + step);

foreach evente’ # e: e’ € E(dst) Ae' & E(src)

Plclock. :=0];

foreach evente’ £ e: e’ € E(src) Ae' ¢ E(dst)
Plclocker :=17];

i f (e € E(dst)) Plclocke == 0];

el se Plclocke :=T7);

Pstep :=7];

return P;

Fig. 4. Clock transferfunction

transfer(e , P ) =
P :=P \(step 20)
P :=P A\ (clock o+ step
P =P /\(clock g+ step
P :=P A\ (clock 5+ step
e P :=P A\ (clock,+ step
P [clock 5= clock 4+ step]
P [clock gi= ?]
P [clock pi= ?]
P [clock o= 0]
P [step:= ?]

{P}

INCINCIN N
O 002
o @ ® O

—_—— — —

{Q}

{P} = {(clock. = 0) A (clock, = 0) A (0 < clocky, < 1)}
{@Q} = {(clock, = 0) A (D, > clock, > de)A
(Dy > clocky > do) A (de +1 < Dy)}

Fig.5. Exampleof thetransferfunctionfor anevente, with the postcondition
Q obtainedfrom a preconditionP.

D. Theclock transferfunction

The core of the analysisis the clock transfer function
that computessymbolicallythe changesn clock valuesafter
firing an event. Clock values are representedby a corvex
polyhedron, with one dimension per event clock and one
dimensionper symbolicdelay The restrictionsof this polyhe-
dron representhe restrictionson the clock valuesin a given
state.Intuitively, the purposeof thetransferfunctionis to make
surethatwheneer an evente is fired, its delayboundsd. and
D, aretakeninto accountandaddedto the restrictionson the
clock values.

Event clocks for enabledevents store the amountof time
elapsedsincethe eventbecameenabledwhile disabledclocks
areundefined,.e. thereis no restrictionon their value. After
firing an event, eventclocksshouldbe updatedbecausesome
time haselapsedsincethe firing of the last eventto the firing
of currentevent. This time spentin the stateis called clock
step andit shouldsatisfythe following properties:

« Stepshouldbe > 0, i.e. no negative time increments.

« Stepshould be long enoughto ensurethat the firing of
e happenst leastd, time units after e was enabled At
the sametime, it shouldbe short enoughto ensurethat
e is fired at most D, time units after becomingenabled.

« Stepshouldbe shortenoughto ensurethat ary transition

thatis enabledbeforefiring e is not forcedto fire dueto
its upperboundconstraint.

Oncethe clock stephasbeendefined,the updatein event
clocks causedby the firing of an evente canbe definedas:

« eventsthat are disabledbefore and after firing ¢ keep

their clocks unchanged.

« eventsthatareenabledbheforeandafterfiring e have their

event clocksincreasedy the clock step.

« eventsthat becomeenabledby the firing of e have their

clock setto 0.

« eventsthat becomedisabledby the firing of e have their

clock undefined.

Figure 4 describeghe algorithmthat computeshe transfer
function using corvex polyhedraoperators.Figure 5 shavs
an example of the computationthat would be performedby
the algorithm. Eventsthat are enabledbefore and after firing
event e have beenincreasedby an amountin the interval
[d., D.], i.e. the unknown clock step.Also, notice that some
constrainteamongthe symbolicdelaysof differenteventshave
been discovered. These constraintswere imposed over the
clock stepduring the transfer andimplied several restrictions
on the delaysthat are made explicit when variable step is
undefined.For example, the restriction D, > d. meansthat
evente canbefired only if a is not fasterthane. Otherwise,
the postconditionof this transition would be empty i.e. no
assignmento clock andsymbolicdelaysis consistentvith the
firing of theevent. This restrictionis implied by the constraints
clock,+step < D,, clock.+step > d., clock, = 0, clock, =
0.

The clock transferfunction describedn this sectioncanbe
easilymodifiedto dealwith symbolictimed automatanstead
of TTS. Checkinglocationinvariantsand enablingconditions
for transitionscan be modeledas adding linear constraints
to the polyhedron, and resetting clocks can be done with
linear assignmentshoth of which are available operationson
polyhedra.The transferfunction for timed automatawould
be defined as (1) increaseclocks by step, (2) check the
sourcelocationinvariant, (3) checkthe enablingcondition of
the transition, (4) resetclocks, (5) checkthe target location
invariantand (6) undefinestep.

E. Main algorithm

Timing analysis provides the required constraintsfor the
reachabilityof the statesandtransitionsof the TTS. However,
we are looking for the complementaryconditions, i.e. the
conditionsthat renderfailuresunreachableTherefore,an al-
gorithmis neededn top of timing analysisto extractselected
constraintdrom thoseprovidedby abstracinterpretationThis
algorithmis presentedn Figure 6.

The input is the specificationof a TTS: a set of discrete
variables,a transitionrelation, an initial state,andthe delays



Al gor i t hmVerification (S, F, I)

I nput : A specificatiorof aTTS S, a predicateF’ describing
failure statesand transitions,and a predicate I describing
known restrictionson the symbolic delays.

Qut put : A setof constraintson the symbolic delaysthat is
sufficient to avoid the failuresdefinedby F'.

G := Reachability Analysis(S, F);
constraints = I,
do
AbstractInterpretation(G, constraints);
C := setof linear constraintsequiredto reacha
failure that are not implied by constraints;
choosea linear constraintc from C;
constraints = constraints A\ —c;
whi | e (ary failure is reachablen constraints # false);
{constraints = false — unavoi dabl e failure}
return constraints,

Fig. 6. Main algorithmfor verification

of eachevent. Additionally, a predicatedescribingthe failure
statesand an invariant of known delay constraintsare also
provided. The output is a set of sufficient constraintsthat
ensurethe absenceof failures.

The first stepis the calculationof the reachablestatespace
using untimed depth-first reachability analysis. During this
stage failure edgesand stateswill be identified. Also during
this traversal,all back-edge®f loopsareidentifiedandnodes
are numberedin quasi-topologicalorder; this order will be
usedto speedup cornvergenceof the abstractinterpretation
analysis.

Timing analysiscan then be performedon the TTS. The
resultof this stepwill be a polyhedronattachedto eachstate
and transition of the TTS, including the edgesthat lead to
a failure. The polyhedronattachedto each of these edges
describesonstraintghatarerequiredto reacha failure.If any

of theseconstraintsis false, the failure will be unreachable.

For example,if one polyhedronhasthe constraints,
(@<b+e)yn(e>f)

then, the constraintthat makes sure that the failure is
unreachablés the following disjunction

(a>b+c)V(e<f)

The algorithm proceedsby choosingone of theselinear
constraintsat a time and addingit to the invariant. Currently,
this choiceis performedinteractiely, even though we have
plansto automatethis procedure.The verification continues
until all failureshave becomeunreachabler the invariantis
false A falseinvariant means“cannotfind a constraintthat
males the systemcorrect”. It can happenif the systemhas
an unavoidablefailure or the algorithm cannotfind sufficient
constraintsdue to approximation.On the other hand, the
algorithm might returnthe initial invariant,which meansthat
no additional constraintsare requiredfor the correctnessof
the system.

S3
failure)
s 54

1 (success)
b)

Sz

Fig. 7. Cyclic behaior to illustrate the widening operator

F. Approximateanalysis

The problem of computingthe set of feasible clock and
delay valuesis computationallyexpensve. This is the reason
why we are using an approximateanalysistechnique,such
as abstractinterpretation,instead of trying to compute an
exact solution. In the context of our problem,we calculate
an upper approximationof the statespacethat guaranteesio
falsepositivesin the verification of safetyproperties.

The source of approximationcomes from the union of
recorvergent paths. In case of agyclic recorvergence, the
union is approximatedby the corvex hull. In caseof cyclic
recorvergence,the widening operatormust also be usedto
guaranteethe corvergenceof the algorithm. This technique
is crucial when symbolsare usedto representdelays,as the
numberof iterationsof aloop maydependntheactualdelays
of the componentsSincethe delaysaresymbolic,this number
may be unknown.

Figure 7 depictstwo cyclic behaiors definedby the back
edge s, —> s;. Let as assumethat each event ¢; hasa
fixed delay é(e;). In Fig. 7(a), the correctnesof the system
is independenfrom the delaysof e; and e;. However, the
absencef the wideningoperatomwould producethefollowing
sequencef polyhedrain s;:

[ iter. [ Time(s1) |
0 | ckey = cke, =0 A cke, = 0(e0) < d(ea)

T | cke, <0(e2) +6(e3) < d(e1) A che, =0 A
Ck‘e4 = Cl”v'el + 5(60) A Cke4 < 5(64)

<i-d(ea) +i-0(e3) <d(e1) A cke, =0 A
= cke, +0(e0) A cke, < 0(e4)

3 cke,
cke,

wherethe predicate
cke, <i-6(ex) +1-9(e3)
resultsfrom the corvex union of the samepredicatewith
equality insteadof <, for all 0 < k < 4. With the widen-
ing operatorapplied after the first iteration, the polyhedron
representinglime(s;) would be reducedto

cke, <(e1) A ckey =0 A cke, = cke, + (eq) < 6(eq)
This polyhedronwould becomeinvariantin the following
iterations. After verification, the condition for absenceof
failure would be the following:
d(eq) > d(eg) +d(eq)
Figure7(b) depictsa situationof a non-corvex conditionfor

the avoidanceof failures.It is easyto prove that the system
is correctif the following predicateholds:



TABLE |
EXPERIMENTAL RESULTS

Example Circuit STG TTS # of # of CPU Time

Signals | Gates | Places| Trans | States| Trans | symbols | constraints|| (seconds)
nowick 10 7 19 14 60 119 10 2 0.5
gasp-fifo 9 7 10 8 66 209 12 10 8.1
shuf-read-ctl 13 10 19 16 74 157 14 4 1.2
rcv-setup 9 6 14 15 72 187 12 8 2.1
alloc-outbound 15 11 21 22 82 161 19 3 1.3
ebegen 11 9 16 14 83 188 13 5 1.3
mp-forward-pkt 13 10 24 16 194 574 12 6 1.9
chul33 12 9 17 14 288 1082 7 3 1.3
corverta 14 12 16 14 396 1341 14 13 20.4

Fi>0:3-0(ex) + (i —1)d(e3) < d(ex) < i(d(e2) +d(es))

Unfortunatelythe existentialquantifierrepresents disjunc-
tion that cannotbe expressedasa cornvex polyhedron.In this
case the predicatefor Time(s;) would be:

ckey >0 N ckey, < (1) A cke, =0

This abstractiordoesnot shov dependenciebetweensym-
bolic delays. Therefore,the verification would not be able
to provide ary set of linear constraintsto avoid the failure,
even thoughthereare valuesfor delaysthat make the circuit
correct.

VI. EXPERIMENTAL RESULTS

We have implementedhe algorithmpresentedn this paper
in a verificationtool. In this section,we shav someexamples
that have beenverified using this tool.

A. GasPFIFO contmoller

We have formally verified a GasP FIFO controller from
Sun Microsystemd[19]. This circuit handlesthe flow of data
betweenstagesof a pipeline: whenever the previous stage
is FULL and the next stageis EMPTY, the control circuit
(a) producesa pulse to the data latch in order to make it
transparent(b) declaresthat the next stageis FULL and (c)
declaresthat the previous stageis EMPTY. The state of a
stageis encodedin a single wire, where EMPTY (FULL) is
encodedasHI (LO). Figure8 shavs thecontrollerof onestage
of a pipeline. The ervironmentof this controller corresponds
to the previous and next stagesof the pipeline. Notice that
wire le correspondso the wire re in the previous stageof the
pipeline. The behaior of the environmentis modeledwith
Signal TransitionGraphs(STG) [6]. Environmenteventssuch
as x+ or y— describethe rising or falling of signals,and
its delay modelsthe time requiredto fire an event since it
becomesnabledin the STG.

This asynchronougontrolleris designedto achieve a very
high throughput,so it dependson timing constraintsfor its
correctoperation.In [14], this circuit is verified and sufficient
relative timing constraintsto ensurecorrectnessare derived.
However, it is hardto translaterelative timing constraintgnto
constraintson the delaysof the componentf the circuit.

The correctnessof the circuit has been verified with re-
spectto three criteria: absenceof short-circuits absenceof
hazads i.e. once an event becomesenabled,it does not
becomedisabledbeforebeingfired; and conformancei.e. all

output events producedby the circuit are expectedby the
ervironment. Thesecriteria can be satisfiedwith the timing
constraintshat appearin Figure 8.

B. Asyntronouspipeline

We have alsoverified an asynchronougipelinewith differ-
ent numberof stagesand an ervironmentrunning at a fixed
frequeng. The processingtime required by each stagehas
different min and max symbolic delays. The safety property
being verified in this casewas “the ervironmentwill never
haveto wait before sendingnew datato the pipeline”. Figure9
shaws the pipeline,with an exampleof a correctandincorrect
behavior. The tool discovered that correct behaior can be
ensuredf the following holds:

din > D1 AN...Ndiny > Dy ANdin > Dour

whereD; is the delayof stagei, andd;y and Doy referto
ervironmentdelays.This propertyis equivalentto:

din > mafv(Dl, ..., Dn, DOUT)
Therefore, the pipeline is correct if the ervironment is

slower than the slowest stageof the pipeline. CPU time for
the differentlengthsof pipeline canbe foundin Figure9.

C. Other examples

We have also verified a setof asynchronousgircuits avail-
able in the literature, definedas a network of simple gates
plus a STG modeling the behaior of the ervironment. In
these circuits, correctnesshas been defined as absenceof
hazads and conformancewith the STG. Table | shaws the
sizeof thecircuits, STGsandthe computedT TSs, the number
of symbolic delays, the number of constraintsrequired for
correctnessandthe CPU time usedfor the verification.

VIlI. CONCLUSIONS

An algorithm for symbolic timing analysisof concurrent
systemshas been presented.The output of the algorithm is
a consenrative approximationof the values of clocks and
symbolic delaysin the reachablestatesof the system.An
applicationhas beenshavn by computingthe constraintsof
gateandinput delaysin anasynchronousircuit thatguarantee
correct behaior. Remarkably the approachworks for more
than 15 symbolicdelayswithin a reasonabldime.

The techniqueis well suited for analyzing small-sized
timed circuits suchasasynchronousontrollers.Thesecircuits
often operateat very high throughputsandthey heavily rely
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o(y—)+d(A) > 6(D)+46(A)
(z+)+6(B)+d6(F) > 6(y—)+d(y+)+d(A)
S(xz+) > 8(A)+ (D) + d(not)
d(not) +6(B) +6(F) > 6(z—)
5(D) +25(A) > §(y—)+6(A)+4(E)
enviroment d(A) > d(not) +6(C)
§(D)+46(A) > §(4)
0(x+)+0(B) > &6(D)+25(A)
d(y+) > O(E)
§(z—) > 4&(B)

Fig. 8. GasPFIFO controller Eachshadedareahasbeenmodeledwith a differentsymbolicdelay On the right, the discoreredtiming constraintshat are

sufficient to guaranteehe correctoperationof the circuit.

IN req req req ouT

(a) — E——

ack ack ack

# of TTS # of CPU Time
stages| States| Trans| symbols| (seconds)
2 36 88 8 0.6
3 108 | 312 10 2
4 324 | 1080 12 13.5
5 972 | 3672 14 259.2

Fig. 9. (a) Asynchronouspipeline with N=4 stages,(b) correctbehaior of the pipeline and (c) incorrectbehaior. Dots representataelementsOn the
right, the CPU timesrequiredto verify pipelineswith differentnumberof stages.

on stringenttiming constraintsto ensurea correctbehaior.
However, more comple circuits can also be verified if (a)
they are analyzedat a higher level of abstractionor (b) part
of the delaysare definedas rangesof known integer delays
insteadof symbols.Futurework will try to broaderthe areaof
applicationof this techniquejn orderto handlebiggercircuits
with more symbolic delays.We plan to use representations
basedon Binary DecisionDiagramsto represensetsof states
andtiming constraintssymbolically
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