
Multi-level clustering for clock skew optimization

Jonas Casanova
Universitat Politècnica de Catalunya

Barcelona, Spain

Jordi Cortadella
Universitat Politècnica de Catalunya

Barcelona, Spain

ABSTRACT

Clock skew scheduling has been effectively used to reduce the
clock period of sequential circuits. However, this technique
may become impractical if a different skew must be applied
for each memory element. This paper presents a new tech-
nique for clock skew scheduling constrained by the number
of skew domains. The technique is based on a multi-level
clustering approach that progressively groups flip-flops with
skew affinity. This new technique has been compared with
previous work, showing the efficiency in the obtained perfor-
mance and computational cost. As an example, the skews
for an OpenSparc with almost 16K flip-flops and 500K paths
have been calculated in less than 5 minutes when using only
2 to 5 skew domains.

1. INTRODUCTION
The clock signal is distributed via wires and gates form-

ing trees, meshes, or other structures. The clock skew is
defined as the clock arrival time difference between memory
elements. Traditionally, clock skew has been considered to
be a problem, with negative impact on the clock period.

Nowadays, clock skew scheduling [1] is becoming a com-
mon practice in EDA flows. The intentional skew applied
to the memory elements of a circuit can reduce the cycle
period by borrowing time from the paths with the largest
slacks and using it in the paths with the smallest slacks.

This optimization implies a certain degree of wave-
pipelining in the long paths that temporarily carry two
waves of data on the same cycle. These paths must guaran-
tee a minimum delay sufficient to safely separate the time
distance between the two travelling waves.

An optimal solution for skew scheduling may potentially
require a different skew for each memory element in the cir-
cuit. This may generate an excessive demand of buffers with
an unacceptable overhead in area and power consumption.
Skew optimization is usually constrained to a limited num-
ber of skew domains. Within each domain, the memory
elements are assumed to have negligible skew.

The correctness of skew optimization is finally determined
by the setup and hold constraints that must be met for any
combinational path between memory elements.

After clock skew scheduling, the hold constraints can be
met by adding delays in the shortest paths [2, 3]. How-
ever, aggressive skews may result in an excessive amount of
required delays with the corresponding impact in area and
power.

1.1 Asynchronous circuits
Clock skew scheduling may also play an important role in

asynchronous circuits. Recently, a new technique called de-
synchronization [4] has appeared as an automated process
to transform synchronous circuits into asynchronous. This
process replaces the clock of the synchronous circuit by a
set of asynchronous controllers that implement a handshake
protocol.

The controllers generate the enable signal for the registers
depending on the request/acknowledge signals from succes-
sors and predecessors, and a delay matching the combina-
tional logic paths. The problem of clustering memory ele-
ments comes from the impossibility to have one controller for
each latch of the circuit, and from the sub-optimal solution
of having just one controller for all latches.

In this context, the number of skew domains corresponds
to the number of controllers required to generate the en-
able signals of the latches. Finding a good clustering may
contribute to improve the performance of the system.

1.2 Previous work
The complexity of assigning arbitrary skews for the mem-

ory elements comes from the fact that within-die variations
affect the buffers required to implement the skews.

In [5], a solution is proposed to mitigate this problem. The
large skews are implemented using different clock domains,
with each clock implementing the small skew differences.
Their solution is based on a heuristic on top of a satisfia-
bility formulation for the critical core. The authors obtain
remarkable results at the expense of a very high computa-
tional cost. As an example, their approach took about 20
hours to compute the skews of a design with almost 3000
flip-flops.

Clock latencies can also be calculated to minimize the
amount of inserted delay to fix hold violations on the data-
path [3] or to minimize the maximum skew [6]. The balance
of slacks in the critical paths [7, 8, 9] is another important
property, since it reduces the number of critical paths and it
makes the design less sensible to process variations. It also
gives a unique solution where slacks can be interpreted as a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’09, November 2–5, 2009, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-800-1/09/11...$10.00.

547

Figure 1: a) Circuit with a valid useful clock skew
assignment for period = 4. b) Register graph with
delays annotated. c) Slack graph for the given clock
latencies. d) All possible balanced clusters

criticality metric. Latencies generated by distributing slacks
will be used in this paper also.

In the context of asynchronous circuits, there have been
few efforts to cluster memory elements. Hazari [10] proposes
a solution where clusters form a linear pipeline system and
each cluster communicates only with two neighbors. The
approach uses a variation of a breadth-first search grouping
with no control on the number of clusters.

Andrikos [11] noticed the impact of clustering in the per-
formance of an asynchronous circuit. Increasing the number
of clusters contributes to improve the performance at the
expense of area overhead. However, their approach is based
on the topological structure of the netlist and is not guided
by the performance.

1.3 Contributions of this work
The goal of this work is similar to the one presented in [5].

Given a circuit and a limited number of skew domains, we
want to find the memory elements and the skew assigned to
each domain that minimizes the clock period of the circuit.

The main contribution of this work is the low computa-
tional cost of the approach that allows to solve the problem
in affordable running times. This is crucial in the EDA flows
that require a significant effort to reach timing convergence.

To cope with the complexity of the problem, the approach
uses a multi-level clustering algorithm [12, 13]. During the
coarsening phase, the memory elements are grouped accord-
ing to a skew affinity metric. During the refinement phase,
memory elements can be moved to different domains to im-
prove the quality of the solution.

The obtained results are comparable to the ones presented
in [5]. However, the computational cost is drastically re-
duced. As an example, the skew domains for a design with
almost 16,000 flip-flops have been calculated in less than 5
minutes with the approach presented in this paper.

2. OVERVIEW
A synchronous circuit (Fig. 1(a)) is composed of combina-

tional logic gates and registers (A,B,C,D). The performance
of the circuit is determined by the cycle time of the clock.

The combinational paths can be represented on a regis-

Figure 2: Possible clock latencies according to the
current slack. Grouping registers A and B implies a
change on C slack.

ter graph (Figure 1(b)). On a traditional system, the clock
signal arrives at the same time for all registers. In this sit-
uation the minimum period is the delay of the longest com-
binational path (Period = 6). The period of this circuit
can be improved by applying useful clock skew [1], allow-
ing long paths to steal time from short ones. The optimum
performance is now determined by the average delay of each
cycle, e.g. D → C → B → A → D has an average of 3, and
the worst cycle is D → A → D with an average of 4. The
cycle period can be reduced from 6 to 4 by adding laten-
cies to the clock. The skew of two registers is the difference
between their clock arrival times.

There are many clock latency assignments that achieve
an optimal period of 4, e.g. (A = 1, B = C = 0, D = 3),
(A = 1, B = 0, C = 1.5, D = 3) etc. For a given assignment,
each edge on the register graph has a margin (slack) value
calculated from the delay of the edge, the period, and the
clock skew between source and destination registers: slack =
period−delay+skew. For the system to be correct, all slacks
have to be positive. Fig. 1(c) shows the slacks for the skew
solution (A = 1, B = C = 0, D = 3).

The implementation of the clock signal is simplified if reg-
isters do not have total freedom for their clock latency. A
constrained system where only a few skew groups are de-
fined is easier to implement. Figure 1(d) shows all possible
2-cluster combinations for size-balanced clusters with the re-
sulting period. For example, knowing that the longest path
is A → D, if A and D belong to the same cluster they will
have 0 skew and the delay between them will determine the
period 6. However, the cluster solution {A, B} and {C, D}
is able to keep the best possible period 4, with the constraint
of having just 2 clusters.

This paper presents a fast clustering algorithm that uses
skew and slack information to find a clustering solution with
good performance. This information can be represented in
a time-line diagram. For example, latencies and slacks of
Figure 1(c) can be represented as intervals in Figure 2(a).
On this scenario, B has a latency of 0, and according to its
slack, the latency could go from -1 to 1 without breaking
any constraint. Having negative latencies is not a problem
because relative distances is what matters. All register la-
tencies can be shifted to be positive. On this example, A
and D are critical and their latency cannot be changed in-
dividually, C and D have some slack and the latency can
be changed to match another register’s latency. Looking at
the possible cluster solutions from Figure 1(d), the time-line
shows why grouping A and D is not a good idea because the
intervals do not overlap, and why {A, B} and {C, D} seems
to be more adequate because they overlap.

548 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

Figure 2(b) shows the latencies when A and B are grouped
together. Changing the latency of B from 0 to 1 has in-
creased the slack of C.

The presented algorithm uses this information to decide
which registers to group together to impact as less as pos-
sible the circuit performance. The intervals depend on the
initial latencies and any change of a latency affects the neigh-
bor register slacks.

3. PERFORMANCE
This section introduces the necessary theory to evaluate

the performance of a circuit. It also defines properties that
are used later by the multi-level clustering algorithm.

3.1 Register graph model
A circuit can be modeled as a directed graph

G = (V, E, δmin, δmax, P, L) where each vertex represents a
register, an input, or an output. Each edge represents all
combinational paths that exists between two vertices anno-
tating the minimum and the maximum delay of these paths.

• V and E are a set of vertices and edges.

• δmin, δmax : E → R
+ are the minimum and maximum

delay of each edge.

• P ∈ R
+ is the period of circuit.

• L : V → R
+ is the latency of the clock at each vertex.

3.2 Setup and hold timing constraints
The circuit (V, E, δmin, δmax, P, L) is valid if the following

setup and hold constraints are satisfied, and the period P
is optimum if it does not exist any lower period and L that
satisfy all constraints.

Setup Constraints (no zero-clocking) make sure that all
edges (u, v) ∈ E have enough time to stabilize the result
before v ∈ V stores the result.

∀(u,v)∈E : L(u) + δmax(u, v) ≤ P + L(v)

Hold Constraints (no double-clocking) make sure that the
data coming from u ∈ V does not overwrite the previous
data before v ∈ V stores it.

∀(u,v)∈E : L(u) + δmin(u, v) ≥ L(v)

3.3 Difference constraint graph
A difference constraint multi-graph GC = (V, C, λ, L)

can be constructed from the register graph G =
(V, E, δmin, δmax, P, L) and the setup and hold constraints.

• C is a multi-set of edges Cs ∪ Ch
1

– Cs = ET is a set of edges generated from
the setup constraints (in opposite direction).
∀(u, v) ∈ E : ∃(v, u) ∈ Cs

– Ch = E is a set of edges generated from the hold
constraints. ∀(u, v) ∈ E : ∃(u, v) ∈ Ch

• λ : C → R represents the maximum difference between
arrival times: L(u) − L(v) ≤ λ(u, v). Calculated as:

– Setup Constraints L(u) − L(v) ≤ P − δmax(u, v)
are represented with edges (v, u) ∈ Cs:

u
λ(v,u)=P−δmax(u,v)
←−−−−−−−−−−−−−− v

1A constraint graph has multiple edges between two vertices,
for setup and hold constraints. Figure 3 shows an example
with multiple edges between A and D.

Figure 3: Difference constraint graph. Solid and
dotted represent hold and setup edges respectively.

– Hold Constraints L(v) − L(u) ≤ δmin(u, v) are
represented with edges (u, v) ∈ Ch:

u
λ(u,v)=δmin(u,v)
−−−−−−−−−−−−→ v

A difference constraint system is feasible if no negative
cycle exists on the graph. This problem can be solved using
a shortest path algorithm like Bellman-Ford [14]. This al-
gorithm assigns values to the vertex that satisfy the system
(if it is consistent) with complexity O(V ×C). These values
correspond to the latency L(u) of each vertex u ∈ V .

Figure 3 shows the difference constraint graph created
from the example of Figure 1(b). Minimum delays for this
example are 1 for all edges, and the λ value for setup edges
is specified in terms of the period. On this example, there
is a cycle between D and A with a value of P − 6 + 1. This
cycle determines a minimum period of 5. Notice how the
minimum period without hold constraints was 4.

3.4 Skews and Slacks

3.4.1 Skew

The skew between any two registers is the latency differ-
ence of the clock. K : V × V → R : K(a, b) = L(b) − L(a)

3.4.2 Slack

The slack of and edge is the margin for a skew incre-
ment without violating any timing constraint. S : C → R :
S(u, v) = λ(u, v) − K(u, v)

Figure 1(c) shows a circuit graph with slacks annotated
on the edges.

For a circuit to be valid, all slacks have to be positive.
Increasing the latency of a vertex L(u) by t implies increas-
ing the slack of all successor edges and decreasing it from all
predecessor edges by t on the constraint graph.2

3.4.3 Slack interval

The slack interval of a vertex represents the range of la-
tencies the vertex can have without violating any constraint.
The interval is the following interval : V → R × R :

interval(u) =
“
L(u)−min∀i(S(u, i)), L(u)+min∀i(S(i, u))

”

meaning that the latency can be shifted until it consumes
the minimum slack of the predecessor or successor edges.

3.4.4 Slack Overlap

The overlap of two intervals of two vertices represents the
possible latency values than both vertices can be assigned.
The overlap is a metric that quantifies the affinity between

2Notice that the setup edges on the constraint graph go into
the opposite direction.

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 549

Figure 4: Circuit graph with distributed slacks. The
minimum predecessor slack is equal to the minimum
successor slack.

vertices. The overlap overlap : V × V → R can be positive
or negative and is defined as:

overlap(a, b) = min(ra, rb) − max(la, lb)

where interval(a) = (la, ra) and interval(b) = (lb, rb).
Figure 2 shows an example with different intervals and

Figure 5 shows an example with a negative overlap.

3.4.5 Distributed Slacks

A constraint graph is said to have distributed slacks when
the minimum predecessor slack is equal to the minimum
successor slack for all vertices, i.e.,

∀u ∈ V : min∀i(S(u, i)) = min∀i(S(i, u))

In this case, all latencies are in the middle of their inter-
val. This latency assignment is unique and the slacks and
intervals provide a criticality metric for edges and vertices.

Figure 4 shows the distributed slacks solution for the cir-
cuit of Figure 1(b). Figure 1(c) represents a non-distributed
solution.

3.5 Optimal period
The optimal period of a circuit is the minimum period

that satisfies all setup and hold constraints. There are two
interesting results depending on the used constraints.

3.5.1 Only setup constraints

Let us simplify the problem assuming that it is possible
to add delays on the minimum paths to fix all hold viola-
tions without increasing the maximum delay path [2, 15].
The period with just setup constraints is equivalent to cal-
culate the Maximum Mean Cycle (MMC) of the graph using
max delays. The most popular algorithms are Karp’s algo-
rithm [16], Lawler’s algorithm [17], Burns’ algorithm [18],
and an improved version of Howard’s algorithm [19]. A re-
port [20] compares all of them in which Howard’s algorithm
appears to be the fastest one in practice.

3.5.2 Setup and hold constraints

The problem of finding the minimum period that satisfies
all setup and hold constraints can be solved using linear pro-
gramming [1, 21, 22], or by binary search on the difference
constraint graph [23, 24, 6].

This paper uses the binary search approach on the pe-
riod. A period P is valid if the difference constraint graph
GC = (V, C, λ, L) has no negative cycles. The upper bound
of the period is the biggest maximum delay (the period with-
out useful clock skew), and the lower bound is the MMC of
maximum delays (ignoring hold constraints).

4. CLUSTERING PERFORMANCE
This section studies the implications of clustering on the

circuit performance. The period of a cluster solution can be

Figure 5: Slack representation of registers a and b,
and their predecessors and successors ap, as, bp, and
bs. L′ represents the new latency.

calculated using the same graph theory of section 3. A clus-
ter graph can be built by collapsing all registers of each clus-
ter and keeping the maximum and minimum delay between
clusters. The complexity of creating this reduced graph is
linear.

4.1 Period implications on clustering
Incremental clustering refers to the process of reducing

the circuit graph by grouping vertices. These vertices will
be part of the same cluster. The idea is to use the slack and
overlap information to calculate the impact on the resulting
period without having to recalculate the full graph.

The following theorem gives an upper bound of the period
using just the overlap information between vertices.

Theorem 1. Let G = (V, E, δmin, δmax, P, L) be a cir-
cuit with P being an optimal period for G. Let a, b ∈ V
and G′ = (V, E, δmin, δmax, P ′, L′) represent the same cir-
cuit with L′(a) = L′(b) and P ′ being an optimal period for
G′ (no constraints are imposed on L′ for the rest of vertices)
then,

a) if overlap(a, b) ≥ 0 then P ′ = P

b) if overlap(a, b) < 0 then P ≤ P ′ ≤ P + −overlap(a,b)
2

Proof. The proof is divided into two possible situations.
Constructing the best case situations:

a) overlap(a, b) ≥ 0 means that L′(a) has the freedom
to match L′(b) without violate any setup constraint. L′(a)
does not need to move beyond its interval interval(a). The
optimal period is still valid P ′ = P .

b) overlap(a, b) < 0 means that L′(a) or L′(b) will be
moved beyond its interval(a) or interval(b), generating a
negative setup slack. To have a valid system, this negative
slack will have to be compensated by increasing the period.
We only need to consider the predecessor and successor edges
with worst slack. We call these worst adjacent vertices ap,
as, bp, and bs (see Fig. 5).

To find an upper bound for the period, assume that
all latencies will remain the same except for a and b,
L′ − {a, b} = L − {a, b}. The best assignment for L′(a) and
L′(b) is the middle point of the intervals. Figure 5 shows the
initial configuration and how the L′ is updated to minimize
the impact on the period.

Assuming that both critical edges are from setup con-
straints (hold constraints are period-independent) the best
new latencies for L′(a) and L′(b) are in the middle of the
overlap (Fig. 5). The new latencies violate the setup con-

550 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

straints as less as possible.

overlap(a, b) = L(a) + S(a, ap) − L(b) + S(bs, b)

L′(a) = L′(b) =
L(a) + S(a, ap) + L(b) − S(bs, b)

2

As all slacks have to be positive for a valid system, the period
has to be increased to fix the setup constraints, i.e.

S′(a, ap) ≥ 0 ∧ S′(bs, b) ≥ 0

The negative slack is overlap(a, b)/2 for both registers:

P ′ = P − L(a) − S(a, ap)

+

„
L(a) + S(a, ap) + L(b) − S(bs, b)

2

«
+ S′(a, ap)

P ′ = P +
−overlap(a, b)

2
+ S′(a, ap)

As the slack cannot be negative, the period needs to be
increased.

P ′ = P +
−overlap(a, b)

2

The optimal period is equal to P ′ for the case were only a
and b latencies are changed. This period could be improved
by recalculating latencies for all registers. P ′ represents a
upper bound of the new circuit if a and b are grouped and
all latencies can be updated. Therefore,

P ≤ P ′ ≤ P +
−overlap(a, b)

2

5. MULTI-LEVEL CLUSTERING
A multi-level clustering approach [12, 13] has been chosen

to cluster registers. The technique combines two heuristics
to search for the optimal clustering solution. Figure 6 illus-
trates the technique. During the coarsening phase the graph
is reduced by grouping vertices until the size is small enough
to easily create the desired clusters. These clusters are prop-
agated back at each level and a second heuristic is used to
refine the cluster by moving vertices from one cluster to a
better one.

Figure 6: Multi-Level technique

A multi-level technique has shown to be very good for
large clustering problems. To avoid accumulating errors on
the slacks and the period, they are re-calculated for each
level.

5.1 Preliminary
This algorithm can be customized to use setup and hold

constraints or only setup constraints. Using hold constraints
doubles the number of edges of the constraint graph. If only

Algorithm 1: MultiLevel(G,k)

Pre : G is a register graph; k is the number of clusters
Post: G is a k- clustered register graph.
begin

if Size(G) < thresholdSize then
DistributeSlacks(G)
list ←− SortVerticesByLatency(G)
CreateSimplePartitions(G,list,k)

else
GR ←− Coarsening(G)
MultiLevel(GR,k)
ProjectClusters(G,GR)

Refine(G)
end

setup constraints are considered, the period can be calcu-
lated using Howard’s algorithm [19] for the maximum mean
cycle (MMC). If hold constraints are also considered, the
MMC is calculated as an upper bound for a binary search
changing the period on the constraint graph.

Distributing slacks is a very important step on this algo-
rithm, it gives a unique slack assignment where each vertex
is assigned at the middle point of its slack interval. The la-
tencies are also assigned in a way that the total number of
critical paths (slack=0) is minimized. The slack interval can
be interpreted as a global criticality/freedom metric for the
vertex. This latency assignment has been used before [8, 9].

A parametric shortest path algorithm [7] can be used to
calculate the period and also distribute the slacks. The al-
gorithm decreases the parameter, which is the period and
affects only setup constraints, until it appears a negative
cycle. At this point, the optimal period has been found.
This algorithm can continue by extending the parameter to
all edges and collapsing the negative cycles.

5.2 Recursiveness
Algorithm 1 shows the main structure of the recursive

function MultiLevel.
When the input graph is small, a simple solution is con-

structed using latencies after distributing slacks. Grouping
vertexes closer in latency will minimize the impact on the
period. A simple solution consist of sorting the latencies and
divide the list with equally size clusters.

When the input graph is large, the graph is reduced us-
ing the coarsening heuristic function on algorithm 2. The
reduced graph is clustered by a recursive call and clusters
are projected from the reduced graph to the original input
graph. Each vertex belongs to the same cluster as his rep-
resentative in the reduced graph.

The last step of the MultiLevel function is to refine clus-
ters using a second heuristic function. Algorithm 5 explores
if some vertices are better assigned into another cluster.

5.3 Coarsening phase
The coarsening phase is a heuristic based on Theorem 1.

The goal is to minimize the impact of grouping vertices on
the period. Distributed slacks are used because they provide
global information for the freedom of the node to change the
latency without violating timing constraints. The idea is to
keep as much slack as possible for next levels.

Algorithm 2 builds the reduced graph. This is a register
graph where each vertex represents a set of FFs and the
worst edges are kept between sets of FFs. The algorithm

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 551

Algorithm 2: Coarsening(G)

Pre : G is a register graph; W is the window size
Post: GR is a reduced register graph.
begin

DistributeSlacks(G)
list ←− SortVerticesByLatency(G)
for i ← 0 to Last(list) do

j ←− i
if list[j] is not already grouped then

j ←− FindBestMatch(list,i,W)

if i �= j then
/* if there is a match */
NewVertexMerge(GR,list [i], list [j])
mark list [j] as grouped

CreateInheritedEdges(GR,G)
return GR

end

Algorithm 3: FindBestMatch(list, i, W)

Pre : list is a list of vertices; i is the position of the reference
vertex; W is the exploration window

Post: b is the vertex position of the best match or b = i if
there is no match.

begin
b ←− i
best gain ←− −∞
for j ← i to i + W do

gain ←− CalculateGain(list [i],list [j])
if gain > best gain and list [j] is not already grouped
then

b ←− j
best gain ←− gain

return b
end

tries to reduce the graph size by half. For each vertex, a
best match is searched and merged together in the reduced
graph. To avoid the quadratic cost of finding the best match,
the search is limited by a constant number W of neighbors.
Only vertices closer in latency are visited as candidates for
merging.

Algorithm 3 finds the best grouping match for a vertex.
It consists of exploring the W closest neighbors and select
the vertex with the best gain function. This is an aggressive
version of the function. A version were best gain is initialized
to 0 gives a more conservative heuristic were only positive
gain merges are allowed. This alternative version does not
reduce as much the size of the graph and the total number
of levels increases, incrementing the computational time.

Algorithm 4 uses Theorem 1 to calculate the implications
of merging two vertices. When two vertices are merged, they
will be synchronized and they will have the same latency
(zero skew). In terms of slack after changing the latency,
the resulting graph will have twice the overlap slack (one
for each vertex) minus the slack out of the overlap that will
be lost for each vertex. This function is a greedy heuristic
because it does not take into account the slack implication
of adjacent vertices.

Figure 2 shows a situation with intervals and the unpre-
dicted consequences of grouping two vertices.

5.4 Refinement phase
The refinement algorithm 5 tries to improve the period

of the cluster solution. The coarsening phase takes inde-

Algorithm 4: CalculateGain(u, v)

Pre : u and v are vertices to be grouped
Post: gain is the value of a heuristic function that evaluates

the result of grouping u with v.
begin

/* l is the min latency a vertex can have without
breaking any constraint, r is the max latency.
*/

overlap ←− Min(u.r,v.r)− Max(u.l,v.l)
range ←− Max(u.r,v.r)− Min(u.l,v.l)
gain ←− 2 ∗ overlap − (range − overlap)
/* The resulting slack will be twice the overlap

minus the cut slack. */
return gain

end

Algorithm 5: Refinement(G)

Pre : G is a register graph with cluster assignments;
Post: The period of G might be improved by changing cluster

assignments
begin

CG ←− CreateClusterGraph(G)
DistributeSlacks(CG)
foreach v in G do

c ←− ClosestClusterInSlack(CG,v)
if c �= v.cluster then

AssignCluster(v,c)
UpdateClusterGraph(CG,G)
DistributeSlacks(CG)

end

pendent local decisions that affect the neighbors. The base
information for those decisions (the distributed slacks and
latencies) is recalculated at the beginning of each level, but
the coarsening phase does many merges. Some merges could
be a wrong decision depending on the previous merges of the
same level.

During refinement phase, the performance of the cluster
graph CG is calculated along with distributed slacks. Clus-
ter latencies are assigned to vertices in G and slacks in G are
calculated using these new skews. At this point it is possible
to detect if a vertex can be reallocated to another cluster in
case the slack can be improved by assigning a different la-
tency. After each reallocation the cluster graph CG needs
to be updated to recalculate the period and latencies.

Multi-Level architecture makes the refinement phase to
reallocate just a few vertices because the right cluster as-
signment has been driven by successive levels.

5.5 Complexity
For the analysis of complexity, the following variables are

considered: v as number of vertices, e as number of edges,
and k as number of clusters. The complexity of the algo-
rithm MultiLevel(G, k) is determined by the complexity of
each level multiplied by the number of levels (log v). The
cost of each level is dominated by the sum of costs of Dis-
tributeSlacks and Refinement. The calculation of the op-
timal period and the distribution of slacks can be done in
one run of [7] and it takes O(ve + v2 log v). The worst-case
complexity of Refinement occurs when all vertices are moved
to another cluster. This cost can be expressed in terms of
the number of clusters k as O(v(k3 + k2 log k)), simplified as
O(vk3). In practice, and given the accuracy of the heuris-

552 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

tics, the number of moved vertices during the Refinement
is small. Therefore, the complexity is typically dominated
by the distribution of slacks. The complexity of MultiLevel
is O

`
(v2 log v + v(e + k3)) log v)

´
. As the number of clus-

ters is expected to be a small constant, then the cost is
O

`
(ve + v2 log v) log v

´

6. RESULTS
This section shows how the Multi-Level algorithm per-

forms in terms of quality of the results and execution time.
The Multi-Level algorithm provides cluster solutions with a
similar quality compared to the current literature. However,
the difference with the known algorithms is the execution
time for large circuits.

To evaluate the quality of the cluster solutions, ISCAS89
benchmarks have been technology mapped with SIS [25] us-
ing the library lib2.genlib.

Table 1 shows the comparison between Multi-Level
and [5]. The number of vertices is equal to the number
of FFs plus two extra vertices, one for inputs and one for
outputs. M is the delay of the longest combinational path,
which is upper bound for the optimal period. P∞ is a lower
bound of the period and is the optimum period with as
many clusters as vertices. M/P∞ gives an idea of the rel-
ative period improvement that can be achieved with useful
clock skew. Solutions for 2 to 4 clusters have been calcu-
lated, showing a relative period compared to the optimum
“Cluster Period /P∞”.

The average values of ISCAS benchmarks show how the
period can be improved by using clock skew. The period
can be improved compared to the maximum delay M/P∞

by 1.14 (14%). For 2, 3, and 4 clusters, the period can
be improved to 1.06, 1.02, and 1.02 respectively, showing
how with a small number of clusters the period approaches
closer to the optimal solution of P∞. The cluster period
degradation compared to [5] is about 1%. Notice that some
circuits can not be improved like s1196, s510, s641, s713,
and s832. Some other circuits can significantly be improved
like s382, s400, s444, and s526.

To evaluate the speed of the algorithm several large cir-
cuits have been synthesized using commercial tools: three
versions of OpenSparc T1 [26], the difference between
them is the target period used for synthesis and placement
(1, 2, 3ns) and an industrial circuit. The previous 3 largest
ISCAS (Table 1) are also included.

Table 2 shows CPU times for these circuits and Table 3
shows the timing results from [5] for industrial large circuits.
Figure 7 shows a plot comparing multi-level algorithm versus
the SAT based algorithm [5]. Notice that the CPU time is
in logarithmic scale.

Tables 2,3, and Figure 7 show the difference in timing
complexity. D1,D2, D3, and D8 are taking much more time
than the industrial and OpenSparc circuits of Multi-Level.
The curve defined by the examples show how Multi-Level
runs at two orders of magnitude less time and behaves more
scalable for larger circuits.

7. CONCLUSIONS
A new clustering approach for clock skew optimization has

been presented. The main goal of the approach is to provide
an efficient solution with affordable computational cost.

The combination of multi-level clustering with sound

 1

 100

 500
 1000

 10000

 50000
 100000

 0 2000 4000 6000 8000 10000 12000 14000 16000

C
P

U
(s

)

#FF

Multi-Level

SAT based

Figure 7: CPU time vs number of FFs.

heuristics for skew assignment has resulted in a scalable and
valuable approach that can be used in large designs. The ap-
proach is applicable to either synchronous or asynchronous
designs.

In the future, it would be interesting to use the infor-
mation about the physical location of the sequential ele-
ments. Clustering elements that are physically close would
contribute to reduce the area and power of the clock trees.

Acknowledgements

This research has been funded by a project CICYT
TIN2007-66523, FPI grant BES-2008-004039 from the Span-
ish Ministry of Science and Innovation, and a grant from
Elastix Corporation.

We would like to thank K.Ravindran and A.Kuehlmann
for providing the benchmark suite used in [5].

8. REFERENCES
[1] J. Fishburn, “Clock skew optimization,” IEEE Trans.

Comput., vol. 39, no. 7, pp. 945–951, 1990.

[2] N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli,
“Minimum padding to satisfy short path constraints,” in
Proc. IEEE/ACM International Conference on
Computer-Aided Design ICCAD-93. Digest of Technical
Papers, 1993, pp. 156–161.

[3] S.-H. Huang, C.-H. Cheng, C.-M. Chang, and Y.-T. Nieh,
“Clock period minimization with minimum delay insertion,”
in Proc. 44th ACM/IEEE Design Automation Conference
DAC ’07, 2007, pp. 970–975.

[4] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou,
“Desynchronization: Synthesis of asynchronous circuits
from synchronous specifications,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 25,
no. 10, pp. 1904–1921, Oct. 2006.

[5] K. Ravindran, A. Kuehlmann, and E. Sentovich,
“Multi-domain clock skew scheduling,” in Proc.
ICCAD-2003 Computer Aided Design International
Conference on, 2003, pp. 801–808.

[6] R. Deokar and S. Sapatnekar, “A graph-theoretic approach
to clock skew optimization,” in Proc. IEEE International
Symposium on Circuits and Systems ISCAS ’94, vol. 1,
1994, pp. 407–410 vol.1.

[7] N. E. Young, R. E. Tarjan, and J. B. Orlin, “Faster
parametric shortest path and minimum-balance
algorithms,” Networks, vol. 21, pp. 205–221, 1991.

[8] C. Albrecht, B. Korte, J. Schietke, and J. Vygen, “Cycle
time and slack optimization for VLSI-chips,” in Proc.
Digest of Technical Papers Computer-Aided Design 1999
IEEE/ACM International Conference on, 1999, pp.
232–238.

[9] K. Wang, H. Fang, H. Xu, and X. Cheng, “A fast
incremental clock skew scheduling algorithm for slack
optimization,” in Proc. Asia and South Pacific Design
Automation Conference ASPDAC 2008, 2008, pp. 492–497.

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 553

Table 1: ISCAS89 benchmark with setup and hold constraints

Circuit
Multi-Level algorithm Multi-Domain [5]
Cluster Period /P∞ Cluster Period /P∞

name #V #E M P∞ M/P∞ 2cls 3cls 4cls 2cls 3cls 4cls

s1196 19 365 22.28 22.28 1.00 1 1 1 1 1 1
s1238 19 365 26.15 24.33 1.07 1.03 1.03 1.01 1 1 1
s1423 76 2235 79.04 73.13 1.08 1.05 1.04 1.04 1.03 1.01 1
s1488 8 266 23.58 23.18 1.02 1 1 1 1 1 1
s1494 8 266 24.72 23.85 1.04 1 1 1 1 1 1
s298 16 86 13.06 10.79 1.21 1.07 1.07 1.05 1.05 1 1
s344 17 121 15.57 13.14 1.18 1.09 1 1 1.09 1 1
s349 17 121 15.89 13.51 1.18 1.09 1 1 1.09 1.01 1
s35932 1442 6128 289.48 286.32 1.01 1.01 1.01 1.01 1 1 1
s382 23 175 14.07 9.63 1.46 1.20 1.03 1.03 1.20 1.01 1
s38417 1465 31980 87.77 86.19 1.02 1 1 1 1 1 1
s38584 1451 17900 287.78 286.62 1.01 1 1 1 1 1 1
s386 8 129 10.56 9.60 1.10 1.04 1 1 1.10 1 1
s400 23 175 14.6 9.89 1.48 1.18 1.03 1.03 1.17 1.03 1.02
s444 23 175 13.92 8.10 1.72 1.39 1.18 1.15 1.34 1.18 1.10
s510 8 103 14.3 14.29 1.00 1 1 1 1 1 1
s526 23 167 13.48 11.22 1.20 1.07 1.07 1.05 1.05 1 1
s641 21 486 29.99 29.51 1.02 1 1 1 1 1 1
s713 21 486 30.59 30.58 1.00 1 1 1 1 1 1
s832 7 213 16.23 16.22 1.00 1 1 1 1 1 1

average 1.14 1.06 1.02 1.02 1.05 1.01 1.01

Table 2: Clustering multi-level execution time for
large circuits

name #V #E P∞ P4/P∞ CPU(s)

OSparc 3ns 15849 480324 2.40 1.15 260
OSparc 2ns 15849 480324 1.97 1.01 259
OSparc 1ns 15849 480324 1.45 1.18 240
industrial 7755 267637 3.71 1.12 60
s35932 1442 6128 286.42 1.01 1
s38584 1451 17900 286.62 1.00 1
s38417 1465 31980 86.19 1.00 2

Table 3: Clustering execution time of industrial cir-
cuits by [5]

name #V #E P∞ P4/P∞ CPU(s)

D1 2245 46048 2.79 1.09 12000
D2 2921 250737 15.26 1.04 72000
D3 6316 21006 4.41 1.07 27000
D4 2694 16518 3.69 1.00 1
D5 3065 18030 2.95 1.15 120
D6 574 2294 4.55 1.00 4
D7 852 47370 16.34 1.02 600
D8 2368 9181 1.74 1.05 1800

[10] G. Hazari, M. Desai, A. Gupta, and S. Chakraborty, “A
novel technique towards eliminating the global clock in
VLSI circuits,” in Proc. 17th International Conference on
VLSI Design, 2004, pp. 565–570.

[11] N. Andrikos, L. Lavagno, D. Pandini, and C. Sotiriou, “A
fully-automated desynchronization flow for synchronous
circuits,” in Proc. 44th ACM/IEEE Design Automation
Conference DAC ’07, 4–8 June 2007, pp. 982–985.

[12] B. Hendrickson and R. Leland, “A multi-level algorithm for
partitioning graphs,” in Supercomputing, 1995. Proceedings
of the IEEE/ACM SC95 Conference, 1995, pp. 28–28.

[13] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,
“Multilevel hypergraph partitioning: applications in VLSI
domain,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 7, no. 1, pp. 69–79, 1999.

[14] R. Bellman, “On a routing problem,” Quarterly of Applied
Mathematics, vol. 16(1), pp. 87–90, 1956.

[15] T. Yoda, A. Takahashi, and Y. Kajitani, “Clock period
minimization of semi-synchronous circuits by gate-level

delay insertion,” in Proc. Asia and South Pacific Design
Automation Conference the ASP-DAC ’99, 1999, pp.
125–128 vol.1.

[16] R. Karp, “A characterization of the minimum cycle mean in
a digraph,” Discrete Mathematics, vol. 23, no. 3, pp.
309–311, 1978.

[17] E. Lawler, Combinatorial optimization. Holt, Rinehart
and Winston New York, 1976.

[18] S. Burns, “Performance analysis and optimization of
asynchronous circuits,” Ph.D. dissertation, California
Institute of Technology, 1991.

[19] J. Cochet-Terrasson, G. Cohen, and S. Gaubert, “Numerical
computation of spectral elements in max-plus algebra,”
IFAC Conference on System Structure and Control, 1998.

[20] A. Dasdan, S. Irani, and R. Gupta, “Efficient algorithms for
optimum cycle mean and optimum cost to time ratio
problems,” in Proc. 36th Design Automation Conference,
1999, pp. 37–42.

[21] D. Joy and M. Ciesielski, “Clock period minimization with
wave pipelining,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 12,
no. 4, pp. 461–472, 1993.

[22] K. Sakallah, T. Mudge, and O. Olukotun, “Checkt c and
mint c: timing verification andoptimal clocking of
synchronous digital circuits,” Computer-Aided Design,
1990. ICCAD-90. Digest of Technical Papers., 1990 IEEE
International Conference on, pp. 552–555, 1990.

[23] N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli,
“Graph algorithms for clock schedule optimization,”
Proceedings of the 1992 IEEE/ACM international
conference on Computer-aided design, pp. 132–136, 1992.

[24] T. Szymanski and N. Shenoy, “Verifying clock schedules,”
Proceedings of the 1992 IEEE/ACM international
conference on Computer-aided design, pp. 124–131, 1992.

[25] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton,
and A. Sangiovanni-Vincentelli, “Sequential circuit design
using synthesis and optimization,” in Proc. IEEE 1992
International Conference on Computer Design: VLSI in
Computers and Processors ICCD ’92, 1992, pp. 328–333.

[26] [Online]. Available: http://www.opensparc.net/

554 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Times-Italic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

