
Integrating Formal Verification in an Online Judge for
e-Learning Logic Circuit Design

Javier de San Pedro Josep Carmona Jordi Cortadella Jordi Petit
Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya

ABSTRACT
This paper investigates the use of formal verification techniques to
create online judges that can assist in teaching logic circuit design.
Formal verification not only contributes to give an exact assessment
about correctness, but also saves the instructor the tedious task of
designing test cases. The paper explains how formal verification
has been integrated in an online judge. It also describes the course-
ware created for a course on logic circuits and the successful expe-
rience of using it in a one-week summer course with students from
secondary and high school.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Educa-
tion—computer-assisted instruction; B.6.3 [Logic Design]: De-
sign Aids—hardware description languages, verification

General Terms
Algorithms, Design, Human factors

Keywords
Formal verification, logic circuit design, online judge, Verilog

1. INTRODUCTION
Most bachelor programs in Computer Science/Engineering in-

clude some course on designing logic circuits. At the time students
take this course, they are usually familiar with basic programming
concepts in some high-level language and have some knowledge
about good programming practices: simplicity, cost, modularity,
re-usability, etc. Most of their programming skills have been ob-
tained by trying to solve many programming problems of increas-
ing difficulty.

One of the most important decisions in creating a course syl-
labus on logic design is to choose the formalism to specify and
describe circuits. In a similar way as students are exposed to pro-
gramming by using high-level languages (e.g., C, C++, Java) and
automatic tools (compilers) to translate a program into machine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

language, we strongly advocate for using a similar approach when
designing circuits [17, 19]. This approach is not as disruptive as
it looks when compared with the modern practice in industry to-
day. Designers describe their circuits with Hardware Description
Languages (HDL) and implement their circuits using CAD tools
that automatically generate logic netlists [12]. The netlists are later
transformed into layouts using physical synthesis tools. Indeed, as
the time of assembly language passed long ago and common pro-
gramming continuously evolves towards more abstract paradigms,
the time of schematic capture has also passed and circuit design has
evolved towards a more reliable and productive methodology based
on HDLs.

Another important issue when creating a course on logic circuits
is designing a set of problems that enables students to apply the
theoretical concepts they learn to practical problems, and how to
handle the assessment of these problems. Drawing a parallelism
with our experience on computer programming, we advocate for
the use of a collection of problems of increasing difficulty and the
use of a online judge to automatically correct their solutions. On-
line judges have a variety of advantages that make them appeal-
ing for modern teaching methodologies: permanent and immediate
assessment, adaptation to the progress of each student, more pro-
ductivity, etc. See [5, 13] for an overview on online programming
judges.

This paper introduces a novel online judge that uses formal ver-
ification to automatically correct problems on logic circuit design.
Some features of this judge make it unique among the existing
ones:

• Circuits are described using a HDL.

• Correctness is proved for all possible input stimuli by using
formal verification techniques and tools.

• No test cases have to be designed to assess about correctness.

• When an incorrect circuit is submitted, the judge provides a
counterexample trace for which the circuit behavior differs
from the expected one.

These features have been implemented in Jutge.org, a open ac-
cess educational online programming judge that already offers 800
programming problems [10] using several programming languages.
Thanks to the new innovative correction engine, Jutge.org currently
offers an introductory course of digital circuit design that includes a
large variety of assignments on logic design, from simple combina-
tional circuits to complex sequential controllers, all carefully orga-
nized and sorted by difficulty. About 60 new problems on circuits
can now be solved in Verilog, other HDLs being under preparation.

To the best of our knowledge, it is the first time that formal veri-
fication is used to assess correctness with an online judge using an

HDL. An approach with similar goals was proposed in [8], where
students can submit their design with LogicFlash [9], a graphic tool
for schematic capture. Combinational circuits are checked by gen-
erating all possible input patterns. Sequential circuits are checked
by generating a set of test patterns that cover all the state transi-
tions of an automaton designed by the instructor. That approach
suffers from various problems: (1) the cost of checking correct-
ness becomes prohibitive for large circuits (e.g. a 32-bit adder),
(2) many sequential circuits (e.g., counters, shift registers, sequen-
tial arithmetic circuits, register files, etc) cannot be practically de-
scribed with automata and, (3) the coverage of all state transitions
in an automaton does not guarantee correctness for all possible in-
put traces. In contrast, the approach we present is able to handle
circuits of medium complexity. For example, circuits that generate
the Fibonacci series (8-bit numbers) or compute the greatest com-
mon divisor using Euclid’s algorithm (6-bit numbers) have been
proved (or disproved) to be correct. The verification of a simple
8-bit CPU with more than 30 internal flip-flops is also possible.

The paper is organized as follows. To start, as preliminaries, we
overview HDLs. Afterwards, we present a guided tour that presents
our courseware and its use. Then, we explain which formal veri-
fication techniques we apply to assess the correction of the candi-
date solutions and we show their implementation and integration in
Jutge.org. Finally, we describe our experience using the system in a
one-week summer course with talented high-school students, draw
some conclusions, and advance ideas towards future work.

2. PRELIMINARIES: HDLS
The design, simulation, synthesis and verification of hardware

devices can be accomplished by the use of a Hardware Description
Language (HDL) [15].

The primitives of a HDL can describe the structure and behav-
ior of logic circuits. In contrast to programming languages, HDLs
incorporate three aspects that make them suitable for describing
hardware:

1. Notion of time: the language provides statements to support
time and delays of the components.

2. Concurrency/Parallelism: the semantics of the language is
inherently concurrent, i.e., different components of the sys-
tem are assumed to operate in parallel.

3. Simulation capabilities: circuit specifications can be vali-
dated by designing testbenches, i.e., modules that instantiate
the design and monitor the reaction to a set of input stimuli.
This capability contributes to gain confidence on the design’s
intended function, but also enables architectural exploration,
i.e., evaluating and comparing different implementations of
the same circuit.

Verilog [18] and VHDL [3] are the most popular HDLs used in
logic circuit design. Verilog has been chosen for the on-line judge,
however an extension to VHDL would also be feasible by using the
appropriate synthesis tools.

Verilog. The primitives provided by Verilog allow different de-
scriptions of the functionality of a circuit. Structural models are
used to described hierarchical netlists of logic gates or instances
of other modules. Dataflow models are used to describe combi-
national logic by means of different types of operators (logical,
arithmetic, relational, bit-wise, etc). Finally, behavioral models are
used to describe the functionality using primitives similar to those
provided in programming languages (conditional, looping, concur-
rency, etc).

registerclock reset

count

1

+
FFD

reset
Q

clock

Figure 1: Circuits inferred by the description of a flip-flop and
an n-bit counter with synchronous reset.

The syntax of Verilog is similar to the C programming language,
also very popular both in education and industry. A Verilog design
consists of a hierarchy of modules, where modules may communi-
cate through input and output ports. A module can contain a com-
bination of the following: net/variable declarations, concurrent and
sequential statement blocks, and instances of other modules.

Below we can see a structural description of a full adder. The
circuit has three inputs (a, b and cin) and two outputs (sum and
cout) and contains a set of logic gates (xor, and, or) connected to
the inputs, outputs and wires.

cina b

cout sum

module full_adder (a , b , cin , sum, cout);
input a , b, cin ;
output sum, cout ;
wire x1 , x2 , x3;
xor (sum, a , b, cin);
and (x1 , a, b);
and (x2 , a, cin);
and (x3 , b, cin);
or (cout , x1 , x2 , x3);

endmodule

An implementation with the same behavior can be described
with a dataflow model using logic equations, as shown below.

module full_adder (a , b , cin , sum, cout);
input a , b , cin ;
output sum, cout ;
assign sum = a ^ b ^ cin ;
assign cout = a & b | cin & (a | b);

endmodule

For sequential systems, Verilog provides the always statement,
commonly used to model the behavior of memory elements trig-
gered by signal events. This is the statement typically used to de-
scribe flip-flops and latches in sequential circuits. For example,
the next two examples illustrate how the behavior of a flip-flop and
an n-bit counter with synchronous reset can be modeled using the
always statement.

// flip-flop behavior
always @(posedge clock)

if (reset) Q⇐ 0;
else Q⇐ D;

// counter behavior
always @(posedge clock)

if (reset) count ⇐ 0;
else count ⇐ count + 1;

A Verilog compiler would automatically infer the logic gates
and flip-flops to implement the behavior described above. Possible
netlists derived by the compiler are shown in Fig. 1. The circuits
could be later simplified by CAD tools that would automatically
propagate the constants at the inputs and eliminate the redundant
logic gates.
Synthesizable HDL. Both Verilog and VHDL have language sub-
sets declared as synthesizable [2], meaning that CAD tools can
automatically infer circuit structures that implement the specified
functionality. Typically, the synthesizable subset includes the struc-
tural and dataflow models of the language. Whereas some complex
operators (such as multiplication or division) may not always be
included, addition/subtraction, relational and bit-wise operators are

always included. The synthesizable subset is the one used by the
students and the online judge to design and verify the circuits.

Besides various commercial tools, there are several open-source
Verilog compilers/simulators. We have used Icarus Verilog [20].

3. GUIDED TOUR
This section offers a guided tour to the course on logic circuit de-

sign and the new judge engine that we have created. We encourage
the reader to follow these steps in his/her web browser.

The course is available at Jutge.org, an open access educational
online programming judge [10]. In order to access it, users can log
in at https://www.jutge.org using the demo account or freely register-
ing their own account. Afterwards, users should enroll the “Intro-
duction to Digital Circuit Design” course in the Courses section.
At this point, users can access its 60 problems (identified with a
short hash code) and organized in the following lists:

Combinational circuits: Simple controllers, multiplexers, voting
systems, priority encoders, properties on numbers, ...

Arithmetic circuits: Starts from 1-bit adders/comparators and pro-
gresses to n-bit adder/subtractors, comparators, incrementers
and small ALUs.

Sequential circuits: Includes various up/down counters, sequence
recognizers, simple control circuits (e.g., a traffic-light con-
troller) and some sequential arithmetic (e.g., a generator of
Fibonacci series or a calculator of the GCD using Euclid’s
algorithm).

A simple CPU: The design is split in four components (ALU, dat-
apath, program counter and control unit) that are finally con-
nected to create a complete 8-bit CPU with small instruc-
tion/data memories.

As an example, consider problem X12983 (the second problem
in the Arithmetic Circuits list), which asks for the implementation
of a full adder.

To solve this problem, a student could write an implementation
either in structural form (using logic gates) or in dataflow form (us-
ing logic equations), such as the ones presented in the previous
section for the module full_adder. In either case, these descrip-
tions can be automatically synthesized into circuits that can be later
verified for correctness.

To validate the implementation, our student would submit this
piece of code to the judge, which would produce a verdict in a
few seconds. Typical verdicts include “Compilation error”, “Ac-
cepted”, or “Wrong answer”. In the case of the latest, the judge
would also offer a set of values for the input ports that causes such
wrong answer.

In order to test the correctness of a student’s implementation,
the problem setter has provided a golden model that will be never
be disclosed to the students. This model can be at any level of
abstraction, e.g., using arithmetic operators. For instance, this is
the actual golden model provided for the full adder problem:

module full_adder (a , b , cin , sum, cout);
input a, b , cin ;
output sum, cout ;
assign {cout , sum} = a + b + cin ;

endmodule

After solving the previous problem, our student could tackle
problem X84292, which asks for an N-bit adder. A possible im-
plementation could use an array of N instances of full adders:

module adder (A, B, cin , SUM, cout);
parameter N = 16;
input [N−1:0] A, B;

input cin ;
output [N−1:0] SUM;
output cout ;
wire [N−1:1] carry ;
full_adder FA[N−1:0] (A, B, {carry , cin }, SUM, {cout,carry });

endmodule

The flow is similar for sequential circuits. For example, the prob-
lem X05944 proposes the design of a (mod 3)-counter that gener-
ates the sequence 0, 1, 2, 0, 1, 2, · · · . The golden model implements
the counter using a behavioral conditional statement:

module mod3_counter (count, clk , rst);
input clk , rst ;
output reg [1:0] count ;
always @(posedge clk)

if (rst | (count == 2)) count ⇐ 0;
else count ⇐ count + 1;

endmodule

Let us assume the student misunderstands the specification of
the problem and implements a conventional (mod 4)-counter with
a 2-bit adder and a register as follows:

module mod3_counter(count, clk , rst);
input clk , rst ;
output [1:0] count ;
wire [1:0] next_count ;
wire cout ;
adder #(2) _add_ (count , 1, 0, next_count , cout);
register #(2) _reg_ (next_count , count , clk , rst);

endmodule

In this case, the judge will report a "Wrong answer". More in-
terestingly, the judge will also provide the shortest trace from the
initial state to an erroneous state. This trace will be reported in
textual and graphical form, as shown in Fig. 2, where the circle in-
dicates the unexpected value according to the specification of the
problem.

0 1 2 3 4

clk

rst

count 0 1 2 3

Figure 2: Waveform report for the mod3_counter circuit.

In the next two sections a detailed explanation on the underlying
theory and techniques is provided for the interested reader.

4. FORMAL VERIFICATION

Testing shows the presence, not the absence of bugs.
E.W. Dijkstra.

Although simulation may provide insights on the correctness of
a circuit, one cannot have an absolute guarantee of its correctness
unless the circuit is exercised with all possible input stimuli. This
requirement makes simulation inviable for the verification of cir-
cuits with medium/large complexity.

In the last three decades, there has been a significant progress in
Boolean reasoning methods for equivalence checking. Two main
techniques have been proposed to symbolically enumerate all pos-
sible states of a circuit: Binary Decision Diagrams (BDD) [4] and
SAT solvers [11]. Still, the methods for the equivalence checking
of sequential machines can only handle small circuits (e.g., few
dozens of state variables) when the internal sequential elements of

https://www.jutge.org
https://www.jutge.org/problems/X12983
https://www.jutge.org/problems/X84292
https://www.jutge.org/problems/X05944

Inputs
n =

m

m

Eq

O
u

tp
u

ts

DC

Implementation
(Student)

Golden Model
(Instructor)

DontCare
(Instructor)

Figure 3: Miter created to verify sequential equivalence.

the two circuits (golden model and implementation) are different.
When the sequential structure is the same, the problem can be re-
duced to combinational equivalence checking [14].

Unfortunately, the problem we are facing needs to prove, in gen-
eral, the equivalence of sequential machines that are internally dif-
ferent, since the states variables of the golden model may differ
from the ones used by the student. They may have different num-
ber of flip-flops, state encoding and initial state.
Golden model vs. implementation. The equivalence of the two
circuits is checked by creating a miter, as shown in Fig. 3. A miter
is a circuit that is derived from the two original circuits, inserting a
comparator to compare the outputs of the two circuits. The circuits
are equivalent when the output of the miter, Eq, is proved to be a
tautology (always at 1).

In case of combinational circuits, equivalence is reduced to a
satisfiability problem, i.e., finding an assignment that contradicts
Eq. If it does not exist, the circuits are equivalent.

In case of sequential circuits, all the reachable states of the miter
must be visited using all the possible input stimuli. This is a much
costly task and symbolic techniques (e.g., using BDDs) are often
used to mitigate the state explosion problem.

In our case, we have chosen an open-source tool that has be-
come state-of-the-art in the verification community: NuSMV [6].
NuSMV is a symbolic model checker [7] that can verify circuit
properties specified in temporal logic [16]. For the verification of
sequential equivalence, NuSMV receives the miter circuit and the
invariant property that “Eq must always be true".
Don’t cares. In different situations, equivalence does not need
to be strict. For example, before the two circuits are reset, the ob-
served behavior may differ. Two circuits transferring data do not
need to show the same output while the "valid" bit is not asserted.

For such cases, the miter can be enhanced with an auxiliary cir-
cuit (DontCare in Fig. 3) that masks the equivalence of the out-
puts when they do not need to be equivalent. The DontCare circuit
must be provided by the instructor together with the golden model.
More specifically, the don’t care conditions (DC) can be specified
for each individual output of the circuit (not shown in the figure).
Error traces. Under the unsatisfactory case that the implementa-
tion is not equivalent to the golden model, formal verification tools
can provide a valuable feedback to the student: a counterexample
that disproves the equivalence of the circuits. In case of a combi-
national circuit, the counterexample is simply an assignment to the
inputs for which the outputs differ. In case of sequential circuits, the
tool can report a trace of input stimuli that drives the erroneous cir-
cuit from the initial state to the state that produces the unexpected
output. Typically, sequential verifiers are capable of generating the
shortest trace to an error condition.

MODULE example(a)
VAR r: boolean;
ASSIGN next(r) := !(a | r); a

r

Figure 4: NuSMV model for a simple circuit.

5. VERIFICATION PROCESS

5.1 Overall flow
Verification starts by first synthesizing the Verilog models. For

this, we use Icarus Verilog [20], which transforms the model into
an internal hierarchical representation. Icarus Verilog can also be
customized with plugins that can access the internal representation
and generate other models. This is the strategy we have used to
generate NuSMV models from Verilog.

Once the model provided by the student has been transformed
into a NuSMV module, it is combined with the golden model pro-
vided by the instructor to create the miter circuit shown in Fig. 3.
We next provide more details on the verification flow.

5.2 Conversion to NuSMV model
NuSMV has a modeling language for finite systems that can de-

scribe the sequential behavior of Boolean signals. Figure 4 depicts
a simple example of a circuit with one input signal (a) and one
output signal (r), where the output signal is also a state variable
(declaration of VAR). The ASSIGN statement describes the behavior
of each signal assigning a Boolean expression. When the behavior
is sequential, next(r) is used to denote the value of the signal at
the next cycle. More details about the NuSMV language can be
found in [6, 1].

The circuit internal representation of Icarus Verilog is a hyper-
graph, where the nodes represent the synthesized components and
the hyperedges represent the wires connecting the components.

The nodes can represent logic gates or special modules from a
Library of Parametrized Modules (LPMs) performing higher level
functions (e.g., integer addition, register, . . .). The LPMs are as-
sumed to be implemented with pre-designed logic blocks for each
target technology.

Let us illustrate the conversion to NuSMV with a the example
below, that models a counter with a control signal (inc) that indi-
cates when the value of the counter must be incremented.

module counter(clk , rst , inc , count);
input clk , rst , inc ;
output reg [1:0] count ;
always @(posedge clk)

if (rst) count ⇐ 0;
else if (inc) count ⇐ count + 1;

endmodule

Icarus Verilog will produce an internal representation as the one
shown in Fig. 5. The ports from the original module are repre-
sented by ellipsis. Additionally, two LPMs have been synthesized:
a register and an adder. The hyperedges are represented by the cir-
cles between nodes.

This representation corresponds to the schematic shown in Fig. 6
with an N-bit counter and one additional connection of the inc port
to the Chip Enable (CE) port of the register.

By traversing the graph backward from the output ports and state
variables, it is possible to reach the driver of each signal in the
circuit and derive the expressions that determine their behavior.

The NuSMV model is generated by traversing the graph and us-
ing the following conversion rules:

Register LPM

1

0

A1

A0

B1 B0

Adder LPM D0

D1

Sclrclk

D0

D1 Q1

Q0

Enable

clk rst inc count[0]

count[1]

Figure 5: Icarus internal graph for the counter circuit.

+

clk 01
Sclrrst

CE

countinc

Q’

QD

Figure 6: Schematic for the counter circuit.

1. Verilog modules are converted into NuSMV modules and in-
put ports are converted into module parameters.

2. Instances inside a module are converted into NuSMV in-
stances, and the real argument expressions that are passed
to those instances are generated by graph traversal.

3. Output ports are converted into define statements, and their
expressions are calculated by graph traversal. Other gener-
ated expressions can then refer to these definitions as if they
were NuSMV output parameters.

By using the previous transformation rules, the following NuSMV
model is obtained for the counter:

MODULE counter(inc, rst)
VAR

ff : lpm_register (add.Q, inc , rst);
add: lpm_adder(ff .Q, 0b2_01);

DEFINE
count := ff .Q;

5.3 Generation of the miter
Once both NuSMV models have been generated, the miter mod-

ule is generated by adding a comparator of all the output ports. The
miter is the top NuSMV module that will be subject to verification.

At this stage, the property for verification is also generated. The
property is an invariant that guarantees that Eq is always asserted
after the circuit has been reset.

LPM definitions are also included as NuSMV modules. These
definitions are instanced from a manually created set of NuSMV
modules for each of the possible LPMs. For example, the definition
of the lpm_register with support for synchronous clear and chip
enable signals (like the one in Fig. 5) is the following:

MODULE lpm_register(Data, Sclr, Enable)
VAR Q : word[< register_size >];
ASSIGN next(Q) := case

Sclr : 0; −− If clear is raised
Enable : Data; −− If chip enabled
TRUE : Q; −− Otherwise, keep current value

esac ;

An important observation is that the NuSMV models ignore the
clock signal. The reason for that is because the circuits to be ver-
ified are assumed to have a single clock that triggers all sequential

elements on the rising edge. In this way, the NuSMV model can
safely assume that the implicit clock of the system corresponds to
the common clock used in the Verilog models.

5.4 Verification and error diagnosis
After executing the top model with the miter, NuSMV gives an

answer stating whether the requested property is asserted. In case it
is not asserted, NuSMV also emits an error diagnosis by providing
a counterexample trace of the input stimuli that drive the circuit
from the initial state to another state in which the outputs differ.

Since the structure of the NuSMV model is isomorphic to that
of the original circuit, the system can easily generate an equiva-
lent trace in Verilog-like syntax and a graphical representation as a
waveform, as shown in Fig. 2.

5.5 Integration in Jutge.org
The verification process previously presented has been integrated

in Jutge.org. Internally, Jutge.org is designed as a distributed master-
slave system, with a master computer that offers the web server,
stores the database and keeps the submission queue, and several
slave servers that host the different virtual machines that perform
the actual correction tasks under a secure environment [10]. In or-
der to correct a submission, a slave machine receives the problem
description (including the golden model), the candidate solution
and a driver module, which guides the compilation, execution and
checking process to produce a verdict.

Thanks to the modular architecture of Jutge.org, extending the
system to accommodate problems on circuits has been an easy task.
On the back-end (subsystem that corrects submissions), it was only
needed to create a new driver to guide the correction of problems
on circuits. This driver implements all of the validation steps as
detailed in this section. On the front-end (web interface), it was
just necessary to add some features to offer a nice display of the
information computed together with the verdict as, for instance,
the error traces and waveforms.

6. A SUMMER COURSE ON CIRCUITS
The courseware we have described was first used in an inten-

sive, one-week summer course (7 hours/day) on logic circuit de-
sign during July 2011. There were 26 students from secondary and
high-school (mostly 16/17-year old) that had no previous knowl-
edge about circuit design. The course was sponsored by the Joves
i Ciència program of CatalunyaCaixa, whose mission is to enhance
the scientific activity of young students with interest, motivation
and talent for science.

The main goal of the course was to expose the students to logic
design and to exercise their capabilities of logic reasoning by pos-
ing challenging problems. Given the origin of the students, there
was no special intention of teaching a particular methodology for
circuit design, although some common strategies were introduced
during the lectures to help them in solving exercises. Except for
short periods of time in which some expository lectures were taught
(not longer than one hour per day), the students were spending most
of the time solving problems on their computers and testing them
with the online judge.

Few of the students managed to complete the CPU, whereas most
of the students could complete several sequential circuits of differ-
ent complexity. Interestingly, a few students also worked at night
from home with the online judge, even after such an exhausting
working day.

Students were free to select their favorite exercises depending on
their skills and confidence of success. At the end of the course, 3
students could solve more than 50 exercises, 3 students between 40

http://jovesiciencia.catalunyacaixa.es/
http://jovesiciencia.catalunyacaixa.es/
http://obrasocial.catalunyacaixa.com/

and 49 exercises, 13 students between 30 and 39, and 7 students
between 20 and 29.

The online judge was essential to achieve a high design produc-
tivity that would not have been possible with only the assistance
of the 2 or 3 instructors that were permanently in the lecture room.
The bandwidth provided by the judge and the assessment delivered
by the formal verification tool (counterexamples in erroneous cir-
cuits) contributed to have an environment that could continuously
help the students without the need of an instructor.

Schematics were rarely used during the course, mostly on the
first day to provide the intuitive sense that the components of a
circuit are connected with wires. After that, some block diagrams
were shown when necessary. The logic gates were introduced on
the first day. After a couple of simple exercises, combinational
logic was always specified with Boolean equations.

At the end of the course, the students filled up a survey and
showed a very high satisfaction with the use of Verilog and the
online judge for learning logic circuit design.

On the negative side, we observed that the feedback provided by
the judge was so informative that the students were too eager to
submit the solution to the judge even before simulating and vali-
dating the correctness. While this aspect was not important for the
main goals of the course (logic reasoning), it should be taken into
account for Bachelor’s courses, in which a design methodology in-
cluding simulation should be stimulated.

7. CONCLUSIONS
While using formal verification to fully prove software correct-

ness is still a utopia, it is becoming a common successful practice
in hardware design. In this paper we have shown that it is possible
to build an introductory course on digital circuit design around a
collection of problems that are automatically corrected by an on-
line judge without test cases. The introduction of formal verifi-
cation methods in online judges provides a novel paradigm that
contributes to broaden the use of such tools in particular and of
e-learning techniques in general.

For introductory courses, in which the complexity of the circuits
is still small, formal verification can be effectively used to handle
a large variety of design examples. This paradigm starts hitting
the state explosion wall when the number of state variables of the
circuit increases. In these cases, divide-and-conquer schemes to de-
sign and verify smaller components of the system can still be used.
However, we will have to resort to more conventional approaches
based on the simulation of test cases when formal verification can-
not go that far, which is the classical approach used today in online
judges for programming courses and contests.

The time required by an instructor to write a problem on cir-
cuits with formal verification is much less than the time to write
programming problems. In both cases the correct solution must be
written, but in the former case, there is no need to write an extensive
test set as in the latter.

The experience in using this courseware in a one-week intensive
summer course with talented high-school students has shown a re-
markable productivity in designing different types of circuits with
growing complexity, from simple combinational circuits to com-
plex state machines, including a small CPU.

As future work, we are planning to enhance the online judge with
the evaluation of different metrics that can assess on the quality
and/or suitability of the solution. The number of logic gates or the
logic depth of the circuit can be calculated to give a quality metric
on complexity and delay. This metric can be compared with the one
of the golden model and provide feedback to the student in case a
low-quality design has been submitted. For example, if a student

designs a slow ripple carry adder when a fast carry-lookahead adder
was requested, the judge would report that a circuit with excessive
logic depth has been submitted.

8. REFERENCES
[1] NuSMV v2.5 User Manual. http://nusmv.fbk.eu.
[2] J. Bhasker. Verilog HDL Synthesis: A Practical Primer. Star

Galaxy Publishing, 1998.
[3] J. Bhasker. A VHDL Primer. Prentice Hall, third edition,

1999.
[4] R. E. Bryant. Graph-based algorithms for boolean function

manipulation. IEEE Trans. Computers, 35(8):677–691, 1986.
[5] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon. On

automated grading of programming assignments in an
academic institution. Computers & Education,
41(2):121–131, 2003.

[6] A. Cimatti et al. NuSMV2: An OpenSource Tool for
Symbolic Model Checking. In Proc. International
Conference on Computer-Aided Verification (CAV 2002),
volume 2404 of LNCS. Springer, July 2002.

[7] E. M. Clarke, O. Grumberg, and D. Peled. Model checking.
MIT Press, 2001.

[8] M. Damm, F. Bauer, and G. Zucker. Solving Digital Logic
Assignments with Automatic Verification in SCORM
Modules. In International Conference on Interactive
Computer-Aided Learning (ICL), pages 359–363, 2009.

[9] M. Damm, B. Klauer, and K. Waldschmidt. LogiFlash - A
Flash-based Logic-Simulator for Educational Purposes. In
World Conference on Educational Multimedia, Hypermedia
and Telecommunications, pages 748–750, 2003.

[10] O. Giménez, J. Petit, and S. Roura. Jutge.org. Technical
report. http://www.jutge.org/documentation/jutge.pdf„ 2011.

[11] E. I. Goldberg, M. R. Prasad, and R. K. Brayton. Using SAT
for combinational equivalence checking. In Proceedings of
the Conference on Design, Automation and Test in Europe
(DATE), pages 114–121, 2001.

[12] D. Jansen. The Electronic Design Automation Handbook.
Kluwer Academic Publishers, 2003.

[13] M. Joy, N. Griffiths, and R. Boyatt. The BOSS online
submission and assessment system. ACM Journal on
Educational Resources in Computing, 5(3), 2005.

[14] A. Kuehlmann and C. A. J. van Eijk. Combinational and
sequential equivalence checking, pages 343–372. Kluwer
Academic Publishers, 2002.

[15] J. P. Mermet. Fundamentals and Standards in Hardware
Description Languages. Kluwer Academic Publishers,
Norwell, MA, USA, 1993.

[16] A. Pnueli. The temporal logic of programs. In FOCS, pages
46–57. IEEE, 1977.

[17] A. Sagahyroon and M. Massoumi. On the use of hardware
description languages in teaching VLSI design courses. In
Proceedings of the 26th Annual Frontiers in Education
(FIE), volume 2, pages 713–716, 1996.

[18] D. E. Thomas and P. Moorby. The Verilog hardware
description language. Kluwer, third edition, 1996.

[19] Z. Vranesic and S. Brown. Use of HDLs in teaching of
computer hardware courses. In Workshop on Computer
Architecture Education (WCAE), 2003.

[20] S. Williams. Icarus Verilog. http://iverilog.icarus.com.

http://nusmv.fbk.eu
http://www.jutge.org/documentation/jutge.pdf
http://iverilog.icarus.com

	Introduction
	Preliminaries: HDLs
	Guided tour
	Formal Verification
	Verification process
	Overall flow
	Conversion to NuSMV model
	Generation of the miter
	Verification and error diagnosis
	Integration in Jutge.org

	A summer course on circuits
	Conclusions
	References

