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Abstract—The paper presents a first effort at exploring a novel
area in the domain of asynchronous controllers: specification
mining. Rather than synthesizing circuits from specifications,
we aim at doing reverse engineering, i.e., discovering safe
specifications from the circuits that preserve a set of pre-defined
behavioral properties (e.g., hazard freeness). The specifications
are discovered without any previous knowledge of the behavior of
the circuit environment. This area may open new opportunities
for re-synthesis and verification of asynchronous controllers.
The effectiveness of the proposed approach is demonstrated by
mining concurrent specifications (Signal Transition Graphs) from
multiple implementations of 4-phase handshake controllers and
some controllers with choice.

I. INTRODUCTION

The design automation efforts in the area of asynchronous

circuits have been mostly focused on two problems: synthesis

and formal verification. The synthesis problem consists of

obtaining a circuit from a specification, e.g., a gate netlist from

a Signal Transition Graph (STG). The verification problem

consists of checking the conformance of a circuit with regard

to a specification.

In this paper we study a new problem for asynchronous

circuits: Specification Mining. The problem consists of discov-

ering formal specifications from implementations [1]. Specifi-

cation mining is becoming popular in the software engineering

community as a machine-learning approach to infer properties

from the observable behavior of the systems [15]. One example

is the work presented in [12] in which safe and permissive

interfaces (sequences of library calls) are synthesized for

software systems in such a way that the interfaces do not

violate the internal invariants of the system. Another example

is [16] where specifications represented as Message Sequence

Graphs are synthesized from the traces observed from the

execution of a concurrent system. In [17], a method is pre-

sented which automatically infers high-level descriptions from

circuits, representing them as a combination of instances of

abstract functional blocks from a predetermined library.

This paper tackles the problem of discovering safe interfaces

for asynchronous controllers without any previous knowledge

of their original specifications. The problem can be illustrated

using the example in Fig. 1(a). The circuit implements a

handshake controller in which only the initial state is known

(all handshake signals at 0, RST=1). The reset signal (RST)
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Fig. 1. Specification mining of a handshake controller.

is assumed to be silent during the normal operation of the

circuit and the cross-coupled NOR gates are assumed to have

an atomic behavior (negligible internal delay). We pose the

following challenge:

Can we discover a specification of the interface
that guarantees a speed-independent behavior of the
circuit?

The answer to this question is not unique. Several interfaces

could exercise the circuit without producing any hazard. In

particular, an empty interface (no events) would guarantee

such behavior. Our interest is to find maximally concurrent

interfaces that honor the desired properties of the circuit.

Fig. 1(b) shows one possible safe interface. This interface

has been discovered automatically by the approach proposed

in this paper and coincides with the L440R2044 4-phase

controller (according to the nomenclature in [4]).

Specification mining can define not only properties that

must be preserved in the circuit, but also properties of the

interface. For example, it is possible to enforce that the

interface is choice-free, i.e., no conflicts in the environment.

Specification mining opens a new research direction in the

area of asynchronous controllers that could potentially have

applications in different domains, e.g.,

• Reverse engineering, to discover the behavior of some

intricate controllers for which no specification is known.

• Re-synthesis of asynchronous controllers, since the dis-

covered interfaces can be used as specifications for syn-

thesis tools that can produce higher-quality solutions and

substitute the existing ones [13].

• Compositional verification, by substituting some compo-

nents of a large circuit by the mined specifications. In

this way, an assume/guarantee scheme could be applied

to verify the circuit by using the mined interfaces while

hiding the internal signals of the components [6], [19].
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Fig. 2. Simple circuit for specification mining.

The main goal of the paper is to demonstrate that specifica-

tion mining is feasible for a variety of controllers. The appli-

cation of this paradigm to specific problems in asynchronous

design and verification is out of the scope of this work.

II. OVERVIEW

This section gives an informal overview of the approach

proposed for specification mining, using the example shown in

Fig 2. The goal is to obtain a specification for the environment

of the circuit shown in the Fig. 2(a) in such a way that certain

behavioral properties are guaranteed.

In this particular case, we would like the circuit to be speed-

independent (SI) and have a delay-insensitive (DI) interface.

Speed-independence is guaranteed when the circuit is output
persistent (only input signals can disable each other). A circuit

has a DI interface if its behavior does not depend on the arrival

order of the inputs.

The labeled transition system (LTS) shown in Fig. 2(b)

shows all possible behaviors of the circuit under a free envi-

ronment, i.e., all input signals can switch at any time instant.

Every state corresponds to a binary vector that represents the

value of the signals at that state. We will identify each state

by its binary vector 〈abxy〉.
The labels x+ and x− represent rising and falling transitions

of signal x. The double arcs
a∗←→ represent alternating a+

and a− transitions between a pair of states and are used to

model the switching of input signals in a free environment. The

transitions of x and y are depicted in the horizontal direction,

whereas the transitions of a and b are depicted in the vertical

and diagonal directions, respectively. For the sake of clarity,

not all the labels are shown in the picture, although they can

be easily deduced from the depicted information.

We will assume that the initial (reset) state is also known.

In the example, the initial state is 〈0000〉 (unfilled circle).

A free environment leads to many circuit malfunctions (haz-

ards). For example, transition 〈0010〉 x−−→ 〈0000〉 produces a

violation of output persistence that may be manifested as a

glitch in signal y, since y+ is enabled in 〈0010〉 and disabled

in 〈0000〉.
The goal of specification mining is to discover one or

several specifications for the environment that:

• have good properties, e.g., guarantee a hazard-free be-

havior of the circuit, and

• are general enough to cover a large set of behaviors.

As an example, the cyclic behavior (b+y+b−y−)∗ is hazard

free. However, we might be unsatisfied by the fact that signals

a and x are not exercised.

Fig. 2(c) depicts an LTS with output persistence, i.e., no

output transition can be disabled by another transition. The

largest LTS fulfilling this property can be uniquely obtained

from the one in Fig. 2(b) by deleting the transitions that

produce violations of output persistence.

Still, Fig. 2(c) does not model a DI interface1. For example,

the transitions a− and b+ are enabled in state 〈1011〉. The

arrival of a− (leading to 〈0011〉) disables b+, whereas the

arrival of b+ (leading to 〈1111〉) does not disable a−.

Unfortunately, there is no unique solution when trying to

find a subset of the LTS that fulfills the DI interfacing condi-

tions. Given the fact that the circuit cannot be modified, the

only chances are reduced to constraining the environment by

deleting some input transitions. In the previous example, a DI

interface can be obtained in different ways, e.g., by removing

either transition a− or b+ from state 〈1011〉. Other deletions

are also required in other parts of the LTS to guarantee a

complete DI interface.

Fig. 2(d) depicts an LTS that models an SI circuit with a DI

interface. An STG modeling the same behavior is shown in

Fig. 2(e). Obtaining this specification is the most challenging

problem tackled in this paper. We will show how the problem

can be modeled with a Boolean formula and solved using SAT

or Integer Linear Programming.

The main goal of this paper is to propose a methodology

to obtain specifications from a circuit that fulfill a set of

properties defined a priori.

III. BACKGROUND

A. Labeled Transition Systems and Circuits

A Labeled Transition System is a structure (S,L, T, s0)
where S is a finite set of states, L is a finite alphabet of

labels, T is a subset of S × L × S and s0 ∈ S is the initial

state. We will also denote by si
a→ sj the transition (si, a, sj).

A circuit C is a structure C = (X,G, s0) where :

1DI interfacing will be formally defined in Section III-E.
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• X = I ∪ O ∪ Z is the set of signals, with I , O and

Z being pairwise disjoint sets that represent the input,

output and internal signals of the circuit, respectively.

• G : (O ∪ Z) → f(X) is a set of gates that assigns a

Boolean function to each non-input signal of the circuit.

We denote by fxi
(X) the Boolean function assigned to

signal xi.

• s0 is a binary vector representing the value of the signals

at the initial state.

Given a circuit C = (X,G, s0), we define

LTS(C) = (S,X, T, s0) as the LTS associated to C and

generated by a free environment. Formally:

• S = {0, 1}n, where n = |X|.
• T = Tenv ∪ Tg , where Tenv and Tg are the transitions

produced by the environment and the circuit, respectively

(defined later).

Note that the alphabet of labels of LTS(C) is the set of

signals of the circuit and the initial state coincides with the

initial state of the circuit. When convenient, we will distinguish

by x+ and x− the rising and falling transitions of signal x.

S is the set binary vectors representing all possible states of

the signals. Given a state s = (x1, . . . , xn), we denote by s(xi)
the value of xi in s. Given a state s = (x1, . . . , xi, . . . , xn), we

denote by s¬xi = (x1, . . . ,¬xi, . . . , xn) the state in which the

values of the signals are identical to the ones of s except for xi,

that has the complementary value. Note that if s1
x→ s2 ∈ T ,

then s2 = s¬x1 and s1 = s¬x2 .

The set of transitions Tenv in a free-environment circuit are

defined as follows:

Tenv = {(s, x, s¬x) | s ∈ S ∧ x ∈ I},
representing the fact that any input signal can switch at any

state. The set of transitions Tg produced by the circuit is

defined as follows:

Tg = {(s, x, s¬x) | s ∈ S ∧ x ∈ (O ∪ Z) ∧ s(x) 	= fx(s)},
representing all transitions of non-input signals produced by

the logic gates when the value at the output of the gate is

different from the function computed by the gate.

It is important to realize that the LTS associated to a circuit

is always deterministic since every transition exiting a state

can only lead to a unique state.

B. Circuits with constrained environment

The main purpose of this paper is to find a specification of

the environment of the circuit that fulfills certain properties. In

other words, finding a subset of transitions of Tenv that prevent

the circuit from reaching states in which the desired properties

are violated.

Given a circuit C, its free-environment

LTS(C) = (S,X, T, s0) and a subset of transitions E ⊆ Tenv

representing a constrained environment, we denote by

LTS(C,E) the LTS obtained from LTS(C) after deleting the

transitions in Tenv \ E. Formally, LTS(C,E) = (S′, X, T ′, s0)
is the maximal LTS such that:

• S′ ⊆ S is the subset of reachable states from s0.

• T ′ is the maximal set of reachable transitions from s0
such that T ′ ⊆ (E ∪ Tg).

LTS(C,E) can be computed from LTS(C) by deleting the

transitions in Tenv \ E and iteratively deleting unreachable

states and transitions until a greatest fixed point is reached.

C. Properties of an LTS

Let LTS(C,E) = (S,X, T, s0) be the LTS associated to a

circuit C with environment E. We say that x is enabled in

state s if s
x→ s¬x ∈ T . We say that x disables y in state s

if s
x→ s¬x ∈ T , y is enabled in s and not enabled in s¬x.

Finally, we say that x triggers y in state s if s¬x x→ s ∈ T , y
is not enabled in s¬x and enabled in s.

Definition. In an LTS a signal x is persistent if no signal

y 	= x disables it. If a signal x disables another signal y in

any state s, then there is a conflict between x and y.

Example. Let us consider the LTS in Fig. 2(b), where the

initial state is s0 = 〈0000〉 (unfilled circle). Let us consider

the state s1 = 〈1000〉 and the transition s0
a+

→ s1. We can say

that a+ triggers x+ in s1, since x+ is not enabled in s0 but

it is in s1. Let us now consider the transition s1
a−→ s0. We

can see that a− disables x+ in s1 since x+ is enabled in s1
but not in s0. Notice how Fig. 2(c) and (d) show LTSs where

both x and y are persistent signals while a, b are in conflict.

D. Speed-independence

In this paper, we deal with circuits with unbounded gate

delays, i.e., any gate of the circuit can switch at any time as

long as it is enabled. A circuit whose behavior does not depend

on the delay of its gates is called speed-independent.

Proposition [9]. Given a circuit C and an environment E, C
under E is speed-independent iif in LTS(C,E) all pairs of

signals x, y are in conflict only if both x, y are input signals.

This property implies every non-input signal is persistent.

E. Delay insensitive interfacing

Another desired property is that the behavior of the circuit

is insensitive to the arrival order of the input transitions. This

property is called delay-insensitive (DI) interfacing and is

formally defined as follows.

Proposition [20]. The LTS associated to a circuit satisfies the

DI interfacing conditions if no input transition triggers another

input transition.

Rather than dealing with pure delay insensitivity, DI inter-

facing assumes that wire delays can be kept under control

within the circuit and only tolerance to delay variability at the

interface is required.

F. Multi-environment interfaces

In some scenarios for re-synthesis and compositional verifi-

cation, a system may have been split into different components

(circuits). From the point of view of the circuit of interest,

the surrounding components can be considered as a set of
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TABLE I
ALLOWED RELATIONS IN A CIRCUIT WITH MULTIPLE ENVIRONMENTS

x y x triggers y x disables y
Input Input Violates DI Only if x, y ∈ Ei

Output Output Allowed Violates SI
Input Output Allowed Violates SI

Output Input Only if x, y ∈ Ei Violates SI

independent environments, E1 . . . En, that interact with the

circuit, as shown in the example of Fig. 3.

When mining specifications for a circuit, we might want to

consider multi-environmental scenarios where independence

between different environments is to be preserved. Informally,

this means that, given two environments Ei and Ej , signals

from Ei cannot directly trigger or disable inputs from Ej .

Such a causality relation would imply a connection between

Ei, Ej outside of the circuit of interest, making Ei and Ej

dependent from each other. However, an input from Ei may

excite an output in a different environment Ej , via the circuit.

Definition. Let us consider the LTS (S,X, T, s0) associated

to a circuit. Let the set of signals of the circuit be

X = X1 ∪ . . . ∪Xn ∪ Z

where Z is the set of internal signals and {X1, . . . , Xn} is a

partition of the set of input/output signals (I∪O), with each Xi

corresponding to a different environment. The LTS preserves

the multi-environment interface for partition {X1, . . . , Xn} if:

∀a ∈ Xi, b ∈ Xj ∩ I, i 	= j : a cannot trigger or disable b.

In the example of Fig. 3, the preservation of the multi-

environment interface would not allow {x, a} to trigger or

disable {b, c}, {y, b} to trigger/disable {a, c} and {z, c} to

trigger/disable {a, b}.
Note that, by this definition, a circuit where each environ-

ment has one input only, i.e. ∀Ei, |Ei ∩ I| ≤ 1, any LTS

preserving the multi-environment interface would be input-

persistent, as no signal would be allowed to disable an input.

Table I summarizes the previous properties, showing the

allowed causality relations between two different signals x, y
depending on the type (input or output) of each signal. For

example, x cannot trigger y if both x and y are inputs, since

that would violate the delay-insensitive interfacing property.

However, x may disable y, but only if both x, y are in the

same environment Ei.

IV. SPECIFICATION MINING

This section describes the main contribution of this work:

the process used to mine a specification from a circuit C,

C

Circuit LTS(C)

environment)
(under free Miner ...SAT model

Snippet

Snippet

1

n

Fig. 4. Overview of the specification mining flow.

while guaranteeing a set of properties for both the circuit

and the interface. The process works by starting from a free

environment E, and then constraining this environment until

both the environment and the circuit under such environment

satisfy all properties.

Note, however, that for certain properties there may be

more than one specification satisfying all the properties. The

environments in each specification may only exercise a small

subset of the full circuit behavior. In these situations, our

flow will discover each of these specifications, which we

call snippets. The original specification of the circuit will

be contained in one of these snippets. Our mining flow

will give priority to the most general snippet, containing the

environment exercising most behavior from the circuit. An

example of this will be discussed in Section VI.

A summary of the proposed mining flow can be seen in

Fig. 4. The first step constructs LTS(C) containing all the

behaviors of the circuit under a free environment, starting

from the circuit netlist. For the circuit in Fig. 2, this would

correspond to the LTS in (b).

The desired properties for the mined specifications are then

specified into a set of constraints on top of this LTS. In this

section, we will specify these constraints as satisfiability (SAT)

formulae. Every truth assignment of the formula represents a

valid environment under which circuit C satisfies all the de-

sired properties, and from which a snippet may be synthesized.

The most interesting snippets can be then synthesized into

different types of specifications, such as Signal Transition

Graphs (STGs). For most circuits, only the snippet containing

the most general behavior will be of interest. However, the

secondary snippets may provide an insight into alternative

behaviors of the system.

The following sections describe this flow in more detail,

including examples that show how the most common circuit

properties are modeled.

A. Satisfiability model for behavioral properties

Many of the most interesting circuit properties imply con-

straints on the causality/concurrency/choice relations between

events of the LTS. Table I shows the causality constraints to

guarantee speed independence, delay insensitive interface and

multi-environment properties.

In this section, we show how different circuit and environ-

ment properties can be mapped into constraints between dif-

ferent signals, and how these constraints can be implemented

on a SAT model.

Let LTS(C) = (S,X, T, s0) be the LTS associated to

a circuit C constructed using the method defined in the

previous section. The SAT model extracts a subset of LTS(C),
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LTS(C,E), satisfying the required properties. In our formu-

lation, for every transition ti ∈ T , we define a variable with

the same name indicating whether ti is selected, i.e. whether

ti ∈ LTS(C,E). Definitions of the most typical constraints are

as follows:

1) x cannot trigger y: For every pair of states s1, s2 ∈ S,

with a transition t2 = s1
x→ s2, x triggers y if y is enabled in

s2 but not in s1. i.e., when t3 = s2
y→ exists but t1 = s1

y→
does not. This pattern is illustrated in Fig. 5(b).

To guarantee this property, if both t2 and t3 are selected,

then t1 must exist and be selected:

t2 ∧ t3 =⇒ t1.

In case t1 does not exist in LTS(C), then the previous

constraint must be rewritten accordingly, forbidding selection

of both t2 and t3:

¬(t2 ∧ t3).

These constraints may be used for example to enforce the

delay-insensitive interfacing property when applied to pairs of

inputs signals, as shown in Table I.

2) x cannot disable y (persistence of y): For every pair of

states s1, s2 ∈ S, with a transition t2 = s1
x→ s2, x disables

y if y is enabled in s1 but not in s2. This is similar to the

trigger definition above, except that the roles of t1 and t3 are

reversed: x disables y when t1 = s1
y→ exists but t3 = s2

y→
does not, as seen in Fig. 5(c).

Thus, to satisfy the property, selecting t1 and t2 implies t3
must exist and be selected:

t1 ∧ t2 =⇒ t3.

Similar to the previous constraint, this constraint can be

simplified if any of t1, t2, t3 is not present in LTS(C).
3) Preservation of non-input signals: The SAT model

searches for a subset LTS(C,E) representing the behavior of

the circuit under a constrained environment E. For this reason,

the model should only remove transitions of input signals,

and potentially all transitions from unreachable states under

environment E.

However, it must always select all non-input transitions

from a reachable state. Thus, for every state s, the following

constraint must be added, which forces the selection of non-

input transitions if any incoming transition is selected:

∀s ∈ S :
∨

ti=s1
x→s∈T

ti =⇒
∧

tj=s
y→s2∈T

y �∈I

tj .

4) Strong connectedness: This property ensures that the

initial state is reachable from every other reachable state. There

are several known methods to require conectedness with SAT

or ILP models [7]. To identify the initial state, we assume that

the values of the output signals are known at reset time, and

that it is stable, i.e. no output transitions are enabled.

5) Additional constraints: Many controllers impose addi-

tional properties on the environment that can be modeled

as constraints between different inputs. For example, in Sec-

tion VII we show a circuit with a mutual exclusion requirement

between two different input signals, i.e. the two signals cannot

be enabled simultaneously.

These properties can be enforced by removing states from

LTS(C). For example, guaranteeing mutual exclusion between

two input signals x, y is equivalent to removing every state s
where s(x) ∨ s(y). In the proposed formulation, this can be

achieved by prohibiting the selection of any ti incident to s.

B. Algorithm for specification mining

Algorithm 1 Extracting LTS snippets

1: Input: Circuit C and a set of desirable properties P
2: Output: LTS1, . . . ,LTSn under which C satisfies P
3: L← LTS(C) � construct full LTS from C
4: R← T (LTS(C)) � transitions not yet in any snippet
5: i← 1
6: while |R| > 0 do
7: LTSi ← SOLVE(LTS(C), P , maximize |ti ∈ R|)
8: � extract subset of LTS(C) satisfying P
9: if LTSi = ∅ break

10: R← R \ T (LTSi) � subtract from remaining transitions
11: i← i+ 1
12: return LTS1, . . . ,LTSn

Algorithm 1 describes the procedure to mine specifications

using the SAT model described in the previous section. At

the start of the procedure, the complete LTS(C) is built. The

algorithm iterates, generating a new snippet on each cycle,

until all transitions from LTS(C) appear on at least one snippet

or it is impossible to create new ones without violating P .

To account for the former, R contains all transitions not yet

included in any LTS1, . . . ,LTSi.

Procedure SOLVE uses the SAT model to find the subset

of LTS(C) satisfying P that contains the largest subset of

transitions from R. Thus, every iteration discovers a snippet

containing the largest behavior from C not yet covered in any

previous snippet. Different strategies may be used to solve the

SAT model with the cost function, such as MaxSAT or ILP.

V. PROPERTIES OF THE SPECIFICATION MODEL

In the previous section we have shown a method to mine

snippets in which both the circuit and the environment satisfy

a set of properties. These snippets are provided in the form

of LTSs. However, it is often desirable to use more succinct

representations, such as Signal Transition Graphs (STGs). An

STG may be obtained from an LTS using Petri net synthesis

tools such as petrify [8].
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This section shows that, by adding some constraints during

the mining process, properties of the specification model can

be enforced. For example, structural Petri net properties, such

as marked graphs or free-choiceness, can be modeled in this

way. These extra properties may contribute to enhance the

visualization and analysis of the specification models.

This section is focused on structural properties of Petri nets,

generating two different types of STGs: marked graphs and

free choice.

A. Marked Graphs

A marked graph is a Petri net in which all places have

exactly one predecessor and one successor transition [18].

Forward and backwards persistence are necessary conditions

for a strongly-connected LTS to model the space state of

a marked graph [3]. Thus, to obtain a marked graph, it

is necessary to extend the constraints of the mining flow

to prevent conflicts between all pairs of signals. Backwards

persistence can be guaranteed using a similar set of constraints.

B. Free-choiceness

A Petri net is free choice is for any two transitions x and y
that share a predecessor place p, then x and y have only one

predecessor [18]. While there is a choice in p between x and

y, we say the choice is free because on any marking where x
can be fired, y can be fired too, and vice versa.

In a LTS, this is equivalent to guaranteeing that if x, y are

in conflict, then x must be enabled in all the states where

y is enabled, and y must be enabled in all states where x
is. We model this by introducing a new Boolean variable,

choicex,y , which indicates whether the snippet contains a

conflict between x and y, and a new set of constraints which

relate these variables to the relationship between x and y.

The first set of constraints removes all conflicts between

x, y (identical to the constraint described in section IV-A2),

unless choicex,y is asserted:

(t1 ∧ t2 =⇒ t3) ∨ choicex,y.

In addition, for every state s where either x or y is enabled,

a constraint is added forcing both to be enabled or disabled if

choicex,y is asserted. With t1 = s
x→ s1 and t2 = s

y→ s2:

choicex,y =⇒ t1 = t2.

As in previous constraints, the formula is simplified appropri-

ately if there is no t1 or t2 in s. For example, if there is a state

s where t1 exists but t2 does not, the constraint becomes:

choicex,y =⇒ ¬t1.
VI. CASE STUDY: MINING SPECIFICATIONS FOR 4-PHASE

LATCH CONTROLLERS

The 4-phase latch controller is at the core of the data paths

of many asynchronous designs. A 4-phase latch controller is

composed of 4 handshake signals controlling 2 channels: left

(lr, la) and right (rr, ra), as shown in the example of Fig. 1.

In [4], the design space of 4-phase controllers is studied.

While these designs all have the same external interface, they

la

lr rr

ra
RST

(a) Circuit

lr+

la+

lr−

la−

rr−

ra−

rr+

ra+

(b) Mined specification

Fig. 6. Example of circuit and mined specification for L440oR2264.

vary on the level of concurrency allowed by the protocol. Each

variation cuts away certain states of the controller.

Every variation is given a name depending on the number

of states that are removed. L000oR0000 is the version with

all states, and thus, the most concurrent of all variations. The

circuit in Fig. 1 represents L440oR2044, which removes 18

states, and results in a more constrained protocol. L440oR2264
removes an additional 4 states, resulting in a slightly simpler

circuit also shown in Fig. 6

In this case study, we will focus on the 137 controllers

presented in [4] which are speed independent and deadlock-

free. In the experiment we will synthesize a circuit for each

one of these controllers, and then rediscover the specifications

from each one using the proposed mining flow.

A. Environment setup

The input to our mining flow is a netlist. To generate circuits

for each of the 137 controllers, we used petrify [8] to synthe-

size gate netlists from the specifications. After generating the

LTS with free environment from the circuit, we transformed

the SAT models into ILP, and used Gurobi [11] to mine the

most general specification for each controller.

We configured our mining flow to ensure the following

circuit and environment properties:

• Speed independence and delay-insensitive interfacing.

• Strong connectedness.

• Multi-environment interface to ensure the independence

between the left and right channels. This will be further

discussed in Section VI-C.

No other information was given to the miner.

B. Results

The 137 specifications were mined from the circuits in 177

seconds (Intel Core i5-2520M). Each run of the ILP model

took less than 1 second on average, with the rest of time spent

in generating the model and preparing the environment.

The size of the ILP model is O(|T |2) where T is the set

of transitions in the LTS of the circuit. However, our imple-

mentation performs a preprocessing in which many redundant

constraints are removed before generating the ILP model. The

most concurrent circuit, with 256 states, also resulted in the

largest model, with 267 variables and 996 constraints.

For each one of the 137 circuits, the first snippet obtained

from the mining flow was always bisimilar to the original

specification of the controller.
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TABLE II
CIRCUIT IMPLEMENTATIONS ALLOWING ADDITIONAL BEHAVIOR AFTER

REMOVING CONSTRAINTS

Snippets Circuits
Identical behavior 1 25

Additional behavior
1 59
2 48
3 5

lr+ rr-

la+

lr-

la-

ra-

rr+

ra+

(a) Combined into single STG.

lr+

la+

lr−

la−

rr−

ra−

rr+

ra+

(b) First marked graph.

lr+

la+

lr−

la−

rr−

ra−

rr+

ra+

(c) Second marked graph.

Fig. 7. Mined specification for L440oR2044.

C. Relaxing constraints to discover additional behavior

We also experimented our mining flow by discovering

additional behaviors when relaxing some of the environmental

constraints imposed in previous section. In particular, we

allowed the left and right environments to be dependent from

each other. In practice this means that the output of one chan-

nel can trigger the input of the other channel (i.e., la can trigger

ra and rr can trigger lr). However, we still preserved the speed-

independence and delay-insensitive interfacing properties.

With this reduced set of constraints, our tool discovered

more general specifications for 113 out the 137 controllers.

All the specifications still include the original specifications. In

addition, out of the 113 specifications with additional behavior,

53 required a minimum of two snippets. That is, no single

snippet was able to model the entire behavior of these 53

snippets without violating DI or SI. Table II shows the total

numbers of circuits that exhibited additional behavior and/or

required more than one snippet.

An example of a protocol where additional behavior is

discovered is L440oR2044, whose original specification and

circuit are shown in Fig. 1. An STG showing the additional

behavior is represented in Fig. 7(a). To aid legibility, our min-

ing flow was configured to enforce the marked graph property

described in section V-A, which divides this specification into

the two snippets shown in Fig. 7(b) and (c).

Notice that the snippet in Fig. 7(b), however, assumes

an environment where the left and right channels are not

independent. For example, output rr+ triggers input lr+,

which is on a different channel. Thus, the multi-environment

constraints used in the last section would allow only the

behavior described by snippet (c). This snippet is bisimilar

to the original specification of L440oR2044.

TABLE III
SUMMARY OF FREE-CHOICE RESULTS

Benchmark Num. of
snippets

Original spec.
included

ILP runtime
[sec.]

SM-latch [14] 1 Snippet #1 0.10
RLM [5] 4 Snippet #4 0.14
1-bit variable [2] 1 Snippet #1 0.31
alloc-outbound [9] 3 Snippet #1 0.73
vmebus [9] 4 Snippet #1 0.12
A/D converter ctrl. [9] 1 Snippet #1 0.43
tsend-csm [10] – – > 1 h.

C

C
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ackctl

ack

ackbus

nakbus
busctl

reqbus

(a)

nakbus+

reqbus− reqbus−

ackbus+

nakbus−ackbus−

busctl− busctl− ackctl−ackctl−

reqbus+

ackctl+ busctl+busctl+

req−

ack+

ack−

req+

(b)

Fig. 8. Circuit and mined specification for alloc-outbound.

VII. MINING CONTROLLERS WITH CHOICE

This section shows the results of applying the mining flow

to a selection of asynchronous controllers from well-known

benchmarks. In these examples, we introduce environments

with input conflicts, i.e. inputs may disable other inputs.

As in the previous case study, the properties of SI and

DI interfacing are enforced. When possible, we also enforce

multi-environment interfacing as well as any required mutual

exclusion between pairs of input signals.

Table III reports the total number of snippets discovered by

our mining flow, as well as whether the original specification

of the circuit was included in one of the discovered snippets.

The rest of this section delves into the details of some of the

test cases with interesting properties.

A. alloc-outbound

alloc-outbound is part of a set of well-known academic

benchmarks [9], representing part of an HP bus controller. The

circuit used as input for the mining flow is shown in Fig. 8.

The interface is composed of three different environments:

1) reqbus, ackbus, nakbus, 2) busctl, ackctl, 3) ack, req.

Notice only environment 1 has more than one input, with only

signals ackbus and nakbus allowed to be in conflict.

Without this constraint, the number of possible SI and DI

snippets grows to 12. The ILP runtime also rises up to 1 hour,

showing the effectiveness of the multi-environment constraint

in restricting the size of the state space. With this constraint,

there are only 3 valid snippets, with the original specification

being the first discovered snippet, shown in Fig. 8(b).

B. 1-bit variable

In this example we use a simple implementation of a 1-bit

variable with a single read and write port [2]. The original

circuit is shown in Fig. 9(a). The write port includes the input

signals wr 0, wr 1 as well as the write acknowledgment signal
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Fig. 9. Circuit and mined specification for a 1-bit variable.

ack wr. The read port includes req rd as well as the response

signals rd 0, rd 1.
Of significance is that the original circuit, in Fig. 9(a), may

go into metastability if both wr 0 and wr 1 are asserted. Our

mining flow, thus, discovers environments in which wr 0 and

wr 1 are mutually exclusive.
Hazards may also be produced when simultaneous read and

write requests are asserted. In this particular implementation,

hazards only occur when the read value is different from

the one being written (e.g., read a 1 while writing a 0).

Hazards are not produced when both values are the same.

The mined specification (not shown in the paper) accepts

concurrent read/write requests of the same value.
Yet, because of higher-level environmental conditions, it

may be desirable to enforce the mined behavior to have

mutually exclusive inputs, i.e.,:

wr 0 + wr 1 + req rd ≤ 1

When configured to honor this property, the mining flow

generates the specification shown in Fig. 9(b).
Figure 9(c) shows an alternative implementation of the

circuit obtained by synthesizing the mined specification. In-

terestingly, this implementation has no metastability problems

when both wr 0 and wr 1 are asserted, although glitches may

be observed when such situation occurs. This feature, however,

is irrelevant for a well-behaved environment that would never

allow both inputs to be asserted simultaneously.

C. Negative results
Not all the experimental results are as attractive as the ones

presented in previous sections. One of the major challenges

of specification mining is to deal with state explosion. The

runtime of the ILP models grows exponentially with the

number of states present in LTS(C).
As seen with alloc-outbound, constraining the environment

is an effective approach to handle state spaces that are initially

too large to explore. However, some designs are not amenable

to this type of constraints. For example, in tsend-csm, separate

environments cannot be assumed. Our approach explores the

full state space, resulting in large ILP models.
To obtain a reasonable runtime in these situations, further

environment constraints are necessary. This is an area for

further research. For larger circuits, divide-and-conquer ap-

proaches, as in compositional verification scenarios [6], [19],

may be necessary.

VIII. CONCLUSIONS

The intricate structure of asynchronous controllers makes

their design error-prone. Discovering safe specifications con-

tributes to understanding the implicit protocols behind them

and their properties.

This paper has presented a novel approach for behavior

discovery that can offer useful mechanisms for re-synthesis

and verification. As new challenges for the future we envision

two directions: applying specification mining to compositional

verification and mining specifications with bounded delays.
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