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Abstract— This paper proposes a technique for creating a combi-
national logic network with an output that signals when all other
outputs have stabilized. The method is based on dual-rail encoding, and
guarantees low timing overhead and reasonable area and power overhead.

We discuss various scenarios in which completion detection can be
used to measure the delay of a synchronous circuit at fabrication time or
at run time, and of an asynchronous circuit at run time. We conclude by
showing, on a large set of benchmarks, the effectiveness of the proposed
technique.

I. INTRODUCTION

Variability is a growing concern to digital circuit designers. While
statistical timing analysis techniques try to apply various empirically
derived models to combine together all sources of variability along
a critical path, designers would like to have a way to measure rather
than just predict the actual delay of a circuit. The reason is that a
large fraction of circuits work faster or much faster than worst-case
analysis would predict. Unfortunately, delay fault testing is a costly
proposition, because it requires the designer to start from a very
expensive initial two-level representation, and then use only a subset
of logic optimizations [1].

The goal of this paper is to propose a technique, that enables
to easily measure exactly when a combinational circuit is done
computing. In practical terms, we guarantee that without almost any
timing overhead and with some area overhead, every combinational
logic block has an additional completion detection output that rises
a few gate delays after the last primary output has settled. This
paper improves with respect to the state of the art in the following
directions, by proposing:

� a technique for dual-rail network creation with much lower area,
power and delay overhead than previously known techniques,
and requiring only standard static CMOS gates.

� a novel method, using timing assumptions rather than comple-
tion detection, for fast reset to the spacer (inactive) state.

We show in Section VI that circuits obtained using our logic synthesis
flow have a nominal delay which is on average within 33% of the
corresponding circuit optimized using traditional techniques, with a
100% area overhead. However, by using the completion detection
output their true delay can be measured and used to reliably latch
their output values, thus reducing the margins that must be taken at
design time.

Two key assumptions motivate the use of circuits with completion
detection: (1) The difference between worst case and true delays
is in the range of 60-100% (see Section II), and (2) the fraction of
“truly critical” register-to-register combinational logic blocks is small
(10-20% according to internal sources). We believe that, by using
circuits with completion detection, one can achieve at least 25% of
performance increase with 10% to 20% penalty in power and area
purely remaining in the synchronous domain.

II. MOTIVATION

The main advantage of completion detection is the ability to run
the circuit using true rather than worst-case delays. Figure 1 shows
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Fig. 1. Delay penalties in the modern synchronous methodology

the delay penalty stemming from two main factors: a) static timing
analysis technology that estimates delays for the worst case scenario
and b) clocking overhead in synchronous circuits. These penalties
are:

1) The difference in the library files between typical and worst
case. This may account for up to a 50% penalty.

2) Conservative estimation of the slowdown caused by signal
integrity violations: namely IR drop and crosstalk. Each of them
could be responsible for a 10% penalty [2], [3].

3) Variations of delays due to processing variations. We consider
this to account for a 30% penalty for the latest technologies
(see e.g. [4]), however even more aggressive forecasts exist.

4) Clock skew, which is about 10% of the clock cycle for the
modern ASIC methodology [5].

5) Unbalancing of synchronous stages, which increases the clock
cycle with respect to the mean cycle time by up to 20% [5].

The first three sources come from the combinational logic itself,
while the last two are coming from the clocking scheme. This margin
shows the optimization room that is available when implementing
circuits with completion detection. Part of this advantage is offset by
the overheads due to the dual rail conversion, the two-phase operation
and the completion detection logic itself. However, as shown in
Section VI, these penalties are lower than the combinational logic
penalty cited above. Clock penalties, as well as exploiting data-
dependent delays, may provide additional performance improvements
when the circuits with completion detection are used in an asyn-
chronous environment, as discussed below.

III. PREVIOUS WORK

One of the most popular operation modes in asynchronous design
alternates data communication between set and reset phases [6], with
the two-fold goal of: a) providing a clean separation between two
consecutive data sets and b) ensuring monotonic behavior at circuit
outputs, avoiding spurious transitions known as hazards [7].

The simplest scheme for such communication is given by dual-rail
encoding, in which each signal a is represented by two wires: the 0
and 1 are encoded as 01 and 10, respectively. The spacer is usually
encoded as ��. The fact that exactly one of the wires in each dual-rail
pair goes high, tells that the output has settled and the set phase is
over.

Two regular methods for implementing an arbitrary Boolean net-
work with two-phase operation and dual-rail encoding were suggested
in [8] (DIMS method) and [9] (NCLX approach). In both techniques
every node of a network representing Boolean function f is imple-
mented by two logic cones f�t and f�f , where f�t represents the
original function f , while f�f represents its inverse f .
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NCLX design flow [9] is the closest approach to ours. In [9], a
dual-rail network is created by simply adding duals to every gate and
eliminating inversions by swapping complementary rails. Completion
detection is carried out separately from the data evaluation.

Unfortunately, both approaches [8] and [9] did not manage to
deliver a speed advantage, by exploiting true delays instead of worst-
case approximations, because of the need to use two operational
phases (set and reset) in a single computational cycle. The nearly
2x delay penalty from the two-phase operational mode is difficult to
offset by reducing delays from worst-case to true.

Dual-rail networks with two-phase operation are also used in
dynamic logic synthesis [10], [11]. We consider domino logic, even
though the concerns we present extend to other dynamic logic styles.
A major limitation of domino logic is that it can only implement
non-inverting logic (other styles require strict layering of, e.g. pre-
charged and pre-discharged gates). Hence, complements of internal
signals need to be realized through separate cones of logic using dual
functions and giving rise to partially or fully dual-rail circuits. Similar
to asynchronous systems, dynamic circuits work in two phases,
namely pre-charge and evaluate. This feature allows dynamic logic to
achieve significant speed improvements over static CMOS, because
the reset (pre-charge) phase is very short. Unfortunately, the inherent
noise sensitivity and charge-sharing problems associated with this
design style limit its application to small timing-critical portions of
systems, which are usually handcrafted.

Our paper makes an attempt to take the best of both worlds and
develop a design flow that combines performance advantages inherent
in true delay measurement, with the robustness and simplicity of
static standard cell CMOS, all within a standard ASIC design flow.
The objective of this this work in terms of area-delay trade-offs is
shown in Figure 2. The figure already takes into account the fact
that circuits with completion detection (our work, DIMS and NCLX)
work with true delays, and hence faster than static CMOS.

IV. MONOTONIC BOOLEAN NETWORKS

A. Hazards

Glitches in combinational circuits are called hazards [7]. A hazard
is a transient change on a signal caused by the gate propagation
delays. To characterize the dynamic behavior of a combinational
circuit we need to define the allowed transitions at the primary inputs
of the circuit.

Definition 4.1 (Monotonic Input Transition (MIT)): A MIT con-
sists of the change in the value of a subset of primary inputs in
the same direction, i.e. all changes are either �� � or �� �.

Definition 4.2 (Monotonic operation mode (MOM)): The MOM
works by iteratively alternating two sub-phases, each of which is
a MIT: (a) a subset of the inputs changes monotonically and (b) a
subset of the outputs changes monotonically.
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Fig. 3. (a) Monotonic network, (b) non-monotonic network.

In order to use this mode of operation for completion detection, the
set of changing outputs must be known in advance. In particular, with
dual-rail encoded signals exactly one input and one output in every
pair changes value in each phase.

B. Monotonic Boolean networks

We assume the reader to be familiar with the basic concepts on
Boolean functions and Boolean networks. Each non-input node ni of
a Boolean network has an associated Boolean function fi in terms
of its local fanin.

Now we introduce the concept of monotonicity of the nodes of a
Boolean network.

Definition 4.3 (Monotonicity): A node ni with local function fi
is positive if for each input xi in its local fanin it holds that: – xi

is positive (negative) and fi is increasing (decreasing) in xi A node
ni with local function fi is negative if for each input xi in its local
fanin it holds that: – xi is negative (positive) and fi is increasing
(decreasing) in xi A node is monotonic if it is either positive or
negative.
While this definition works for any network which admits a consistent
labeling of each node (including primary inputs and primary outputs)
as positive or negative, for the sake of simplicity in the following we
assume that all primary inputs are dual-rail encoded with spacer 00,
and hence are defined to be positive.

Definition 4.4 (Monotonic and positive Boolean networks):
A Boolean network is monotonic (MBN) if all its nodes are
monotonic. An MBN is positive (PBN) if all its nodes are positive
(e.g. a domino logic network is positive).

Theorem 4.1 (Hazard-free behavior of an MBN): An MBN is
hazard-free under a monotonic input transition.

Proof: See [12]
Figure 3 depicts a monotonic and a non-monotonic network. The

labels P and N indicate the positive and negative nodes, respectively.
The network in Figure 3(b) is not monotonic since it is not possible
to assign a phase to the output node. Note that the input transition
���� ��� applied to all inputs may produce a glitch at the output,
if the inverter and the OR gate switch before the AND gate.

C. Use cases

Combinational logic with completion detection can be used in
two different environments: synchronous and asynchronous (see
Figures 4(a) and 4(b)).

In the synchronous environment, the output of the completion
detector (denoted by CD in Figure 4(a)) is used to check whether a
circuit can work at a given clock frequency. If a change at the output
of a completion detector happens before the clock edge, then data
inputs of receiving flip-flops have settled before the clock rises and
no synchronization fault occurs. If, however, the completion detector
makes a transition after the clock edge, then there are chances that
erroneous values have been stored in flip-flops, and the error signal
must be raised. The error signal may be used: (1) during production
test to bin chips according to their performance or, (2) to provide an
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Fig. 4. Architectures with completion detection

on-line testing capability, assuming that the system may roll back and
repeat the computation cycle or is capable of stretching the clock.

In order to give a qualitative estimation of the potential perfor-
mance benefits from using circuits with completion detection, let
us compare their cycle time with the cycle time of conventional
synchronous designs.

The cycle time in a synchronous circuit must satisfy the following
timing constraints:
CLmax�Tskew�Tsetup�TCQ max � Tcycle setup constraint
CLmin � TCQ min � Thold � Tskew hold constraint

In these inequalities CLmax and CLmin stand for worst and best
case propagation delays through combinational logic, while TCQ is
the clock-to-output delay of a flip-flop.

The cycle time in a circuit with a completion detection also needs
to satisfy hold and setup constraints which are:
CLtrue�Tskew�Tsetup�TCQ max�Treset max�TCD � Tcycle
CLmin � TCQ min � Thold � Tskew

where CLtrue is the true delay of combinational logic, while
TCD and Treset max are the delay overheads of the architecture with
completion detection.

A circuit with completion detection must satisfy an additional
timing assumption in order to function correctly in the reset phase:
Treset min � Thold

where Treset min is the minimum delay for propagating spacer
values to the outputs of the combinational logic. This constraint is
similar to the hold constraint and is needed to ensure that spacer does
not overwrite data values before they are stored in registers.

One can see that a synchronous architecture with completion
detection provides a performance advantage if
CLtrue � Treset max � TCD � CLmax

Experimental results give a quantitative estimation of Treset max

and TCD , showing that the conditions of the above inequality are
indeed met very often.

In order to use circuits with completion detection in an asyn-
chronous environment, one can exploit standard micropipeline-based
architectures [13]. For example, they are suitable for desynchronized
circuits [14], which are derived from synchronous synthesizable spec-
ifications. The only difference is that the request signals triggering
controllers are derived from completion detectors rather than from
matched delays, as shown in Figure 4(b).
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Fig. 5. From single-rail (a) to dual-rail (b), and technology mapping (c).

V. TRANSFORMATIONS TO OBTAIN AND PRESERVE A

MONOTONIC BOOLEAN NETWORK

A. Conversion to Monotonic Boolean Network

We can generate an MBN from a generic Boolean network by
using the dual-rail encoding of inputs and outputs.

We now present a technology-independent conversion to a MBN1:

1) From each primary input x, two primary inputs xt and xf are
created to represent the true and false evaluations of x.

2) From each node implementing the function yi �
fi�x�� � � � � xn�, two nodes are created with the functions

y
t
i � DR �fi�x�� � � � � xn�� y

f
i � DR

�
fi�x�� � � � � xn�

�

where DR denotes the transformation of the function into
positive unate, changing also its input signals from xi to xti
and x

f
i as appropriate. Formally, the transformation DR can be

recursively defined as follows, using Shannon’s expansion:

DR��� � � DR��� � �

DR�x � fx � x � fx� � xt � DR�fx� � xf � DR�fx�

As an example, the function y � ab� b�c � d� would be converted
into

yt � DR
�
ab� b�c� d�

�
� atbf � bt�ct � df �

yf � DR
�
ab� b�c� d�

�
� �af � bt��bf � cfdt�

Figure 5 depicts a complete example of how a single-rail circuit
(a) is converted into a dual-rail circuit (b). After technology mapping,
the circuit in Figure 5(c) can be obtained.

In [15], a set of transformations that do not introduce new hazards
in Boolean networks was presented. They extend the set originally
given in [7] and cover, among others, the conventional algebraic
optimizations performed during technology-independent logic syn-
thesis [16] and during technology mapping.

Thus, logic synthesis and technology mapping can be performed
on MBNs as long as the set of transformations fall into the category
of hazard-non-increasing.

B. Fast reset and completion detection

An MBN would operate at half the speed of its original counterpart,
due to the need for resetting all primary inputs before another
monotonic phase can begin. We can speed up this reset phase by
inserting signals that force gate outputs to their “quiescent” value
(i.e. to the value that they assume when all dual-rail inputs are
at 0, in the spacer condition). Of course there is a trade-off here
between the number of gates which are reset in this manner (the
more numerous, the faster becomes the reset phase) and the large

1A conversion for technology-mapped circuits is also presented in [12]
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SR DR DR R DR CD
IWLS delay area delay area delay area delay area
circuit (ns) (�m�) increase increase increase increase increase increase

C1908 2.07 9709 -4% 79% 0% 91% 12% 99%
C2670 1.53 13592 3% 79% 9% 93% 34% 121%
C3540 2.59 16665 7% 79% 14% 90% 23% 94%
C5315 2.08 33737 6% 77% 40% 90% 58% 103%
C7552 2.16 35294 26% 81% 32% 100% 50% 111%
alu4 1.85 9079 0% 80% 4% 90% 13% 93%
apex6 0.89 11006 11% 91% 15% 107% 57% 139%
dalu 1.34 10998 -2% 84% 2% 94% 18% 99%
des 1.46 51910 34% 73% 35% 99% 63% 108%
frg2 0.94 10965 3% 67% 5% 82% 45% 116%
i10 2.34 32489 5% 80% 41% 96% 59% 113%
i2 0.73 3062 9% 94% 16% 102% 21% 105%
i7 0.71 8754 -40% 62% -39% 72% 8% 96%
i8 1.05 13149 -11% 86% -7% 95% 25% 115%
i9 1.09 9612 -5% 77% 0% 85% 29% 109%
k2 1.18 14942 0% 87% 4% 102% 30% 112%
pair 1.49 21544 6% 86% 12% 98% 37% 116%
rot 1.27 9132 9% 79% 13% 95% 42% 138%
vda 0.96 9059 0% 90% 6% 99% 35% 108%
x3 0.72 10669 -2% 91% 4% 203% 55% 236%
x4 0.61 5749 -3% 72% 3% 86% 59% 116%
average 3% 77% 11% 95% 33% 109%

TABLE I
EXPERIMENTAL RESULTS FOR IWLS BENCHMARKS.

DLX SR delay SR area DR delay DR area DR R delay DR R area
Circuits (ns) (um�) (ns) (um�) (ns) (um� )

IF 1.174 36465.7 1.371 57715.3 1.404 63786.6
ID 5.561 387083 7.63 691559 7.939 765135
EX 4.106 242852 6.697 450832 6.835 484527

MEM 0.55 4591.42 0.576 8537.76 0.638 10966.3
average 100% 100% 130% 177% 136% 203%

TABLE II
EXPERIMENTAL RESULTS FOR P&R DLX.

capacitance connected to the reset signal (which may end up slowing
down the circuit too much).

Furthermore, the network that detects when all outputs have
stabilized can be built simply by using an or gate for each dual-
rail pair, whose output rises when one of the signals rises, and a tree
of and gates.

VI. RESULTS

The method described in Sect. V has been automated and a design
flow has been created. The flow is compatible with commercial EDA
tools and, in particular, has been integrated with the Synopsys Design
CompilerTM . The steps of the flow are the following: (1) conversion
from single-rail to dual-rail, (2) technology mapping and (3) buffer
optimization.

The flow was applied to the largest IWLS combinational bench-
marks (more than 20 examples) and to a set of larger Verilog RTL
circuits, i.e. the pipeline stages of a DLX CPU. All circuits were
mapped to the UMC 0.18�m technology library. To evaluate the
impact of the physical part of the flow, the synthesised and DR-
transformed stages of the DLX CPU were P&R using Cadence SOC
EncounterTM .

The results for IWLS combinational benchmarks and DLX are
shown in Tables VI and VI respectively. The shorthands SR, DR,
DR R and DR CD in the column labels correspond to Single-Rail,
Dual-Rail, Dual-Rail with Fast Reset, and Dual-Rail with Fast Reset
and Completion Detection respectively.

The delay penalty for the data phase of the dual-rail circuits,
indicated by columns DR and DR R, is relatively small. The penalty
due to completion detection, which is currently larger, can be reduced
by considering it only for critical outputs. The area penalty is about
two-fold.

Note, that according to Table VI area and delay penalties after
P&R are consistent to those obtained after logic synthesis.

As dual-rail circuits operate using the two-phase discipline, the
reset phase delay must also be taken into account. For the circuits
presented here, with reset employed every 6 circuit levels, the reset
time was measure to be in the range of 0.16ns and 0.22ns.

VII. CONCLUSIONS

This paper proposes a novel technique for creating circuits with
completion detection, based on dual-rail encoding. We describe both
the theory for ensuring correct hazard-free operation, and implemen-
tations both at the technology-independent and at the technology-
dependent levels. The experimental results show that a 100% area
and power increase and a 30% delay increase are sufficient to obtain
a circuit that is fully able to signal when its outputs have stabilized.

Bearing in mind the margin of 60-100% between worst case and
true delays, one can conclude that circuits with completion detection
could operate at 25-65% higher clock frequencies than traditional
ones.

This enables for the first time a trade-off between applying
completion detection to the whole design, and achieving the 25-
65% speedup with 100% area and power penalty, versus applying
it only to the most critical stages of logic, and gaining less speed
with significantly smaller penalty in area and power. Exploring this
trade-off is left to future work.
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