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Abstract

The energy at the I/O pins is a significant part of the over-
all consumption of a chip. To reduce this energy, this work
extends to the data bus the Working Zone Encoding method,
originally applied to encoding an external address bus. This
method is based on the conjecture that programs favor a few
working zones of their address space at each instant and that
addresses to consecutive accesses for each zone frequently
differ by a small amount. When the difference is small, in-
stead of sending the whole address, the method sends an off-
set with respect to the previous address to that zone, together
with an identifier for the zone. In this paper the same idea is
extended to the data bus.

The approach has been applied to several SPEC95 streams
of references to memory along with the corresponding data
values in a system with multiplexed address and multiplexed
instruction/data buses. Moreover, the effect of instruction and
data caches is evaluated. Comparisons are given with previ-
ous methods for bus encoding, showing significant improve-
ment in all cases except for the multiplexed address bus with
instruction cache, where the best scheme depends on the over-
head of the implementation.

1. Introduction

The I/O energy is a substantial fraction of the total en-
ergy consumption of a microprocessor [1], because the capac-
itance associated with an external pin is between one hundred
and one thousand times larger than that of an internal node.
Consequently, the total energy consumption decreases by re-
ducing the number of transitions on the high-capacitance, off-
chip side, although this may come at the expense of some
additional transitions on the low-capacitance, on-chip side.

For a microprocessor chip, the main I/O pins correspond
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to the address and data buses. We consider an encoding to
reduce the activity in these buses based on the conjecture that
applications favor a few working zones of their address space
at each instant. Therefore, for an address to one of these
zones, only the offset of this reference with respect to the pre-
vious reference to that zone is sent over the bus, along with
an identifier of the current working zone. This is combined
with a one-hot with transition-signaling encoding of the off-
set. The main contribution of the Working-Zone Encoding
technique (WZE) is the tracking of the most recent working
zones.

Previously, we proposed the WZE method for encoding
the address bus [5, 6]. In this paper we also incorporate to
this WZE method the data bus. We observe that the data for
successive accesses to a working zone frequently differ by a
small amount, so that it is effective to use also the one-hot
with transition-signaling code for the data. Consequently, in
this combined approach, when the address and the data are
appropriate, we send:

� through dedicated wires, an identifier of the current
working zone

� through the address bus, the offset of this reference
with respect to the previous reference to that zone

� through the data bus, the offset of the current data value
with respect to the value associated to the previous ref-
erence to that zone.

Several SPEC95 streams of references to memory along
with the corresponding data values are used to evaluate the
technique. Among the possible bus organizations (see Fig-
ure 1), in this paper we consider a multiplexed address bus
(for instruction and data addresses) and a multiplexed instruc-
tion/data bus. We conclude that the encoding technique pre-
sented in this work significantly reduces the activity in both
buses. Moreover, for the case without caches, the technique
presented here outperforms other previous bus encoding pro-
posals for low power, such as Gray, bus-invert, T0, combined
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Figure 1. Types of buses in a general-purpose
microprocessor.

T0/bus-invert, inc-xor and dbm-vbm. On the other hand, for
the multiplexed address bus with instruction cache the best
scheme is either the WZE presented here or bus-invert with
four groups, depending on the overhead of these two tech-
niques. In any case, the WZE method requires fewer addi-
tional wires when coding both buses.

The paper is organized as follows: in Section 2 we review
the previous work done in encoding a bus for reduced activ-
ity, with special insight in those techniques that target the data
bus. In Section 3 we provide an overview of the WZE tech-
nique for the address bus as presented in [6] to give the reader
a reasonable understanding of the method. The main contri-
bution of this paper is presented in Section 4, where an exten-
sion of the WZE technique is presented that allows the data
bus to be encoded by reusing a large portion of the hardware
already used to encode the address bus. The results based on
SPEC95 benchmarks are presented in Section 5. The conclu-
sions of this paper are given in Section 6.

2. Previous work

The previously proposed encoding techniques for reduced
bus activity may be classified as follows, depending on the
degree of sequentiality of the values sent through the targeted
bus:

� high degree: examples are the Gray [3], T0 [2], com-
bined T0/bus-invert [2], and inc-xor [7] codes. These
techniques are mainly applicable to the address bus
without cache (and have been proposed for this case).

� low degree: examples are the bus-invert [8], and dbm-
vbm [7] codes. These techniques have been proposed
for the data bus; however they can also be applied to
the address bus when caches are present.

Since we concentrate here on the data bus, we review the
techniques of the second type1. The bus-invert method [8]

1We have reviewed the techniques of the first type in [6].
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consists on sending either the value itself or its bit-wise com-
plement, depending on which would result in fewer transi-
tions. An extra wire is used to carry this polarity informa-
tion. For uniform and independent distributions, this encod-
ing technique works better when the bit-width of the value to
be sent is divided into smaller groups and each one encoded
independently.

In [7] a source-coding framework is proposed as well as
some specific codes. The scheme is based on obtaining a pre-
diction function and a prediction error. This prediction error
is XORed with the previous value sent to the bus so that the
number of transitions is reduced in the likely case when the
prediction error has a small number of ones. In the dbm-vbm
technique, the prediction is the previous address and the pre-
diction error is obtained by a function that increases with the
absolute difference between the current input and the predic-
tion. Then, code-words with fewer 1’s are assigned to smaller
error values.

3. Overview of the Working-Zone Encoding
technique (WZE) for the address bus

This Section presents an overview of the proposed encod-
ing technique for the address bus, as presented in [6]. In the
next Section, we describe the extension of the WZE to encode
the data bus.

The basis of the WZE technique for the address bus is as
follows:

1. It takes into account the locality of the memory refer-
ences: applications favor a few working zones of their
address space at each instant. In such cases, a reference
can be described by an identifier of the working zone
and by an offset. This encoding is sent through the bus.

2. The offset can be specified with respect to the base ad-
dress of the zone or to the previous reference to that
zone. Since we want small offsets encoded in a one-
hot code, the latter approach is the most convenient.
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As a simple example consider an application that works
with three vectors (A, B and C) as shown in Figure 2.
Memory references are often interleaved among the
three vectors and frequently close to the previous ref-
erence to the vector. Thus, if both the sender and the
receiver had three registers (henceforth namedPrefs)
holding a pointer to each active working zone, the
sender would only need to send:

� the offset of the current memory reference with
respect to the Pref associated to the current work-
ing zone

� an identifier of the current Pref.

3. To reduce the number of transitions, the offset is en-
coded in a one-hot code. Since the one-hot code pro-
duces two transitions if the previous reference was also
in the one-hot code and an average ofn=2 transitions
when the previous reference is arbitrary, the number
of transitions is reduced by using a transition-signaling
code [8]. In this case, before sending the reference
through the bus anXORoperation is performed with the
previous value sent, always resulting in one transition.

4. One value can be sent using a zero-hot code, which
with transition signaling produces zero transitions.
This code should be used for the most-frequent event,
which we have determined to be a repetition of the
same offset for the current working zone.

5. When there is a reference that does not correspond to
a working zone pointed by any Pref, it is not possi-
ble to send an offset; in such a case, the entire current
memory reference is sent over the bus. Moreover, it is
necessary to signal this situation.

6. In general, the total number of working zones of a pro-
gram can be larger than the number supported by the
hardware. Consequently, these have to be replaced dy-
namically. The most direct possibility is to replace an
active working zone as soon as there is a miss. How-
ever, in this case any arbitrary reference would disturb
an active working zone. To reduce this effect, we incor-
porate additional registers (henceforth namedpotential
working zones) that store the references that cause a
miss. Various heuristics are possible to determine when
a potential working zone becomes an active one.

3.1. Implementation decisions

In the general scheme presented above, there are many as-
pects that have to be decided to obtain a suitable implementa-
tion. These decisions affect both the complexity of the imple-
mentation and the energy reduction achieved. Since there are
many interdependent parameters, it is not practical to explore
the whole space. Below we indicate the decisions made and
the rationale for them.

� The number of active and potential working zones
affects the number of registers and associated logic
(and therefore the encoder/decoder energy consump-
tion) and the number of values of the identifier. In the
evaluation of the scheme, we have explored a range of
values and determined the one that produces the largest
reduction. It was determined that a small number of
working zones is sufficient.

� When there is a hit to a working zone, an offset and an
identifier are sent. There are choices for the set of val-
ues of the offset and the code of the identifier. Since the
offset is sent in a one-hot code (with transition signal-
ing) the set of values is directly related to the number
of bits required. We have decided to use all bits of the
original bus to send the offset. Moreover, we have seen
that the number of hits is maximized if positive and
negative offsets are used. Since all bits of the original
bus are used for the offset, it is necessary to have ad-
ditional wires for the identifier and, to minimize these
additional wires, we use a binary code. We have con-
sidered using bits of the original bus for the identifier
(thus reducing the offset bits) and have observed a sig-
nificant increase in I/O activity with respect to the use
of separate bits.

� When there is a miss, this situation has to be signaled to
the receiver. Since in that case, all bits of the original
bus are used to send the address, this hit/miss condi-
tion has to use some additional wire. As we already
have decided to use additional wires for the identifier,
one value on these wires might be used to signal the
miss. However, this would produce a few transitions
when changing from a hit to a miss. To assure only one
transition, we have assigned an additional bit to signal
a miss.

� The search for a hit in a working zone requires sub-
tracting the previous address with the current one and
detecting whether the offset is in the acceptable range.
For the selection of which zones to check it is possible
to use any of the schemes used for caches. Because of
the small number of working zones, we have chosen a
fully-associative search.

� There are two replacement procedures required: for
the active working zones and for the potential working
zones. As indicated before, when there is a miss the
address is placed in a potential working zone. Since
there are few of these, we use the LRU algorithm for
this placement. Moreover, it is necessary to determine
when a new active working zone appears and, in this
case, which active working zone to replace. Among the
possible alternatives, we have chosen to initiate a new
active working zone when there is a hit in a potential
working zone. Again, here we use the LRU replace-
ment algorithm.
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m-wire encoded address and data bus
WZmiss ident word address dbus WZcoded dbus BI coded word data
(1 wire) (dlog2(H +M)e wires) (na wires) (1 wire) (1 wire) (nd wires)

WZ 0 WZ index offset or 1 don’t care offset or
format last address value last data value

0 1 BI (data)
0 complete data

NonWZ 1 don’t care complete don’t care 1 BI (data)
format address 0 complete data

Table 1. Information assigned to each of the fields of the encoded address and data buses when there
is a hit (WZ format) and a miss (NonWZ format) in theH working zones and in theM potential
working zones.BI stands for bus-invert.

4. Extension of the WZE to the data bus

The technique for the address bus is now extended to in-
clude also the data bus. This extension is based on the fact
that in many instances the data values of consecutive accesses
to a working zone differ by a small amount. If that is the case,
the data is also sent as an offset, coded in the one-hot encod-
ing with transition signaling. To implement this extension,
as illustrated in Figure 2, we include an additional register,
calledPdat, per working zone.

The special case of zero-hot coding (which produces zero
transitions) is reserved to the most frequent offset, which is
the zero offset; this is in contrast to the address case, in which
the zero-hot encoding is used for the case in which the value
of the offset is repeated.

In summary, for the data bus, to send the offset it is nec-
essary to compare the current data value with the Pdat as-
sociated to the current working zone, and the following two
situations occur:

� the offset is zero: send again the previous value sent
over the bus (zero transitions)

� the offset is not zero: send the one-hot encoded value
of the offset using transition signaling (one transition).

On the other hand, if the access is not to an active working
zone or if the offset is larger than possible for the one-hot
encoding, the whole value is sent through the bus. An addi-
tional wire is required to distinguish these cases. Moreover,
to further reduce the bus transitions, when the value in the
data bus is not encoded by the WZE method we use the bus-
invert technique for the whole data value (thus requiring an
extra wire); for the address bus we saw that the benefits of
using the bus-invert in this case were very small.

The decoding of an offset in the receiver is done also in
two steps:XORing the value that it receives with the previ-
ous one, and retrieving the one-hot of the result. When the
XORing produces a 0 vector, the two values were the same

and this is interpreted as a repetition of the previous data value
when that same working zone was last accessed.

4.1. Address and data bus fields
As shown in Table 1 the encoded address and data bus

consists of five fields:

� one wire to indicate whether there has been a hit or a
miss in any of the zones (WZmiss )

� dlog
2
(H + M)e wires to specify one ofH working

zones orM potential zones (ident )
� na wires of the original address bus (word address )
� one wire to indicate if the data bus has been encoded

using the offset (dbus WZcoded )
� one wire to indicate, in the case of a miss in the working

zones, whether the data bus is coded with the bus-invert
technique (dbus BI coded )

� nd wires of the original data bus (word data ).

Therefore,m = na + nd + dlog
2
(H +M)e + 3 wires are

required.

5. Simulations

In this Section, the WZE technique is evaluated for both
the multiplexed instruction/data bus and the multiplexed ad-
dress bus2 and compared to the rest of the techniques. The
results are first reported for each type of bus (with the activ-
ity associated to theWZmiss andident fields included in
the address bus activity). Then, the best of the rest of the
techniques for each type of bus is compared with the WZE
technique.

Traces from several SPEC95 benchmarks (gcc, li ,
m88ksim, hydro2d, su2cor, tomcatvand turb3d) are used to
perform the evaluations. These traces contain memory ref-
erences along with the corresponding data values. A bit-
width of 32 is assumed for the data and address buses. We

2A study for other address bus configurations is presented in [6].
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Instruction Multiplexed Address Bus
and non WZE Rest of techniques
Data encoded Gray BI T0 T0/BI inc- dbm-

caches G=1 G=2 G=4 G=1 G=4 xor vbmG=4

No 5.5 (2.1) 2.6 5.1 4.7 4.3 4.2 4.8 4.0 3.5 4.3 5.4
Yes 4.5 (3.2) 4.0 3.7 4.4 4.2 3.7 4.1 4.1 3.4 4.0 4.4

Instruction Multiplexed Instruction/Data Bus
and non WZE Rest of techniques
Data encoded Gray BI T0 T0/BI inc- dbm-

caches G=1 G=2 G=4 G=1 G=4 xor vbmG=4

No 8.5 (5.7) 6.2 8.9 8.2 7.5 7.3 8.5 8.2 7.3 8.7 8.3
Yes 7.0 (3.7) 4.4 7.3 6.7 6.3 6.1 7.0 6.7 6.1 7.3 6.7

Table 2. Average number of I/O transitions/reference for all the encoding techniques for the multi-
plexed address and multiplexed instruction/data buses. Energy overhead included only for WZE (in
parenthesis, without overhead).BI stands for bus-invert.

also evaluate the effect of a 8K byte, direct-mapped, 32-byte
line, write-back instruction and data cache. For the scenario
without caches, the first 10M references to memory (after the
first 10M instructions executed) are used in the simulations.
For the scenario with caches, the first (10/8)M misses to ei-
ther cache (after the first 10M instructions executed) are used,
which correspond to 10M data references since the cache line
is 32 bytes and the data bus width is 32 bits.

The data bus is logically divided into bytes, and the pro-
cessor reads or writes one, two or four aligned bytes. For the
unencoded data bus, whenever one or two bytes are accessed,
the rest of the bus has undefined values (this is the behavior,
for example, of the i486 data bus [4]), which are modeled as
random values in the simulations.

The configuration for the WZE technique, i.e. the values
for H andM , is derived from [6], where we saw that the
best configuration to reduce the energy of the multiplexed ad-
dress bus is (H =2,M =2) when no caches are present, and
(H = 4,M = 2) in the presence of caches. Thus, the heuris-
tic we follow in this paper is to fix the configuration of the
WZE technique to minimize as much as possible the energy
on the multiplexed address bus, and then reduce the energy
of the multiplexed instruction/data bus. The rationale behind
this is that we expect more energy reductions by encoding the
address bus rather than the data bus since the locality property
is stronger in the address bus.

The WZE technique is compared to the Gray, T0, bus-
invert (with one, two, and four groups), combined T0/bus-
invert (with one and four groups for the bus-invert part),
inc-xor and dbm-vbm (with four groups) encoding tech-
niques. Although some of these techniques have been pro-
posed specifically for the address bus, for completeness we
have evaluated them also for the data bus.

5.1. Energy overhead evaluation

Since the WZE technique is more complex and needs more
area than the other techniques, we evaluate the energy over-
head for the WZE technique and incorporate it in the overall
energy, whereas we do not include this overhead for the oth-
ers. This difference is due to the fact that we have not imple-
mented the hardware for the other techniques; the hardware
for the WZE (for the address bus encoding only) is described
in [6].

In [6] we estimate the energy overhead for each of the
WZE configurations and for each type of address bus. This
energy is calculated as the average number of transitions gen-
erated in the encoder and decoder hardware. This number is
then multiplied by the capacitance ratio between an on-chip
and off-chip nodes, which in this work is considered to be
10�3, to obtain the equivalent number of I/O transitions per
reference. According to [6], for the multiplexed address bus
and configurations (H = 2,M = 2) and (H = 4,M = 2) the
energy overheads are 0.49 and 0.71 I/O transitions per refer-
ence, respectively. We will use these values also to penalize
the overhead of the logic due to the Pdat registers. Note that
this penalty is pessimistic since it implies that a duplication of
the whole encoder/decoder is done for the data bus, and this
is not the case since a substantial portion of logic is shared
for encoding/decoding the address and data buses.

5.2. Results

Table 2 shows the average number of I/O transitions per
reference for the multiplexed address and multiplexed in-
struction/data buses. Table 3 summarizes the results. In the
first part we show the average number of I/O transitions per
reference for both the address and data buses, for the WZE
technique and for the best of the other encoding techniques.
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Mux. Address Bus Mux. Ins/Data Bus Extra wiresy

WZE Best of rest WZE Best of rest WZE Best of rest
Avg. (no caches) (2.1) 2.6 T0/BIG=4 3.5 (5.7) 6.2 BIG=4 7.3 5 9

Avg. (with caches) (3.2) 4.0 T0/BIG=4 3.4 (3.7) 4.4 BIG=4 6.1 6 9

Mux. Address Bus Ratio Mux. Ins/Data Bus Ratio Overall Ratioy

vs. non vs. best vs. non vs. best vs. non vs. best
encoded of rest encoded of rest encoded of rest

Avg. (no caches) (0.39) 0.47 (0.60) 0.74 (0.67) 0.73 (0.77) 0.84 (0.56) 0.63 (0.72) 0.81
Avg. (with caches) (0.71) 0.86 (0.94) 1.18 (0.53) 0.63 (0.61) 0.72 (0.60) 0.72 (0.73) 0.88

yTo encode both buses

Table 3. Results summary. Energy overhead is only shown for the WZE technique (in parenthesis
without overhead).

Moreover, the number of extra I/O wires used to encode both
the address and data buses is also presented.

The second part of Table 3 provides the energy reduction
ratios of the WZE technique versus the non-encoded case and
the best of the rest of the techniques, for each of the buses.
Finally, the overall ratio (comprising both the instruction/data
and address buses) is given.

The results show that for the multiplexed bus

� without caches, the WZE technique is well suited for
the reduction of energy. Moreover, for the address bus
the best of the other techniques is the T0/BI, since it
combines the effect of the T0 technique which is suit-
able for a group of instruction addresses with the bus-
invert which is useful for branches and for the transition
between instruction and data addresses. On the other
hand for the data bus, the best of the other techniques
is bus-invert. In both cases, the advantage of the WZE
technique stems from the use of several working zones
and the use of offsets.

� with caches, the WZE technique is quite effective for
the data bus. This might be due to the fact that the
memory access is to a whole cache line, with words be-
longing to the same working zone that may have similar
values.

6. Conclusions

This work extends the Working Zone Encoding method,
originally applied to encoding an external address bus, to the
data bus. Among the possible bus organizations, we have con-
sidered a multiplexed address bus (for instruction and data
addresses) and a multiplexed instruction/data bus.

Several SPEC95 streams of references to memory along
with the corresponding data values are used to evaluate the
technique. We conclude that the Working-Zone Encoding
technique significantly reduces the activity in both buses.

Moreover, for the case without caches, the technique pre-
sented here outperforms other previous bus encoding propos-
als for low power, such as Gray, bus-invert, T0, combined
T0/bus-invert, inc-xor and dbm-vbm. On the other hand, for
the multiplexed address bus with instruction cache the best
scheme is either the WZE presented here or bus-invert with
four groups, depending on the overhead of these two tech-
niques. In any case, the WZE method requires fewer addi-
tional wires when coding both buses.
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