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Abstract
This paper describes a method of synthesis of asyn-
chronous circuits with relative timing. Asynchronous com-
munication between gates and modules typically utilizes
handshakes to ensure functionality. Relative timing as-
sumptions in the form “eventa occurs before eventb” can
be used to remove redundant handshakes and associated
logic. This paper presents a method forautomaticgen-
eration of relative timing assumptions from the untimed
specification. These assumptions can be used for area and
delay optimization of the circuit. A set of relative timing
constraints sufficient for the correct operation of the cir-
cuit is back-annotated to the designer. Experimental re-
sults for control circuits of a prototype iA32 instruction
length decoding and steering unit called RAPPID (“Re-
volving Asynchronous PentiumR
Processor Instruction De-
coder”) shows significant improvements in area and delay
over speed-independent circuits.

1 Introduction
Asynchronous communication utilizes handshaking to en-
sure functionality that require some area and delay penalty
with respect to synchronous design. Timing information
can be used to combat the full handshake overhead in area
and delay by removing redundant handshakes and associ-
ated logic. Since absolute timing information is mostly un-
known until layout is complete,relative timinginformation
in the form “eventa occurs before eventb” is a natural rep-
resentation of timing that can be used in the design flow.

Relative timing (RT) was used for design of a prototype
iA32 instruction length decoding and steering unit called
RAPPID (“Revolving Asynchronous PentiumR
Processor
Instruction Decoder”) that was fabricated and tested suc-
cessfully [15, 16]. Silicon results show significant advan-
tages - in particular, performance of 2.5-4.5 instructions per
nS - with manageable risks using this design technology.
RAPPID achieves three times faster performance and half
the latency dissipating only half the power and requiring a
minor area penalty as a comparable 400MHz clocked cir-
cuit. Another experiment with a circuit based on timing
assumptions is described in [2].

The design flow for synthesizing relative timing circuits
is as follows. Relative timing assumptions are provided by
the user or extracted by the algorithm presented in this pa-
per. The circuits are then designed using the assumptions
for area and delay optimization. RT circuits can be opti-
mized with respect to the untimed circuits for two reasons:

� RT assumptions reduce the set of reachable states
and hence increase the number of don’t care states
for logic optimization of all signals.

� It is possible to extend the set of states in which a sig-
nal is enabled without changing the set of reachable
states if other enabled signals are known to be or can
be made faster than the early enabled (a.k.a. lazy)
signal. This additional flexibility adds local don’t
cares that can differ from one signal to another.

�This work was suported by a grant from Intel Corporation and was done during
a visit to SCL in summer 1998.

A (possibly relaxed) subset of timing assumptions used for
optimization is back-annotated by the tool and become tim-
ing constraints. Different valid netlists require different
timing constraints. The circuits are then designed to meet
the relative orderings, or verified that the restrictions are al-
ready part of the delays in the system. Methods based on
separation analysis [6], geometric timing [10], and relative
timing can be deployed for verification [12].

In [3] it is shown that relative timing synthesis can be
automated using lazy transition systems in which enabling
and firing regions for signal transitions are distinguished.
This paper enhances the method of [3] in three major ways.

� A method for automatic generation of timing as-
sumptions starting from a speed-independent (un-
timed) specification is presented. Most of the timing
assumptions used in RAPPID circuits can be auto-
matically extracted. Only architectural or environ-
mental assumptions on the inputs needed to be spec-
ified by the user.

� A method for automatic backannotation of RT con-
straints sufficient for the correct operation of a circuit
is developed.

� A method for timing aware state encoding is de-
ployed. It reduces the number of state signal and
generates timing assumptions for state signals if nec-
essary. It has a significant positive effect on both area
and performance.

Section 2 presents basic theory and models. Section 3
described a method for automatic generation of RT as-
sumptions. Section 4 presents technique for extracting tim-
ing constraints for a derived RT netlist and briefly describe
timing-aware state encoding. Section 5 presents experi-
mental results.

2 Basic notions
For brevity, we assume the reader to be familiar with Petri
nets, a formalism used to specify concurrent systems. We
refer to [9] for a general tutorial on Petri nets. Lazy transi-
tion systems and lazy state graphs were introduced in more
detail in [3].

2.1 Transition Systems and State Graphs

A transition system(TS) is a quadruple [13]TS =

(S;E;T;sin), whereS is a non-emptyset ofstates, E is a
set ofevents, T � S�E�S is a transitionrelation, andsin
is aninitial state. The elements ofT are called thetransi-
tionsof TS and will be often denoted bys

e
! s0 instead of

(s;e;s0).
State Graphs are binary interpreted transition systems:

every state is assigned a binary vector of signal values in
the specified circuit; every event is interpreted as a rising
(a+) or falling (a�) transition of a signala. Notationa� is
used if one is not specific about the direction of the signal
transition. The set of signals of anSG is calledX = I [O,
whereI andO denote the set of input and output signals
respectively.

A labeling functionv : S! f0;1gn assigns a vector of
signal values to each state (n= jXj). We will call va(s) the
value of signala in states. An SG is consistentif rising
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Fig. 1: (a) Petri net, (b) Transition System.
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Fig. 2: (a)STG for thexyzexample, (b,e)SGs with timing
domains, (c,d,e) Circuits.

and falling transitions alternate for every signal on any path
in the SG. An example of aTS and aSG are given in
Figure 1.(b) and Figure 2.(b), correspondingly.

2.2 Signal Transition Graph

A Signal Transition Graph (STG) is a Petri net (PN) in
which transitions are labeled with rising and falling signal
transitions like in aSG. An example of aPN is shown in
Figure 1.(a). ThisPN corresponds to aTS in Figure 1.(b).
An STG has an associatedSG in which each reachable
marking corresponds to a state and each transition between
a pair of markings to an arc labeled with the same event
of the transition. Figure 2.(a) depicts anSTG with three
signals,x;y, andzcorresponding to theSG in Figure 2.(b).
For simplicity, places with only one input and output tran-
sitions are often omitted inSTGs.

2.3 Excitation and quiescent regions

Theexcitation regionof an eventa�, denoted byER(a�), is

the set of states such thats2ER(a�), s
a�

!. Thequiescent
regionof a+, denoted byQR(a+), is the set of states such
thats2 QR(a+), va(s) = 1 ^ s 62 ER(a�). Similarly,
s2 QR(a�), va(s) = 0 ^ s 62 ER(a+). In Figure 2.(b),
ER(x�) = f101;111g andQR(x�) = f001;011;010g.

2.4 Lazy transition systems

The main distinctive feature of a lazy system is that it can
assume a non-zero delay between enabling of transition and
its firing. Due to this, the set of states in which a transition
is enabled might be larger than the set of states in which the
transition fires.

Definition 2.1 (Enabling and firing regions) The
enabling region, EnR(a�), of a signal transition a� is a the
set of states in which transition a� is enabled. Thefiring
region, FR(a�), of a signal transition a� is the set of states

from which a� can fire, i.e. s2 FR(a�),9s0 : s
a�
! s0.

A potentially enabling region, PEnR, gives an upper
bound for a set of states which can be selected as an actual
enabling region in the RT-implementation. The freedom in
choosing the enabling region within thePEnR gives addi-
tional possibilities for logic optimization. It is easy to see
the following correspondence between the introduced re-
gions: FR(a�) � EnR(a�) � PEnR(a�). We will defer
discussion of examples until Sections 4.1-4.2.

Definition 2.2 (Lazy state graph) A transition
a� is called lazy ifEnR(a�) 6= FR(a�). A state graph is
called lazy (lazy SG) iff at least one transition is lazy1.

The correctness properties ofSGs can be easily trans-
ferred ontolazy SGs. A lazy SG is consistent, determinis-
tic and commutative if the underlyingSG has these proper-
ties. Persistency property must be generalized for enabling
and firings as discussed in Section 2.8.

2.5 Timing assumptions

Timing assumptions could be conservatively defined in the
form telling that one event is happening before or after an-
other.

Difference assumptions. A difference assumptionb�<
a� (readsb� beforea�), involving two potentially concur-
rent eventsa� and b�, assumes that, due to certain tim-
ing characteristics, wheneverb� anda� are both enabled,
b� always fires earlier thana�. In an SG this assump-
tion can be represented by theconcurrency reductionof a�
with respect tob�. RT difference assumptions allows one
to eliminate states unreachable in timing domain similar
to state elimination based on absolute timing information
in [10, 11]. They are not sufficient however for expressing
lazy behavior of signals.

Early enabling assumption. Suppose that transitiona�
triggers the firing of transitionb�, i.e. a� andb� are ordered
in the specification. Assume thata� can be made “faster”
thanb� in the circuit. Then the enabling ofb� can be started
earlier, e.g., from the events triggeringa�, and the proper
ordering ofa� beforeb� will still be ensured by the timing
properties of the implementation. Inlazy SG this results
in the backward expansion ofPEnR(b�) into FR(a�).

Simultaneity assumption. The simultaneity assumption
is arelative notion, which is defined on a set of concurrent
transitionsT with respect to a reference transitiona�. It
tells that from the point of view ofa� the skew of firings
times of transitions fromT is negligible. This assumption
can be viewed as alocal fundamental modeof T with re-
spect toa and hence as a generalization of burst-mode ma-
chines [14, 17]. An example of the application of simul-
taneity assumption is discussed in Section 4.2.

Assumptions relating only input events cannot be au-
tomatically generated from the circuit behavior and can be
provided by the designer or generated from the implemen-
tation of the environment.

2.6 Next-state functions

The implementation of anSG as a logic circuit is done
through the definition of thenext-state functionfor each
output signal and binary vector. ForSGs it is defined as
follows:

fa(Z) =

(
1 if 9s2 ER(a+)[QR(a+) s.t.v(s) = Z
0 if 9s2 ER(a�)[QR(a�) s.t.v(s) = Z
� otherwise

1As we are targeted at optimization of output signals of a circuit lazy behaviors
of input signals is not considered.



The next-state functionfa is correctly defined when
the SG has theCSC property, i.e. there is no pair of
reachable states(s;s0) such thatv(s) = v(s0) and (s 2
ER(a+) [QR(a+) or s0 2 ER(a�) [QR(a�)). Note
that fa is an incompletely specified function with adon’t
care (DC) set corresponding to those binary vectors with-
out any associated state in theSG. The logic netlist is
speed-independentif SG is deterministic, commutative and
output-persistent[4].

In the SG of Figure 2.(b), the DC set is empty since
all binary vectors have a corresponding state in theSG.
As an example,fx(101) = 0; fy(101) = fz(101) = 1 since
signalsx andy are enabled, andz is stable in that state. The
Karnaugh maps for the next-state functions are depicted in
Figure 3.(a).

For alazy SG the next-state functions are defined dif-
ferently:

fa(Z) =

(
1 if 9s2 FR(a+)[QR(a+) s.t.v(s) = Z
0 if 9s2 FR(a�)[QR(a�) s.t.v(s) = Z
� otherwise

Note that this definition generally gives more don’t care
vectors that the definition for aSG due to two reasons:

� More states are unreachable, since timing assump-
tion can reduce concurrency

� States in (PEnR�FR) do not belong to eitherFR,
or QR, and hence are included into the DC-set.

As an example, in thelazy SG of Figure 2.(e),fx(101) =
�; fy(101) = fz(101) = 1 as explained in Section 4.2.

The conditions for speed-independent implementability
can be trivially extended tolazy SGs.

2.7 Logic synthesis

From the next-state functions of aSG, a speed-independent
circuit can be derived by implementing the boolean equa-
tion of each output signal as an atomic complex gate [8] or
as a generalized C-elements [1, 7]. For example, a speed-
independent complex gate implementation for theSTG in
Figure 2.(a) is a netlist:

x= z+xy; y= x+z; z= x+zy:
Similarly, from the next-state function specification corre-
sponding to alazy SG, an RT-circuit can be derived in the
form of complex gates or generalized C-elements as illus-
trated by an example in Sections 4.1-4.2.

2.8 Monotonic covers

Not every logic function derived from the definition of
the next-state function satisfies hazard-freedom conditions,
and hence valid. The following definition is related to haz-
ards in the behavior of asynchronous circuits.

Given two sets of statesS1 andS2 of anSG such that
S2 � S1, we will say thatS1 is a monotonic coverof S2 if
for each transitions

a
! s0:

(s2 S1�S2 ) s0 2 S1)^ (s2 S2 ) s0 62 S1�S2)

Only monotonic covers ofFRs can be selected asEnRs
for hazard-free solutions for logic netlist [3]. IfS1 =

EnR(a�) andS2 = FR(a�), then (1) no disabling ofa� is
possible and (2) there are no transitions fromFR(a�) to
EnR(a�)�FR(a�), i.e., no disabling of firings fora� is
possible either. Hence, persistency ofa� in the RT imple-
mentation is guaranteed. For example, in theSG of Fig-
ure 2.(b), the setf101;110;111g is a monotonic cover of
ER(x�). However, the setf100;101;111g is not, since the

transition 100
y+
�! 110 violates the conditions for mono-

tonicity.

3 Automatic generation of relative timing as-
sumptions

3.1 Ordering relations

Let TS= (S;T;E;s0) be a transition system. Assume that
every event inE corresponds to a single connected excita-
tion region.

Definition 3.1 (Conflict) An event e12E disablesanother
event e2 2 E if 9s1

e1! s2 such that s1 2 ER(e2) and s2 62
ER(e2). Two events e1;e2 2 E are in direct conflictif e1
disables e2 or e2 disables e1.

Definition 3.2 (Concurrency) Two events e1;e2 2 E are
concurrent (denoted by e1 k e2) if they form a state dia-
mond, i.e.

1. ER(e1)\ER(e2) 6= /0,

2. 8s2 ER(e1)\ER(e2) : (s
e1! s1) 2 T ^ (s

e2! s2) 2

T )9s3 2 S: (s1
e2! s3) 2 T ^ (s2

e1! s3) 2 T.

Definition 3.3 (Trigger) An event e1 2 E triggers another
event e2 2 E (denoted by e1 �! e2) if 9s1

e1! s2 such that
s1 62 ER(e2) and s2 2 ER(e2).

Definition 3.4 (Enabled before) Let e1;e2 2 E be two
concurrent events. e1 can be enabled beforee2 (denoted
by e1�e2) if 9s1! s2 such that s1 2 ER(e1)�ER(e2) and
s2 2 ER(e1)\ER(e2).

Definition 3.5 (Enabled simultaneously)Let e1;e2 2 E
be two concurrent events. e1 and e2 can be enabled si-
multaneously(denoted by e13e2) if 9s1 ! s2 such that
s1 62 ER(e1)[ER(e2) and s2 2 ER(e1)\ER(e2).

Definition 3.4 can be extended to sets of events as fol-
lows.

Definition 3.6 (Enabled before a set of events)Let e2 E
be an event pairwise concurrent with all the events in the
set X= fe1; : : : ;eng � E. ecan be enabled beforeX (de-

noted by e�X) if 9s1
e0
! s2 such that s1 2 ER(e)�ER(X),

s2 2ER(e)\ER(X) and e0 62X, whereER(X) = ER(e1)[
: : :[ER(en).

Figure 1.b depicts the transition system derived from
the Petri net of Figure 1.a. The following facts can be de-
rived using the definitions above::(a k b), c k f , c� f
, c3e, etc. Eventd cannot be enabled beforefe; fg,
but can be enabled beforefe; f ;gg since there is a tran-

sitions9
h
! s19 such thats9 2 ER(d)�ER(fe; f ;gg), s192

ER(d)\ER(fe; f ;gg) andh 62 fe; f ;gg.

3.2 Delay model

A delay model for events presented in this section gives an
informal intuitive motivationfor the automatic generation
of timing assumptions. This model refers to the delay of
the events in theTS. The delay of an event is defined as
the difference between its enabling time and its firing time.
Three types of events are considered:

Non-input events: its delay is in the interval[1� ε;1+ ε]
Fast input events: its delay is in the interval(1+ ε;∞)

Slow input events: its delay is in the interval[∆;∞)

The synthesis approach also assumes that (1) the delay
of a gate implementing a non-input event can be lengthened
by delay padding or transistor sizing, (2) the delay of two
gates can always be made longer than the delay of one gate.



Hence, one can assume thatε < 1=3, (3) the circuit will
never take longer than∆ time units (minimum delay of a
slow input event) in becoming stable from any state of the
system and a quiescent environment.

The previous assumptions on the timing behavior of the
circuit can be translated into assumptions on the firing order
of the events.

3.3 Rules for deriving timing assumptions

We present rules for deriving timing assumptions in the fol-
lowing format: (1) ordering relations that must be satisfied
in a (Lazy)SG for a rule to be applied, (2) automatic timing
assumption that can be generated, and (3) informal justifi-
cation of a rule based on the above delay model.

3.3.1 Assumptions between non-input events

The following rules can be applied for deriving timing as-
sumptions between non-input events,e1;e2;e3 2 E:

I. Event enabled before another event.
Ordering relations: (e1 k e2)^ (e1�e2)^ (e2 6�e1)^ (e1 63e2).
Difference timing assumption: e1 fires beforee2

Delay assumptions: one gate shorter than two gates.

II. Events simultaneously enabled.
Ordering relations: (e1 k e2) ^ (e13e2) ^ (e2 6�e1).
Difference timing assumption: e1 fires beforee2

Delay assumptions: delay ofe2 longer than delay ofe1.

III. Event triggered by events simultaneously enabled.
Ordering relations: (e1 k e2) ^ (e1 6�e2) ^ (e2 6�e1) ^

[(e1 ) e3) _ (e2 ) e3)].
Simultaneity timing assumption: e1 ande2 simultaneous wrte3.
Delay assumptions: one gate shorter than two gates.

IV. Early (speculative) enabling for ordered events.
Ordering relations: (e1 �! e2).
Early enabling timing assumption: e1 fires beforee2 (bute2 can be

enabled concurrently withe1).
Delay assumptions: delay ofe1 shorter than delay ofe2.

Let us illustrate the previous cases with the example of
Figure 1 assuming that all events are non-input. Timing as-
sumptions of type I can be derived for the pairs of events
(c; f ), (c;g) and(e;d), where the first element of the pair is
assumed to fire before the second. Timing assumptions of
type II can be applied to the pairs(b;h) and(c;e). Timing
assumptions of type III can be applied, e.g., to the events
triggered by the pair(b;h) that triggers the eventsc, e and
g. Timing assumptions of type IV can be applied, e.g., to
the eventd triggered by the eventc. If this assumption ap-
plies, then potential enabling region ford includes states
fs2;s5;s8;s12;s15;s18;s21g as don’t care states for the
values of the next state function for signald in addition to
the originally present statesfs3;s6;s9;s13;s16;s19;s22g.

3.3.2 Assumptions between non-input and input
events

Assume thate1;e2 2 E are a non-input and an input event
respectively and they are concurrent.

V. Input not enabled before non-input event.
Ordering relations: (e1 k e2) ^ e2 6�e1.
Difference timing assumption: e1 fires beforee2.
Delay assumptions: delay of environment longer than delay of one

gate.

This assumption covers the ones of type I and II for the
case in whiche2 is an input event. The delay assumption
used in this case states that the response time of the envi-
ronment will always be longer than the delay of one gate.

3.3.3 Assumptions between non-input events and slow
input events

Assume thate2E is aslowinput event,X = fe1; : : : ;eng�
E is a set of non-input events ande is pairwise concurrent
with all the events inX.

VI. Slow environment not enabled before non-input events.
Ordering relations: (8ei 2 X : ek ei) ^ e 6�X.
Difference timing assumptions: X fires beforee.
Delay assumptions: delay of slow input event longer than∆ (delay

of stabilizing the circuit under a quiescent environment).

To illustrate the meaning of this timing assumption we
will consider thath is an input event andd is a slow input
event in the example of Figure 1. The rest of events are
non-input. After firing the eventsa, b andc a state in which
d, e andh are enabled is reached (states3). At this point
it can be assumed thate and f will fire befored (two gate
delays vs. slow environment). However, no assumptions
can be made about the firing order betweend andg sinceg
is preceded by an input event (h) for which no upper bound
on its delay can be assumed. In caseh would be a non-input
event,d would be assumed to fire beforeh andg also.

4 Backannotation of timing constraints
After logic synthesis, the validity of the timing assumptions
must be verified or validated to ensure the correct function
of the circuit. However, the circuit may be correct for a set
of states larger than the one defined by the timed domain,
which can be obtained by a set of less stringent timing as-
sumptions. In other words, some of the timing assump-
tions are redundant for a particular logic synthesis solution,
while some other can be relaxed. This section attempts to
answer the following question:

Can we derive a minimal set of timing assump-
tions sufficient for a circuit to be correct?

This set of timing assumptions backannotated for a
given logic synthesis solution is calledtiming constraints.
Timing assumptions (both manual and automatic) are part
of the specification and provide additional freedom for
logic synthesis, while timing constraints is a part of the im-
plementation, since they constitute requirements to be met
sufficientfor a particular netlist solution to be valid.

4.1 Example 1

Let us analyze the example in Figure 2. The shadowed
states inSG of Figure 2.(b) correspond to the timed domain
determined by the timing assumptions

z+< y+ and y+< x�
Under these assumptions, logic synthesis can be performed
by considering the states 110 and 001 unreachable, i.e. in
the don’t care set of the logic functions for all signalsx;y;z.

The circuits of Figures 2.(c) and 2.(d) have a correct
behavior under the previous assumptions. Looking at the
circuit of Figure 2.(c) we observe that:

� The gatesx= z+xy andy= x+zare correct imple-
mentations for the whole untimed domain.

� The gatez = x is a correct implementation for all
the states except for 001. In this statex = 0 and
z� should have been enabled according to the next
state function of the implementation, but it is not
enabled in this state according to the original state
graph specification.

Thus, even the circuit may have been obtained using
the two previous assumptions, only one relative timing con-
strainty+ < x� must be ensured for the circuit to be cor-
rect. In general, each gate of the circuit is correct for a
subset of the untimed domain which is also a superset of
the timed domain. The circuit is correct for those states in
which all gates are correct.
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Specification

Implementation:

- local DC- global DC

- required
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-concurrency
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Fig. 3: Next state functions forxyzexample: (a) Original
untimed specification; (b) Specification for RT assumptions
“z+< y+ andy+< x�”; (c,d) Implementations from Fig-
ures 2.(c,d); (e) Specification for RT assumption “y+;z+
simultaneous with respect tox�”; (f) Implementation from
Figure 2.(f).

4.2 Example 2

Let us consider the same example under a simultaneity
assumption “x+ andy+ are simultaneous with respect to
x�”. Under this assumption state 001 is unreachable and
becomes a don’t care for all signals. In addition states 101
and 110 becomes don’t cares for signalx, since both belong
to the potentialEnR(x�) according to the semantics of
the simultaneity assumption. Only one timing constraints,
z+ < x�, is sufficient for the circuit in Figure 2.(f) to be
correct. Gatex = y is not enabled in 101, hence concur-
rency is reduced in this state with respect to the original
untimed SG and state 001 becomes unreachable under any
gate delays. State 110 on the contrary corresponds to the
concurrency expansion for enabling ofx�. This enabling
is lazy since 1102 EnR(x�) ^110 62 FR(x�).

Figure 3 shows Karnaugh maps for the next state fun-
stions of signalsx;y, andz for specifications and imple-
mentations corresponding to the examples above. A legend
shows that timing assumptions provide two types of don’t
care vectors in RT specifications: global don’t cares corre-
sponding to states unreachable due to timing assumptions,
and local don’t cares that differ for different signals. In the
RT implementations some states become unreachable due
to untimed concurrency reduction and therefore discrepan-
cies in the corresponding values of the next state functions
compared with the original untimed specification can be ig-
nored; some discrepancies corresponds to concurrency re-
duction (disabling of signal transitions without persistency
violation), and finally, other discrepancies correspond to
lazy enabling and require timing constraints for correct cir-
cuit behavior.

4.3 Correctness of RT circuit

Let Sbe an original untimedSG with a finite set of reach-
able statesU 2 and initial states0. Let G be a circuit
netlist implementingSunder timing constraintsC. A pair
< G;C > is called arelative timing circuit (RT circuit). It
defines alazy SG, L<G;C>, with a set of reachable states
UL. The RT-circuit implementation can contain more sig-
nals than the original specificationS if some state signals
are inserted for resolving state conflicts. Let us assume that
Shasn signals andL hask;k� n; signals. Then for com-
paring states one needs to use a homomorhismh : Bk 7! Bn,
that given an implementation state hides(k� n) new in-
ternal signals and obtains a specification state. Homo-
morhism,h, is naturally extended to sets of states.

A RT-circuit is said to becorrect if the following con-
ditions are satisfied:

1. h(UL) � U, i.e. no states outside original untimed
domain are reachable by the RT-circuit.

2. All signals persistent inSare also persistent inlazy
SG L<G;C>. All state signals inserted inL<G;C> are
persistent. Commutativity and determinism are pre-
served.

3. The initial state is preserved with respect to the I/O
interface, i.e., ifs0 2 Sands00 2 L<G;C> are the ini-
tial states of the originalSG and thelazy SG corre-
sponding to the implementation, then there is a path
s0

τ
) h(s00) or h(s00)

τ
) s0 in S such that sequenceτ

contains only events of internal signals,not observ-
ableby the environment.

4. No events disappear: IfERS(e) 6= /0, thenFRL(e) 6=
/0 ^ h(FRL(e))� ERS(e)

5. No new deadlock states appear inL<G;C>.

4.4 Theory for backannotation

For the ease of exposition let us assume that no state sig-
nals are inserted in the RT circuit, and therefore the number
of signals stays the same forSandL. We will briefly dis-
cuss how state signal insertion is done in Section 4.8. Let
U be the set of states reachable in the untimed domain of
a state graph andT � U the set of states reachable under
a set of timing assumptions, manual - provided by the user
and automatic - derived for synthesis according to the rules
of Section 3. Let us assume that we have a circuit withm
output signals,a1; : : : ;am. Let G = fga1(X); : : : ;gam(X)g
(whereX is the set of signals) be a set of gates implement-
ing the RT circuit, wheregai (X) denotes the boolean func-
tion implemented by the gate of signalai .

Reachable states in the untimed domain

Let us call R (G) the set of states reachable in the un-
timed domain for the circuitG. Note that, in general,
U �R (G) 6= /0 due to the reduction of concurrency im-
posed by the circuit, andR (G)�U 6= /0 due to expansion
of concurrency for enabling for lazy transitions. The lat-
ter states are not generated by our procedure since they
must be unreachable in RT domain anyway. The former
states are of interest, since they do not require any tim-
ing constraints (see examples 4.1 and 4.2). Let us denote
UG = R (G)\U: UG can be calculated as follows:

1. For each output signalai , calculatedisabled(ai) =

fs2U j s 62 EnRG(ai) ^ s2 ERS(ai)g, i.e. states in

2Our implementation is currently limited by the bounded untimedSTGs and
SGs. It can be easily extended to unbounded untimedSTGs by making unbounded
(infinitely growing) markings ofSTGs unreachable in RT domain.
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Fig. 4: Formulation of the backannotation problem.
fC1;C2;C3g is the set of timing constraints sufficient for
correctness of RT solution.

whichai was enabled in the untimed domain inSG,
S, but made stable by the circuit.

2. For each output signalai , remove all arcss
ai�! from

theSG for all statess2 disabled(ai).
3. Calculate the new setUG = R (G)\U of reachable

states.

States with incorrect behavior

Let us callincorrect(G) � UG the set of statesinsideUG
that are required to be unreachable for the correctness of
the circuit. These states can be calculated as follows:

1. For each output signalai , calculateincorrect(ai) =

fs2 (U�T ) j s2 EnRG(ai) ^ s2 QRS(ai)g, i.e.
states in whichai was stable in the untimed domain,
but enabled in the circuit.

2. incorrect(G) = UG\
�S

ai
incorrect(ai)

�
Backannotation: problem formulation

We need a set of constraints that make the states in
incorrect(G) unreachable. A trivial solution to this prob-
lem is to take the complete set of timing assumptions used
for logic synthesis, i.e. those for whichT is the set of
reachable states. Our goal, however, is to find the less strin-
gent set of constraints sufficient to make the circuit correct.
Given a set of timing constraintsC= fC1; : : : ;Cpg, we will
call R (C) � U the set of states reachable after applying
C in the untimed domain. In general, the problem can be
formulated as follows (see Figure 4):

Find a set of constraints C with the largestR (C) such
that

1. T � R (C) � U� incorrect(G)

2. 8s2T : (s2EnRG(ai�) ^ s 62ERS(ai�)))9aj :

s
aj�
! s0 ^ s0 2 T ^ (aj�< ai�) 2C

The first condition guarantees that no incorrect states
inside U are reachable (constraintsC1;C2 in Figure 4),
whereas the second makes sure that no statesoutsideU
can be reached in the RT circuit (constraintC3 in Figure 4).

4.5 Finding a set of timing constraints

Relative timing constraints are defined in terms of firing or-
der of events. Constraining a firing order between a pair of
events makes only sense when they can be enabled simul-
taneously and fire in any order, i.e. when they are concur-
rent. Thus, each timing constraintCi can be denoted by an
ordered pair of concurrent events, e.g.Ci = (ej < ek).

Given a constraintCi = (ej < ek), we define the set of
arcsdisabled(Ci) as

disabled(Ci) = fs
ek! s0 j 9s! s1 ! : : :! sn :

s1; : : : ;sn�1 2 ER(ek) ^ sn 2 ER(ek)\ER(ej)g

behavior

incorrect
behavior

incorrect
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c

d

d

e b

b

b

e

e c

cd

f

s0

s1

s2

s3

s4

s5

s6
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s8
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s10
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b d

c e

f

b<d
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c<d
c<e
d<b
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e<b
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{s7}

{s7,s8}
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{s3}
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{s3,s6}

{s4,s5,s7,s8}

order unreachable
{s4,s7}

Fig. 5: Example for backannotation with table of unreach-
able states for each pair of ordered events.

In particular, the paths1 ! : : :! sn can be empty if
s2 ER(ej)\ER(ek). disabled(Ci) is the set of arcs with
labelek that must not fire in order forej to fire beforeek,
i.e. those arcs with source states in which both events are
concurrent or precedingER(ej)\ER(ek) insideER(ek).

Given a set of constraintsC = fC1; : : : ;Cpg, R (C) is
the set of reachable states after removing the arcs in

[

Ci2C

disabled(Ci)

4.6 Example 3

Figure 5 shows an example for deriving a set of timing
constraints for backannotation. Initially we haveU =

fs0; : : : ;s10g andT = fs0;s1;s2;s5;s8;s9;s10g. Let us as-
sume thats6 and s7 are the states in which the behavior
of the circuit is incorrect. The table in Figure 5 contains
the set of states that become unreachable by reducing the
concurrency between each pair of concurrent events3. For
example, by imposing the orderd < b, the statess2 ands3
become unreachable.

The problem to be solved is the following: find a set of
ordering constraints between pairs of events such that the
new set of reachable states coversT and does not intersect
the set of incorrect statesfs6;s7g. Moreover, we want to
maximize the set of reachable states, i.e. to find the less
stringent set of timing constraints.

The problem can be posed as acovering problem. The
cells of the table in bold correspond to those constraints that
do not remove any state fromT . The covering problem can
be formulated as follows:

(e< c) ^ (b< d _ b< e)

with the minimum-cost solutionC = fe< c;b < eg and
R (C) = fs0;s1;s2;s4;s5;s8;s9;s10g

4.7 Solving the covering problem

The covering problem for backannotation does not corre-
spond to a unate covering problem, since the cost of the
final solution (number of disabled arcs) is not the sum of
the cost of each constraint.

Currently,petrify uses a greedy approach to solve
the covering problem that can be easily implemented by
symbolic BDD-based techniques. It merely consists in
choosing the constraint that removes the maximum num-
ber of arcs whose destination is inincorrect(G) and that
have not been removed by previous constraints. This pro-
cess is iteratively repeated until all incorrect states become
unreachable.

3For simplicity, unreachable states are reported in the table for this example. In
general, the analysis must be performed by calculating the removeddisabledarcs.
In this particular case, the resulting analysis is the same.
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Fig. 6: (a) FIFO controller, (b) Specification, (c) Specifi-
cation with state encoding signal, (d) RT implementation
with gC elements, (e) Timing constraints sufficient for cor-
rectness.

In some cases, not all the incorrect states can be made
unreachable since the timed state space has been produced
by early enabling some events. In those cases, a similar
iterative process is executed to cover those incorrect states
that can be legalized by early enabling. As an example,
consider the states6 in Figure 5. Assume thats6 is incor-
rect since the next-state function indicates thatf is enabled
in that state. The state could be made correct by extend-
ingEnR( f ) towardss6 and imposing the type-IV constraint
e< f .

4.8 Timing aware state encoding

The problem of state encoding is in inserting state signals
for resolvingCSC conflicts. State encoding in our imple-
mentation is automatically solved using an extension of the
method presented in [4]:

� Only those encoding conflicts reachable in the RT
domain are considered in the cost function such that
no effort is invested in solving conflicts unreachable
in RT domain,T .

� Automatic timing assumptions can be generated for
inserted state signals using rules from Section 3 im-
plying that the state signals can be implemented as
RT logic.

5 Experimental results
5.1 Academic examples

The results for the well-known benchmarks used at
academia are presented in Table 1. Tables 1.(a) and 1.(b)
present the results for specifications with and withstate
coding conflictsrespectively.SIa, SIt andTI represent area
and delay optimization for speed-independent design, and
relative timing results, correspondingly.

For each experiment, area is estimated as the number
of literals of theset and resetnetworks of generalized C
elements. Delay (response time) is estimated as the aver-
age number of non-input events in the critical path between
the firing of two input events. Comparing the columnsSIt
andTI , we observe a reduction of about 40% in area. The
reduction in response time is less than 5% if we consider
all events to have a delay of one time unit. However, the
performance improvement is much more pronounced if it
were evaluated with actual delays, given that the logic of
the timed implementation is much simpler. We report this
analysis in Section 5.2.

5.2 Example: a FIFO controller

In this section we trace the development of a FIFO cell
(specified in Figures 6.(a),(b)), a simplified abstraction of
a part of the RAPPID design. The modules at the left and
right sides of the controller have a similar speed as the con-
troller itself. In fact, these events are generated by twin
modules connected at each side. For this reason, it is not
wise to assume that the input events are slow.

We simulated four FIFOs using different implementa-
tions of the FIFO cell and measured a cycle time of the

Design FIFO cycle time Cell forward latency
RT 9.5 2
SI 11.5 3

RT reshuffled 5.7 2
SI reshuffled 7.6 3

Table 2: Performance comparison of FIFOs normalized to
a fan-out four inverter delay

FIFO and a forward latency (an average event propagation
time from li to ro) of a cell. The results normalized to the
delay of an inverter with fan-out four in a given technology
are shown in Table 2.

For the first relative timing FIFO (reported in the first
row) we use a RT circuit derived bypetrify using only
automatic timing assumptions presented in Figures 6.(e). A
proper transistor sizing is required for correct operation of
the circuit. No user-defined assumptions on the environ-
ment are used. The timing analysis explained in Section 3
has been applied to the specification, and state encoding
has been automatically solved as desribed in Section 4.8.
With this strategy, only one additional state signal,x, was
required as shown in Figure 6.(c)4. There are some inter-
esting aspects of this implementation:

� The state signalx is is switching concurrently with
other activity in the circuit.This is a result of the state
encoding strategy ofpetrify that attempts to in-
crease the concurrency of new state signals until they
disappear from the critical paths according to the de-
lay model explained in Section 3.

� The response time of the circuit with regard to the
environment is only one event (two inverters), i.e. as
soon as an output event is enabled it fires without
requiring the firing of any other internal event.

Finally, the implementation of Figure 6.(d) requires some
timing constraints to be correct. After applying the method
proposed in Section 4, five timing constraints between pairs
of concurrent events have been derived that aresufficient
for the circuit to be correct. They are graphically repre-
sented in Figure 6.(e).

The constraintslo+ < x� andro+ < x� are not inde-
pendent. Since the implementation ofx is x = lo+ ro, it
is always guaranteed that one of them will hold, whereas
the other must be ensured. Sincelo+ andro+ are enabled
simultaneously, these constraints will always hold if the de-
lay of two gates is longer than the delay of one gate. From
the rest of constraints, the most stringent isx� < ri+. In
the worst case, bothri+ andx� will be enabled simultane-
ously byro+. In this case, it is required the delay ofx� to
be shorter than the delay ofri+ (from the enviroment). In
case of a very fast environment, it can be forced by differ-
ent techniques, e.g. transistor sizing or delay padding for
gatex.

For the second FIFO (the second row of the table) we
derived a speed-independent circuit usingpetrify in the
mode ofautomatic concurrency reduction[5] without con-
straining I/O concurrency of the cell. Because of concur-
rency reduction only one state signal was required [4] like
in the case of the automatic RT solution. However, the state
signal was on a critical cycle and the implementation oflo
andro contained additional p-transistors, which made the
speed-independent circuit 20-30% slower than the RT one.

5.3 RAPPID control circuits

In this section we compare manually optimized RT control
circuits used for RAPPID [16, 15] with those derived auto-
matically withpetrify . For each example, Table 3, re-
ports:manual (obtained by applying relative timing man-
ually),automatic (obtained automatically bypetrify

4This new specification is not strictly a Petri net, since the arcs fromlo+ andro+

to theOR place indicate anor-causalityrelation: x� is triggered by the first event
to fire, whereas the token produced by the latest event is implicitly consumed. An
equivalent Petri Net is a bit more cumbersome and is omitted for simplicity.



Area Response time State signals
circuit SIa SIt TI SIa SIt TI SIa SIt TI
adfast 18 31 13 2.17 1.00 1.00 2 2 0
alloc-outbound 20 23 22 1.50 1.11 1.00 2 2 2
master-read 65 79 45 2.29 1.33 1.29 7 7 3
mmu0 33 47 20 2.31 1.38 1.38 3 3 0
mmu1 25 32 15 1.60 1.12 1.12 2 2 1
mr0 50 51 30 1.60 1.45 1.15 3 3 2
mr1 36 39 20 2.25 1.19 1.19 4 3 0
nak-pa 24 35 24 1.25 1.00 1.00 1 1 1
nowick 18 19 16 1.50 1.17 1.00 1 1 1
ram-read-sbuf 30 26 21 1.10 1.00 1.00 1 1 0
sbuf-ram-write 24 44 24 1.63 1.00 1.00 2 2 1
sbuf-read-ctl 18 21 16 2.00 1.50 1.50 1 1 1
seq3 18 22 18 1.50 1.00 1.00 2 2 2
seq-mix 23 28 24 1.40 1.20 1.10 2 2 2
vmebus 22 33 17 2.29 1.57 1.57 1 1 0
Total 424 530 325 1.76 1.20 1.15 34 33 16

(a)

Area
circuit SI TI
chu133 15 14
chu150 16 14
converta 19 14
ebergen 16 16
half 8 7
hazard 8 8
mslatch 24 20
trimos-send 30 21
var1 18 8
vbe5b 13 12
vbe5c 10 10
vbe6a 28 24
vbe10b 32 26
wrdatab 35 33

Total 272 227

(b)

Table 1: Experimental results: specifications without CSC (a) and with CSC (b).

Design Area (# tr.) Worst case Average case
response time response time

m a s m a s m a s
FIFO-A 22 22 46 3.0 3.0 9.0 2.5 2.5 5.7
FIFO-B 16 15 46 2.0 2.0 9.0 2.0 2.0 5.7

Byte-cntr 32 27 71 4.0 3.0 5.0 3.0 2.5 4.1
Tag-unit 31 47 112 4.0 4.0 8.0 4.0 2.7 6.9
Summary 101 111 275 3.3 2.9 7.75 3.0 2.4 5.6

Table 3: Comparison for two generic representative exam-
ples (fifo) and two control circuits from RAPPID (byte-
control, tag-unit). Response time is measured in gate de-
lays, area in transistors.m: manual,a: automatic,s : speed-
independent.

and applying relative timing) andspeed-independent
(obtained automatically bypetrify without concurrency
reduction).

From the table it can be deduced that automatic solu-
tions are quite comparable with manually optimized RT
designs. The improvement in response time by applying
relative timing is about a factor of 2, substantially better
than for the examples of Table 1. This is because the de-
signers of these circuits had a stronger interaction with the
tool and provided aggressive timing assumptions on the en-
vironment that could not be derived automatically.

6 Conclusions
The method for automatic generation of timing assump-
tions presented in this paper allows the designer to concen-
trate on defining those timing assumptions that can only
be deduced from a detailed knowledge of the environ-
ment. The technique for automatic back-annotation of tim-
ing constraints relative to a particular RT circuit provides
necessary timing information for the down-stream tools.
Timing-aware state encoding allows area/delay optimiza-
tion of RT circuits.

Relative timing presents a “middle-ground” between
clocked and asynchronous circuits, and is a fertile area for
CAD development. Both burst-mode[14, 17] and speed-
independent specifications are at opposite extremes of a
more general class of relative timing specifications.

Ackowledgments We would like to thank Shai Rotem,
Luciano Lavagno, Alex Kondratyev and Alexandre
Yakovlev for their contributions in motivating this work
and developing the theory for synthesis with relative tim-
ing.

References
[1] S. Burns. General conditions for the decomposition of state holding

elements. InInternational Symposium on Advanced Research in
Asynchronous Circuits and Systems, Aizu, Japan, March 1996.

[2] W. S. Coates, J. K. Lexau, I. W. Jones, S. M. Fairbanks, and I. E.
Sutherland. A fifo data switch design experiment. InProc. Interna-

tional Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 4–17, 1998.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
A. Taubin, and A. Yakovlev. Lazy transition systems: application to
timing optimization of asynchronous circuits. InProceedings of the
International Conference on Computer-Aided Design, pages 324–
331, November 1998.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. A region-based theory for state assignment in speed-
independent circuits.IEEE Transactions on Computer-Aided De-
sign, 16(8):793–812, August 1997.

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Automatic synthesis and optimization of partially
specified asynchronous systems. InDAC, pages 100–115, June
1999.

[6] Henrik Hulgaard and Steven M. Burns. Bounded delay timing anal-
ysis of a class of CSP programs with choice. InProc. International
Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 2–11, November 1994.

[7] Alain J. Martin. Synthesis of asynchronous VLSI circuits. In
J. Straunstrup, editor,Formal Methods for VLSI Design, chapter 6,
pages 237–283. North-Holland, 1990.

[8] D. E. Muller and W. C. Bartky. A theory of asynchronous circuits.
In Annals of Computing Laboratory of Harvard University, pages
204–243, 1959.

[9] T. Murata. Petri Nets: Properties, analysis and applications.Pro-
ceedings of the IEEE, pages 541–580, April 1989.

[10] Chris J. Myers.Computer-Aided Synthesis and Verification of Gate-
Level Timed Circuits. PhD thesis, Dept. of Elec. Eng., Stanford Uni-
versity, October 1995.

[11] Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asyn-
chronous circuits.IEEE Transactions on VLSI Systems, 1(2):106–
119, June 1993.

[12] Radu Negulescu and Ad Peeters. Verification of speed-dependences
in single-rail handshake circuits. InProc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages
159–170, 1998.

[13] M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transi-
tion systems.Theoretical Computer Science, 96:3–33, 1992.

[14] S.M. Nowick. Automatic Synthesis of Burst-Mode Asynchronous
Controllers. PhD thesis, Stanford University, Dept. of Computer
Science, 1993.

[15] S. Rotem, K. S. Stevens, R. Ginosar, P. A. Beerel, C. J. Myers,
K. Yun, R. Kol, C. Dike, M. Roncken, and B. Agapiev. RAPPID:
An asynchronous instruction length decoder. InProc. ASYNC, April
1999.

[16] K. S. Stevens, S. Rotem, and R. Ginosar. Relative timing. InProc.
ASYNC, April 1999.

[17] Kenneth Yi Yun.Synthesis of Asynchronous Controllers for Hetero-
geneous Systems. PhD thesis, Stanford University, August 1994.


	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers


