Synthesis of asynchronous control circuits with automatically
generated relative timing assumptions

LJordi Cortadellz®Michael Kishinevsky?Steven M. Burns anéKen Stevens
1Univ. Politécnica de Catalunya, Barcelona, Spain &Btlategic CAD Lab, Intel Corporation, USA

Abstract A (possibly relaxed) subset of timing assumptions used for
hi d ib hod of hesis of optimization is back-annotated by the tool and become tim-
This paper describes a method of synthesis o asyN-ing constraints Different valid netlists require different
chronous circuits with relative timing. Asynchronous com- timing constraints. The circuits are then designed to meet
munication between gates and modules typically utilizes {he relative orderings, or verified that the restrictions are al-
handshakes to ensure functionality. Relative timing as-ready part of the delays in the system. Methods based on
sumptions in the form “everst occurs before evetit’ can separation analysis [6{ eometric timing [10], and relative
be used to remove redundant handshakes and associatghing can be deployed for verification [(1J]
logic. This paper presents a method fartomaticgen- In [3] it is shown that relative timing synthesis can be

eration of relative timing assumptions from the untimed . +omated usin i ; i
A : né ing lazy transition systems in which enabling
gplemflcat_lor]. T_hesefaﬁsumptlpnsAcan bef usleq for area antl, ' firing regions for signal transitions are distinguished:
elay optimization of the circuit. A set of relative iming Tjs paper enhances the method of [3] in three major ways.
constraints sufficient for the correct operation of the cir- . . L
cuit is back-annotated to the designer. Experimental re- e A method for automatic generation of timing as-

sults for control circuits of a prototype iA32 instruction sumptions starting from a speed-independent (un-
length decoding and steering unit called RAPPID (“Re- timed) specification is presented. Most of the timing
volving Asynchronous PentiuiProcessor Instruction De- assumptions used in RAPPID circuits can be auto-
coder’g) shows significant improvements in area and delay matically extracted. Only architectural or environ-
over speed-independent circuits. mental assumptions on the inputs needed to be spec-

ified by the user.
e A method for automatic backannotation of RT con-

; straints sufficient for the correct operation of a circuit
1 Introduction is developed.
Asynchronous communication utilizes handshaking to en- e A method for timing aware state encoding is de-
sure functionality that require some area and delay penalty ployed. It reduces the number of state signal and
with respect to synchronous design. Timing information generates timing assumptions for state signals if nec-
can be used to combat the full handshake overhead in area essary. It has a significant positive effect on both area
and delay by removing redundant handshakes and associ- and performance.

ated logic. Since absolute timing information is mostly un- - gection 2 presents basic theory and models. Section 3
known until layout is completeelative timinginformation gescribed a method for automatic generation of RT as-
in the form “eventa occurs before evelt is a naturalrep- sumptions. Section 4 presents technique for extracting tim-
resentation of timing that can be used in the design flow. ing constraints for a derived RT netlist and briefly describe
Relative timing (RT) was used for design of a prototype timing-aware state encoding. Section 5 presents experi-
iA32 instruction length decoding and steering unit called mental results.
RAPPID (“Revolving Asynchronous Pentid®rocessor))
Instr?cltlm?lgefgdeé % that wasI fabﬂcated a_r%d testeg suc-2 Basic notions
cessfully [15, 16]. Silicon results show significant advan- . de ;
tasges -in pamcu?ar, performance of 2.5-4.5instructions perﬁg{sbf‘]{g%’m‘gﬁsﬁﬂgg ttcr)]esrpé%(ijfgrctgntc):%rf?e?y?rsvtvémspe\g\r/le
nS - with manageable risks using this design technology. efer to [9] for a general tutoeial on Petri nets L)é\z transi-
RAPPID achieves three times faster performance and half; oy stoms anglaz state graphs were intrdduceyd in more
the latency dissipating only half the power and requiring a dletail)?n i3] y grap
minor area penalty as a comparable 400MHz clocked cir- '
cuit. Another experiment with a circuit based on timing 2.1 Transition Systems and State Graphs
assumptions is described in [2]. N .
The design flow for synthesizing relative timing circuits A transition system(TS) is a quadruple [13]TS =
is as follows. Relative timing assumptions are provided by (S E, T,sn), whereSis anon-emptyset ofstates E is a
the user or extracted by the algorithm presented in this pa-set ofeventsT C Sx E x Sis atransitionrelation, ands,
Pef- The circuits are then designed using the assumptionsgs aninitial state The elements of are called théransi-

or area and delay optimization. RT circuits can be opti- tionsof TS and will be often denoted by-> < instead of
mized with respect to the untimed circuits for two reasons:fgS e <)

¢ g{';rdak]seshjgpitrl]%?gageed?ﬁg rgﬁﬁnggﬁ 8]]: é%%?thggrlg gttgttg State Graphs are binary interpreted transition systems:
for loaic optimization of all sianals %very state is assigned a binary vector of signal values in
riogic op 9 ' . . . the specified circult; every event is interpreted as a rising

e Itis possible to extend the set of states in which a SI% (a+) or falling (a<) transition of a signah. Notationas is

nal is enabled without changing the set of reachable ysed if one is not specific about the direction of the signal

states if other enabled signals are known to be or Car)‘\t{lansition. The set of signals of &G is calledX = | UO

be made faster than the early enabled (a.k.a. lazy ; ;
signal. This additional flexibity adds local dont * icrel andO denote the set of input and output signals

cares that can differ from one signal to another. A labeling functionv : S— {0, 1}" assigns a vector of
*This work was suported by a grant from Intel Corporation and was done during Signal values to each state-£ |X|) We will call Va(S) the
avisit to SCL in summer 1998. value of signala in states. An SG is consistenif rising
0-7803-5832-X /99/$10.00 ©1999 IEEE.

Fig. 1: (a) Petri net, (b) Transition System.

e y ")
o O - ©
G=""Cod) (@ @]
4] 2+ z =
7 2 > | Go-rGe)
© +
Q O | =¥ CD=Coon) X
2 y z z
f)
B o O
@ ®) () @

Fig. 2: (a)STG for thexyzexample, (b,epGs with timing
domains, (c,d,e) Circuits.

and falling transitions alternate for every signal on any path

in the SG. An example of aT'S and aSG are given in
Figure 1.(b) and Figure 2.(b), correspondingly.

2.2 Signal Transition Graph
Ah$i%nal Transition GraphSTG) is a Petri net PN) in
whic

transitions like in 8&SG. An example of &N is shown in
Figure 1.(a). Thi®N corresponds to &S in Figure 1.(b).

transitions are labeled with rising and falling signal

from which a can fire, i.e. &£ FR(ax) & 35 : s 3 ¢,

AJ)otentiaIIy enabling regionPENR, gives an upper
bound for a set of states which can be selected as an actual
enabling region in the RT-implementation. The freedom in
choosing the enabling region within tRENR gives addi-
tional possibilities for logic optimization. It is easy to see
the following correspondence between the introduced re-
gions: FR(ax) C EnR(ax) C PEnR(ax). We will defer
discussion of examples until Sections 4.1-4.2.

Definition 2.2 (Lazy state graph) A transition
ax is called lazy ifEnR(ax) # FR(ax). A state graph is

called lazy lazy SG) iff at least one transition is laz}.

The correctness properties 86s can be easily trans-
ferred ontdazy SGs. Alazy SG is consistent, determinis-
tic and commutative if the underlyir§G has these proper-
ties. Persistency property must be generalized for enabling
and firings as discussed In Section 2.8.

2.5 Timing assumptions

Timing assumptions could be conser.vativep/ defined in the
foF‘m telling that one event is happening before or after an-
other.

Difference assumptions. A difference assumptiobx <

ax (readsbx beforeax), involving two potentially concur-
rent eventsax and bx, assumes that, due to certain tim-
ing characteristics, whenevbs andax are both enabled,
b« always fires earlier thaax. In an SG this assump-
tion can be represented by tbencurrency reductionf ax
with respect tdox. RT difference assumptions allows one
to eliminate states unreachable in timing domain similar
to state elimination based on absolute timing information
in [10, 11]. They are not sufficient however for expressing
lazy behavior of signals.

Early enabling assumption. Suppose that transiticax

trigﬁers the firing of transitiobx, i.e. ax andbx are ordered
in the specification. Assume that can be made “faster”
thanbx in the circuit. Then the enabling bk can be started
earlier, e.g., from the events triggeriag, and the proper

An STG has an associate8G in which each reachable ordering ofax beforebx will still be ensured by the timing

marking corresponds to a state and each transition betwee
a pair of markings to an arc labeled with the same event

of the transition. Figure 2.(a) depicts &TG with three

signalsx,y, andz corresponding to th8G in Figure 2.(b).
For simplicity, places with only one input an
sitions are often omitted ISTGs.

2.3 Excitation and quiescent regions
Theexcitation regiorof an eventt*, denoted byER(a"), is

the set of states such thet ER(a*) < s%. Thequiescent
regionof a+, denoted byYQR(a+), is the set of states such
thatse€ QR(a+) & va(s) =1 A s¢ ER(as). Similarly,
s€ QR(ae) & va(s) =0 A s¢ ER(a+). In Figure 2.(b),
ER(x&) = {101,111} andQR(x&) = {001,011,010}.

2.4 Lazy transition systems

Properties of the implementation. lazy SG this results
in the backward expansion BENR (bx) into FR(ax).

Simultaneity assumption. The simultaneity assumption

output tran- is arelative notion which is defined on a set of concurrent

transitionsT with respect to a reference transitian. It
tells that from the point of view ofx the skew of firings
times of transitions fronT is negligible. This assumption
can be viewed as cal fundamental modef T with re-
sgect toa and hence as a generalization of burst-mode ma-
chines [14, 17]. An example of the application of simul-
taneity assumption is discussed in Section 4.2.

Assumptions relating only input events cannot be au-
tomatically generated from the circuit behavior and can be
provided by the designer or generated from the implemen-
tation of the environment.

2.6 Next-state functions

The main distinctive feature of a lazy system is that it can The implementation of a®G as a logic circuit is done
assume a non-zero delay between enabling of transition anthrough the definition of th@ext-state functiorior each

its firing. Due to this, the set of states in which a transition
is enabled might be larger than the set of states in which th

transition fires.

Definition 2.1 (Enabling and firing regions) The
enabling regionEnR (ax), of a signal transition a is a the
set of states in which transitionxds enabled. Thédiring
region FR(ax), of a signal transition a is the set of states

output signal and binary vector. F8Gs it is defined as

ollows:

if 3s€ ER(a+) UQR(a+) s.t.v(s

1 A Y4
fa(2) = { 0 ifdse ER(ae)UQR(as) s.t.v(s) =2

L

& otherwise

1As we are targeted at optimization of output signals of a circuit lazy behaviors
of input signals is not considered.

The next-state functiorfy is correctly defined when
the SG has theCSC property, i.e. there is no pair of
reachable stateg¢s,s') such thatv(s) = v(s) and 6 €
ER(a+) UQR(a+) or § € ER(ae) UQR(ax)). Note
that f5 is an incompletely specified function withdon’t

care (DC) set corresponding to those bhinary vectors with-

out any associated state in tl. The logic netlist is
speed-independeifitSG is deterministic, commutative and
output-persistent[4].

In the SG of Figure 2.(b), the DC set is empty since
all binary vectors have a corresponding state in $i&
As an examplefy(101) = 0; fy(101) = f,(101) = 1 since
signalsx andy are enabled, arlis stable in that state. The
Karnaugh maps for the next-state functions are depicted i
Figure 3.(a).

For alazy SG the next-state functions are defined dif-
ferently:

1 ifdse FR(a+)UQR(a+) s.t.v(s)
0 if3se FR(a®)UQR(a®) s.t.v(s)
& otherwise
Note that this definition generally gives more don't care
vectors that the definition for @G due to two reasons:

Y4
4

fa(Z)

n

3 Automatic generation of relative timing as-
sumptions

3.1 Ordering relations

Let TS= (S T,E,s) be a transition system. Assume that
every event irE corresponds to a single connected excita-
tion region.

Definition 3.1 (Conflict) Anevent g€ E disablesanother

evente € E if dg; & s suchthats € ER(e2) and o ¢
ER(e2). Two eventsge; € E are indirect conflictif e
disables g or e, disables e.

Definition 3.2 (Concurrency) Two events ge; € E are
concurrent (denoted by d| &) if they form a state dia-
mond, i.e.

1. ER(e1) NER(ez) #0,

2. VSEER(e1)NER(&): (53 s)eT A (s35) €
T=o3seSi(13)eT A (23s)eT.
Definition 3.3 (Trigger) An event ¢ € E triggers another
event e € E (denoted by g&—~) if ds; & S such that

e More states are unreachable, since timing assumps$; € ER(ez) and $ € ER(&).

tion can reduce concurrency
e States in PEnR <FR) do not belong to eithefR,
or QR, and hence are included into the DC-set.
As an example, in thlazy SG of Figure 2.(e),fx(101) =
& fy(101) = ,(101) = 1 as explained in Section 4.2.

Definition 3.4 (Enabled before) Let %,ez € E be two
concurrent events. jecan be enabled befom (denoted

by e <1e) if 3s1 — s such that s € ER(e;) <ER(e2) and
s € ER(e1) NER(ey).

The conditions for speed-independentimplementability bDefinition 3.5 (Enabled simultaneously)Let e,e; € E

can be trivially extended tlazy SGs.
2.7 Logic synthesis
From the next-state functions o565, a speed-independent

e two concurrent events.; @and e can be enabled si-
multaneously(denoted by £0ey) if 353 — such that

s1 ¢ ER(e1) UER(e») and $ € ER(e1) NER(e).
Definition 3.4 can be extended to sets of events as fol-

circuit can be derived by implementing the boolean equa-|gws.

tion of each output signal as an atomic complex gate [8] or

as a generalized C-elements [1, 7]. For example, a speedbefinition 3.6 (Enabled before a set of events).et ec E

independent complex gate implementation for 81e5 in
Figure 2.(a) is a netlist;

X=Z+XY, Y=X+Z zZ=X+1Z.
Similarly, from the next-state function specification corre-
sponding to dazy SG, an RT-circuit can be derived in the

form of complex gates or generalized C-elements as illus-

trated by an example in Sections 4.1-4.2.
2.8 Monotonic covers
Not every logic function derived from the definition of

the next-state function satisfies hazard-freedom conditions

and hence valid. The following definition is related to haz-
ards in the behavior of asynchronous circuits.

Given two sets of stateS; andS; of an SG such that
S C S, we will say thatS; is amonotonic covepf S if
for each transitiors > s:

(SESIES = TEJIN(SES = T ESED)

Only monotonic covers dfRs can be selected &hRs
for hazard-free solutions for logic netlist [3]. & =
EnR(ax) andS = FR(ax), then (1) no disabling oéx is
possible and (2) there are no transitions frBR(ax) to
EnR(ax) ©FR(ax), i.e., no disabling of firings foax is
possible either. Hence, persistencyasfin the RT imple-
mentation is guaranteed. For example, in 8@ of Fig-
ure 2.(b), the sef101,110,111} is a monotonic cover of
ER(x&). However, the sef100,101, 111} is not, since the

transition 10045 110 violates the conditions for mono-
tonicity.

be an event pairwise concurrent with all the events in the
set X={ey,...,en} C E. ecan be enabled befové (de-

noted by &1 X) if 3s; LA s such that € ER(e) ©ER(X),
s € ER(e)NER(X) and é ¢ X, whereER(X) = ER(e1) U
...UER(&n).

Figure 1.b depicts the transition system derived from
the Petri net of Figure 1.a. The following facts can be de-
rived using the definitions abovex(a || b), c|| f, c<a f
, cOe, etc. Eventd cannot be enabled beforge, f},
but can be enabled befofe, f,g} since there is a tran-

sitionsg LY s19 such thatg € ER(d) <ER({e, f,g}), s10 €
ER(d) NER({e f,g}) andh ¢ {e f,g}.

3.2 Delay model

A delay model for events presented in this section gives an
informal intuitive motivatiorfor the automatic generation
of timing assumptions. This model refers to the delay of
the events in thdS. The delay of an event is defined as
the difference between its enabling time and its firing time.
Three types of events are considered:

Non-input events: its delay is in the intervdll <€, 1+ €]
Fast input events: its delay is in the intervall + €,)
Slow input events: its delay is in the intervglA, o)

The synthesis approach also assumes that (1) the dela
of a gate implementing a non-input event can be lengthene
by delay padding or transistor sizing, (2) the dela?/ of two
gates can always be made longer than the delay of one gate.

Hence, one can assume tlat 1/3, (3) the circuit will
never take longer thaf time units ﬁminimum delay of a
slow input event) in becoming stable from any state of the
system and a quiescent environment.

The previous assumptions on the timing behavior of the

3.3.3 Assumptions between non-input events and slow
input events

Assume thae € E is aslowinputeventX = {ey,...,en} C
E is a set of non-input events ards pairwise concurrent

circuit can be translated into assumptions on the firing orderwith all the events irX.

of the events.
3.3 Rules for deriving timing assumptions

We present rules for deriving timing assumptions in the fol-
lowing format: (1) ordering relations that must be satisfied
in a (Lazy)SG for arule to be applied, (2) automatic timing _
assumption that can be generated, and (3) informal justifi-
cation of a rule based on the above delay model.

3.3.1 Assumptions between non-input events

The following rules can be applied for derivi
sumptions between non-input everds e, es €

I. Event enabled before another event.

Ordering relations: (e || &) A(e1<&) A(e2 fe1) A (er Pe).
Difference timing assumption: e; fires beforee,

Delay assumptions: one gate shorter than two gates.

nEg timing as-

Il. Events simultaneously enabled.

Ordering relations: (e || &) A (e10e) A (e2 Ley).
Difference timing assumption: e fires beforee,
Delay assumptions: delay ofe, longer than delay of;.

IIl. Event triggered by events simultaneously enabled.

Ordering relations: (e1 || e2) A (e1 41e2) A (e2 £1e1) A
[(e1=e3) V (2= e3)].

Simultaneity timing assumption: e; ande, simultaneous wrés.

Delay assumptions: one gate shorter than two gates.

IV. Early (speculative) enabling for ordered events.
Ordering relations: (e; —).

Early enabling timing assumption: e, fires befores, (bute, can be
enabled concurrently witly).

Delay assumptions: delay ofe; shorter than delay a.

Let us illustrate the previous cases with the example of
Figure 1 assuming that all events are non-input. Timing as-
sumptions of type | can be derived for the pairs of events
(c, f), (c,0) and(e,d), where the first element of the pair is
assumed to fire before the second. Timing assumptions o
type Il can be applied to the paifb, h) and(c,e). Timing
assumptions of type Ill can be applied, e.g., to the event
triggered by the paitb,h) that triggers the events e and
g. Timing assumptions of type IV can be applied, e.g., to
the evend triggered by the evertt If this assumption ap-
plies, then potential enabling region fdrincludes states
{s2,s5,8,512,515,518,s21} as don't care states for the
values of the next state function for sigrthin addition to
the originally present statgs3,s6,59,s13,516,519,s22}.

3.3.2 Assumptions between non-input and
events

input

Assume thak;,e € E are a non-input and an input event
respectively and they are concurrent.

V. Input not enabled before non-input event.

Ordering relations: (e1 || e2) A e de;.

Difference timing assumption: e, fires beforee,.

Delay assumptions: delay of environment longer than delay of o

gate.
da

ne

el and Il for the

This assumption covers the ones of]
ay assumption

case in whichey is an input event. The

used in this case states that the response time of the envisubset of the untimed

ronment will always be longer than the delay of one gate.

Sstates irBG of Fi

VI. Slow environment not enabled before non-input events.
Ordering relations: (Ve € X:e||g) A edX.
Difference timing assumptions: X fires beforee.

Delay assumptions: delay of slow input event longer thah (delay
of stabilizing the circuit under a quiescent environment).

To illustrate the meaning of this timing assumption we
will consider thath is an input event and is a slow input
event in the example of Figure 1. The rest of events are
non-input. After firing the events, b andc a state in which
d, e andh are enabled is reached (stat@. At this point
it can be assumed thatand f will fire befored (two gate
delays vs. slow environment). However, no assumptions
can be made about the firing order betwdemdg sinceg
is preceded by an input evem) for which no upper bound
on its delay can be assumed. In chseould be a hon-input
event,d would be assumed to fire befdnendg also.

4 Backannotation of timing constraints

After logic synthesis, the validity of the timing assumptions
must be verified or validated to ensure the correct function
of the circuit. However, the circuit may be correct for a set
of states larger than the one defined by the timed domain,
which can be obtained by a set of less stringent timing as-
sumptions. In other words, some of the timing assump-
tions are redundant for a particular logic synthesis solution,
while some other can be relaxed. This section attempts to
answer the following question:

Can we derive a minimal set of timing assump-
tions sufficient for a circuit to be correct?

_ This set of timing assumptions backannotated for a
g}gve.n logic synthesis solution is calléiing constraints
iming assumptions (both manual and automatic) are part
of the specification and provide additional freedom for
logic synthesis, while timing constraints is a part of the im-
plementation, since they constitute requirements to be met
sufficientfor a particular netlist solution to be valid.

#.1 Examplel

Let us analyze the example in Figure 2. The shadowed
r Ig];ure 2.(b) correspond to the timed domain
determined by t
Z+<y+

e timing assumptions
and y+ <x&

Under these assumptions, lo

by considering the states 11

%ic synthesis can be performed
110 and 001 unreachable, i.e. in
the don'’t care set of the logic functions for all signalg, z.

The circuits of Figures 2.(c) and 2.(d) have a correct
behavior under the previous assumptions. Looking at the
circuit of Figure 2.(c) we observe that:

e The gatex = z+ Xy andy = x+ z are correct imple-

mentations for the whole untimed domain.

e The gatez = x is a correct implementation for all

the states except for 001. In this state= O and

z& should have been enabled according to the next
state function of the implementation, but it is not
enabled in this state according to the original state
graph specification.

Thus, even the circuit may have been obtained using
the two previous assumptions, only one relative timing con-
strainty+ < x& must be ensured for the circuit to be cor-
rect. In general, eachdgate of the circuit is correct for a

] 1 omain which is also a superset of
the timed domain. The circuit is correct for those states in
which all gates are correct.

X y z

P00 01 1110 Y700 01 11 10 Y200 0L 11 10 4.3 Correctness of RT circuit

o[1]ofofo] ofo[1]1]o] ofof2]0]o Let Sbe an original untime&G with a finite set of reach-

11ololt] alzlzl1]z] a[zlzlzlz] @ able statedJ 2 and initial statesy. Let G be a circuit
netlist implementings under timing constraint€. A pair

Y200 01 11 10 700 01 11 10 < G,C > is called arelative timing circuit (RT circuit) It

0 defines dazy SG, L<gc>, With a set of reachable states

1 (0) U.. The RT-circuit implementation can contain more sig-

nals than the original specificatidif some state signals
are inserted for resolving state conflicts. Let us assume that

Z00 01 11 10 Z00 01 11 10 Z00 01 11 10 . .
oT1ToToTol oloTiTilol oloTalolo Shasn signals and. hask,k > n, signals. Then for com-
© paring states one needs to use a homomorhisBf — B",
1/]1/0(0]1 1|]1j1/1]1 111111 s . . . K
that given an implementation state hidgs=n) new in-
Y200 0L 11 10 Y200 01 11 10 200 01 11 10 ternal signals and obtains a specification state. Homo-

] . morhism,h, is naturally extended to sets of states.
0 0|0] D
__EIEIN (d) A RT-circuit is said to becorrectif the following con-
t]@ofl @R [ditions are satisfied:
1. h(UL) C U, i.e. no states outside original untimed
domain are reachable by the RT-circuit.
C) 2. All signals persistent is are also persistent ilazy
SG L<gc>. All state signals inserted ib.gc> are
xYZ00 01 11 10 p¥200 01 11 10 ;Y200 01 11 10 persistent. Commutativity and determinism are pre-
0 _J ofo] o 1]o] o ofo served.
rl@lolo] alrlilzz| af[z]2]zjz] @ 3. The initial state is preserved with respect to the 1/0O
‘) i interface, i.e., ifsg € Sands) € Lcgc> are the ini-
LEGEND: § tial states of the origingdG and thdlazy SG corre-

Z00 01 11 10

 spefication goaoc M - toca o spotnding to the imprlementation, then there is a path
Implementation: {0 -required -concurrency -unreachable S = h(%) or h(%) = .In SSUCh. that sequenae
| ' timing constraints > eguction states | contains only events of internal signat&t observ-
‘ ‘ ableby the environment.
Fig. 3: Next state functions fotyzexample: (a) Original 4. No events disappear: BR<(e) £ 0. thenFR, (e
untimed specification; (b Scf)ecification %rR%‘ assumptions D A h(FRL(8)) CppER o s(e) #0, L(e) #
“z+ < y+ andy+ < x<; (¢,d) Implementations from Fig- L = =S .
ures 2.(c,d); (e) Specification for RT assumptigr-;z+ 5. No new deadlock states appeat iz cs.
simultaneous with respect ¥&”; (f) Implementation from .
Figure 2.(f). 4.4 Theory for backannotation

For the ease of exposition let us assume that no state sig-
4.2 Example 2 nals are inserted in%he RT circuit, and therefore the numbegr
Let us consider the same example under a simultaneityof signals stays the same f8randL. We will briefly dis-
assumption X+ andy+ are simultaneous with respect to “cuss how state signal insertion is done in Section 4.8. Let
x&¥. Under this assumption state 001 is unreachable andU be the set of states reachable in the untimed domain of
becomes a don't care for all signals. In addition states 101a state graph an@ C U the set of states reachable under
and 110 becomes don't cares for sigradince both belong a set of timing assumptions, manual - provided by the user
to the potentialEnR(x<) according to the semantics of and automatic - derived for synthesis according to the rules
the simultaneity assumption. Only one timing constraints, Of Section 3. Let us assume that we have a circuit with
Z+ < x& is sufficient for the circuit in Figure 2.(f) to be ~ output signalsay,...,am. Let G = {ga,(X),...,0an(X)}
correct. Gatex =y is not enabled in 101, hence concur- (whereXis the set of signals) be a set of gates implement-
rency is reduced in this state with respect to the originaling the RT circuit, wherg,, (X) denotes the boolean func-
untimed SG and state 001 becomes unreachable under anyon implemented by the gate of sigral
gate delays. State 110 ?n the glqntr%g c_lgr:.resporg)c?.s to the
concurrency expansion for enabling>af. This enabling : : :
is lazy since 11& EnR(xe) A 110¢ FR(xe). Reachable states in the untimed domain
_ Figure 3 shows Karnaugh maps for the next state fun-Let us callR (G) the set of states reachable in the un-
stions of signal,y, andz for specifications and imple- timed domain for the circuitc. Note that, in general,
rs]?%\]/bgtltﬂg? t(i‘%rirnesgggﬂlrﬂg ,[ti%rggep%si"gg'ﬁoatb%‘g% é'ggﬁft“U &R (G) # 0 due to the reduction of concurrency im-
care vectors in RT specifl}:c):ations: global don® cares corre-Posed by the circuit, anR (G) U # 0 due to expansion
spondingi to states unreachable due to timing assumptionsof concurrency for enabling for lazy transitions. The lat-
and local don't cares that differ for different signals. In the ter states are not generated by our procedure since they
RT implementations some states become unreachable du@Uust be unreachable in RT domain anyway. The former
to untimed concurrency reduction and therefore discrepan-States are of interest, since they do not require any tim-
cies in the corresponding values of the next state functionsNd constraints (see examples 4.1 and 4.2). Let us denote
com%ared witg_the original untimed spedcification canbeig- Uc =R (G)NU. Ug can be calculated as follows:
nored; some discrepancies corresponds to concurrency re- ; : N
duction (disabling oPsignaI ranstions without persisten%y 1. For each output signa, calculatedisableda;) =
violation), and finally, other discrepancies correspond fo {se U [s¢EnRg(ai) A s€ ERs(a)}, i.e. states in

lazy enabling and require timing constraints for correct cir- . — . _
cuit behavior. 20ur implementation is currently limited by the bounded untin®EGs and

SGs. It can be easily extended to unbounded unti®@&Gs by making unbounded
(infinitely growing) markings oSTGs unreachable in RT domain.

Untimed domain

\Cl

e

Timed domain

Fig. 4: Formulation of the backannotation problem.
{C1,C,,C3} is the set of timing constraints sufficient for
correctness of RT solution.

which a; was enabled in the untimed domainSee,
S, but made stable by the circuit.

2. For each output signal, remove all arcs %5 from
the SG for all statess € disableda;).

3. Calculate the new sélg =R (G)NU of reachable
states.

States with incorrect behavior

Let us callincorrec{G) c Ug the set of statemsideUg

s0
—---timed domain b\\
sl (l‘\\ e
N2
f
order unreachable
s7 b<d {4,s7}
' b<e {s7}
\ c<d {4,5,57,s8}
incorrect c<e { 57,58}
incc’)”rrect e d<b {s2.s3}
behavior d<c {s3}
e<b {s2,s3,85,56}
e<c {s3,s6}

Fig‘. 5: Example for backannotation with table of unreach-
able states for each pair of ordered events.

In particular, the patly; — ... = s, can be empty if
s€ ER(ej) NER(&). disabledC) is the set of arcs with
label g that must not fire in order fog; to fire beforeey,
i.e. those arcs with source states in which both events are
concurrent or precedingR(ej) NER(ex) insideER (&).

Given a set of constrain@ = {Cy,...,Cp}, R(C) is

that are required to be unreachable for the correctness othe set of reachable states after removing the arcs in

the circuit. These states can be calculated as follows:

1. For each output signal, calculateincorrect(a;) =
{se (U&T)|seEnRg(a) A s€ QRs(a)}, i.e.
states in whiclg; was stable in the untimed domain,
but enabled in the cirguit.

2. incorrect{G) = UgN (™ 4 incorrect(a))

Backannotation: problem formulation

disabledC;)
CieC

4.6 Example 3

Figure 5 shows an example for deriving a set of timing
constraints for backannotation. Initially we halk =

{%0,---,510} andT = {%0,51,%2,%5,%,9,S10}. Let us as-
sume thatss ands; are the states in which the behavior

We need a set of constraints that make the states irof the circuit is incorrect. The table in Figure 5 contains

incorrect{G) unreachable. A trivial solution to this prob-

the set of states that become unreachable by reducing the

lem is to take the complete set of timing assumptions usedconcurrency between each pair of concurrent everiter

for logic synthesis, i.e. those for which is the set of

example, by imposing the orddr< b, the states, andss

reachable states. Our goal, however, is to find the less strinbecome unreachable.

gent set of constraints sufficient to make the circuit correct.
Given a set of timing constrain®= {Cy,...,Cp}, we will
call R (C) C U the set of states reachable after applying

C in the untimed domain. In general, the problem can be
formulated as follows (see Figure 4):

Find a set of constraints C with the large’t(C) such
that

1.T € R(C) C U <«incorrec{G)

2. VseT :(s€ EnRg(a*) A s¢ ERs(ai*)) = Ja; :

sHIAdeT A (ajx < ax) €C

The first condition guarantees that no incorrect states

inside U are reachable (constrain®,C, in Figure 4),
whereas the second makes sure that no staiesde
can be reached in the RT circuit (constraigtn Figure 4).

4.5 Finding a set of timing constraints
Relative timing constraints are defined in terms of firing or-

der of events. Constraining a firing order between a pair of
events makes only sense when they can be enabled simu
taneously and fire in any order, i.e. when they are concur-

rent. Thus, each timing constraiitcan be denoted by an
ordered pair of concurrent events, 63= (gj < &).

Given a constrain€; = (g < &), we define the set of
arcsdisabledCi) as

disabledC) = {sX ¢ |Iss s = ... > &
S1,.--,5-1 € ER(&) A s, € ER(ex) NER(€j)}

The problem to be solved is the following: find a set of
ordering constraints between pairs of events such that the

new set of reachable states coverand does not intersect
the set of incorrect statess, s7}. Moreover, we want to
maximize the set of reachable states. to find the less
stringent set of timing constraints.

The ﬁroblem can be posed as@vering problemThe
cells of the table in bold correspond to those constraints that

do not remove any state from. The covering problem can
be formulated as follows:

(e<c) A (b<d V b<e)

with the minimum-cost solutio® = {e < c,b < e} and
R (C) = {%0,51,%,%4,%, %, %, S10}

4.7 Solving the covering problem

The covering problem for backannotation does not corre-
spond to a unate covering problem, since the cost of the
final solution (number of disabled arcs) is not the sum of
the cost of each constraint.

Currently,petrify ~ uses a greedy approach to solve

he covering problem that can be easily implemented by
Kmbo_llc BDD-based techniques. It merely consists in
choosing the constraint that removes the maximum num-

ber of arcs whose destination is iimcorrec{G) and that
have not been removed bé/ previous constraints. This pro-
cess is iteratively repeated until all incorrect states become
unreachable.

3For simplicity, unreachable states are reported in the table for this example. In
general, the analysis must be performed by calculating the rendisatiledarcs.
In this particular case, the resulting analysis is the same.

X+ li 1}

li ro
FIFO . .QT m + + Design FIFO cycletime Cell forward latency
lo . 1 l L 1 RT 9.5 2

(@ li- ~— lo+ x- fot — i+ SlI 1i.5 3
NS RT reshuffled 5.7 Z
Tor Sl reshuffled 7.6 3
lo- —@= i+ ri- —@— ro- (©) X
.1 — .L la T ol Y e Table 2: Performance comparison of FIFOs normalized to

a fan-out four inverter delay

© b oRLAE @ FIFO and a forward latency (an average event propagation

gmle frofmli toro) of a chefll. The ¥esu!ts no.rmalize?1 to Ithe

. e ... delay of an inverter with fan-out four in a given technolo

Fig. 6: (@) FIFO contrller (o) Speciiation. (0) Spedifi are Shown in Table 2. J ¥

cation with state encoding signal, (d implementation : e i ; ;

with gC elements, (e) Timing constraints sufficient for cor- rowl):(\%etrlljesélraStRHQ Igitr“éﬁi%lggﬂgelfjl Ia;)et(rri?yporteudsiqugﬂ;%ll;rst
automatic timing assumptions presented in Figures 6.(e). A

@)

rectness.

In some cases, not all the incorrect states can be mad@roper transistor sizing Is required for correct operation of
unreachable since the timed state space has been produc#ge circuit. No user-defined assumptions on the environ-
by early enabling some events. In those cases, a similament are used. The timing analysis explained in Section 3
iterativé process Is executed to cover those incorrect state§as been applied to the SPeCIflcatlon, and state encoding
that can be legalized by ear%/ enabling. As an example,has been automatically solved as desribed in Section 4.8.
consider the stats; in Figure 5. Assume thag; is incor- With this strategy, only one additional state signalwas
rect since the next-state function indicates thetenabled required as shown in Figure 6.{c)There are some inter-
in that state. The state could be made correct by extendesting aspects of this implementation:

ing EnR(f) towardsss and imposing the type-1V constraint e The state signak is is switching concurrently with
e<f. other activity in the circuit. This Is a result of the state

i ; encoding strategy gbetrify that attempts to in-
4.8 Timing aware state encoding crease tﬁe concurrency of new state signals until they

The problem of state encoding is in inserting state signals disappear from the critical paths according to the de-
for resolvingCSC conflicts. State encoding in our imple- lay model explained in Section 3.

mentation is automatically solved using an extension of the e The response time of the circuit with regard to the
method presented in [4]: environment is only one event (two inverters), i.e. as

. . ; tput event is enabled it fires without
e Only those encoding conflicts reachable in the RT soon as an ou -
domain are considered in the cost function such that _. requiring the firing _Of any qther internal event,
no effort is invested in solving conflicts unreachable Finally, the implementation of Figure 6.(d) requires some
in RT domainT timing cc()jn_strsamts toﬁ)ef.corr.ec.t. After applying the method
T . proposed in Section 4, five timing constraints between pairs
* ﬁlgtec}rtg%“sctg{gIgi%]r?aslssulg?r?o?jlgg ?r(t))ﬁw eeré%roartle?()j i];g[of concurrent events have been derived thatsarfféicient

; ; ; for the circuit to be correct. They are graphically repre-
EQI1YII?3%itQat the state signals can be implemented aSganted in Figure 6.(e).

The constraint$,+ < x&andro+ < Xx&are not inde-

5 Experimental results penldent. Since the (ijmr;ljlementa%ior?)ofs X'II:hlolaL ro,hit

- Is always guaranteed that one of them will hold, whereas
5.1 Academic examples the other must be ensured. Sirlge- andr,+ are enabled
The results for the well-known benchmarks used at simultaneously, these constraints will always hold if the de-
academia are presented in Table 1. Tables 1.(a) and 1.(Hgay of two gates is longer than the delay of one gate. From
present the results for specifications with and vathte he rest of constraints, the most stringentds < ri+. In
coding conflictsespectivelySl,, Sk andTI representarea the worst case, both+ andx«<will be enabled simultane-
and delay optimization for speed-independent design, andJUSm byro+. Inthis case, it is required the delayxato
relative timing results, correspondingly. be shorter than the delay gf+ (from the enviroment). In

For each experiment, area is estimated as the numbef@Se€ Of a very fast environment, it can be forced by differ-

of literals of thesetandresetnetworks of generalized C €Nt techniques, e.g. transistor sizing or delay padding for
elements. Delay (response time) is estimated as the averdatex.
age number of non-input events in the critical path between . For the second FIFO éthe second row of the table) we
the firing of two input events. Comparing the colungls derived a speed-independent circuit uguegrify ~ in the
andTI, we observe a reduction of about 40% in area. The mode ofautomatic concurrenc reductlgﬁ] without con-
reduction in response time is less than 5% if we considerstraining 1/0 concurrency of the cell. Because of concur-
all events to have a delay of one time unit. However, the rency reduction only one state sqnal was required [4] like
performance improvement is much more pronounced if it in the case of the automatic RT solution. However, the state
were evaluated with actual delays, given that the logic of Signal was on a critical cycle and the implementatiohoof
the timed implementation is much simpler. We report this andro contained additional p-transistors, which made the
analysis in Section 5.2. speed-independent circuit 20-30% slower than the RT one.

5.2 Example: a FIFO controller 5.3 RAPPID control circuits

In this section we trace the development of a FIFO cell In this section we compare manually optimized RT control
(specified in Flgures 6.(a),(b)), a simplified abstraction of circuits used for RAPPID [16, 15] with those derived auto-
a part of the RAPPID desu%n. The modules at the left and matically withpetrify . For each example, Table 3, re-
right sides of the controller have a similar speed as the con-ports:manual (obtained by applying relative timing man-
troller itself. In fact, these events are %enerated by twin ually),automatic (obtained automatically byetrify
modules connected at each side. For this reason, it is not

wise to a-ssume that the InpUt ev-ents are SIOV\-" to the OR place indicate awr-causalityrelation: x— is triggered by the first event

. We simulated four FIFOs using different Implementa' to fire, whereas the token produced by the latest event is implicitly consumed. An
tions of the FIFO cell and measured a CyC|e time of the equivalent Petri Net is a bit more cumbersome and is omitted for simplicity.

4This new specification is not strictly a Petri net, since the arcs fgamandr,+

Table 3: Comparison for two generic representative exam-
ples (fifo) and CUitS [
control, tag-unit). Response time is measured in gate de-

two control circuits from RAPPID (byte-

lays, area In transistoral1 manuala: automatics: speed-
independent.

and applying relative timing) argpeed-independent

(obtained automatically byetrify

without concurrency

reduction).

tion

designs.

From the table it can be deduced that automatic solu-
s are quite comparable with manually optimized RT
he improvement in response time by applying

relative timing is about a factor of 2, substantially better
than for the examples of Table 1. This is because the de- [g)

signers of these circuits had a stronger interaction with the

(4]

(5]

(6]

1 Alain J. Martin.

tool and provided aggressive timing assumptions on the en-
vironment that could not be derived automatically.

6

Conclusions

The method for automatic generation of timing assump-

tion

trate on defining those timin

be

s presented in this paper allows the designer to concen
assumptions that can only

deduced from a detailed knowledge of the environ-

ment. The technique for automatic back-annotation of tim-

ing

constraints relative to a particular RT circuit provides

necessary timing information for the down-stream tools.

Tim
tion

ing-aware state encoding allows area/delay optimiza-
of RT circuits.

Relative timing presents a “middle-ground” between

El
[10]

(11]

(12]

[13]

clocked and asynchronous circuits, and is a fertile area for{14]
CAD development. Both burst-mode[14, 17] and speed-

independent specifications are at opposite extremes of a
more general class of relative timing specifications.

Ac

kowledgments We would like to thank Shai Rotem,

Luciano Lavagno, Alex Kondratyev and Alexandre
Yakovlev for their contributions in motivating this work

ing.

and developing the theory for synthesis with relative tim- [

References

(1]

(2]

S. Burns. General conditions for the decomposition of state holding
elements. Ininternational Symposium on Advanced Research in
Asynchronous Circuits and Systems, Aizu, Japerch 1996.

W. S. Coates, J. K. Lexau, I. W. Jones, S. M. Fairbanks, and I. E.
Sutherland. A fifo data switch design experimentPhoc. Interna-

[15]

[16]

17]

Area Response time State signals Area

circuit Sla Sl Tl a Sl Sla Sk TI circuit Sl Tl

adfast 18 31 131 2.17 1.00 1.00 2 2 0 chul33 15 14

alloc-outbound| 20 23 22| 150 1.11 1.00 2 2 2 chul50 16 14

master-read 65 79 451 229 133 1.29 7 7 3 converta 19 14

mmuO 33 47 20| 231 138 138 3 3 0 ebergen 16 16

mmul 25 32 151 1.60 112 1.12 2 2 1 half 8 7

mrO 50 51 30| 1.60 145 1.15 3 3 2 hazard 8 8

mrl 36 39 20| 225 119 119 4 3 0 mslatch 24 20

nak-pa 24 35 24| 125 100 1.000 1 1 1 trimos-send| 30 21

nowick 18 19 16| 1.50 1.17 1.00 1 1 1 varl 18 8

ram-read-sbuf | 30 26 21| 110 100 1.000 1 1 0 vbe5b 13 12

sbuf-ram-write | 24 44 24| 163 100 1.00 2 2 1 vbe5c 10 10

sbuf-read-ctl 18 21 16| 2.00 150 1.50 1 1 1 vbe6a 28 24

seq3 18 22 18| 1.50 1.00 1.00 2 2 2 vbel0b 32 26

seqg-mix 23 28 241 140 120 1104 2 2 2 wrdatab 35 33

vmebus 22 33 17| 229 157 157 1 1 0

Total 424530 325/ 176 120 115 34 33 16 Total 272 227

(@ (b)
Table 1: Experimental results: specifications without CSC (a) and with CSC (b).
Design Area &) Worst case Average case tional Symposium on Advanced Research in Asynchronous Circuits
response time response time and Systemgages 4-17, 1998.
m a S m a S m a S [3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,

E:Eg'g fé 1252 32 2-8 3-8 8-8 %8 gg g; A. Taubin, and A. Yakovlev. Lazy transition systems: application to
Byte_c'mr 3 57 71 | 40 30 50| 30 25 41 timing optimization of asynchronous circuits. Rioceedings of the
Tag-unit 31 47 112| 40 40 80 | 40 27 69 International Conference on Computer-Aided Desigages 324—
Summary || 101 111 275| 33 29 7.75| 30 24 556 331, November 1998.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. A region-based theory for state assignment in speed-
independent circuits.IEEE Transactions on Computer-Aided De-
sign 16(8):793-812, August 1997.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Automatic synthesis and optimization of partially
specified asynchronous systems. DAC, pages 100-115, June
1999.

Henrik Hulgaard and Steven M. Burns. Bounded delay timing anal-
ysis of a class of CSP programs with choice Phoc. International
Symposium on Advanced Research in Asynchronous Circuits and
Systemgpages 2—-11, November 1994.

Synthesis of asynchronous VLSI circuits.
J. Straunstrup, editoEormal Methods for VLSI Desigrchapter 6,
pages 237-283. North-Holland, 1990.

D. E. Muller and W. C. Bartky. A theory of asynchronous circuits.
In Annals of Computing Laboratory of Harvard Universityages
204-243, 1959.

T. Murata. Petri Nets: Properties, analysis and applicatidh®-
ceedings of the IEEBpages 541-580, April 1989.

Chris J. MyersComputer-Aided Synthesis and Verification of Gate-
Level Timed CircuitsPhD thesis, Dept. of Elec. Eng., Stanford Uni-
versity, October 1995.

Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asyn-
chronous circuits.IEEE Transactions on VLSI Systemi$2):106—

119, June 1993.

Radu Negulescu and Ad Peeters. Verification of speed-dependences
in single-rail handshake circuits. Proc. International Symposium

on Advanced Research in Asynchronous Circuits and Systages
159-170, 1998.

M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transi-
tion systemsTheoretical Computer Scienc®6:3—-33, 1992.

S.M. Nowick. Automatic Synthesis of Burst-Mode Asynchronous
Controllers PhD thesis, Stanford University, Dept. of Computer
Science, 1993.

S. Rotem, K. S. Stevens, R. Ginosar, P. A. Beerel, C. J. Myers,
K. Yun, R. Kol, C. Dike, M. Roncken, and B. Agapiev. RAPPID:
An asynchronous instruction length decoderPtac. ASYNCApril
1999.

K. S. Stevens, S. Rotem, and R. Ginosar. Relative timing2rére.
ASYNC April 1999.

Kenneth Yi Yun.Synthesis of Asynchronous Controllers for Hetero-
geneous SystemBhD thesis, Stanford University, August 1994.

In

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

