
1

Process Windows
Andrey Mokhov†, Jordi Cortadella‡, Alessandro de Gennaro†

†Newcastle University, United Kingdom
‡Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract—We describe a method for formally representing the
behaviour of complex processes by process windows. Each window
covers a part of the system behaviour, i.e. a part of the underlying
transition system, and is easier to understand and analyse than
the complete transition system. Process windows can overlap and
have shared states and transitions so that the complete system
behaviour is the union of window behaviours. We demonstrate
the advantage of such representations when dealing with complex
system behaviours, and discuss potential applications in circuit
design and process mining.

As a motivational example we consider the problem of covering
transition systems by marked graphs, or more generally choice-
free Petri nets. The obtained windows correspond to choice-free
behavioural scenarios of the system, wherein one window can take
over, or wake up, after another window has become inactive. The
corresponding wake-up conditions and wake-up markings can be
derived automatically.

I. INTRODUCTION

Understanding and specifying the behaviour of a complex
concurrent system is a difficult task. Transition systems often
suffer from the state space explosion and even Petri nets
struggle to represent the behaviour of many real systems
in a concise way, because of multiple behavioural scenarios
entangled in a single net.

In this paper we show how a transition system can be
decomposed into a set of simpler behavioural models, further
referred to as windows. The original behaviour can be recov-
ered as the union of the windows. A window models only one
aspect of the system’s behaviour that can be characterised by
simple event relationships. By choosing windows with simple
representations, such as marked graphs, choice-free nets, free-
choice nets, etc., one can make sure that each individual
window is simple enough to understand, visualise and specify.

A. Motivational example
Consider a transition system and its Petri net representation

shown in Fig. 1(a,c). Arguably, the Petri net is more difficult
to understand than the transition system, due to a mix of
concurrency and choice. One can decompose the transition
system into two simpler ones, which we call windows, that
are choice-free, as shown in Fig. 1(b). The windows have
very simple Petri net representations W1 and W2 shown in
Fig. 1(d): the choice aspect of the system behaviour has been
abstracted away from individual windows, and is implicitly
represented by the alternation of behaviour between windows.

The decomposition can be automated aiming to produce
windows with specific behavioural properties. In this example,
the resulting windows are marked graphs, a class of Petri nets
with particularly well-understood structural properties.

(a) Transition system. (b) Window decomposition.

(c) Petri net.

Wake-up condition: p5∧p8

Wake-up marking:
p0 = p7
p2 = p6
p3 = 1

Wake-up condition: p1∧p3

Wake-up marking:
p6 = p2
p7 = p0
p8 = 1

(d) Windows W1 (left) and W2 (right).

Fig. 1: Motivational example.

An important property of the decomposition is that windows
can have overlapping behaviours, which provide bridges be-
tween windows. As seen in Fig. 1(b) the windows contain two
shared states: s0 (the initial state) and s4. The current state of
the system can therefore occasionally be seen in two windows
simultaneously, as shown in Fig. 2. By firing p or c in s0 the
system leaves the shared state and proceeds according to one
of the windows until it eventually comes to s0 or s4, waking up
the inactive window. Note: the system can stay in the second
window indefinitely by looping through states {s6, s7, s8, s9}.

2

Fig. 2: Simulating windows from Fig. 1 (active windows are transparent, inactive windows are opaque).

The main contributions of this paper are as follows:
• We introduce process windows, both informally by ex-

amples and formally, in Sections II and III.
• Process windows can be discovered automatically us-

ing the window decomposition algorithm. Section IV
presents the algorithm and proves its completeness.

• A method for automated derivation of wake-up condi-
tions and markings is presented in Section V.

• We explore applications of process windows in circuit
design and process mining in Section VI, and integrate
the presented algorithms and design methodology into the
open-source WORKCRAFT modelling framework [1][2].

Section VII discusses the potential of process windows for
modelling systems that contain resource arbitration and OR
causality. The related work is reviewed in Section VIII.

II. THE EXAMPLE IN MORE DETAIL

In this section we clarify the correspondence between a
transition system and its representation using process win-
dows. Fig. 2 shows the transition system from Fig. 1(a), where
each state is expanded into the corresponding state of the two
process window nets in Fig. 1(d).

A window is active whenever it covers the current state,
otherwise it is inactive; inactive windows are drawn opaque
in Fig. 2. For example, both windows are active in states s4

and s0, and the state transition s4
b→ s0 is reflected in both

windows by firing the transition b. Depending on which transi-
tion occurs in s0, either W1 or W2 becomes inactive. Indeed,
W1 does not cover the transition c, and W2 does not cover the
transition p. Transitions {s7 y→ s4, s8

y→ s0} wake up window
W1 and, similarly, {s2 a→ s4, s3

x→ s4, s5
x→ s0} wake up

window W2. Note that there is always at least one active
window, because every state of the original transition system
must be covered. Furthermore, since every transition must be
covered too, there is always at least one window that is active
both before and after a transition occurs.

A. Wake-up markings

Table I provides an additional illustration of the correspon-
dence between the states of the original transition system and
the markings of the obtained nets W1 and W2. As one can
see, each state is covered by at least one net marking. When

TABLE I: States and net markings in Fig. 1.
State Marking of W1 Marking of W2

s0 {p0, p3} {p7, p8}
s1 {p1, p4} -
s2 {p1, p3} -
s3 {p2, p4} -
s4 {p2, p3} {p6, p8}
s5 {p0, p4} -
s6 - {p5, p8}
s7 - {p6, p9}
s8 - {p7, p9}
s9 - {p5, p9}

3

a window becomes inactive, the marking of the corresponding
net has no meaning and is forgotten. When the window
subsequently wakes up, the net must be initialised with a
correct marking matching the current state of the system.
Using Table I one can obtain the following wake-up markings:
• When W1 wakes up in state s0, it must be initialised with

the marking {p0, p3}.
• When W1 wakes up in state s4, it must be initialised with

the marking {p2, p3}.
• When W2 wakes up in state s0, it must be initialised with

the marking {p7, p8}.
• When W2 wakes up in state s4, it must be initialised with

the marking {p6, p8}.
One can remove all references to the original transition system
and its states s0 and s4, thereby making the process windows
based description self-contained from the point of view of the
two nets, as follows:
• When W1 wakes up, it must have a token in p3, plus a

token in p0 (if p7 is marked in W2) or p2 (if p6 is marked
in W2). All other places should be unmarked.

• When W2 wakes up, it must have a token in p8, plus a
token in p7 (if p0 is marked in W1) or p6 (if p2 is marked
in W2). All other places should be unmarked.

The wake-up markings are shown in Fig. 1(d) below the nets.

B. Wake-up conditions
In addition to wake-up markings, we also derive wake-up

conditions: the wake-up condition of a window evaluates to 1
in all states where the window can wake up and therefore
requires an initialisation using the wake-up marking.

In our running example, both windows can wake up in states
s4 and s0. From the point of view of W1, it needs to wake
up when W2 has marking {p6, p8} or {p7, p8}. This can be
expressed by the Boolean condition (p6∨p7)∧p8, which can
be simplified to p5∧p8 using Boolean minimisation. Similarly,
window W2 needs to wake up when W1 has marking {p0, p3}
or {p2, p3}, as captured by the condition (p0 ∨ p2) ∧ p3 or,
equivalently, p1 ∧ p3.

Fig. 1(d) shows minimised wake-up conditions below each
net. A general method for deriving wake-up conditions and
markings is presented in Section V.

III. LABELED TRANSITION SYSTEMS AND WINDOWS

A. Labelled Transition Systems
A Labelled Transition System (LTS) is a tuple (S,Σ, T, s0)

where S is a finite set of states, Σ is the alphabet of labels,
T ∈ S × Σ × S is the set of labelled transitions and s0 ∈ S
is the initial state.

We use s
e→ s′ to denote the labelled transition

(s, e, s′) ∈ T . An event e ∈ Σ is said to be enabled in
s1 ∈ S if there exists s1

e−→ s2 for some s2 ∈ S.
Given an event e ∈ Σ, the Enabling Set of e is the set of

states in which e is enabled, i.e.,

ES(e) = {s ∈ S | ∃s′ ∈ S : s
e−→ s′}.

Similarly, we define the Backward Enabling Set of e:

BES(e) = {s ∈ S | ∃s′ ∈ S : s′
e−→ s}.

B. Windows
Given an LTS A = (S,Σ, T, s0), a window of A is another

LTS W = (Sw ∪ {⊥w},Σw, Tw, s0w) such that
• Sw ⊆ S, Σw ⊆ Σ, and Tw ⊆ T . Moreover, Σw strictly

contains the labels associated to Tw and Sw strictly
contains the states associated to Tw.

• ⊥w 6∈ S represents the inactive state.
• If s0 ∈ Sw, then s0w = s0, otherwise s0w = ⊥w.

Thus, any window is fully determined by a subset of transitions
of the LTS.

C. Window Decomposition
Given an LTS A = (S,Σ, T, s0), a Window Decomposition

(WD) of A is a set of LTS windows, {W1, . . . ,Wn}, with
Wi = (Si ∪ {⊥i},Σi, Ti, s0i), such that

S =
⋃
i

Si, Σ =
⋃
i

Σi, T =
⋃
i

Ti

and all ⊥i are different. The definition implies that every state
and every transition of A is covered by at least one window.
Additionally, the following conditions hold for every Wi:
• The underlying graph induced by Ti is connected.
• Ti 6⊆ Tj for any j 6= i.
Intuitively, the previous conditions guarantee that all com-

ponents are minimal, i.e., that the states are connected
(except ⊥i) and no window is redundant.

D. State space and transition steps
A window decomposition W = {W1, . . . ,Wn} is a set of

windows that evolve synchronously at every transition step
according to the transitions of the LTS they represent. W
has a global state space in which each state ~s is a vector
of state components, ~s = (s1, . . . , sn), each one belonging
to a different window. There is a one-to-one correspondence
between the states of W and the states of the associated LTS.
For every state sx ∈ S, the associated state in W will be
~sx = (s1, . . . , sn) such that for every Wi:

si = sx if sx ∈ Si, si = ⊥i if sx 6∈ Si

i.e., all the active states are identical.
1) Example: If we consider the LTS in Fig. 1(a) and the

WD with two windows, W1 (left) and W2 (right), in Fig. 1(b),
we observe that the initial state s0 is represented by the vector
~s0 = (s0, s0). When firing transition s0

c−→ s6, the WD
moves to state ~s6 = (⊥1, s6). We next describe a possible
trace of the WD:

(s0, s0)
c−→ (⊥1, s6)

q−→ (⊥1, s7)
y−→ (s4, s4)

b−→ (s0, s0)
p−→ (s1,⊥2) · · ·

As one can see from the above trace, at every state each
window can be either active or inactive. Some transitions
may deactivate a window, e.g., (s0, s0)

p−→ (s1,⊥2), whereas
other transitions may activate (wake up) a window, e.g.,
(⊥1, s7)

y−→ (s4, s4). There is always at least one active
window that keeps track of the current state so that others
can wake up and appropriately initialise themselves when their
time comes.

4

E. Structural properties

From the theory of Petri nets, we know that certain sub-
classes, such as Marked Graphs or Free-Choice Petri nets, are
well suited for good-looking visual structures [3]. Addition-
ally, these structures are also desirable for performance and
reachability analysis.

An interesting contribution in this area is the work by Best
and Devillers characterising the state spaces of behaviours
that can be generated by Marked Graphs [4] and choice-free
Petri nets [5]. Free-choice Petri nets is another subclass with
visually-friendly structural properties [6]. The synthesis of this
subclass has been proposed in [7] by combining the theory of
regions and label splitting to force all choices to be “free”.

In this work, we apply the results from [5] and [7] for the
decomposition of behaviours into process windows. One of
our main goals is to create a framework in which the analysis
of processes can be highly automated by providing algorithms
to extract windows. The proposed algorithms are based on
solving a SAT formulation of the problem that encodes local1

properties of the windows.
We next present local properties presented in [5][7] to

enforce structural properties on the synthesised Petri nets. The
first two properties (forward and backward persistence) are
necessary, but not sufficient, for the synthesis of choice-free
Petri nets. The third property is necessary for the synthesis of
Free-Choice Petri nets.

1) Forward and backward persistence: Given an LTS, two
events a and b are said to be forward persistent if the following
condition holds:

∀s1 ∈ ES(a)∩ES(b), s.t. s1
a−→ s2 ∧ s1

b−→ s3 :

s2 ∈ ES(b) ∧ s3 ∈ ES(a).

This condition guarantees that a does not disable b, and
vice versa. Note that forward persistence always holds when
ES(a) ∩ ES(b) = ∅.

A dual property is defined for backward persistence. Two
events a and b are said to be backward persistent if the
following condition holds:

∀s1 ∈ BES(a)∩BES(b), s.t. s2
a−→ s1 ∧ s3

b−→ s1 :

s2 ∈ BES(b) ∧ s3 ∈ BES(a).

An LTS is said to be forward (backward) persistent if forward
(backward) persistence holds for all pairs of events.

2) Free choiceness: When two events are not forward
persistent, then a conflict (choice) occurs between them. In
this case, we may desire the conflict to be free, i.e., the choice
conditions to be symmetric for both of them.

Let a and b be two events that are not forward persis-
tent. Then, a and b are said to be in forward free choice
if ES(a) = ES(b). Similarly, if a and b are not backward
persistent, they are said to be in backward free choice if
BES(a) = BES(b).

1By local we refer to properties that can be formulated in terms of states
or transitions and a small neighbourhood around them.

a

a a

b

b

b

c

c

c

d d
x

x

x

z

y

y

s0

s1

s2

s3

s4

s5

s6

e e

s7

s8

s9

s10

s11

s12

Fig. 3: LTS with different persistence and choice properties.

3) Example: Fig. 3 depicts an LTS with different properties
between pairs of events. For example, the pair (a, b) is forward
persistent, but not backward persistent, since a and b are both
backward enabled in s6, but a is not backward enabled in s4
and b is not backward enabled in s5. The pairs (a, c) and (b, c)
are both forward and backward persistent.

The pairs (d, x) and (e, x) are also forward and backward
persistent. The pair (d, e) is not forward persistent, but it is in
forward free choice. Finally, the pair (d, z) is not in forward
free choice, since they are not forward persistent and z is not
enabled in s6. Similarly for the pair (e, z).

IV. ALGORITHM FOR WINDOW DECOMPOSITION

This section describes an algorithmic method for discov-
ering a window decomposition of an LTS. The method is
inspired by the one presented in [3] for the extraction of LTS
slices during process mining. It is based on a SAT formulation
of the problem, using |T | variables, that models all possible
windows that conform to a certain set of properties. The
problem is solved via Pseudo-Boolean Optimisation [8].

With an abuse of notation, we define a Boolean variable t
for each transition t ∈ T . A window is fully determined by
a subset of transitions, that can be modeled as a Boolean
assignment to the corresponding variables. All those variables
asserted in the model correspond to the selected transitions for
the window.

The formula W (T) that models all possible windows that
can be extracted from an LTS is defined as:

WINDOW(T) = P1(T) ∧ · · · ∧ Pn(T) (1)

where each Pi(T) represents a set of constraints associated to
a property.

Next, the constraints associated to different properties are
described. A common and important feature of these properties
is that they are local, i.e., they can be specified as Boolean
relationships among variables that represent transitions in a
small region of the LTS.

A. Forward and backward persistence

Forward persistence ensures that no event disables another
event in the extracted window (see Sect. III-E). The Boolean
formulation of this property is as follows:

Let s, s1, s2 ∈ S and a, b ∈ Σ, with a 6= b,
such that t1 = (s, a, s1) and t2 = (s, b, s2).
Let Ts2,a = {ti = (s2, a, si) | si ∈ S} be the set of
transitions enabled in s2 with event a. Then the

5

following constraint is added to the formula to
guarantee the persistence of a:

(t1 ∧ t2) =⇒ (ti1 ∨ · · · ∨ tik)

where ti1 , . . . , tik are the elements of Ts2,a. No-
tice that, by symmetry, this constraint will also be
applied for b’s persistence. It also works for non-
deterministic LTSs in which |Ts2,a| > 1. In case
Ts2,a = ∅, the constraint is reduced to: ¬t1 ∨ ¬t2.

Backward persistence has a dual formulation that intuitively
corresponds to the one for forward persistence when the
direction of the transitions is reversed.

The constraints for forward and backward persistence must
be formulated for pairs of events enabled in any state of the
LTS.

B. Determinism

In some cases, it is desirable that the extracted windows
are deterministic. This implies that any non-deterministic
choice enforces the system to move to a different window.
Determinism can be easily enforced by adding “at-most-one”
constraints over all the transitions enabled with the same event
in non-deterministic states.

C. Connectedness

This is a property that cannot be guaranteed with only local
constraints. Instead, a hybrid approach combining Boolean
constraints and algorithmic post-processing is used.

The Boolean constraints guarantee that no new
source/deadlock states are generated in a window. Formally,
for any state s ∈ S, we define Tin(s) = {tin1 , . . . , tinm}
and Tout(s) = {tout1 , . . . , toutn} as the set of incoming and
outgoing transitions of s, respectively. For any state in which
Tin(s) 6= ∅ and Tout(s) 6= ∅, the following constraint is added:

(tin1 ∨ · · · ∨ tinm) ⇐⇒ (tout1 ∨ · · · ∨ toutn).

This constraint guarantees that any state with incoming
and outgoing transitions in the original LTS will also have
incoming and outgoing transitions in any window.

D. Algorithm

We next present an algorithm for the discovery of a window
decomposition of an LTS (see Algorithm 1).

The algorithm is based on the sequential extraction of
process windows that fulfil a set of properties. The extraction
is shepherded by a SAT formula that encodes the constraints
of the chosen properties (see line 2 and equation (1)).

The variable T ′ contains the set of transitions that have not
yet been covered by the previously extracted windows.

For each window, the maximum number of uncovered
transitions is selected (besides other transitions). This selection
is steered by a cost function encoded as a Pseudo-Boolean
constraint (line 6). The variable Ti is the set of selected
transitions.

It is theoretically possible that Ti has more than one
connected component. In that case, the largest component is

Algorithm 1 Generation of a Window Decomposition

1: function WINDOWDECOMPOSITION((S,Σ, T, s0))
2: F ← SAT formula (1) for property encoding
3: T ′ = T . T ′ contains the uncovered transitions
4: i← 1 . Window index
5: while T ′ 6= ∅ do . while uncovered transitions
6: Cost←

∑
t∈T ′ t . max uncovered transitions

7: Ti ← PseudoBooleanOptimization(F, Cost)
8: Ti ← LargestConnectedComponent(Ti)
9: Σi ← The alphabet associated to Ti

10: Si ← States from S adjacent to Ti

11: sini ← s0 ∈ Si ? s0 : ⊥i

12: Wi = LTS(Si,Σi, Ti, sini)
13: T ′ ← T ′ \ Ti

14: i← i + 1

15: return {W1, . . . ,Wn} . The WD

selected to create a new process window Wi. The initial state
can be either s0 or ⊥i depending on whether s0 belongs to
one of the selected transitions.

The main loop of the algorithm iterates until all the transi-
tions of the LTS have been covered by some window.

E. Implementation details

The current algorithm has been implemented to discover
window decompositions with forward and backward persis-
tence that can later lead to choice-free Petri nets. To avoid
an excessive fragmentation of the selected transitions into
multiple connected components, the connectedness condition
discussed in Sect. IV-C has been added to formula F .

The PBLib library [9] has been used for Pseudo-Boolean op-
timisation and Minisat [10] as SAT solver. The maximisation
of the cost function has been implemented by incrementally
strengthening the constraints that encode the cost function until
the problem becomes unsatisfiable [9].

F. Termination and Completeness

Let us call simple traces those that correspond to simple
paths in the LTS, i.e., those that do not visit the same
vertex more than once. Termination is always guaranteed by
considering the following observation: any simple trace is a
window with forward and backward persistence.

Therefore, if T ′ 6= ∅, it is always possible to find a window
consisting of a simple trace that covers at least one of the
transitions in T ′ and fulfils persistence. Hence, T ′ is reduced
at each iteration.

Note that the above argument also proves the completeness
of the algorithm: it discovers a valid window decomposition
for any input LTS.

The previous observation also provides an upper bound
on the number of iterations required to discover a WD: the
number of simple traces cannot be larger than the minimum
number of traces required to cover all transitions of the LTS.

In practice, the number of iterations is substantially smaller
since every window covers multiple traces exhibiting concur-
rent behaviours.

6

V. DERIVING WAKE-UP CONDITIONS AND MARKINGS

In this section we present a method for deriving Boolean
equations for wake-up conditions and markings. The method is
integrated with the window decomposition algorithm presented
in Section IV and is available as part of the WORKCRAFT
framework [1].

A. Deriving wake-up conditions
Let W be a window covering the set of states Sw. The

truth table of its wake-up condition c(W, s) can be specified
as follows:
• c(W, s) = 0 for all states s that are outside the window,

that is:
∀s /∈ Sw : c(W, s) = 0.

• c(W, s) = 1 for all states s where we can enter the
window, that is:

∀s ∈ Sw : (∃s′ /∈ Sw : s′
e→ s)⇒ c(W, s) = 1.

• Otherwise, for all states s that are covered by the window
but cannot be entered from outside, the value c(W, s) is
unconstrained, i.e. it is a don’t care. Indeed, there is no
harm if the wake-up condition is true when the window
is already active, and we can use this flexibility to obtain
a simpler equation for the wake-up condition.

For the example discussed in Section II-B, the above
definition yields the following constraints for W1:{

c(W1, s6) = c(W1, s7) = c(W1, s8) = c(W1, s9) = 0,
c(W1, s0) = c(W1, s4) = 1.

Since the windows are represented by safe Petri nets, it is
natural to represent their states by sets of marked places.
This leads to the following standard Boolean logic synthesis
problem that can be solved by the ESPRESSO tool [11], where
sets are encoded by Boolean vectors:

Marking s Boolean vector Wake-up condition c(W1, s)
{p5, p8} (1, 0, 0, 1, 0) 0
{p6, p9} (0, 1, 0, 0, 1) 0
{p7, p9} (0, 0, 1, 0, 1) 0
{p5, p9} (1, 0, 0, 0, 1) 0
{p7, p8} (0, 0, 1, 1, 0) 1
{p6, p8} (0, 1, 0, 1, 0) 1

By synthesising the above into a Boolean equation, one obtains
a very succinct wake-up condition: c(W1, s) = p5 ∧ p8.

It is not difficult to prove that an equation with only positive
literals can always be obtained for wake-up conditions. This
comes from the fact that the activation of a window always
coincides with the arrival of a token in some other windows.
This monotonic behaviour guarantees a positive relationship
between a set of variables and the wake-up conditions. The
details of the proof are out of the scope of this paper.

We implemented the positive mode in our tool to derive
wake-up conditions without negative literals, which produces
c(W1, s)pos = (p6 ∧ p8) ∨ (p7 ∧ p8) in this case. One can see
that the obtained equation may be simplified by factoring
out the common term p8. Our tool can derive such factored
equations if requested by the user. In our example the result
is c(W1, s)

opt
pos = (p6 ∨ p7) ∧ p8, as expected.

B. Deriving wake-up markings

To derive wake-up markings we use a similar approach.
Let m(W,p, s) stand for the wake-up marking of place p in
window W and state s. Its truth table is as follows:
• m(W,p, s) = 1 if we can enter W in state s and p must

be marked.
• m(W,p, s) = 0 if we can enter W in state s and p must

be unmarked.
• Otherwise, the value m(W,p, s) is unconstrained. Indeed,

we only care about the value in the states when we enter
window W and wake it up.

For the example discussed in Section II-A, the above
definition yields the following constraints for W1 and p0:{

m(W1, p0, s0) = 1,
m(W1, p0, s4) = 0.

This can be equivalently expressed by the following truth table:

Marking s Boolean vector Wake-up marking m(W1, p0, s)
{p7, p8} (0, 0, 1, 1, 0) 1
{p6, p8} (0, 1, 0, 1, 0) 0

It is not difficult to see that the truth table can be synthesised
into a very simple equation m(W1, p0, s) = p7.

VI. APPLICATIONS

Process windows are useful whenever one needs to under-
stand the behaviour of a complex system where concurrency
and choice are intertwined. Such systems often make com-
monly used behavioural models, such as Petri nets, difficult
to comprehend, as we have already demonstrated in the
motivational example in Section I.

In this section we discuss two application areas where
process windows are particularly useful: asynchronous circuit
design and process mining.

A. Asynchronous circuit design

Asynchronous circuits operate without a global clock signal,
and individual gates can therefore fire truly concurrently.
Design of such circuits is a very challenging task, and even
circuits with a few gates may require a substantial specification
and analysis effort from the designer.

Signal Transition Graphs (STGs) are commonly used as
the specification language in asynchronous circuit design [12].
STGs are Petri nets whose transitions are labelled with signal
transitions, i.e. events corresponding to signals changing their
value from 0 to 1 (the rising transition, denoted by a+ for
signal a) and 1 to 0 (the falling transition, denoted by a−).
The key benefit of using STGs compared to transition systems
is that STGs can represent concurrency very compactly using
the true concurrency semantics, which is very natural for
asynchronous circuits. Transition systems, on the other hand,
use the interleaving semantics for representing concurrency,
which leads to inadequately large models.

Despite the fact that STG models of asynchronous circuits
are often compact, they may still be hard to understand, partic-
ularly by users who are not experts in the concurrency theory,
such as industrial hardware engineers. Process windows help

7

Fig. 4: STG specification of a basic buck controller [13].

make STG models easier to understand by abstracting away
the choices in the system, and representing each behavioural
scenario separately.

Consider an example STG shown in Fig. 4. The STG
specifies the behaviour of a basic asynchronous buck controller
used in on-chip power regulators [13]. The STG is a result of
a careful analysis of the controller by the designer, who man-
ually extracted three behavioural scenarios and represented
them as separate branches of the STG in order to achieve
clear representation of the controller’s behaviour. Note that
the STG is not entirely trivial: the two upper branches start
with the same signal transition uv+, which indicates that the
scenarios partially overlap.

Fig. 5: Buck STG synthesised from the transition system.

To illustrate that deriving the STG specification in Fig. 4
manually is not trivial, Fig. 5 shows the STG synthesised
automatically from the transition system of the buck controller
by PETRIFY [14]. As one can see, once the careful manual
layout based on the insight into behavioural scenarios of the
system is removed, the STG becomes harder to understand.

The window decomposition method presented in this paper
can automatically discover the three scenarios from the under-
lying transition system, without any manual intervention from
the designer, thereby substantially decreasing the specification
and visualisation effort. The extracted windows are shown
in Fig. 6. They have have the same wake-up marking with
the only token on the oc− → uv+ arc, and symmetric
wake-up conditions that monitor these places. The aspect of
overlapping scenarios is even more evident in the window-
based representation: the marked graph corresponding to the
‘zc absent’ scenario is a subgraph of the ‘zc late’ scenario,
which means that whenever the former window is active, the
latter is active too.

Representing circuit behaviour by a collection of marked
graphs can be also beneficial for the following reasons:

(a) ‘zc late’ scenario.

(b) ‘zc absent’ scenario.

(c) ‘zc early’ scenario.

Fig. 6: Fully automated window decomposition of the buck
controller (layout generated by Graphviz [15]).

• Marked graphs are a subclass of Petri nets with particu-
larly well understood structural properties. For example,
one can easily characterise marked graphs in terms of
performance and energy. If the proportion of time the
circuit operates in each scenario is known from the
system description, it is possible to aggregate individual
characteristics of the scenarios, obtaining a metric for
overall system performance and energy consumption.

• Process windows permit incremental specification of a
system, where each scenario is designed and verified sep-
arately as a marked graph. Such incremental specification
allows to avoid monolithic STG specifications that cannot
be designed in a decentralised manner by independent
teams of designers.

• It is possible to synthesise asynchronous circuits for each
marked graph separately and then combine them using
a correct-by-construction approach on the basis of wake-
up conditions and markings. This can potentially produce
circuits that are easier to implement using gates available
in standard technology libraries.

B. Process mining

Another potential application area is process mining [16],
more specifically the discovery of process models from execu-
tion traces. Some of the previous work in this area [3] inspired
the concept of process windows presented in this paper.

Traces:

adeac
acdbeacb
abceac
acbdecab
adeca
acbeca

a

aa
c

d

e

c d

d

b

bb
c e

a

a
c c

c

e
a

a
c

c
b

Fig. 7: Log of traces and Labelled Transition System.

We illustrate the applicability of process windows to the
area of process mining with a simple example in Fig. 7. On
the left, a log of traces is shown with events belonging to the
alphabet {a, b, c, d, e}. On the right, the LTS obtained from

8

a

cb d

b dc

b

de a

e

c

(a) Petri net model automatically discovered by PETRIFY.

a a

a c

e

b c

a c

e

a

d

c

d

e

a c

b

b

(b) Process windows {W1,W2,W3}.

:w2

:w2

a

c
b

d
e

a c

b:w1

:w3

(c) Window overlay.

Fig. 8: Mining a process model for the log in Fig 7.

the traces is depicted. This LTS has been generated with the
prefix multiset conversion [17], in which prefixes with the same
number of occurrences of each event lead to the same state
(regardless of the occurrence order).

Fig. 8(a) depicts the Petri net obtained by PETRIFY [14]
using the theory of regions and label splitting. The structure
of the Petri net is very intricate and gives no intuition on
how the process behaves. The main reason is because the net
represents multiple behaviours of different nature under the
same structure. By extracting choice-free process windows
shown in Fig. 8(b), the structure of the behaviour becomes
much more visible.

In many cases, the logs of a system contain behaviours of
subsystems that interact with different causality/concurrency
relations. Process windows contribute to distill the hidden
sub-processes and show the variety of behaviours that were
artificially blended in the same log.

Furthermore, it is possible to combine process windows
with other techniques for visualising scenarios. For example,
Fig. 8(c) shows how the windows can be overlaid by matching
their common fragments and using Boolean conditions to
deactivate individual events. By setting w1w2w3 = 010, i.e.

(a) Transition system.

(b) Window decomposition (shared states highlighted).

(c) Petri net.

Wake-up condition: p5

Wake-up marking:
p0 = p8
p1 = p9
p3 = 1

(d) Window W1.

Wake-up condition: p0

Wake-up marking:
p5 = p3
p6 = p4
p8 = 1

(e) Window W2.

Fig. 9: Arbitration.

choosing window W2, one can remove events b and c whose
conditions evaluate to 0, and obtain the second scenario.
Such compact overlaid representations can be automatically
produced by existing process mining techniques [18].

VII. DISCUSSION

In this section we study two more examples of window
decomposition, that highlight the aspects of scalability and
flexibility of the proposed approach when it is applied to real-
life systems that often contain such sources of complexity as
resource arbitration and OR causality.

9

(a) Transition system. (b) Petri net.

(c) Window decomposition (shared states highlighted).

Wake-up condition: p8

Wake-up marking:
p0 = 1
p3 = 1

(d) Window W1.

Wake-up condition: p3

Wake-up marking:
p5 = 1
p8 = 1

(e) Window W2.

Fig. 10: OR causality.

A. Resource arbitration

Fig. 9(a) shows a transition system of a request-grant-
done arbiter. The arbiter accepts two concurrent requests
r1 and r2 and issues at most one grant g1 or g2 for a
pending request. The request is subsequently removed by the
corresponding done event d1 or d2. The corresponding Petri
net in Fig. 9(c) is well-known and captures the behaviour of
the system in a very clear and concise way. Furthermore, it is a
scalable representation in the following sense. If one needs to
generalise the model to describe a k-of-n arbiter for handling
n requests by issuing at most k grants at a time, one can
simply use n request-grant-done loops arbitrating via a shared
resource place initially containing k tokens.

Now consider the window decomposition shown in Fig. 9(b)
and the windows in Fig. 9(d,e). The windows are choice-free,
as desired, however, this representation is not scalable. Indeed,
a k-of-n arbiter requires an exponential number of windows

(
n
k

)
, because there are exactly

(
n
k

)
different choice-free sce-

narios. This shows the limitation of the proposed approach
when windows are restricted to choice-free nets. A possible
solution to this problem is to overlay windows, as described in
Section VI-B, which results in a compact representation even
for exponentially many windows. Alternatively, one can adapt
the window decomposition algorithm to allow simple resource
arbitration patterns within windows.

B. OR causality

OR causality [19] is known to be difficult to model with
Petri nets, as it requires either 2-safe places or event splitting.
Fig. 10 shows an example of a system with OR causality: the
event d may be caused either by b or by c. The Petri net in
Fig. 10(b) splits event b and c to model OR causality, which
makes the net difficult to understand and introduces an aspect
of choice into the model, even though the original transition
system is persistent.

Fig. 10(c) shows how the transition system can be de-
composed into a union of two backward-persistent transition
systems. The resulting window decomposition is shown in
Fig. 10(d); it contains two windows because the original
transition system is not backward persistent.

Our implementation of the window decomposition algo-
rithm allows the user to choose whether to respect backward
persistence during the decomposition process or not, because
in some situations it may be beneficial to discover windows
that contain OR causality, as they may correspond to natural
behavioural scenarios of the system.

VIII. RELATED WORK

Process windows are related to and inspired by a
broad body of work on scenario-based system specification
and analysis methods [20]. In particular, Message-Sequence
Charts (MSCs) [21] and Live Sequence Charts (LSCs) [22]
are widely used for the specification of protocols of the
communication between system components by means of
messages. MSCs and LSCs are supported by tools and can
be automatically transformed to transition systems for further
model-checking and synthesis.

Some approaches use Petri net based models to represent
individual scenarios, for example oclets [23] use partial runs
to represent scenarios and anti-scenarios (i.e. scenarios that
must not occur). Untanglings [24] also represent a system
behaviour by a collection of acyclic partial runs, but for the
purpose of efficient state representation and model-checking,
instead of specification. Structured Occurrence Nets [25] in-
troduce a family of richer relations between scenarios, such
as behavioural abstraction.

In the area of asynchronous circuit design, one can also
highlight the work on Conditional Partial Order Graphs [26]
and Parameterised Graphs [27], where partial orders are used
for the specification of multi-scenario hardware systems, such
as processors and on-chip communication controllers.

The key differentiating aspect of this paper is the auto-
mated discovery of scenarios from transition systems, directly
inspired by [3], which allows to understand the behaviour

10

of complex existing systems that have not been manually
decomposed into scenarios. Furthermore, unlike many of the
above-mentioned approaches, the proposed method is not
limited to acyclic scenarios and can seamlessly handle both
cyclic and acyclic scenarios, choosing the most appropriate
formalism for their representation, as has been demonstrated
in Section VI.

The main difference from the approach presented in [3] is
the coverability of behaviours. In [3], the extraction of slices
was oriented to discovering process models obtained from
logs. In that case, each trace of the log was completely covered
by at least one slice. The work presented in this paper is more
general in the sense that windows cover all behaviours of the
LTS but traces may travel across different windows.

IX. CONCLUSIONS

Complex processes often have intricate relationships among
the participating events. Having a monolithic model to repre-
sent such behaviours often results in structures that do not
give a clear intuition on the sub-processes hidden inside the
complexity of the global process.

Process windows is a formalism that helps distilling and dis-
covering sub-processes with structurally simple relationships.
Every window models a partial behaviour of the complete
system and has simple properties that contribute to better
understanding of the interaction among events.

An important aspect of the process windows method is
that it is not restricted to any particular set of properties of
discovered windows. In this paper we have explored persistent
windows to obtain choice-free scenarios. However, one can
envisage other window properties to be used to derive windows
with other useful features.

Automation is another important aspect of process windows.
If the desired properties are simple and local, efficient algo-
rithms for the discovery of windows can be derived, thereby
making the interaction with the user simple, practical and
interactive.

ACKNOWLEDGEMENTS

We are grateful to Alex Yakovlev for inspiring discus-
sions. This research was partially supported by EPSRC grant
EP/L025507/1 (A4A), and by funds from the Spanish Ministry
for Economy and Competitiveness and the European Union
(FEDER funds) under grant TIN2013-46181-C2-1-R and the
Generalitat de Catalunya (2014 SGR1034).

REFERENCES

[1] The Workcraft framework homepage. http://www.workcraft.org/, 2009.
[2] I. Poliakov, D. Sokolov, and A. Mokhov. Workcraft: a static data flow

structure editing, visualisation and analysis tool. In Petri Nets and Other
Models of Concurrency, pages 505–514. 2007.

[3] Javier de San Pedro and Jordi Cortadella. Mining structured Petri nets
for the visualization of process behavior. In 31st ACM Symposium on
Applied Computing, pages 839–846, April 2016.

[4] Eike Best and Raymond Devillers. Characterisation of the state spaces
of live and bounded marked graph Petri Nets. In Language and
Automata Theory and Applications, volume 8370 of LNCS, pages 161–
172. Springer, 2014.

[5] Eike Best and Raymond Devillers. Synthesis of bounded choice-free
Petri nets. In Proc. 26th International Conference on Concurrency
Theory (CONCUR), pages 128–141, 2015.

[6] Jörg Desel and Javier Esparza. Free Choice Petri nets, volume 40
of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1995.

[7] Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre
Yakovlev. Deriving Petri nets from Finite Transition Systems. IEEE
Transactions on Computers, 47(8):859–882, August 1998.

[8] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization.
Discrete Applied Mathematics, 123(1–3):155–225, 2002.

[9] Tobias Philipp and Peter Steinke. PBLib – a library for encoding pseudo-
boolean constraints into CNF. In Marijn Heule and Sean Weaver, editors,
Theory and Applications of Satisfiability Testing – SAT 2015, volume
9340 of Lecture Notes in Computer Science, pages 9–16. Springer, 2015.

[10] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory
and Applications of Satisfiability Testing, 6th International Conference,
SAT 2003, pages 502–518, 2003.

[11] Richard L. Rudell and Alberto L. Sangiovanni-Vincentelli. Multiple-
Valued Minimization for PLA Optimization. IEEE Trans. on CAD of
Integrated Circuits and Systems, 6(5):727–750, 1987.

[12] Alexandre V Yakovlev, Albert M Koelmans, and Luciano Lavagno.
High-level modeling and design of asynchronous interface logic. IEEE
Design & Test of Computers, 12(1):32–40, 1995.

[13] D. Sokolov, A. Mokhov, A. Yakovlev, and D. Lloyd. Towards asyn-
chronous power management. In IEEE Faible Tension Faible Consom-
mation (FTFC), pages 1–4, May 2014.

[14] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano
Lavagno, and Alexandre Yakovlev. Petrify: a tool for manipulating
concurrent specifications and synthesis of asynchronous controllers.
IEICE Transactions on Information and Systems, 80(3):315–325, 1997.

[15] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-
Phong Vo. A technique for drawing directed graphs. IEEE Trans.
Software Eng., 19(3):214–230, 1993.

[16] Wil M. P. van der Aalst. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, 1st edition, 2011.

[17] W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen,
E. Kindler, and C.W. Günther. Process mining: a two-step approach
to balance between underfitting and overfitting. Software & Systems
Modeling, 9(1):87–111, 2010.

[18] Andrey Mokhov, Josep Carmona, and Jonathan Beaumont. Mining
Conditional Partial Order Graphs from Event Logs. In Transactions
on Petri Nets and Other Models of Concurrency XI, pages 114–136.
Springer Berlin Heidelberg, 2016.

[19] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
M. Pietkiewicz-Koutny. On the models for asynchronous circuit be-
haviour with OR causality. Formal Methods in System Design, pages
189–234, 1996.

[20] Klaus Weidenhaupt, Klaus Pohl, Matthias Jarke, and Peter Haumer.
Scenarios in system development: current practice. IEEE software,
15(2):34–45, 1998.

[21] David Harel and PS Thiagarajan. Message sequence charts. In UML
for Real, pages 77–105. Springer, 2003.

[22] David Harel and Rami Marelly. Come, let’s play: scenario-based
programming using LSCs and the play-engine, volume 1. Springer
Science & Business Media, 2003.

[23] Dirk Fahland. Oclets–scenario-based modeling with petri nets. In
International Conference on Applications and Theory of Petri Nets,
pages 223–242. Springer, 2009.

[24] Artem Polyvyanyy, Marcello La Rosa, Chun Ouyang, H Arthur, and
M Ter Hofstede. Untanglings: a novel approach to analyzing concurrent
systems. Formal Aspects of Computing, 27(5-6):753, 2015.

[25] Maciej Koutny and Brian Randell. Structured occurrence nets: A
formalism for aiding system failure prevention and analysis techniques.
Fundamenta Informaticae, 97(1-2):41–91, 2009.

[26] Andrey Mokhov and Alex Yakovlev. Conditional partial order graphs:
Model, synthesis, and application. IEEE Transactions on Computers,
59(11):1480–1493, 2010.

[27] Andrey Mokhov and Victor Khomenko. Algebra of parameterised
graphs. ACM Transactions on Embedded Computing Systems, 13(4s),
2014.

	Introduction
	Motivational example

	The example in more detail
	Wake-up markings
	Wake-up conditions

	Labeled Transition Systems and Windows
	Labelled Transition Systems
	Windows
	Window Decomposition
	State space and transition steps
	Example

	Structural properties
	Forward and backward persistence
	Free choiceness
	Example

	Algorithm for Window Decomposition
	Forward and backward persistence
	Determinism
	Connectedness
	Algorithm
	Implementation details
	Termination and Completeness

	Deriving wake-up conditions and markings
	Deriving wake-up conditions
	Deriving wake-up markings

	Applications
	Asynchronous circuit design
	Process mining

	Discussion
	Resource arbitration
	OR causality

	Related work
	Conclusions
	References

