
State Encoding of Large Asynchronous Controllers

Josep Carmona
Universitat Politècnica de Catalunya
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ABSTRACT
A novel method to solve the state encoding problem in Sig-
nal Transition Graphs is presented. It is based on the struc-
tural theory of Petri nets and can be applied to large speci-
fications with hundreds of signals. This new method opens
the door to incorporate logic synthesis in the design flow of
large control circuits obtained from high-level specifications.
The experimental results validate the quality of the encoded
circuits and show the significant improvements that can be
obtained by the synthesis of large controllers.

Categories and Subject Descriptors: B.6.3 [Hardware]:
Logic Design - Design Aids; J.6 [Computer Applications]:
Computer-aided engineering.

General Terms: Algorithms, Design.

Keywords: Asynchronous circuits, Petri nets, state encod-
ing.

1. INTRODUCTION
The state encoding problem in asynchronous circuits can

be stated as follows: given a specification describing the
interaction between the input and output signals, find an
encoding for every state such that the circuit can respond
deterministically to the input stimuli as defined by the spec-
ification.

Several authors have tackled this problem using different
specification formalisms. In the area of asynchronous con-
trollers, the methods proposed for Burst-mode (BM) ma-
chines [8] and Signal Transition Graphs (STGs) [4], among
others, are the ones that have had the most relevant impact.

State encoding involves different difficult problems. The
first one is the detection of state encoding conflicts. It can
be solved by an exhaustive enumeration of the state space.
However, given the potential high degree of concurrency of
asynchronous specifications, the state space can be exponen-
tial in the size of the specification. Some tools use symbolic
techniques (BDDs) to enumerate the states efficiently [5].
However, these techniques are still insufficient for specifica-
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tions with a large number of signals.
The second problem is the insertion of new state sig-

nals that disambiguate the encoding conflicts. The inser-
tion must be done in such a way that the new signals are
consistent (rising and falling transitions alternate) and their
behavior is hazard-free.

This paper faces the problem of state encoding of large
asynchronous controllers using STGs. STGs can capture
the main paradigms of asynchronous behavior: concurrency,
causality and choice.

The only methods that have tackled state encoding for
large STGs are restricted to certain subclasses of Petri nets:
marked graphs [11] or free-choice Petri nets [13]. This paper
proposes a novel method to solve the state encoding problem
that is not restricted to any subclass of Petri nets. The
complexity is determined by the size of the specification and
not by the size of the state space.

One of the main interests of the proposed approach is the
capability of handling large STGs generated from HDLs,
such as Tangram [1] or Balsa [7]. The main advantage of
these HDLs is that they are supported by a complete syn-
thesis flow using the so-called syntax-directed translation
paradigm. The state encoding problem is avoided by im-
plicitly over-encoding the system with a netlist of handshake
components that implement the parse tree of the specifica-
tion. However, syntax-directed translation does not benefit
from the power of logic synthesis manipulating the Boolean
equations of the next-state functions, thus leading to unop-
timized implementations.

In [3], a back-end to incorporate logic synthesis into the
Balsa system was presented. The work showed the tan-
gible improvements that can be obtained by optimizing
the netlists of handshake circuits. However, the underly-
ing formalism for synthesis was BM machines, that impose
limitations on modeling the inherent concurrency of asyn-
chronous systems and require to handle double-sided timing
constraints not always easy to meet.

2. EXAMPLE
The contributions presented in the paper are briefly sum-

marized by solving the encoding problem of a simple VME
bus controller. It consists of three entities (the bus, the de-
vice and the controller) that interact through a bidirectional
buffer according to a given protocol. The protocol can be
formally specified with an STG, as shown in Fig. 1(a). STGs
are formally defined in Section 3.2.

The underlying Petri net of the STG does not belong to
any of the classes for which there are structural methods
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Figure 1: (a) VME Bus controller, (b) Trace con-
necting a CSC conflict, (c) Signal insertion.

for the encoding problem, i.e. marked graphs or free-choice
nets. With the current state-of-the-art, the encoding prob-
lem has to be solved with state-based methods that may
suffer from the state explosion problem. The method pro-
posed in this paper is the first one that solves the encoding
problem directly on the structure of the Petri net.

The easy part of the state encoding problem
Detecting encoding conflicts in large STGs can be done by
using existing techniques based on Petri net unfoldings [10]
or integer-linear programming (ILP) models [2]. These
methods would reveal the conflict shown in Fig. 1(b), be-
tween the states with the shadowed encoding 100011, corre-
sponding to the vector (dsr,dsw,dtack,d,lds,ldtack). A trace
connecting the conflicting states would also be reported by
the aforementioned methods.

To solve the conflict, a new signal s can be inserted.
Two possible insertion points for s+ and s− are depicted
in Fig. 1(b). These points can be easily identified with their
corresponding events in the STG (e.g. dtack− for s+ and
lds+ for s−). Figure 1(c) depicts how the event s+ has been
inserted before dtack− and s−1 before lds+ (we ask the reader
to ignore the event s+

2 and the dotted places and arcs, for
the moment). This insertion disambiguates the conflict de-
picted in Fig. 1(b). In general, other conflicts can also be
solved as a by-product of any signal insertion.

However, any signal must have a consistent encoding. In-
tuitively, consistency means that the rising and falling events
of any signal must alternate in any trace of the behavior.
Our example has a choice that selects between the read and
write cycles of the VME bus, and the insertion of signal s
has broken a conflict in the read cycle. Unfortunately, this
insertion is inconsistent with the write cycle, since traces
with two consecutive rising transitions of s are possible, e.g.

dsw+ d+ lds+ ldtack+ d− dtack+ dsw− s+ dtack− lds− ldtack−

leading to the same initial state in which the same trace can
occur without having fired any s− event.

The difficult part of the state encoding problem
How to insert s+ and s− events in such a way that, besides
solving the targetted encoding conflicts, they guarantee a
consistent behavior for any feasible trace of the system?.

Any expert designer would immediately detect that an-
other s− event is required and would manually insert the
s−2 event to guarantee consistency, as shown in Fig. 1(c).
However, Petri nets can have very intricate causality, con-
currency and choice relations that make the behavioral anal-
ysis difficult unless one enumerates the state space explicitly.

The main contribution of this paper is a method to auto-
matically insert all the events of a new signal in such a way
that consistency is guaranteed. The method is based on the
structural theory of Petri nets.

We next give a rough idea on how it works. In a consis-
tent STG, each signal can be modeled by a pair of encod-
ing places, p0 and p1, that indicate when the signal value
is 0 (p0 marked) or 1 (p1 marked). In Fig. 1(c), they are
called 〈s = 0〉 and 〈s = 1〉 for signal s, and they are rep-
resented as dotted places. These places only interact with
events of signal s with arcs 〈s = 0〉 → s+ → 〈s = 1〉 and
〈s = 1〉 → s− → 〈s = 0〉.

On the other hand, a place is called implicit (or redun-
dant) if it can be removed from the Petri net without chang-
ing its behavior. The reader can immediately realize that
the behavior of the Petri net of Fig. 1(c) is the same regard-
less the presence of the dotted places. Therefore, the dotted
places are implicit. The proposed method for signal inser-
tion is based on a result from [9]: a signal is consistently
encoded if the associated encoding places are implicit.

This result is crucial for the method presented in this pa-
per. The reader can realize that the dotted places would not
be implicit if the dotted arcs 〈s = 1〉 → s−2 → 〈s = 0〉 would
not be present in the STG with the dotted places.

The result from [9] enables not only to check whether
a signal is consistently encoded, but also to automatically
find the insertion points that guarantee consistency. The
problem can be solved using mixed ILP (MILP) models that
work directly on the structure of the Petri net and avoid the
explicit enumeration of the state graph. Most of the paper
will be devoted to formalize the method to automatically
insert state signals consistently in an STG.

3. BASIC PETRI NET THEORY
A Petri Net (PN) [12] is a 4-tuple N = 〈P, T,F , m0〉,

where P is the set of places, T is the set of transitions,
F : (P × T ) ∪ (T × P ) → {0, 1} is the flow relation, and m0

is the initial marking. A marking of a PN is an assignment
of a non-negative integer to each place. If k is assigned to
place p by marking m (denoted m(p) = k), we say that p
is marked with k tokens. Given a node x ∈ P ∪ T , its pre-
set and post-set are denoted by •x and x• respectively. An
example of Petri net is shown in Fig. 2(a).

A transition t is enabled in a marking m when all places in
•t are marked. When a transition t is enabled, it can fire by
removing a token from each place in •t and putting a token
to each place in t•. A marking m′ is reachable from m if there
is a sequence of firings t1t2 . . . tn that transforms m into
m′, denoted by m[t1t2 . . . tn〉m

′. A sequence of transitions
t1t2 . . . tn is a feasible sequence if it is firable from m0. The
set of reachable markings from m0 is denoted by [m0〉, and
form a graph called reachability graph. A PN is k-bounded
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Figure 2: (a) Petri net, (b) Potential reachability
graph, (c) Marking equation.

if no marking in [m0〉 assigns more than k tokens to any
place. A place in a Petri net is implicit if its removal does
not affect the behavior of the system.

A PN is reversible if its reachability graph is strongly-
connected. Systems not reversible often have some initial-
ization sequence that lead to a cyclic behavior. For sim-
plicity, we will assume that our PNs are reversible. The
extension of the methods of the paper to non-reversible nets
is straightforward and will be shortly discussed.

3.1 Petri nets and Linear Algebra
Given an occurrence sequence m0

σ
→ m, the number of

tokens for a place p in m is equal to the tokens of p in m0

plus the tokens added by the input transitions of p in σ
minus the tokens removed by the output transitions of p in
σ. If we denote #(σ, t) the number of times that a transition
t occurs in σ, we can write the marking equation for p as:

m(p) = m0(p) +
X

t∈
•p

#(σ, t)F(t, p) −
X

t∈p•

#(σ, t)F(p, t)

The marking equations for all the places in the net can be
written in the following matrix form (see Fig. 2(c)):

m = m0 + N · ~σ

where ~σ = (#(σ, t1), ..., #(σ, tn)) is called the Parikh vector
of σ, and N ∈ ZP×T is the incidence matrix of the net:

N(p, t) = F(p, t) − F(t, p)

If a marking m is reachable from m0, then there exists a
sequence σ such that m0

σ
→ m, and the following system of

equations has at least the solution X = ~σ

m = m0 + N · X (1)

If (1) is infeasible, then m is not reachable from m0. The
inverse does not hold in general: there are markings sat-
isfying (1) which are not reachable. Those markings are
said to be spurious [14]. Figure 2(a)-(c) presents an ex-
ample of a net with spurious markings: the Parikh vector
~σ = (2, 1, 0, 0, 1, 0) and the marking m = (0, 0, 1, 1, 0) are a
solution to the marking equation, as is shown in Fig. 2(c).

However, m is not reachable by any feasible sequence. Fig-
ure 2(b) depicts the graph containing the reachable markings
and the spurious markings (shadowed). The numbers inside
the states represent the tokens at each place (p1, . . . , p5).
This graph is called the potential reachability graph. The
initial marking is represented by the state (10000). The
marking (00110) is only reachable from the initial state by
visiting a negative marking through the sequence t1t2t5t1,
as shown in Fig. 2(b). Therefore, equation (1) provides only
a sufficient condition for reachability of a marking. For cer-
tain subclasses of PNs, e.g. when the net is free-choice [12],
live, bounded and reversible, equation (1) together with the
set of traps of the system completely characterizes reacha-
bility [6].

A key ingredient of this paper is the use of implicit places
for signal insertion. Intuitively, a place p is implicit if it is
never the unique place that prevents the firing of a transi-
tion. A sufficient condition for a place p ∈ P to be implicit
is the non existence of a solution for m, σ and s to the
following LP model [14], where P ′ = P \ {p}:

m − N · σ = m0

m[P ′] − F [P ′
, p•] · s ≥ 0

m(p) − F [p, p•] · s < 01 · s = 1

m, σ, s ≥ 0
The model is interpreted as follows. The vector s is a

“transition selector”, since the constraints 1 · s = 1 and
s ≥ 0 imply that s has exactly one element at 1. The first
constraint corresponds to the marking equation and indi-
cates that m is potentially reachable (necessary condition).
The second constraint indicates that all predecessor places,
except p, of the transition selected by s have enough to-
kens to enable it1. The third constraint indicates that p has
not enough tokens to enable the transition, thus preventing
it from firing. Therefore, if this model has a solution, the
place might not be implicit. On the other hand, the non ex-
istence of a solution guarantees implicitness. The fact that
the condition is only sufficient comes from the fact that the
marking m could be spurious.

The previous LP model can be slightly transformed and
converted to the dual problem (see the details in [14]). Fi-
nally, the following result can be derived:

Theorem 3.1 ( [14]). If m0(p) is greater than or equal
to the optimal value of the following LP problem, then p is
implicit:

min y · m0[P
′] + µ

y · N[P ′
, T ] ≤ N[p, T ]

y · F [P ′
, p•] + µ · 1 ≥ F [p, p•]

y ≥ 0
3.2 Signal Transition Graphs

A Signal Transition Graph (STG) is a triple 〈N, Σ, Λ〉,
where N is a Petri net, Σ is a set of signals (input,
output and internal), and Λ is the labeling function
Λ : T → Σ × {+,−}, where transitions are interpreted as
signal changes. Transitions of a signal a ∈ Σ are denoted
by a+ and a−, while a∗ denotes a generic rising or falling

1The notation F [P ′, p•] denotes a matrix covering all places
(rows) in P ′ and all transitions (columns) in p•.
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Figure 3: (a) Initial STG, (b) Implicit place p, (c) CSC conflict, (d) Incorrect insertion of s, (e) Final STG.

transition2. An example of STG is shown in Figure 1(a).
For simplicity, those places that only have one predecessor
and one successor transition are not depicted. In that case,
the tokens are held on the corresponding arcs.

Each marking is encoded with a binary vector of signal
values by means of a labeling function λ : [m0〉 → {0, 1}|Σ|.
The notation λs(m) will be used to denote the value of signal
s at marking m. All markings must be consistently encoded

by λ, i.e. no marking m can have an enabled rising (falling)
transition a+ (a−) if λa(m) = 1 (λa(m) = 0).

An STG is said to satisfy the complete state coding (CSC)
property if, when the same binary code is assigned to two
different markings, the set of internal and output signals
enabled at each marking is the same. The CSC property
is a necessary condition for the correct implementation of
an STG specification. When the CSC condition holds, the
events that the circuit must produce at each reachable state
are uniquely determined by the binary code of the state.

Four conditions are required for an STG to be imple-
mentable under the speed-independent delay model: con-
sistency, CSC, output-persistency and boundedness [5].

4. SOLVING CSC CONFLICTS
The method presented on this paper relies on the following

theorem, which bridges consistency and place implicitness:

Theorem 4.1 ( [9]). Given an STG with signal s, two
new places s0 and s1 are added such that every s+ (s−)
transition puts a token into place s1 (s0) and removes a
token from s0 (s1), and no other transitions are connected
to them. Signal s is consistent if and only if places s0 and
s1 are implicit.

Let us describe the approach with an example. The
initial STG is shown in Fig. 3(a), and its state graph in
Fig. 3(c). The conflicting states, m1 and m2, are encoded
with label 0000. The sequences connecting the states are
σ1 = x+a+x−

1 a− and σ2 = y+

1 y−. Events of signal s must
be inserted in these sequences to disambiguate the encoding
conflict. In principle, more than one s+ and s− event could
be inserted at every sequence, but the number of s+ events
in σ1 must be one more than the number of s− events. Sim-
ilarly, the number of s− events in σ2 must be one more than
the number of s+ events. This guarantees that λs(m1) = 0
and λs(m2) = 1.

Let us assume that we decide to break the sequences σ1

and σ2 by the transitions a− and y−, respectively. The

2We will use subindices to denote different occurrences of
the same signal transition, e.g. a+

1 , a+

2 .

�

�

�



while CSC conflicts exist do

• Find conflict (m1, m2) and traces m1
σ1
−→ m2

σ2
−→ m1

• Find implicit places, s0 and s1 that break the conflict
and guarantee consistency of a new signal s

• for every transition t with arcs s0 → t → s1 do

Relabel the transition as (t; s+) or (s+; t)
• for every transition t with arcs s1 → t → s0 do

Relabel the transition as (t; s−) or (s−; t)
• Expand (series or parallel) the relabeled transitions

Figure 4: Main algorithm for solving CSC conflicts.

places associated to the new signal s will have arcs connected
to these transitions, as shown in Fig. 3(d). However, these
new events are not sufficient for s to be consistent: there
is an infinite sequence, visiting the event b+, where only s−

events appear for signal s.
This inconsistency is related to the non-implicitness of

s0. Notice that s0 is connected to the same transitions to
the implicit place p in Fig. 3(b) but x−

2 . The consistency
of s can be achieved by adding the arc s0 → x−

2 and the
complementary arc x−

2 → s1. This insertion point must be
labeled with an occurrence of s+.

After adding the new events, the insertion points become
transitions labeled with a pair of events. They can be ex-
panded by well-known Petri net rules (series or parallel ex-
pansion) that preserve all the necessary properties for syn-
thesis [12]. The final STG is shown in Figure 3(e), where
places s0 and s1 have been removed because they are im-
plicit. The final STG has CSC.

4.1 Main algorithm
The main algorithm for solving CSC is presented in Fig. 4.

Finding the conflicts and the corresponding traces can be
done by using existing methods to check CSC [2, 10]. The
core of the algorithm is the creation of the implicit places
s0 and s1 that determine the location of the events for the
new state signal. This will be discussed in the next section.

After having found the insertion points for the new s+

and s− events, the transitions at these points are overloaded
with these new labels. The transition t at every insertion
point will also have a label a∗ from another signal. In case
a∗ is an input event, it is not possible to insert s∗ as a
preceding event, since this would change the input/output
interface of the specification. In that case the new s∗ event
is inserted as a successor event3. In this paper, we only deal
with sequential insertion of events. Insertions with more

3The cost function in our MILP model guarantees that an
insertion point between input events is never provided.



concurrency are also possible, but not discussed due to the
lack of space.

4.2 MILP model to find insertion points
The method to insert a new state signal is based on the

LP model of theorem 3.1. Instead of checking implicitness,
we aim at finding two implicit and complementary places
that mimic the value of a new state signal. To achieve this,
the original LP model from theorem 3.1 is transformed into
a new MILP model as follows:

• A new row N[s0, T ] of |T | variables, with
N(s0, t) ∈ {−1, 0, 1}, is added to represent the
connections of the implicit place s0. There is no need
to add a row for s1 since it is complementary to s0,
i.e. N[s0, T ] = −N[s1, T ].

• The new constraints
#(σ1,N[s1, T ]) = #(σ1,N[s0, T ]) + 1

#(σ2,N[s0, T ]) = #(σ2,N[s1, T ]) + 1

guarantee that λs(m1) = 0 and λs(m2) = 1. They
imply that σ1 must contain one more occurrence of s+

than s−, and similarly with σ2 and the complementary
events. N[s1, T ] can be substituted by −N[s0, T ].

• The initial marking must be safe: 0 ≤ m0[s0] ≤ 1.

If the modified MILP model is feasible, the variables
N[s0, T ] represent the necessary arcs to make s0 and s1 im-
plicit. For the example of Fig. 3(a), the MILP solver finds
the solution σ1

z }| {
σ2

z }| {

x+ a+ x
−
1

a− y
+
1

y− x
−
2

y
+
2

b+ b−

N[s0, T ] = [ 0 0 0 −1 0 +1 −1 0 0 0 ]

The transitions with N[s0, t] = −1 accommodate the la-
bel s+, whereas the ones with N[s0, t] = +1 the label s−. It
is important to realize that the transition x−

2 , not belong-
ing neither to σ1 nor to σ2, is also defined as an insertion
point for s+ to preserve the consistency of the signal. After
the insertion of signal s and the expansion of the relabeled
transitions, the STG in Fig. 3(e) is obtained.

The cost function of the model has another role in our set-
ting: it is designed to choose good insertion points. This has
an strong impact on the quality of the solutions. By defin-
ing coefficients for the N[s0, T ] variables in the cost function,
the obtained solutions are biased towards optimizing the fol-
lowing aspects: (1) minimize the number of events of signal
s, (2) maximize the number of CSC conflicts solved in σ1

and σ2 (other conflicts may exist besides the ones with m1

and m2) and (3) increase the number of lock relations [15]
with the other signals in σ1 and σ2. The details of these
optimizations are omitted due to the lack of space.

The method can be easily extended to non-reversible sys-
tems by ignoring the trace σ2 in the MILP model. This trace
is not strictly necessary for the correct insertion of signals,
however it helps to find better insertion points when using
the cost function for optimization.

4.3 Incompleteness of the method
Even though the method presented in this paper is appli-

cable to general Petri nets, it cannot guarantee a solution
even in the case it exists. An example of this situation is
depicted in Fig. 5 (a and b are inputs, x and y are outputs).

The STGs in Fig. 5(a) and 5(b) have the same behavior.
However, the one in Fig. 5(a) is more compact, since the
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Figure 5: Example with unsolvable CSC conflict.

transitions y+b−y− represent two different subsequences of
the behavior. A state-based tool, such as petrify [5], can
easily find a solution for (a), like the one in Fig. 5(c), with
the insertion of the signals r and s. However, this solution
requires to restructure the net (a) by unfolding the shared
subsequences and enable a different signal insertion for each
one. The method presented in this paper does not allow any
restructuring of the net and, for this reason, it can find an
appropriate signal insertion for (b) but not for (a).

Characterizing the class of STGs for which a solution can
be guaranteed is a topic under investigation. We believe that
well-structured STGs, typically obtained from the synthesis
of high-level specifications, belong to this class.

5. EXPERIMENTAL RESULTS
The goal of the experimental results presented in this sec-

tion is threefold: (a) evaluate the quality of the method by
comparing the results with a state-based method (e.g. [4]),
(b) evaluate the capability for handling large specifications
and (c) show the potential benefits of logic synthesis meth-
ods with regard to syntax-directed translation.

Table 1 evaluates the quality of the results when com-
pared to petrify [5]. The examples from [4] have been used4.
The number of literals of the Boolean equations (in factored
form) and the number of state signals inserted to solve CSC
are reported5. In general, the complexity of the circuits is
similar. However, the new method inserts more state signals.
The reason for that is because petrify attempts to maximize
the number of conflicts solved for each signal, whereas the
new approach tries to reduced the number of events of each
new signal. In overall, increasing the number of signals with-
out increasing the number of literals is beneficial, since it
provides a better initial decomposition that will reduce the
number of additional signal decompositions for technology
mapping, thus resulting in better mapped circuits.

State-based methods cannot handle large STGs like the
ones in Table 2. The benchmarks Art(n, m) model n
pipelines of length m synchronized only on its starting
points, thus exhibiting a high degree of concurrency. Bench-
marks PpWk and PpArb are another type of pipelines, de-
scribed in [10]. Var(n, m) models the handshakes of a set
of n read- and m write-processes into a 1-bit variable.

The rest of examples are typical netlists of handshake

4Only 4 examples with irreducible conflicts have been omit-
ted, since the conflicts cannot be solved unless timing as-
sumptions on the environment are used.
5Given that the examples are small, we do not report CPU
times since they are negligible and irrelevant for the com-
parison.



example petrify MILP example petrify MILP

adfast 14/2 17/2 tsend-bm 39/2 40/3

ircv-bm 38/2 46/4 alloc-outbound 16/2 16/2

mmu 29/3 27/3 duplicator 19/2 16/3

mmu0 29/3 33/5 mod4 counter 25/2 28/4

mmu1 32/3 25/2 ram-read-sbuf 18/1 19/1

mr0 45/3 34/4 sbuf-ram-write 22/2 29/2

mr1 35/4 29/4 sbuf-read-ctl 15/1 15/1

nak-pa 18/1 18/1 master 1882 38/1 38/1

nowick 14/1 13/1 trcv-bm 36/2 41/4

par4 32/4 32/4 seq mix 20/3 20/2

seq8 47/4 43/6 spec seq4 20/3 20/3

total 601/52 599/62

Table 1: Results (literals/state signals).

components from an HDL like Tangram [1] or Balsa [7]:
an n-way parallelizer (Par(n)), a combination of sequencers
and parallelizers (SeqPar(s, p)), and a combination of se-
quencers, parallelizers and mixers (SPM(s, p,m)). The
specifications have been obtained by hiding all the inter-
nal channels of the netlists and keeping only the events of
the external signals.

The columns report the number of places, transitions and
input/output signals of the STG, respectively. For synthesis,
structural methods based on projections [2] have been used.
The CPU time (in minutes) for state encoding and logic syn-
thesis is reported (enc/syn). None of the previously existing
techniques has been able to solve the encoding problem with
examples of such size. It is remarkable to realize that the
tool has been able to solve one of the examples (Art(20,9))
by inserting 57 signals. Moreover, the power of logic synthe-
sis can be seen in the last three examples, where the literals
of the equivalent Tangram implementations (column HDL)
are also reported6. The results show drastic improvements,
e.g. up to 63% in number in literals for SPM(7,16,18).

Finally, Table 3 reports the synthesis results for an n-
way sequencer (n ∈ [2, 9]). The results show the superiority
of the MILP-based method with respect to petrify and the
significant improvements obtained with regard to syntax-
directed translation when the size of the circuit grows.

6. CONCLUSIONS
By solving the state encoding problem, logic synthesis can

be incorporated into the main design flow of large asyn-
chronous controllers. The method presented in this paper is
a crucial step towards taking advantage of the optimizations
that logic synthesis can do in the Boolean domain. These
optimizations cannot be applied unless the state encoding
problem is solved for real-life specifications.
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