FORMAL VERIFICATION AND
TESTING OF ASYNCHRONOUS
CIRCUITS

Oriol Roig i Mansilla
Universitat Politécnica de Catalunya

Barcelona. May, 1997

UPC

A THESIS SUBMITTED IN FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE

Doctor en Informatica

PREFACE

The advances in Very Large Scale Integration (VLSI) technology in the last years has led to faster,
more complex and less consuming digital circuits. Another key point in the revolutionary changes
produced in electronics has been the drastic cost reduction of manufactured products. The cost
of a chip is mainly concentrated in the design, the layout mask (i.e. the “die”) fabrication and
testing. Surprisingly, manufacturing the chip itself is much cheaper since a VLSI circuit is, roughly
speaking, a piece of sand.

Most of nowadays digital circuits are synchronous because a variety of reasons:

m Synchronous circuits can be fabricated in relatively short time thanks to numerous available
Computer-Aided Design (CAD) tools. Many of these tools are editors, since typically earlier
design stages are still held manually.

m Circuit “correctness” is usually assumed by using presumably correct synthesis tools plus
extensive hand-driven and/or pseudo-random simulation. This method, highly dependent on
designer’s skills, can be easily used but it does not constitute a formal prove of correctness.
As a sample, one of the latest and most famous undetected bugs, uncovered by extensive
simulation, has been the faulty divider of earlier Pentium microprocessors. The use of formal
verification methods is currently quite reduced in the industry.

m There are approaches that highly enhance the testability of synchronous circuits. It has
even been defined a standard, the P1149, to describe how such techniques as well as the
communication with test equipment should be done.

The advantages of synchronous circuits are consequence, in a measure, of very restrictive design
rules that simplify, among other issues, timing analysis. In synchronous circuits all feedbacks are
cut by flip-flops, which allows stepping computation in cycles. Since the only timing concern is
that by the end of the cycle the circuit must be stable, synchronous circuit design and analysis is
straightforward if compared with asynchronous design.

The main reason that eased synchronous system design is turning out to be one of its capital draw-
backs as VLSI technology develops, and the situation will probably be worse with the advent of
Ultra Large Scale Integration (ULSI) [Boh96]. The fact that a signal cannot be exactly distributed
at the same time at every point of a chip cannot be longer neglected as cycle time shortens. A
possible solution to this problem might be local rather than global synchronization.

Asynchronous systems use local synchronization to interact. Computation starts as soon as there
is new available data and communication is done by local handshake signals. This modus operandi
makes asynchronous circuits highly concurrent systems where everything is done, at least in the-
ory, as soon as possible. Absence of clock skew, high degree of modularity, potential lower power
consumption and electro-magnetic radiation, or average-case performance are, among others, ad-
vantages of asynchronous circuits. Consequently, asynchronous circuits potentially provide means
of overcoming the arising disadvantages of synchronous systems and taking maximum benefit from
leading-edge VLSI and ULSI technology.

iii

v FORMAL VERIFICATION AND TESTING OF ASYNCHRONOUS CIRCUITS

Concurrent systems are difficult to design and to (formally) prove to be correct. Moving myriad
designers to a challenging asynchronous style is an activity that will not succeed unless the de-
signer’s task is eased at maximum, as it is the case of nowadays synchronous design. Providing
methodologies and tools that do the dirty work is, therefore, even more necessary than it has been
in clocked systems.

The work to be introduced proposes novel techniques for the automatic verification an test pattern
generation of asynchronous circuits. From the practical point of view, the presented approaches
are not just a scientific divertimento, but they have resulted in the implementation of two new
CAD tools.

PREFACE

ACKNOWLEDGEMENTS

1

INTRODUCTION

1.1

1.2
1.3
1.4

1.5

Integrated circuit design methodology
1.1.1 Synthesis

1.1.2 Verification

1.1.3 Testing

Why asynchronous?

Asynchronous circuit modeling
Overview

1.4.1 Specification validation

1.4.2 Asynchronous circuit verification
1.4.3 Testing of asynchronous circuits
Structure of the work

MATHEMATICAL BACKGROUND

2.1
2.2
2.3
2.4

2.5
2.6

Preliminaries

Sets, relations and functions

Logic functions

Boolean algebra

2.4.1 Switching algebra

2.4.2 Algebra of classes (subsets of a set)
2.4.3 Algebra of logic functions

2.4.4 Stone’s representation theorem
Ternary algebra

Making it efficiently: BDDs

2.6.1 Reduced and ordered BDDs

2.6.2 Boole’s expansion theorem

2.6.3 Boolean operations with ROBDDs

SPECIFICATION VALIDATION

3.1

3.2

Introduction

3.1.1 Previous work
3.1.2 Overview
Petri nets

CONTENTS

iii

ix

© J ot W W= ==

— e e
_= o O O

13
13
14
16
17
18
18
18
18
19
19
20
21
21

23
23
24
25
25

vi

3.3

3.4

3.5
3.6
3.7

3.8

3.9

FORMAL VERIFICATION AND TESTING OF ASYNCHRONOUS CIRCUITS

3.2.1 Modeling safe Petri nets
3.2.2 Firing Petri net transitions
Signal Transition Graphs (STG)
3.3.1 Modeling safe STGs

3.3.2 Firing STG transitions
State graphs

3.4.1 Projection of a state graph
3.4.2 State graph associated to a Petri net or an STG
Net traversal and reachable markings
Petri net reductions

Improving Petri net traversal
3.7.1 Chaining

3.7.2 Toggling

3.7.3 Improved BFS algorithm
Verification of properties

3.8.1 Safeness

3.8.2 Liveness

3.8.3 Persistence

3.8.4 Consistence

3.8.5 Complete State Coding
Results

3.9.1 Petri nets

3.9.2 Signal Transition Graphs

3.10 Conclusions

4 ASYNCHRONOUS CIRCUIT VERIFICATION

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

Introduction

4.1.1 Previous work

4.1.2 Overview

Notation and terminology

Speed-independent circuit modeling

4.3.1 Gate modeling

Environment and circuit composition
Verification of speed-independence

4.5.1 Failure states

4.5.2 Semi-modularity

Flat verification of speed-independent circuits
4.6.1 Error diagnosis

Hierarchical verification of speed-independent circuits
4.7.1 Functional and behavioral correctness
4.7.2 Reduction to complex gates

4.7.3 Projections adding nondeterminism
4.7.4 Why is hierarchical verification exact?
4.7.5 Verification of isomorphic subcircuits
Verification of properties

4.8.1 Deadlock freeness

26
27
28
29
30
30
30
31
31
33
34
34
36
36
38
39
39
40
42
43
43
43
45
46

47
47
48
49
49
50
51
53
54
55
56
57
57
59
60
63
64
65
69
70
70

Contents

4.8.2 Home state

4.8.3 Verification of properties on the collapsed circuit
4.9 Results
4.10 Conclusions

5 TEST PATTERN GENERATION FOR ASYNCHRONOUS
CIRCUITS
5.1 Introduction
5.1.1 Terminology
5.1.2 Previous work
5.1.3 Overview
5.2 Faults and fault models
5.3 Asynchronous circuit-under-test behavior
5.3.1 Circuit model
5.3.2 Circuit State Graph (CSG)
5.3.3 CSG in test mode (TCSG)
5.4 Synchronous abstraction of the TCSG
5.4.1 Estimation of the test cycle
5.4.2 Practical computation of the CSSG
5.5 Automatic test pattern generation
5.5.1 Fault activation
5.5.2 State justification
5.5.3 State differentiation
5.6 Improving ATPG performance
5.6.1 Ternary simulation
5.6.2 Fault simulation
5.6.3 Random TPG
5.7 Results
5.7.1 Discussion
5.8 Conclusions

6 CONCLUSIONS AND FUTURE WORK
6.1 Main contributions
6.2 Open problems and future work
6.2.1 Verification
6.2.2 Testing

REFERENCES
LIST OF FIGURES
LIST OF TABLES

INDEX

vii

70
71
72
75

7
7
7
78
79
80
82
84
84
85
86
86
86
88
88
88
89
&9
90
91
92
93
95
95

97
97
98
98
98

99

107

109

111

ACKNOWLEDGEMENTS

This work would have been infinitely more difficult without the help of many wonderful people. I
will try to thank them in the tongue I usually address to them.

En primer lloc, al principal culpable de que aquest treball arribi mai a ser una tesi, en Jordi
Cortadella. L’entusiasme i esfor¢ que ha posat en la seva feina com a director mereixen molt més
que aquestes quatre ratlles d’agraiment. M’ha ensenyat a fer recerca, m’ha corregit, m’ha adressat
cap al bon cami, ens hem estavellat plegats contra algun escull i, finalment, hem arribat a port
(perd d’aqui a no res tornem a navegar). Per a ell és la meva més sincera gratitud.

També vull agrair les enriquidores xerrades i els cafes amb n’Enric Pastor i en Marco Antonio
Pena. I a tots els del grup de CAD-VLSI, especialment a Rosa Maria Badia, Enric Musoll i
Fermin Sanchez, I’haver-me aguantat, entre d’altres coses, el nombrosos assaigs quan s’apropava
una presentacié. A Abelardo Pardo quiero agradecerle que, a pesar de estar lejos fisicamente,
siempre ha estado a un simple e-mail de distancia para lo que hiciera falta.

I would also like to thank the valuable comments and discussions on verification and testing with
Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno and Alex Yakovlev. I am also indebted
to Alex Yakovlev for hosting me in my visit to NewCastle and to Alex Semenov for showing me
the “non-universitary” part of the city.

No vull oblidar als companys del Departament d’Arquitectura de Computadors, en especial a la
penya del Laboratori de Calcul, per fer backups i ajudar-me a recuperar el darrer capitol d’aquest
treball, que jo inconscientment havia destruit.

This work has been supported in part by the Ministerio de Educacion y Ciencia of Spain (CICYT),
under contracts TIC 91-1036, TIC 94-0531-E, TIC 95-0419 and Accién Integrada HB-1995-0203,
and by the Asynchronous Circuit Design Work Group under contract Esprit 7225 and Esprit
21949. T am greatly indebted to the Departament d’Ensenyament de la Generalitat de Catalunya
for financing my doctorate. Various grants from the Universitat Politécnica de Catalunya and a
34th Design Automation Conference Travel Grant are also acknowledged.

Finalment vull agrair als meus pares, Felip i Merce, el suport i la fe cega que han tingut en la meva
feina. A mon germa Daniel ser un bandarra collonut, igual que tota la colla de “Pallufoplastics”
que fan que el basquet sigui de tot menys seriés. A 1’Angelina i I’Apo que em tinguin a casa seva
com si fos la meva. Als amics, que ho segueixin essent després de tants anys, en particular als
més vells (i bells) Alvar, Ivan i Enric. I, especialment, a la Maria Jesis que m’aguanti I’humor i
les rareses, m’ajudi a tirar endavant i, malgrat tot, m’estimi. Realment hauria estat molt més dur
sense tots ells.

I would like to thank all of them for any contribution, and apologize to anyone I could have
forgotten. Gracies. Gracias. Grazie. Cnacudo.

ix

-“Vés, cavaller, qui haveu rebut l’orde de cavalleria, e sou tengut en opinid de no ésser
reprotre entre los bons cavallers, jo sé trames aci per ambaizador de tota la fraternitat e
d’aquell prosper orde del benaventurat senyor Sant Jordi, que per aquell jurament que fet
haveu, que tendreu totes les coses secretes e que per via directa o indirecta, de paraula o
per escrit, no ho manifestareu.”

E lo cavaller promet per virtut del jurament, complir e servar totes les coses dessus dites,
e donen-li los capitols. Aprés que els ha llests, si els accepta, agenolla’s en terra davan
laltar o imatge de Sant Jordi, e ab molta honor e reveréncia rep l’orde de la fraternitat.
E si acceptar no la vol, ha tres dies d’espai de pensar-hi, e diu o pot dir: “La mia persona
no és disposta per rebre un tan alt orde com és aquest, ple de molta excel-léncia e virtut.”

Torna a cloure los capitols, escriu dins son nom, e aixi els torna a trametre per l’am-
baizador als de la fraternitat.
Joanot Martorell, “Tirant lo Blanc.”

xi

1

INTRODUCTION

“Read them,” said the King.

The White Rabbit put on his spectacles. “Where shall I begin, please your Majesty?” he
asked.

“Begin at the beginning,” the King said gravely, “and go on till you come to the end;
then stop.”
— Lewis Carrol, “Alice in Wonderland.”

1.1 INTEGRATED CIRCUIT DESIGN
METHODOLOGY

Very Large Scale Integration (VLSI) circuits are components of most nowadays electronic systems.
These circuits contain thousands or millions of electronic devices such as transistors, diodes, ca-
pacitors and/or resistors. The design of such circuits is a complicated process that involves many
different stages. The high complexity of all these steps requires a significant degree of automation.
Much effort has been devised for automating the design process of synchronous circuits, and new
commercial tools appear day by day. In the field of asynchronous circuits, though, only recently
some automated methodologies have begun to slowly emerge.

Figure 1.1 depicts a typical circuit design task flow [GDKW92], valid both for synchronous and
asynchronous circuits. Boxes represent different descriptions of a circuit, from the abstract initial
idea until the final product. Ellipses identify procedures that obtain a more refined description
from a previous one, or that check or modify a given description. Each procedure belongs to
one of the three major aspects of circuit design: synthesis, verification and testing. Verification
assures that synthesis has been correct, whereas testing checks that a physical circuit is a correct
translation into silicon of a particular description of a circuit.

1.1.1 Synthesis

Given an initial idea, sometimes rather abstract, of what a circuit should do, human designers
must build a specification of that circuit. This specification is a high-level behavioral description
of the circuit, and can be written in some high-level language like Verilog [Cad89], VHDL [New88],
CSP [Hoa78, Hoa85], etc, or in other high-level formalisms such as Petri nets [Pet62].

High-level synthesis takes that specification and obtains a data-path with elements such as reg-
isters, multiplexers, adders, multipliers, etc, and a description of the control of those modules.

2 CHAPTER 1

Abstract |dea
Desigre’

Specification Validation H Circuit Specification ‘

High-level Synthesis

Control Logic
Circuit Verificati Logic Synthesis Test Generation

‘ Netlist Description ‘

Technology Mapping’

Implementable Netlist ‘

“Layout Generation Tools

Layout Verification H Layout Description ‘

Final Product Testin

Figure 1.1 Typical circuit design pipeline.

This type of description is often called a register-transfer level description. Commonly there are
different available modules that perform a same operation, and high-level synthesis algorithms try
to combine them in order to generate the smaller, faster and/or less-consuming circuit satisfying
the area, throughput and power requirements. An automaton describing how those modules must
cooperate to produce the circuit response is also generated.

The goal of logic-level synthesis is generating a circuit described as a netlist of gates. The control
automaton is translated into a set of equations and these equations are mapped onto an arbitrary
set of gates.

Given that set of gates, technology mapping will not only try to directly map each arbitrary
gate onto a gate in a library of implementable gates, but also split inexistent complex gates into
several simpler ones. In addition, groups of simple gates may be combined to form larger complex
gates, provided that such gates are available in the implementable library. The data-path modules

Introduction 3

may also be translated into several gates, but usually they are directly mapped onto a transistor
description by the so called module generators or by using available module libraries.

The last step consists in obtaining the layout of the circuit. Modules and gates are placed and
connected by using placement and routing tools. The result is a mask-level description of the
circuit that can be used to fabricate the final product.

1.1.2 Verification

Along the various synthesis steps, an erroneous procedure can contribute to obtain an incorrect
circuit description that may invalidate subsequent design stages. Human mistakes in manually
performed steps, undetected software bugs in automatic tools or a misuse of those tools are possible
sources of error. Therefore, the synthesis process cannot be considered error-free, and it is always
desirable to perform some kind of verification after obtaining a new circuit description.

The devil’s advocate should state that there is also some chance that the verifier could be wrong,
therefore, in theory, no design process can be assured to be error-free. In defense of verification,
it must be said that a same design can be verified by different verification tools. As far as their
verdict coincided, there is a strong likelihood of both synthesis and verification tools being correct.

By applying successive synthesis steps, more detailed circuit descriptions are obtained from more
abstract ones. Given a circuit description, any previous description can be taken as its specifi-
cation. For the synthesis process to be correct, the behavior of each new description must be
included in the behavior of its predecessors. This is often referred as that the circuit conforms
to its specification. In addition, properties that hold for previous descriptions must hold for their
successive refinements as well.

In order to properly talk of “verification”, a formal specification and a model of the circuit are
needed. Since the original idea of what the circuit should do or be cannot be considered (almost
never) as formal, the first step is normally called design validation rather than verification. What
of course can be formally checked is a set of properties that the initial circuit specification should
or should not have, e.g. properties like “the circuit can always be safely reset”, or “event z is
eventually acknowledged by event y”.

After high-level synthesis, the obtained register-transfer level description can be checked against
the behavioral description. Modules are generally assumed to be correct, but the interconnection
of several modules must be verified to perform the specified operation. The control logic obtained
by logic synthesis can be proven to conform to its specification. The generated layout has to
correctly implement the netlist of gates obtained after logic synthesis. All the above are examples
of verification that should be carried out as new circuit descriptions are available. In theory, it
could be proven that the final layout conforms to the original behavioral specification, i.e. that the
synthesis process has generated a correct circuit implementation from its original specification.

1.1.3 Testing

At the moment, no foundry can guarantee that any fabricated circuit is fault-free. The theoretical
yield of a fabrication process is the percentage of correct or fault-free circuits from the total number

of manufactured circuits:
N correct

Y = correct
Ntotal

4 CHAPTER 1

The quality control every circuit has to pass might be too loose or too strict... or both. In the
first case some incorrect circuits may be accepted, while in the second one some correct circuits
may be rejected. In fact it could happen that a portion of faulty circuits are accepted, as well as a
number of fault-free ones are rejected. Since the number of correct circuits is not necessarily the
number of accepted circuits, the real yield should be defined as

Nacceptable

Yr =
Ntotal

In this case, “acceptable” means that the customer will buy the circuit thinking it is fault-free.

Test processes rejecting not only every incorrect circuit but possibly also some correct one are said
to be pessimistic or conservative. On the contrary, if a test accepts all correct circuits and some
faulty ones as well, it is called optimistic. Conservative tests are good from the customers’ point of
view, since they are sure of not buying any incorrect circuit. However, optimistic tests will allow
manufacturers to sell a larger portion of the circuits they make. Nevertheless, it is easy to see
that detecting a faulty circuit once it is normally operating is much more costly than noticing it
at manufacturing time (imagine what would happen if a faulty circuit is placed in a plane and the
fault manifests some seconds before landing). Taking that into account, conservative tests should
be preferred to optimistic ones.

The reject ratio (RR) gives idea of how good a test process is. Figure 1.2 represents a set of
manufactured circuits. Let Ngp and Ngr be respectively the number of good circuits that pass
and fail a given test, while Ngp and Npp are the the number of bad circuits passing and failing a
test. Consequently, there are Ngp + Ngp good circuits and Ngp + Npp bad ones. After applying
a certain test process, only Ngp + Npp circuits pass the test, thus they are accepted as correct.
The reject ratio is defined as follows:

Npp

RR= ——F— .
Ngp + Npp

The smaller the reject ratio is, the tighter the test process results. Ideally, RR should be zero.

Pass Fail

Good NGP | NGF

Bad Nop N

Figure 1.2 Universe of good/bad circuits given a fail/pass test.

Clearly, there are two ways of obtaining fault-free circuits: either the technology becomes capable
of fabricating 100% correct circuits or testing methodologies must be able to test all possible faults
in a circuit. The yield might increase as technology develops, but there is a little likelihood of
having 100% correct circuits “per construction” because of physical limitations. Therefore, testing
is essential in order to lower the number of incorrect circuits finally arriving to the market.

Introduction 5

1.2 WHY ASYNCHRONOUS?

Asynchronous circuits were in fashion between late 50’s and middle 60’s, but since then the
interest in such circuits decreased in favor of synchronous circuits. The main reason for this
decline is that designing asynchronous circuits has been traditionally considered difficult. Since
clocked synchronous circuits were much easier to design and did not do their work worse than
their tricky counterparts, the latter were forgotten and the pioneer work by Huffman [Huf64],
Muller [MB59, Mul63] and others, was covered by dust.

The simple structure of synchronous circuits, cones of combinational logic followed by clocked
flip-flops, allows a very important abstraction: time becomes a discrete rather than a continuous
magnitude. Therefore, the state of a circuit changes synchronously with the arrival of a clock
edge. Any computation must occur between consecutive clock ticks, i.e. within the so called clock
cycle. Whatever happens during that time is not relevant, as far as by the end of the cycle the
circuit is stable. Even the major concern related to time was relatively easy to solve: searching
for the slowest combinational path (the critical path) and assigning a long enough clock cycle in
order to let it settle.

Next, the most relevant drawbacks that asynchronous circuit design has to cope with are com-
mented:

m Design difficulty— The inherent concurrency of asynchronous circuits makes them difficult
to design. Fortunately, automatic synthesis, verification and test pattern generation method-
ologies proposed in the last years are beginning to overcome this problem. In particular, the
work here presented tackles the verification and testing of asynchronous circuits.

m State explosion— This problem refers to the fact that the number of states of a circuit with
n variables can be as large as 2”. The state in a synchronous circuit depends on its inputs
and on the values of the so called state variables, typically a number of flip-flops. On the
contrary, the state in an asynchronous circuit depends on all its signals, rather than on a
subset of them. Therefore, even the state explosion problem arises both for synchronous and
asynchronous circuits, the problem is harder to solve in the case of asynchronous circuits.
Structural analysis, techniques taking advantage of hierarchy, partitioning the systems to
make the problem affordable and using symbolic representation of the states are showing
effective in mitigating the state explosion problem.

m Larger circuits— In general, asynchronous circuits tend to be larger than synchronous ones
because of the logic needed to detect operation completion and the often more complex control
logic. Also, some logic families use dual-rail encoding, which eases completion detection, but
needs keeping two signals for each bit of information. This generally results in larger circuit
area. Nevertheless, circuit area is each time a less important problem, as technology allows
integrating more and more transistors in each chip.

Despite the above problems, asynchronous circuits have several potential advantages:

m Absence of clock skew— The skew of a signal is the difference between the arrival of
signal changes at different points of a same signal wire. Although this skew is negligible
in most cases, it becomes a major concern as the length of the wire increases. Particularly
troublesome is the distribution of a global clock throughout a chip or, even worse, a whole
system. Let us take as an example the 300 MHz DEC 21164 Alpha microprocessor [ea95],
implemented with 0.5um CMOS technology and featuring 1.68 million transistors, 9.3 million
with the on-chip secondary cache. The clock is distributed through a ten-level binary tree,
which results too large to be handled by SPICE [JQNT91]. In order to simulate the clock

CHAPTER 1

distribution network, it has been finally partitioned into three main subsystems, each one
separately simulated. After extensive SPICE simulation, the skew between the first and the
last latch receiving the clock has been estimated in 90ps, which represents more than 5% of
the clock cycle. The authors of [ea95] do not provide skew estimation between the clock edge
entering the distribution network and arriving to the last latch, but it should be significantly
larger. Moreover, as clock frequencies approach 1 GHz and interconnect pitches fall below
0.5pm, interconnect delay will become a dominant part of the clock cycle [Boh96]. Since
asynchronous circuits, by definition, do not have any global synchronization signal, they are
free from the clock skew problem.

Potential lower power consumption— The absence of long capacitive wires, like the clock
signal, that must be continuously charged and discharged provides a potential reduction in
consumption. In the Alpha example above, the last clock driver has an equivalent gate width
of 58cm and drives a load of 3.75nF. The clock distribution system consumes about 20W,
approximately 40 % of the total chip power.

Given an instant of time, a system component is said to be idle if it does not make any useful
computation. In asynchronous circuits idle modules do not switch, which means, depending
on the implementation technology, that those modules do not dissipate energy. Honestly, it
has to be said that techniques like clock gating can be applied to synchronous circuits to
reduce the consumption in idle modules.

Average-case performance— The time to perform most computations depends on the values
of the operands and not only on the operation itself. Self-timed modules start to operate as
soon as available data is at their inputs and produce a completion event telling when the
operation has finished. While synchronous pipelines must work at a worst case speed, self-
timed pipelines, can work at a certain average speed, which in general will be faster than the
worst case.

Automatic adaptation to physical changes— The speed of circuit components may vary
depending on physical changes such as temperature, power supply, variations in the man-
ufacture process, etc. The clock cycle of a synchronous circuit must take into account the
worst possible combination of all these factors. On the contrary, many asynchronous circuits
sense computation completion and also some classes of asynchronous circuits properly work
whatever the delay of their components is. Therefore, such circuits will automatically operate
as fast as the physical characteristics allow.

Better technology migration potential- Migrating from one technology to another one
may be considered, in some sense, a multiple variation of a set of physical characteristics.
For the same reasons exposed in the previous point, technology migration will only affect
performance in most asynchronous circuits, but not correctness.

High degree of modularity— Any synchronous pipeline module must be designed to satisfy
the clock cycle requirements, even if it is a rarely used component. Since a synchronous
pipeline operates at the speed of its slowest element, a slow unit would decrease system
performance. In contrast, an infrequently used asynchronous module can be left unoptimized
without significant loss in circuit performance. In a same fashion, a module can be substituted
by another one (with the same interface, but possibly faster, smaller or less consuming)
without further modifications to the rest of the circuit.

Robust mutual exclusion handling- Even though most circuits are synchronous, their
environment is inherently asynchronous. Sometimes, arbitration mechanisms are needed and,
because of metastability problems, the arbiter decision may take an indefinite long time. Thus,
if the arbiter’s response is not be ready within the required period of time, a malfunction might
be produced. Asynchronous modules can wait until the arbiter comes up with a decision with
no major timing restriction.

Introduction 7

= Potential reduction of electro-magnetic radiation— One of the problems of synchronous
circuits is the electro-magnetic radiation as the operating frequency increases. Thousands of
millions of electronic devices switching almost at a time at frequencies closer to the gigahertz
are an important emitter of microwave radiation. Asynchronous transitions tend to be evenly
distributed in time, therefore the absence of a proper operating frequency nearly surmounts
this problem.

Time is coming that the benefits of synchronous circuits are beginning to show not as important
as their drawbacks will be, whereas most of the problems of asynchronous circuits are fortunately
being solved by current research. Asynchronous circuits will become a feasible design style only
if their problems can be satisfactorily managed. Time and research will determine whether the
potential advantages of asynchronous circuits keep forever potential or are turned into actual
benefits.

1.3 ASYNCHRONOUS CIRCUIT MODELING

Asynchronous circuits can be regarded as an interconnection of two different classes of components,
gates and delays, interconnected through wires. The differences between the two component
classes are as follows:

m (Gates are components with several inputs and one or more outputs. The value of each output
is instantaneously calculated by an associated logic function that depends only on the gate
inputs. Without loss of generality, we will only consider one-output gates, since n-output
gates can be regarded as n one-output gates.

m Delays are one-input one-output elements. They reproduce at their output, after a certain
amount of time, the value at their single input.

The magnitude of a delay can be either

® bounded, if an upper and lower bound of the delay magnitude are known, or

m unbounded, if no bound for the magnitude is known, except that it is positive and finite.

Depending on the “amount of memory” associated to a delay element, two major delay types,
graphically represented in figure 1.3, can be considered:

m pure, if the delay element exactly replicates the wave at its input after the delay magnitude,
and

= inertial, if pulses shorter than the delay magnitude are filtered out.

The place where delays are inserted introduces different ways of modeling asynchronous circuits
(see figure 1.4):

m the feedback delay model, in which every feedback loop is cut by at least a delay element and
replacing any delay by a wire produces some cycle with no delay elements,

8 CHAPTER 1

Delay magnitude:

_——

R
1

inertial

Figure 1.3 Difference between pure and inertial delay.

m the gate delay model, where each gate output is followed by exactly one delay element, and

m the wire delay model, that associates a delay to each wire. It is easy to see that this last
model is equivalent to placing a delay element before each gate input.

N
=

ot
|
T

(b) ©
Figure 1.4 (a) Feedback, (b) gate and (c) wire delay models.

By choosing different combinations of delay magnitude, type and model, several types of asyn-
chronous circuits can be considered. Next, the most commonly used asynchronous circuit models
are described.

Huffman model

Huffman [Huf64] proposed representing an asynchronous circuit by splitting the circuit into two
differentiated parts: the combinational subnetwork, following the bounded inertial wire delay
model, and the feedback lines, modeled by using unbounded inertial feedback delays.

Other models have been proposed as variations of the original Huffman model, namely fundamental
mode [Huf64], burst mode [Now93] and self-clocked [RMCF88] circuits.

Muller model (speed-independent circuits)

The model presented by Muller [MB59] associates an unbounded inertial delay element to each
gate output, since the delay of the wires is considered negligible. Circuits designed following this
model are also known as speed-independent circuits, since they correctly operate despite the delays
of their components.

Introduction 9

Delay-insensitive circuits

The most robust class of asynchronous circuits appears when circuits are modeled by using the
unbounded wire delay model [MFR&5]. This model is equivalent to the Muller model in those
wires connecting a single gate output to a single gate input. By placing a delay before each gate
input, the delay at the different ends of a fork, i.e. one output connected to more than one input,
may vary. This is equivalent to saying that forks are not isochronic. Unfortunately, very few
circuits made up of simple gates can operate in a delay-insensitive way.

Quasi-delay-insensitive circuits

The assumption that all forks are either isochronic or non-isochronic may be too optimistic or
too pessimistic. Assuming an asynchronous circuit made up of different modules, quasi-delay-
insensitive circuits [Mar90b] consider the unbounded gate delay model inside these modules,
whereas their interface is modeled by using unbounded wire delays. Therefore, forks are isochronic
inside a module, but they are non-isochronic outside.

Hazard-free circuits with bounded delays

Unbounded delays are a robust approximation to actual circuitry behavior, but simpler and faster
circuits can be implemented if the delays of the gates are known [Lav92]. Therefore, several
circuit design methodologies assume bounded delays. Such synthesis procedures must assure that
no hazards, and hence no malfunction, appear when the circuit is being normally operated.

The delay of a gate belong to a certain range provided the circuit is correctly manufactured.
Since the delay of gates and paths of gates must be within a certain range, testability of delay
faults [Bre74] turns out an essential issue in circuits synthesized assuming bounded delays.

Micropipelines

Of particular interest is the work by Sutherland [Sut89] on self-timed circuits, which does not
describe an actual asynchronous circuit model but a design methodology. The micropipeline
architecture, divided into control and data-path parts, performs an asynchronous pipelined com-
putation. Data-path elements are self-timed bundled data modules that communicate following
a two-phase handshake. With this simple architecture several complex designs, including a fully
operating asynchronous microprocessor [FDG193], have been successfully implemented.

1.4 OVERVIEW

This work tackles two key points in order to guarantee that no incorrect asynchronous circuit
is issued to the market: formal verification and testing. The inherent difficulty of asynchronous
circuits and the ever increasing complexity of VLSI systems require not only automated synthesis
procedures, but also automated verification and test generation tools. The main contributions to
be presented can be included in the processes of specification validation, circuit verification and
test pattern generation. In the synthesis pipeline depicted in figure 1.1 these processes have been
emphasized.

The above contributions have been implemented in form of automatic asynchronous circuit veri-
fication and test generation tools, respectively versify and testify. Both tools can be obtained via
WWW from the URLs:

10 CHAPTER 1

http://www.ac.upc.es/recerca/VLSI/versify
http://www.ac.upc.es/recerca/VLSI/testify

1.4.1 Specification validation

Several languages and formalisms allow to specify the behavior of asynchronous circuits: CSP [Hoa78,
Hoa85], Petri nets [Pet62], process algebras [Ebe89], etc. We have chosen Petri nets because they
are familiar to researchers in several fields, in particular to the asynchronous circuit design com-
munity.

Petri nets [Pet62] are a formalism that can describe the behavior of many asynchronous systems
and, consequently, several synthesis approaches have used such nets as specification of the circuits
to be implemented [RY85, Chu87]. Given a Petri net, specification validation consists of checking
properties required for the net to be implementable, as well as verifying other properties that are
often desirable in an asynchronous circuit specification. Because of the high parallelism that Petri
nets can express, manual verification of such properties is usually unaffordable.

Chapter 3 presents how safe Petri nets can be efficiently handled by using Binary Decision Dia-
grams (BDDs) [Bry86]. Each place in a Petri net is represented as a boolean variable and each
marking as a minterm of place variables. This allows representing sets of markings as boolean
functions that can be efficiently manipulated by using BDDs. Algorithms for computing the set
of reachable markings of a Petri net and verifying several properties are presented. This work has
been published in [PRCB94, KCK195].

1.4.2 Asynchronous circuit verification

Chapter 4 is devised to the verification of speed-independent circuits. The verification process is
performed by composing a circuit with a Petri net, which can be seen both as the circuit specifi-
cation and as the circuit environment. In this closed system, some transitions in the environment
are associated to some input or output circuit signals. The environment “decides” when the cir-
cuit inputs must switch, whereas when the circuit switches some output signal, the associated
transition in the environment fires accordingly.

The state of a speed-independent circuit can be represented as a minterm, provided each circuit
signal is associated to a boolean variable. Therefore, the state of an environment-circuit system can
also be modeled with BDDs. Two different verification approaches are presented: the first one uses
a flat netlist description of the circuit, while the second one takes benefit of the abstraction of many
internal combinational circuit signals. These two techniques have been published respectively in
[RPC94, RCP95b] and [RCP95a].

1.4.3 Testing of asynchronous circuits

The last contribution tackles Automatic Test Pattern Generation (ATPG) for asynchronous cir-
cuits. Since commercial test equipment is inherently synchronous, a technique for testing asyn-
chronous circuits by using synchronous test patterns is proposed. When such patterns are applied
to an asynchronous circuit, two undesired situations may arise: oscillation and non-confluence.
In the first case the circuit never stabilizes, while in the second one, depending on the delays of
the circuit components, the circuit may settle in different states.

Introduction 11

In chapter 5 the behavior of asynchronous circuits under test is modeled. From that model, all
the possible input patterns that cause either oscillation or non-confluence are eliminated. Finally,
an ATPG algorithm obtains a set of patterns in order to cover single stuck-at faults. This testing
methodology is to appear in [RCPP97].

1.5 STRUCTURE OF THE WORK

Chapter 2 outlines the mathematical basis for boolean reasoning. Chapters 3 and 4 are devoted
to formal verification, respectively to specification validation and circuit verification. The testing
approach for asynchronous circuits is presented in chapter 5. Finally, conclusions and future lines
of work are pointed out in chapter 6.

2

MATHEMATICAL BACKGROUND

As far as the laws of mathematics refer to reality, they are not certain, and as far as they
are certain, they do not refer to reality.
— Albert Einstein.

The good Christian should beware of mathematicians and all those who make empty
prophecies. The danger already exists that mathematicians have made a covenant with
the devil to darken the spirit and confine man in the bonds of Hell.

— St. Augustine.

About this chapter

This chapter introduces some mathematical concepts and notation that will be used in the following
chapters. How some of these concepts can be manipulated by a computer is also explained in a
section devoted to Binary Decision Diagrams (BDDs). The notation has been borrowed, in part,
from [Bro90, BS95].

Since this is intended as an introduction, readers familiar with the notation of sets, algebras and
BDDs can skip reading this chapter.

2.1 PRELIMINARIES

In this section some very basic concepts and notation appearing in formulae are presented.

A proposition is a formula that is either true or false. Examples of propositions are:

m 3<2.
m 2 is a prime number.

. (Va)zeld=ze{l,2} .

The formula
z+y<2

is not a proposition, since it is neither true nor false. It would be a proposition if z and y were
known to be some particular numbers. Such a formula is called a predicate. More formally, a

13

14 CHAPTER 2

predicate P(x1,...,x,) is a formula involving the variables z; to z,. Note that an n-variable
predicate becomes a proposition for each possible substitution of values for its n variables. Thus,
a proposition can be seen as a 0-variable predicate.

Several symbols may be used in formulae to combine different predicates or to quantify their
variables. Whether a symbol or its expression in natural language is used in a formula will depend
on the readability of each particular formula. Next some of these symbols and their usual meaning
are presented:

mV:forall..

3: for at least one ...

m = implies ...

m & equivalence ...
A and ..

L] V:or ...

L] - not ...

2.2 SETS, RELATIONS AND FUNCTIONS

A set is a collection of distinct objects, usually called elements or members. The fact that an
element a belongs (does not belong) to a set A is written a € A (a ¢ A). All the elements in a set
are taken from a universe of discourse or universal set. Commonly universal sets are written in
calligraphic letters (A, R, U, Z, etc), whereas sets within them are written in capital italic letters
(A, B, E, S, etc). Sets can be described in different ways:

m By listing its elements between curly braces — {a,e,i,0,u}, {e1,...e,}, etc.

m By expressing the elements from the universal set that have some property — {z € Z|z < 10},
{z € “phonemes”|z is a vowel}, etc.

m By using a recursive rule like the following:

1. BASE: a list of elements belonging to the set.

2. RECURSION: a construction-rule describing how to generate new members of the set
from other members of the set.

3. RESTRICTION: a statement, often omitted, saying that the only set members are those
described either in the base or in the recursion.

The cardinality of a set A, denoted as |A|, is the number of elements in the set. The empty set,
written (), is a set with cardinality zero.

Given two sets A and B from the same universe of discourse U, different predicates and operations
can be defined:

m A= B (equality): Two sets are equal iff they contain exactly the same elements. If they differ
it is written A # B.

Mathematical background 15

m A C B (inclusion): Set A is included in set B iff all the elements of A are also in B. If some
element of A is not in B we can write AZ B.

s A C B (proper inclusion): Set A is properly included in B iff A C B and A # B. Otherwise
it is denoted as A¢ B.

m A (complementation): The complement of A is the set of all elements in U that are not in A.
Note that if A =, then A = U, and vice versa.

m AU B (union): The union of two sets is the set of all elements that appear in either A or B.
m AN B (intersection): The intersection of two sets is the set of all elements in both A and B.

m A — B (difference): The difference of two sets A and B can be defined as AN B.

Given two sets A and B, not necessarily from the same universal set, the Cartesian product A x B
is defined by the following set of ordered pairs:

Ax B={(a,b)Jla€ Aand b€ B} .

This definition can be easily extended to more than two sets. The Cartesian product of n sets
Aq,...A, can be defined as the next set of ordered n-tuples:

Ay x ... x Ay ={(a1,...,an)|a; € A; for 1 <i<n} .

If all n sets are the same set, e.g. A, the Cartesian product is often abbreviated as A™. For
example, A x Ais A2, A x A x Ais A3, etc.

The power set of a set A, written 24, is defined as the set of all subsets of A:
24 ={B|BC A} .

This notation comes from the fact that a set with n elements has 2™ possible subsets. In other
words, 24| = 2/41.

A binary relation (often just relation) R from set A to set B is a subset of their Cartesian product
(RC AxB). If a € Aisin relation R with b € B, it can denoted either by (a,b) € R or by aRb.
A relation on A is a relation from A to itself. Given a relation R on A, the composition of R with
R, written RR or R2, is defined as

R? = {(a,c) € A*|3b € A with aRb and bRc}

Considering that R' = R and R**! = RR" for n > 1, the transitive closure of R, denoted R,
can be defined as
R* = {(a,b) € A%*|aR*b for some k > 1}

The reflexive and transitive closure of R is defined as

R*=idaUR'" .
Given any relation R on A, it is said to be:

m Reflexive if aRa for all a € A.
m Symmetric if aRb implies bRa for all a,b € A.

m Antisymmetric if aRb and bRa implies a = b for all a,b € A.

16 CHAPTER 2

m Transitive if aRb and bRc implies aRc for all a,b,c € A.

The relation idg = {(a,a)|a € A} is called the identity relation, and relates each element with
itself.

A relation on a set A that is reflexive, symmetric and transitive is an equivalence relation on A.
A partial order on A is a reflexive, antisymmetric and transitive relation on a A.

Given a set A, a partial order < on A, and a nonempty subset S of A, the element u € A is called
an upper bound of S if s < u for all s € S. An upper bound u of S is said to be the least upper
bound of S, written lub(S), if u < b for all b upper bound of S. An example of least upper bound
can be found at the end of section 2.5.

A function from a set A into a set B, written f : A — B, is a rule that relates each element
a € A to one element b = f(a) € B called the image of a. A function is a particular case of
relation, where each element in A appears only in one pair of the relation. The sets A and B
are respectively called the domain and the codomain of the function. A function is said to be
one-to-one iff x # y implies f(z) # f(y).

An n-variable function from A into B is a function of the form

f:A"—B.

Given a function f: A — B and a set C C A, the set
Img(f,C) = {b € B|Ja € C such that b= f(a)}

is called the image of set C' under f. Symmetrically, given the same function and the set I C B,
the set
Pre(f,I) = {a € A|3b € I such that b= f(a)}

is called the preimage of set I under f.

2.3 LOGIC FUNCTIONS

The set {0, 1} is commonly denoted as B (not to be confused with a generic set B used in previous
sections). An n-variable logic function (also boolean or switching function) is a mapping

f:B"—B.

Each element of B" is also called a vertex. The on-set (off-set) of a function f is the set of vertices
where the function evaluates to 1 (0). Each vertex of the on-set is also called a minterm. A literal
is either a variable or its complement. A cube c is a set of literals, such that if x; € ¢ then Z; & ¢
and vice versa. A cube is interpreted as the boolean product of its elements. The cubes with n
literals are in one-to-one correspondence with the vertices of B™.

The functions

f\lfzzz f(xlv"'7xi—1717xi+17"‘7$n)
and

f‘Li1,= f(-’L'l,‘..71'1‘,1,0,.751'_}_1,...,.%“)

Mathematical background 17

are called the cofactor of f with respect to z; and Z; respectively. The definition of cofactor can
also be extended to cubes. If ¢ = z1¢;, x1 being a literal and ¢; another cube, then

f\lfc: (f‘lfl‘l)‘lfcl

Abstractions are of fundamental use in our framework. As it will be shown later, they have a
direct correspondence to the existential and universal quantifiers applied to predicates in boolean
reasoning. The existential and universal abstractions of f with respect to x; are defined as:

Joif = fles vz 5 Vaif = flas -fla,
As an example, let us consider the function
f=bc+ abé+ac .
The cofactors with respect to a and a are
fla=bc+0be and flz=c ,
and the abstractions with respect to a are
Jof = fla+fla=b+c and Vof = fla-fla=bc .

The function 3, f evaluates to 1 for all those values of b and ¢ such that there is a value of a for
which f evaluates to 1. The function V, f evaluates to 1 for all those values of b and ¢ such that
f evaluates to 1 for any value of a.

2.4 BOOLEAN ALGEBRA

An algebraic system (or simply algebra) is a set, called the carrier, together with one or more
operations over the carrier that satisfy specific axioms. A Boolean algebra is an algebraic system

<Ba+a'707 1)

in which B is the carrier, + and - (respectively referred as addition and product) are binary
operations on B, and 0 and 1 are distinct elements of B. Note that B may be any set, not
necessarily B = {0,1}. This algebra satisfies the following postulates:

1. Commutative laws. For all z,y € B:
r+y=y+x
TY=y-x
2. Distributive laws. For all z,y,z € B:
z+(y-2)=(r+y) (z+2)
z-(y+z2) =@y +(@-2)

3. Identities. For all x € B:
r+0==x

4. Complements. For all z € B exists a unique element Z € B such that
r+zx=1

rz-z2=0

As in ordinary algebra, the product symbol “.” is often omitted, and the product takes precedence
over the addition. Thus the formulae z + (y - z) and x + yz are equivalent.

18 CHAPTER 2

2.4.1 Switching algebra
The smallest Boolean algebra is the system
<B7 +a Ty 07 1))

where 4+ and - are respectively defined as the logic OR and the logic AND, and the complement
as the logic NOT, i.e.

o
O~ 8

This system is known as the switching algebra and sometimes it is referred simply as the algebra.

2.4.2 Algebra of classes (subsets of a set)

A boolean algebra of particular interest is the algebra of classes. In many situations it is interesting
dealing with the subsets of a given universal set {/. In this case the different subsets of U/ are called
the classes of U. The algebra of classes consists of the set 2“ (the power set of /), the operations
U and N (respectively the union and intersection of sets), and the distinct elements) and . The
algebraic system

(24,u,n,0,U)

satisfies the postulates of Boolean algebra.

2.4.3 Algebra of logic functions
Let F,(B) be the set of n-variable logic functions on B. Then the system
(Fn(B),+,-,0,1)
is also a boolean algebra, in which + and - signify addition and multiplication of logic functions,

and 0 and 1 signify the zero- and one-functions (f(z1,...,2,) = 0 and f(z1,...,2,) = 1). The
cardinality of F,(B) (number of different n-variable logic functions) is 22".

2.4.4 Stone’s representation theorem

Next, the Representation Theorem (Stone, 1936) establishes one of the basis that will allow to
symbolically represent sets.

Theorem 2.1 (Stone, 1936) Every finite boolean algebra is isomorphic to the boolean algebra
of subsets of some finite set S.

Consequently, Stone’s theorem states that reasoning in terms of concepts such as union, inter-
section, empty set, etc, in a finite set of elements is isomorphic to performing logic operations

Mathematical background 19

(+, -) with logic functions. Furthermore, from Stone’s theorem it can be easily deduced that the
cardinality of the carrier of any boolean algebra must be a power of two. In particular, the algebra
of classes of a set S such that |S| = 2", is isomorphic to the boolean algebra of n-variable logic
functions.

2.5 TERNARY ALGEBRA

Sometimes, when analyzing digital circuits it is not enough working with the two logical values 0
and 1. A third value, ®, standing for an uncertain value which is neither 0 nor 1 might be also
needed. A ternary algebra is an algebraic system

<T7 +, '707 (I>7 1>

where T is a set, + and - are binary operations on 7', and 0, ®, and 1 are distinct elements of T'.
A ternary algebra resembles a boolean algebra, but it is not a boolean algebra. The first three
postulates of boolean algebra, commutativity, associativity and identity are the same for ternary
algebra. However, the postulates concerning complements, z + & = 1 and Z = 0 do not hold
when z = ®, since ® = &.

Let us call T the set {0,®,1}. The smallest ternary algebra is the system (T, +,-,0,®,1), where
the product, addition and complement are described as follows:

Yy Yy

z+y |0 & 1 z-y |0 @& 1 |z
ojo & 1 o0 0 o0 01

x ®|® & 1 x |0 & & |3
11 1 1 110 & 1 110

The “uncertainty” partial order, C, on T is defined as follows:
0C0, 1C1, ¢C P, 0C P, 1C P,

and no other pairs are related by C. Thus, if z,y € T, z C y can be read like x “is at least as
uncertain as” y. Considering the above definition, it is easy to see that lub({0}) = 0, lub({1}) =1,
and lub({0,1}) = wb({0,®}) = lub({1,®}) = lwb({P}) = ub({0,®,1}) = ®. The least upper
bound for any two elements z,y € T can be computed as

lub({z,y}) =a-b+(a+b)- D .

The uncertainty partial order, C, can be naturally extended for T". Let us consider z =
(z1,...,2n) and y = (y1,..-,Yn), with z,y € T*. If z; Cy; for all 4, 1 <4 < n, then z C y. The
least upper bound can also be extended in the same way. In particular, given any two elements
z,y €T,

lub({z,y}) = (lwb({z1,91}), - -, lub({zn, yn})) -

2.6 MAKING IT EFFICIENTLY: BDDS

A logic function can be represented in many ways, such as truth tables, Karnaugh maps or minterm
canonical forms. Another form that can be much more compact is the sum of products, where the

20 CHAPTER 2

logic function is represented by means of an equation, i.e,
f =bc+ abé+ ac . (2.1)

These techniques are inefficient for fairly large functions. However, all these forms can be canonical
[Bro90]. A form is canonical, if the representation of any function in that form is unique. Canonical
forms are useful for verification techniques, because equivalence test between functions is easily
computable.

Recently, Binary Decision Diagrams (BDDs) have emerged as an efficient canonical form to ma-
nipulate large logic functions. The introduction of BDDs is relatively old [Lee59], but only after
the recent work of Bryant [Bry86] they transformed into a useful tool. For a good review on BDDs
we refer to [Bry86, BBR90, TSL*90, Min96].

We will present BDDs by means of an example. Given equation (2.1), its BDD is shown in figure
2.1(a). A BDD is a Directed Acyclic Graph with one root and two leaf nodes (0 and 1). Each
node has two outgoing arcs labeled T (then) and E (else). To evaluate f for the assignment of
variables a = 1, b= 0, and ¢ = 1, we only have to follow the corresponding directed arcs from the
root node. The first node we encounter is labeled with variable a, whose value is 1. Given this
assignment, the T arc must be taken. Next, a node labeled with variable b is found. Since b =0
the E arc must be taken now. Finally the T arc for variable ¢ reaches the 0 leave node.

(@) (b) ()

Figure 2.1 BDD example.

2.6.1 Reduced and ordered BDDs

The representation of a function by means of a BDD is not unique. Figures 2.1(a), 2.1(b) and 2.1(c)
depict different BDDs representing equation (2.1). The BDD in figure 2.1(b) can be obtained from
figure 2.1(a) by successively applying reduction rules that eliminate isomorphic subgraphs from
the representation [Bry86]. The BDD in figure 2.1(c) has a different variable ordering.

All BDDs shown in figure 2.1 are ordered BDDs. In an ordered BDD, all variables appear in
the same order along all paths from the root to the leaves. If a BDD is ordered and reduced (no
further reductions can be applied) then we have a reduced and ordered BDD (ROBDD). Given a
total ordering of variables, an ROBDD is a canonical form [Bry86]. Figures 2.1(b) and 2.1(c) are
ROBDDs with variable ordering a < b < ¢ and ¢ < a < b respectively. The shape and size of an
ROBDD highly depend on the ordering of its variables.

Some important properties of ROBDDs are:

m The size of the BDD can be exponential in the number of variables [LL92]; however BDDs
are a compact representation for many functions.

Mathematical background 21

m Boolean binary operations can be calculated in polynomial time in the size of the BDDs.

m Some interesting problems like satisfiability, tautology and complementation can be solved in
constant time using BDDs.

Henceforth, we will implicitly assume that BDDs are reduced and ordered. Note that each BDD
node represents at the same time a function whose root is the node itself. This property allows
the implementation of BDD packages managing all BDDs using the same set of variables in only
one multi-rooted graph [BBR90].

2.6.2 Boole’s expansion theorem

The theorem given below is the basis for computation with boolean functions. Although it is
frequently attributed to Shannon [Sha49], it was in fact discussed one century before by Boole
[Boo54].

Theorem 2.2 (Boole’s expansion) If f : B — B is a boolean function, then

f(x].’"'axi’"'axn):x’i'f~l'wi +i1f¢fz

for all (x1,...,24,...,2,) € B".

2.6.3 Boolean operations with ROBDDs

Let us see how to calculate the BDD for equation (2.1) given the ordering a < b < ¢. We will use
(v, T, E) to denote a node labeled with variable v, and T' and E as “Then” and “Else” BDDs
respectively. Applying Boole’s theorem to expand f with variable a we have:

f=afloet+afla,
with fl,= bc+ be, and flz= c. Expanding variable b in f], and fl; yields to
f=a® flas+bfleg)+ a (b flas +b fla)
with fla=c¢, fli=2¢ fla=c¢, and fl;z;= ¢. Thus the BDD for equation (2.1) is
f = (a,(b,¢,0),(,cc) .
Note that the logic functions f .= flas= c and f |z3= f laz= € are isomorphic and must be
represented with the same node if we want to preserve canonicity.
BDDs can be created by combining existing BDDs by means of boolean operations like AND, OR,
and XOR. This approach is implemented using the if-then-else operator (ite), defined as follows:
ite(F,G,H)=F-G+F-H ,

where F', G, H are logic functions represented by BDDs. The interesting property of the ite
operator is that it can directly implement all two-operand logic functions. For example:

AND(F,G) = ite(F,G,0) , XOR(F,G) = ite(F,G,G) .

Let Z = ite(F, G, H), and let v be the top variable of F', G, H. Then the BDD for Z is recursively
computed as follows [Bry86]:

zZ= (’U,ite(FJ,U7Gi,v7H\Lv)7ite(F\l,{),G\L{),HJ/U)) ’

22 CHAPTER 2

ite(F, G, H) {

if (terminal case) return result for terminal case;

else if ({F, G, H} is in computed table)
return pre-computed result;

else {
let v be the top variable of { F, G, H };
T ite(Fva :GLU :ijv) N
E = ite(Es,Gls,H45);
if T equals E return T;
R = find or_add unique_table(v,T,E);
insert_computed table({ F, G, H }, R);
return R;

b}

Figure 2.2 The ite algorithm.

where the terminal cases are:

ite(1, F,G) = ite(0,G, F) = ite(F,1,0) = ite(G,F,F)=F .

The code for the ite algorithm is shown in figure 2.2. Note that the algorithm keeps the BDD
reduced by checking if T equals E, and checking in a unique-table if the produced node already
exists in the graph. In this way, all isomorphic subgraphs are always eliminated.

Unless there is a terminal case, every call to the procedure generates two other calls, so the total
number of ite calls would be exponential in the number of variables. To avoid this exponentiality,
ite uses a table of precomputed operations (computed table). The computed table acts as a cache
memory, in such a way that the most recently used results are stored in this table. The effect of
this computed table is to cause ite to be called at most once for each possible combination of the
nodes in F', G, H. So the complexity of the algorithm, under the assumptions of infinite memory
and constant access time (hash) tables, is reduced to O(|F| - |G| - |H]).

An important consequence of representing all BDDs in the same graph is that checking the equiva-
lence between two BDDs can be done in constant time (two BDDs representing the same function
have the same root node). Counting the number of vertices represented by a BDD can be done in
linear time in the size of the BDD.

3

SPECIFICATION VALIDATION

‘And o Maker’s Mark for me,’ she added, pointing to a bottle high on the bar shelf.

A proper drinker, I noted with approval. Your experienced lapper knows that barmen al-
ways initially mishear the name of whatever brand you specify. ‘Not Glenlivet, Glenfiddich!
No, you oaf, not a lager shandy, a large brandy. ..’ Always find the bottle with your eye
first and point at it when ordering. Saves time.

— Stephen Fry, “The Hippopotamus”.

About this chapter

This chapter is devoted to the analysis of Petri nets, since they can be used as specification of
asynchronous circuits. By using symbolic BDD-based techniques, the set of reachable Petri net
markings is computed. This set is subsequently used to validate the Petri net, i.e. to verify diverse
Petri net properties. Finally, the soundness of the approach is illustrated by verifying distinct
benchmarks.

3.1 INTRODUCTION

The goal of specification validation is to prove that some properties of a circuit specification hold.
Circuit behavior is often described by using a high level formalism, e.g. Hardware Description
Languages or Petri nets. In particular, several asynchronous circuit synthesis methodologies use
Petri nets as circuit specification [RY85, Chu87, Van90, Lav92, Pas96]. We will focus the attention
on Petri nets, since they are used in our design framework.

A Petri net is a mathematical model of a parallel system, capable of representing causality between
events. Following the definition given in [DE95], a Petri net has two components, the net and the
initial marking. The net describes the relations between events, while the initial marking can be
seen as the “initial state” of the Petri net. The net is a graph with two types of nodes: places and
transitions. The graph is bipartite as arcs can only go from a place to a transition or vice versa.
Graphically, places are represented by circles and transitions by boxes or bars.

The idea of “state” of a net corresponds to the term marking. A marking is a distribution of
tokens in several places of the net. Tokens are graphically represented as black dots inside places.
A place is said to be marked if it holds some token. Transitions are related with the idea of events.
A transition t is said to be enabled if each predecessor place of t has at least one token. Firing
transition ¢, i.e. letting the event occur, removes one token from each predecessor place and adds
one token to each successor place. Firing a transition changes the marking of the net.

23

24 CHAPTER 3

pl 2 1 p2

3 3
t2 %@ t3 t2 %@ t3

@Qm — \GQ]

@ (b)

Figure 3.1 (a) A sample Petri net. (b) The same net after firing transition ¢;.

Figure 3.1 illustrates a Petri net. In figure 3.1(a) place p; is marked, therefore transition #; is
enabled. The token from place p; is removed, transition #; occurs and, consequently, place py
becomes marked. Figure 3.1(b) shows the same net after firing transition ¢;.

3.1.1 Previous work

The analysis methods for Petri nets can be divided into four different groups [Sil85]:

1. Enumeration methods: These techniques are limited to bounded Petri nets, as they are
based in the exhaustive generation of all reachable markings of a Petri net. With that informa-
tion different properties can be checked straightforwardly. The effectiveness of enumeration
analysis approaches will depend on their ability of managing a huge number of markings.

2. Structural methods: In order to avoid the state explosion problem that appears with the
enumeration techniques, the structural analysis can prove different Petri net properties by
studying the structure of the net. Such methods are, in general, very efficient, but they
cannot be used with all types of Petri nets.

3. Transformation methods: In many cases a Petri net can be changed into another Petri net
by applying certain transformations that preserve the properties to be checked. The objective
of this transformation is obtaining a Petri net such that those properties can be verified
more efficiently than in the original net. A particular case of transformation techniques are
reduction methods, that obtain smaller Petri nets by using certain transformations.

4. Simulation methods: This last group of methods differ from the previous in the sense that
they do not prove but give some degree of confidence that a Petri net has a given property.
However, they are good at dealing with timed Petri nets or at estimating the response of
systems also described by simulation.

These methods are not excluding but complementary. In practice, most authors combine differ-
ent techniques to obtain hybrid approaches more efficient in solving particular problems. The
interested reader can find more information about Petri nets elsewhere, e.g. [Pet62, Pet81, Sil85,
Mur89, DE95].

Specification validation 25

3.1.2 Overview

Our approach combines enumeration and reduction techniques. The state explosion problem is
reduced by representing sets of markings with BDDs and by simulating firing rules also with
BDDs. Several reduction transformations are applied in order to reduce the complexity of Petri
nets, thus obtaining a more efficient method.

The approach is further extended for Signal Transition Graphs (STGs), an interpreted type of
Petri net in which transitions represent signal transitions. STGs are used by several asynchronous
circuit synthesis methodologies as circuit specification, and will also be used in chapter 4 for
verification of circuits.

The approaches by Hamaguchi et al. [HHY92] and Yoneda et al. [YHTM96], which can be included
in the first group of methods, are particularly related to the work to be presented. Both authors
manage Petri nets with BDDs to mitigate the state explosion problem and use temporal logic to
verify Petri net properties.

In section 3.8 algorithms for verifying both Petri net a STG properties are described. The results
obtained by applying our approach to diverse benchmarks can be found in section 3.9.

3.2 PETRI NETS

Formally, a Petri net is a quadruple (P, T, F,mq), where

P ={p1,p2,--.,pn} is a finite set of places,

T ={t1,t2,...,tn} is a finite set of transitions, satisfying PNT =0 and PUT # 0,
FC(PxT)U(T xP)is aset of arcs, also called the flow relation, and

myg is the initial marking.

The symbols *t and t*® respectively define the sets of predecessor and successor places of transition
t, while ®*p and p*® are the sets of predecessor and successor transitions of place p, respectively.

A marking of a Petri net is an assignment of a nonnegative integer, representing a number of
tokens, to each place. If k is assigned to place p, we will say that p is marked with &k tokens. The
flow relation of a Petri net defines a set of firing rules that determine the behavior of the net. A
transition ¢ is enabled when each p € °t has at least one token. The Petri net moves from one
marking to another by firing one of the enabled transitions. When a transition ¢ fires, one token
is removed from each place p € *t and one token is added to each place p € t°.

If m and m’ are markings, m[t)m’ denotes the fact that m' is reached from m by firing transition
t. A marking m/' is reachable from a marking m if there exists a sequence of transition firings that
transforms m into m'. The set of reachable markings from m is denoted by [m). Therefore, the
set of reachable markings of a Petri net (P, T,F,mo) is written as [mg).

Next, different types of Petri nets are defined depending on the maximum number of tokens that
a place holds in any marking belonging to [mqg).

Definition 3.1 (Bounded Petri net) A Petri net (P,T,F,mg) is said to be bounded if [mo)
s a finite set.

26 CHAPTER 3

Definition 3.2 (k-bounded Petri net) A Petri net (P, T,F,mq) is said to be k-bounded if no
place p € P holds more than k tokens for any marking m € [myg).

Definition 3.3 (Safe Petri net) A Petri net is said to be safe if it is 1-bounded.

3.2.1 Modeling safe Petri nets

Let (P, T,F,mqo) be a safe Petri net. A marking in [mo) can be represented by a set of places m,
where p; € m denotes the fact that there is a token in p;. Therefore, any set of markings in [mg)
can be represented by a set M of subsets of P. Let Mp be the set of all markings of a safe Petri
net with |P| places (|Mp| = 2/P!). Then the system

(2MP U, M, 07 M'P)

is the boolean algebra of sets of markings. By Stone’s theorem (see section 2.4.4), this system is
isomorphic to the boolean algebra of n-variable logic functions, being n = |P].

We will indistinctly use p; to denote a place in P or a variable in the boolean algebra of n-variable
logic functions. Therefore, there is a one-to-one correspondence between markings of Mp and
vertices of B". A marking m € M is represented by means of an encoding function that provides
a binary mapping from Mp into B", that is, £ : Mp — B", where the image of a marking
m € Mp is encoded into an element (py,...,p,) € B, such that:

_J 1 ifpem
Pi=3 o ifp; €m .

As an example, both the vertex (1,0,1,0,0) € B® and the cube p; papspsps represent the marking
in which p; and ps are marked whereas ps, ps and ps are not marked.

1 2
t1
@ {p1,p3}

t1

{p2,p3}

12 |-—— t3 t2 t3

\ {p1,p5} {p3,p4}
: 375 x /

4
“ ’G (v2,p5)

@ (b)

Figure 3.2 (a) A Petri net and (b) its reachable markings.

Given the one-to-one encoding function £, each marking m € Mp can be represented as a minterm
of an n-variable logic function, being n = |P|. This minterm is the characteristic function of
marking m, and it is written x, . The characteristic function of a set of markings M, denoted x,,,
can be obtained as the logic sum of the minterms of each marking m € M. For example, given
the Petri net depicted in figure 3.2(a), the characteristic function of the set

M = {{p27p5}7 {p27p37p5}7 {p17p27p5}7 {p17p27p37p5}7 {p17p27p37p47p5}}

Specification validation 27

is calculated as the disjunction of each boolean code £(m), m € M. The resulting function

X = P1P2P3Ps + P2Paps

represents the set of markings in which py, pa, ps, and ps are marked or p, and ps are marked and
P4 is not marked.

All set manipulations can by applied directly to the characteristic functions. For example, given
the sets of markings M, M' C Mp:

XMUM’ = XM+XMI ?
Xaraner = Xa "Xy 0
XH = EXMP :

Hence and for sake of simplicity both M and yx,, will be indistinctly used to denote the charac-
teristic function of the set of markings M.

When implemented with BDDs, characteristic functions provide, in general, compact representa-
tions and, consequently, operations with sets can be efficiently handled.

Characteristic functions can also be used to represent binary relations, that is, subsets of a Carte-
sian product between two sets. To represent the binary relation R C M x M’, it is necessary to
use different sets of variables to identify the elements of M and M'. Given the binary relation R
between sets M and M’, the elements of M that are in relation with some element of M’, are the
set:

V={meM3Im' e M',(m,m") € R} ,

and using the characteristic function of R, the characteristic function of V' is computed by:

XV(xla .- -7-7/'71,) = Ely1,...,ynXR(xl7 s Ty Y1, - - 7yn) .

3.2.2 Firing Petri net transitions

Given a Petri net (P, T, F,mg), we define the next state function as a function
On : 2MP x T — 2M» | (3.1)
that transforms, for each transition, a set of markings M into a new set of markings M’ as follows:
IN(M,t) =M ={m' € Mp|3m € M, m[t)ym'} ,

i.e. M’ is the set of markings reachable from M by firing transition ¢. Using the terminology for
verification of sequential state machines, d y performs the constrained image computation of the
transition ¢.

Two techniques have been commonly used to calculate next state functions using BDDs: the
transition function én and the transition relation associated to dy. We propose a method to
implement the transition function d5 that uses the topology associated to a transition, hence the
name topological image computation. We refer the reader to [CBM89] and [BCL194] for the other
techniques.

Constrained image computation for transitions can be efficiently implemented by using the topo-
logical information of the Petri net and the characteristic function of sets of markings. First, we
will present the characteristic function of some important sets related to a transition t € T

28 CHAPTER 3

E, = H i (t is enabled),

pi€®t

NPM; = P (no predecessor of ¢ is marked),
pi€®L

ASM,; = H i (all successors of ¢ are marked),
pi€t®

NSM,; = H Di (no successor of ¢ is marked).
pi€t®

Given these characteristic functions, the constrained image computation for transitions is reduced
to calculate:
ON(M,t) = (Mg, -NPM;)Insm, -ASM; . (3.2)

We will show with an example how this formula mimics transition firing. In the example of
figure 3.2(a), given the set of markings

M = p1pap3paps + D1P2p3DaPs + P1P2D3P4Ps

we will calculate M’ = §x (M, t1). First, M I, (the cofactor of M with respect to E;; = p1) selects
those markings in which ¢; is enabled and removes its predecessor places from the characteristic
function:

M g, = P2p3PaPs + P2D3Paps -

Then the product with NPM,, = p; simulates the elimination of the tokens in the predecessor
places:

Mg, -NPMy, = p1papspaPs + P1p2pspaps -

Next, taking the cofactor with respect to NSM;, = p» removes all successor places from the
characteristic function:

(M |g,, -NPMy,) Insm,, = PrpsPabs + PLbspaps -
Finally, the product with ASM;, = p2 adds a token in all the successor places of ¢;:
M'" = p1pap3paPs + PLp2P3PaDs -

Note that (3.1) is correctly defined only for safe Petri nets. It will be shown in section 3.8 how
safeness can be verified.

3.3 SIGNAL TRANSITION GRAPHS (STG)

An interpreted Petri net proposed to specify asynchronous circuit behavior was independently
presented by Rosenblum and Yakovlev [RY85], who called it Signal Graph, and by Chu [Chu86],
who named it Signal Transition Graph. Both coincided in interpreting the transitions in the Petri
net as the switching of signals. A transition of signal v from 0 to 1 is labeled as v+, whereas a 1
to 0 change is labeled v—. The symbol v+ denotes either v+ or v—.

Formally, a Signal Transition Graph is a quadruple (N, V, A, s°), where

Specification validation 29

N is a Petri net,

V ={v1,...,v,} is a set of signal variables,

A:T — (V x {+,-}) U is a labeling function for transitions and
¥ is the initial state.

An STG can have transitions that are not associated to any signal, also called silent transitions.
Such transitions are mapped to the silent label 7. STGs are often shown in their shorthand form,
where transitions are denoted simply by their labels, without bars nor boxes, and places with only
one predecessor and one successor are omitted. The fact of one of such places being marked is
denoted by placing the tokens on the arc. Figure 3.3 depicts a Petri net and an equivalent STG.

D p2

a+

.Z
tl

=

pl

p2
p3
(o) a- b-

NN L :
S LI g

-
(a)

(b)

Figure 3.3 Isomorphic (a) Petri net and (b) STG.

The sets of transitions in the Petri net that specify a rising or falling transition of signal v are
respectively denoted by 7,4 and T,_. The symbol 7}, is used to denote either T, or T,,_.

For similarity with Petri nets, s[t)s’ will denote that state s’ is reachable from state s by firing
transition ¢. The set of reachable states of an STG will be written [s°).

3.3.1 Modeling safe STGs

As Signal Transition Graphs are interpreted Petri nets, the state of an STG is given both by
the marking of the underlying Petri net and the values of the signals of the STG. Given an
STG (N, V, A, 5%), let us call Sy the set of all possible combinations of values of STG signals.
Considering S = Mp x Sy to be the set of all possible STG states, the system

(25,U,n,0,S)

is the boolean algebra of sets of STG states, which is isomorphic to the boolean algebra of n-variable
logic functions, being n = |P| + |V| (see Stone’s theorem in section 2.4.4).

Consequently, the state of an STG is defined by the ordered pair

(pl,...,p|73|,1}1,...71}|w) 5

where p; and v; respectively denote place and signal variables. Similarly as we did with Petri
net markings, STG states will be represented by minterms and sets of states by the sum of the
minterms of the states in the set.

30 CHAPTER 3

3.3.2 Firing STG transitions

STG transitions are interpreted as signal transitions, therefore the next state function must simu-
late the fact that firing a transition also switches the value of the signal. A new image computation
function

65 :25 x T — 25

has to be defined. Since STG transitions are fired following the same rules of Petri nets, s can
be computed as follows:

_ (SN(S, t)J,a v, ifte T,U+
0s(S,t) = { SN (S, t) Ly 0, iteT,

In the sequel, E,+ and E,_ will denote the set of the states in which signal v is enabled to rise and
fall, respectively. The symbol E,. will denote either E,; or E,_. The set E,, can be calculated

as
B = U E; .
te€Ty 4

3.4 STATE GRAPHS

A State Graph is a quadruple (S, E,V, A}, where

S is a set of states,
E C S x S is aset of edges (or transitions),

V ={v1,...,v,} is a set of boolean variables and
A:S — {0,1}™ is a total labeling function that encodes each state with a binary vector
of values.

If the labeling function is the identity, i.e. A = idgu , the state graph is denoted (S, E, V).
A path in the state graph is defined as a sequence of states s!,...,s* such that s’Es‘t! for

1 < i < k. The fact that path « leads from state s to state s’ will be denoted by s & s’. We will
refer to |7| as the number of arcs in a path «.

%

3.4.1 Projection of a state graph
Let us assume S C B", and X as the following subset of variables
X=Av1,...,0u} CV =A{v1,...,0,}, with | X| =k <n .
Without loss of generality, we assume X to be the first k& elements of V.
The function projection for states s = (s1,...,8,) € S, proj: S — B, is defined as

projx(s) = (s1,--.,8k) -

Specification validation 31

Definition 3.4 (Projection of a state graph) Given a state graph, SG = (S,E,V), and a
subset of variables X defined as above, the projection of SG onto X is a state graph, projx(SG) =
SG =(S,E, X), such that

= {§|3s e S withs=projx(s)} ,

= {(projx(s'), projx (s")) | Im = s',...,s" with projx(s') = ... = projx (s* 1)} .

& vy

Note that the definition of a state as a bit-vector implies that semantically different states can be
projected onto the same state, i.e. projy(s) = projx(s') =5 and s # ¢'.

3.4.2 State graph associated to a Petri net or an STG

For a Petri net (P,T,F, mg), we can define its associated state graph (S, E, V') such that

S = [m0>7
E = {(m,m’) eS xS | It € T with m[t)m'},
V. = {p1,-..,pn},n being |P|.

The state graph associated to an STG (N, V, A, s°) is such that

S = [80),
E = {(s,8') € SxS|3teT with st)s'},
V = Ap1,---,Pn,01,..-,0m}, withn =|P|,m = |V|.

3.5 NET TRAVERSAL AND REACHABLE
MARKINGS

This section presents how the set of reachable markings of a Petri can be efficiently computed
by using symbolic techniques. The extension of all those concepts to Signal Transition Graphs is
straightforward.

Given a Petri net (P, T, F, mp) the constrained image computation function of the net is a function
Ay : 2MP — oM

that given a set of markings M, computes the set of markings reachable from M by firing one
transition. The function Ay can be defined as follows:

An(M)={m' € Mp|3Im € M,t € T such that m[t)ym'} .

Let us call the set M’ the image of M under Ay, i.e. M’ = An(M). The set M' can be alternatively
computed by using the next state functions for transitions, d, as follows:

M =] on(M,t) .
teT

Let us call S* the set of markings reachable from the initial marking mo by firing at most ¢
transitions. The different S* sets can be formally defined by the following recursion:

32 CHAPTER 3

1. SO = {mo} B
2. §i=Apn(S7) .

We can also define the ith frontier, denoted F*, as the markings in S? that are not in S, i.e.

Fi=g8— g1 .

Clearly, the set of reachable markings [mo) can be calculated as

[mo) = [J 8* = ([J F) U {mao} .

i>0 i>1

Note that each S? is a superset of the previous ones. Since for bounded Petri nets the number
of reachable markings is finite, there is some k such that S* = S*+1. The problem of computing
the set of reachable markings of a bounded Petri net can be reduced to finding a fized point of
function Ay, i.e. some S* such that

Sk = AN(Sk) .

The S* set with smallest k such that the previous formula holds is called the least fized point.
Recall that the least fixed point is equal to the reachable set of markings [mqg).

The least fixed point of function Ay can be calculated by symbolic traversal of the Petri net. We
will use an approach similar to the symbolic Breadth First Search (BFS) algorithm for traversing
Finite State Machines [CBM89]. This method allows to process several markings simultaneously
by using their characteristic function and the constrained image computation. The algorithm
presented in figure 3.4(a) traverses the Petri net and calculates [mg). The union and difference of
sets are performed by manipulating their characteristic functions.

Breath First_Search (N ={(P,T,F,mg)) {
Reached := From := mg;
do {
New := (;
for each transition t€ 7T {
New := New U dy (From,t);
}
From := New - Reached;
Reached := New U Reached;
} while (From# ();

(a)

}

Figure 3.4 (a) Algorithm for symbolic traversal and (b) graphical representation of Breadth
First Search.

During the ith iteration of the do loop the variable From contains the frontier set Fi~!. The
innermost loop computes all the markings that are reachable from F*~! by firing one transition and
accumulates them in the variable New. At the end of the ith iteration of the do loop, the variable
From is assigned the markings in New that are really new, i.e. the ith frontier F*. Consequently,

Specification validation 33

each iteration of the do loop computes a new S* set, which is kept in the variable Reached. The
BFS algorithm finishes when no new markings are generated. This situation is produced when
a least fixed point is reached, i.e. when S* = S*~! or equivalently when F* = (). The number
of iterations performed by the algorithm is determined by the maximum number of firings from
the initial marking to the first occurrence of any of the reachable markings, and it is called the
sequential depth of the Petri net. Figure 3.4(b) illustrates graphically how the set of reachable
markings is computed.

3.6 PETRI NET REDUCTIONS

Petri nets can be reduced to simpler ones by using transformation rules that preserve the properties
of the system being modeled. By using these rules, the complexity inherent to the reachability

analysis can be effectively reduced.
t

pl

g i

p2

tl tl
pl2 pl p2 pl2
t2 t2
(a) (¢) (e)
tl pl pl
p = %:é t12 tl —~ t12 E@ —~ 6 p
> g ™ A
(b) (d) (f)
Figure 3.5 Transformations preserving liveness, safeness and boundedness.

Murata [Mur89] proposed a set of six transformations that preserve the properties of liveness,
safeness, and boundedness. The transformations we use are slightly different from those in [Mur89],
since they not only preserve these properties, but also allow recovering the original set of markings.
Figure 3.5 depicts the set of transformations actually used.

The original Petri net N is reduced to a new net N’ by applying these transformations. Then,
the reachability analysis technique presented in section 3.5 can be used more efficiently with N’
due to the reduction in both, the number of places and the sequential depth of the net. Given
the set of reachable markings [m() of N, the set of reachable markings [mg) of the original net
N is derived using an inverted transformation on [my). The inverted transformations are shown
in table 3.1.

For example, figure 3.5(a) depicts how a net can be transformed into another by fusing places
p1 and po into place pio. If R’ is the set of reachable markings of the resulting net, the set of
markings in the original net, R, can be derived as follows:

R = Rlipm (p1 @pQ) + RIJ,ﬁlQ ‘P1-P2 ,

34 CHAPTER 3

| Forward Transformations | Backward Transformations |
(a) series places fusion R=R'|,, (p1 ®p2) + R |5, D1 - D2
(b) series transitions fusion R=R'g,, (B, -p+NPM,, -p) + R' g, ‘Ey, - Ey,
(¢) parallel places fusion R=R'|,, p1-p2+ R 15, D1 D2
(d) parallel transitions fusion R=PR
(e) self-loop place R=R-p
(f) self-loop transition R=PR

Table 3.1 Petri net reductions and their inverse transformations.

denoting that a token in p;» implies that either p; or (exclusive or) ps were marked and no token
in pjo implies that neither p; nor p» were marked in the original net. Similar substitutions can be
applied for other types of transformations.

3.7 IMPROVING PETRI NET TRAVERSAL

Different improvements can be made to the basic Breadth First Search (BFS) algorithm presented
in section 3.5. Two different techniques will be presented in order to reduce the number of BDD
operations. The first one reduces the number of traversal iterations, while the second one allows
to perform image computation by using a new ad hoc BDD operation.

3.7.1 Chaining

This technique drastically reduces the number of traversal iterations. As a direct consequence,
the execution time can be reduced between one and three orders of magnitude, depending on the
example.

t1
t1 t1
M 0
M t.Z M)
O M wr 2
MUM— M
Q M})
2 2
t2
(€Y (b) (©

Figure 3.6 (a) Two consecutive transitions. Traversal (b) without or (c) with chaining.

We will introduce the chaining technique by means of the example in figure 3.6. Let us assume
figure 3.6(a) to be a piece of a safe Petri net. Transitions ¢; and ¢, are consecutive, i.e. to can only
fire after ¢; has fired. Given a set of markings M C [mg), we will calculate the set of markings
reached by firing both transitions. For simplicity we will assume that only ¢; is enabled in M.

Specification validation 35

Formally,
MﬂEt1¢MﬂEt2=@ .

Figure 3.6(b) shows how the first iteration of a BFS algorithm takes From = M and computes

§(M,t;) = M' and
(5(M,t2) = @ -

The second iteration assigns From = M'U @ = M’ and calculates

(M’ t1) = 0 and
(M’ ty) = M" .

As we have seen, two iterations are needed to obtain M’ U M". In addition, time is wasted in the
first and second iterations trying unsuccessfully to fire ¢ and ¢; respectively.

The chaining technique tries to avoid this by adding the new markings to the From set as soon
as they are calculated. In this case, assuming that the initial origin set of markings was M, the
algorithm first computes

M' =6n(M,ty) ,

and then
M" =6n(M UM ty) .

As figure 3.6(c) illustrates, the markings reached by firing ¢; and then ¢; are computed in the
same traversal iteration.

@ (b)

Figure 3.7 (a)Traversal without chaining and (b) chaining.

We can use the Petri net in figure 3.2(a) as an example. Figures 3.7(a) and 3.7(b) show, respec-
tively, the set of markings reached at each iteration when a basic BFS algorithm and chaining
technique are used. Without chaining, a BFS algorithm needs as many iterations as the sequen-
tial depth of the net, which in this case is four, to reach a fixed point. However, the number of
traversal iterations can be reduced if we use this chaining technique. Let us assume that we try to

36 CHAPTER 3

fire transitions in the order t1, tq, t4, t3. In the first iteration transition ¢; fires, reaching {p,, ps},
and then ty, reaching {p;,ps}. In the second iteration, transitions #1, t4 and t3 successively fires,
and all the reachable markings are computed. This description is illustrated in figure 3.7(b).

Note that different orders may result in different number of iterations. Several algorithms have
been tried to order transition firing. We have found that a token-flow algorithm through the Petri
net structure has turned out as the best heuristic. The complexity of this search is lineal in the
size of the net. Other heuristics, e.g. depth first search or breadth first search, also presented good,
and in some cases very similar, results. As a general consideration, chaining, even if transitions
are randomly ordered, drastically reduces the execution time of a symbolic traversal algorithm,
depending on the example up to tree orders of magnitude. Choosing between one heuristic or
another results in comparatively small variations, of at most 50%.

3.7.2 Toggling

Let us review the image computation functions for both Petri nets and STG transitions:

on(M,t) = (Mg, NPM;)lnsm, -ASM; ,

{ 6N(S7t)i,i U, if t S Tv+

05(S:t) =\ 50 (St)lw-v . ifteT,.

We could think of those operations as divided into two different parts: the first one devoted
to calculating the set of states in which transition ¢ is enabled, and the second one devoted to
complement or toggle the variables of predecessor and successor places and, in the case of STGs,
the value of the signal variable associated to t.

Given a BDD representing a logic function, the fact of complementing a list of variables is equiv-
alent to interchanging the then and else arcs in each node labeled with one of the variables to
complement. In addition, if we represent the list of variables as a cube, we could implement a
BDD_AND_toggle operation as a function that given two BDDs, F' and G, and a set of variables C,
performs the product F' - G and complements the variables in C. The set C' can be represented as
a cube containing the literals to be complemented.

We propose the algorithm in figure 3.8 to efficiently compute this operation. The complexity
of this algorithm is exponential in the number of BDD nodes, as occurred in the ite algorithm
described in section 2.6.3. This complexity can be overcome in a similar way by keeping the result
of each call in a table of computed results. The function BDD_AND_toggle has been integrated in
the BDD package by David Long [Lon93].

Therefore, the operation M' = §x(M,t) will be equivalent to executing
M' := BDD_AND_toggle(M, E;, (E; UASM,) — (E: N ASM,)) .
For STGs, M’ = §s(M,t), assuming t € T, is computed as

M’ := BDD_AND_toggle (M, E;, v N [(E; U ASM;) — (E; N ASM,)]) .

3.7.3 Improved BFS algorithm

Figure 3.9 shows an improved BFS algorithm that includes the above modifications plus the
reduction of the original Petri net. First the net is reduced by applying the transformations
presented in section 3.6. Then transitions are ordered following some heuristic. The innermost loop

Specification validation 37

BDD_AND_toggle(F,G,C) {
if (terminal case)
return result for terminal case;
if ({F, G, C} is in computed table)
return pre-computed result;
let v be the top variable of { F, G, C };
let u be the top variable of { F, G };
let ¢ be the top variable of { C };
if (c=vAc#u) {
return BDD_AND_toggle(F,G,Cl.);
T = BDD_AND_toggle(Fl,,Gl,,Cl,);
E = BDD_AND toggle(Fl;,Gls,Cly);

if (c#w)
R := find or_add unique_table(v,T,E);
else

R := find or_add unique table(v,E,T);
insert_computed table({ F, G, C }, R);
return R;

Figure 3.8 BDD AND-toggle algorithm.

improved BFS (N = (P, T,F,mo)) {
N' = reduce(N);
TO,rd = order_transitions(N');

Reached := From := mg;
do {
From := (;

for each tramsition t € 74, {
From := From U é(From,t);
}

From := From - Reached;
Reached := From U Reached;
} while (From# 0);
Reached := expand markings(N,N’,Reached);

Figure 3.9 Improved BFS algorithm.

implements chaining technique, while the other instructions in the do loop are the same as in the
basic BFS algorithm in section 3.5. Finally, the set of reachable markings of the reduced Petri net
is expanded to the reachable markings of the original net by applying the inverse transformations
described in section 3.6.

We show the results of the techniques above applied to a Petri net describing the dining philoso-
phers paradigm. The benchmark is further discussed in section 3.9. Figure 3.10(a) illustrates
how the chaining technique reduces the execution time in more than three orders of magnitude as
the size of the Petri net increases. This spectacular improvement is due to the fact that, in this
example, an appropriate transition firing order keeps the number of traversal iterations constant,
regardless the size of the Petri net. Figure 3.10(b) shows that by using the ad-hoc toggling op-
eration the CPU time is reduced to the half. The reason for this gain comes from the reduction

38 CHAPTER 3

in the number of BDD operations when computing the image computation, §. As both figures
depict, the improvement obtained by chaining and toggling is orthogonal to the use of reduction
techniques.

1000

’g 100 'g
&2 —e— Orig ~ —e— Orig.
g 10 - - Red, g - - Red.
= —e— Orig. Chaining = —e— Orig. AndTog
g 1 — - - Red. Chaining z - - - Red. AndTog
(@] O
* +*

0

0

philosophers # philosophers
(a) (b)

Figure 3.10 Improvements obtained by (a) chaining and (b) toggling techniques on the dining
philosophers example.

Yoneda et al. [YHTM96] have also proposed an ad hoc operation for image computation. Surpris-
ingly, in some examples their results are just the opposite of what should be expected, since the
ad hoc operation is slower than image computation calculated by using explicit BDD operations.
As pointed out by the authors, that strange behavior might appear because they used different
BDD packages in each experiment.

3.8 VERIFICATION OF PROPERTIES

Different synthesis methodologies use Signal Transition Graphs as the specification of the circuits
to be synthesized [RY85, Chu87]. Specification validation is a previous step to the synthesis
process, which must guarantee that the specification satisfies some properties. Kondratyev et al.
proved in [KCK'95] that a Signal Transition Graph is implementable as a speed-independent
circuit if it satisfies the properties of boundedness, signal persistence, consistence and complete
state coding. Other properties like different levels of liveness are simply desirable. In the rest of
this section these properties will be described and algorithms to prove them will be presented.

In this section we show how several Petri net and STG properties can be verified by boolean
manipulation on the set of reachable states. Some properties can be easily specified with a boolean
equation, thus not requiring any traversal to be verified. Others require partial or complete
traversals of the net. However, symbolic traversal by means of BDDs makes their computation
affordable even for large nets.

All algorithms assume that either a Petri net
N = <’P,T,f,mo>

or a Signal Transition Graph
D = {(P,T,F,mo),V,\,s°)

have been traversed and that the reachable set of markings [mg) or states [s°) has been computed.

Specification validation 39

3.8.1 Safeness

The calculation of [mg) by means of constrained image computation is done under the assumption
that the Petri net is safe. This calculation is erroneous if some of the markings is unsafe!, since
unsafe markings are not representable by encoding each place with one boolean variable. A similar
reasoning can be done for k-bounded nets [PRCI7].

The operations performed in equation (3.2) are correct only for safe Petri nets. However, detecting
if some unsafe marking is reachable from [mg) can be done by identifying a marking m in which a
transition ¢ is enabled, and some successor place p of ¢, and not predecessor of ¢, is already marked
(see figure 3.11(a)). Such marking will be referred as pre-unsafe markings. In that situation, after
firing transition ¢, place p will have two tokens. Formally:

N is not safe < I(m € [mg),t € T,p € P) such that
t is enabled in m, p € t*, p & *t and m(p) = 1.

We can define the characteristic function of pre-unsafe markings associated to transition ¢ as
follows:

PreUnsafe = E;N U Pi
pi€(te—*t)
The algorithm in figure 3.11(b) calculates the characteristic function of pre-unsafe markings as-

sociated to ¢, and then computes the intersection with the reachable set of markings. If that
intersection is not empty, the net is not safe.

is_safe (NN ,Reached) {
foreach transition t € 7 do {

@ Succ_marked := (;

@ / for each place p; € (t* — *t) do {
Succ_marked := Succmarked U p;;
/ PreUnsafe := E; N Succ_marked;

@ \ if (PreUnsafe NReached # ()

Q return FALSE;

}
(a) return TRUE;

(b)

Figure 3.11 (a) Firing ¢t produces an unsafe marking. (b) Algorithm for safeness checking.

3.8.2 Liveness

A Petri net is said to have a deadlock if there is a marking in which no transition can be fired. A
transition is said to be dead (LO-live following [Mur89]) if it is never enabled in [mg). A transition
that can be fired at least once in some firing sequence from myg is said to be potentially fireable
(L1-live [Mur89]). All these properties can be verified with simple equations.

The set of markings where a deadlock occurs is calculated:

Deadlock = [mg) N (U E:) .
teT

n this context, unsafe markings are those with more than one token is some place.

40 CHAPTER 3

The set of markings where a transition is potentially fireable is calculated as:
Fireable; = [mg) NE; .

If Fireable; = 0, then transition t is LO-live, otherwise it is at least L1-live.

Verifying whether a transition can be fired an infinite number of times from some or any marking
of [mo), i.e. if a transition is L3-live or L4-live [Mur89], requires more elaborate techniques. Both
problems can be reduced to the calculation of the Strongly Connected Components of [mg).

Definition 3.5 (SCC) A Strongly Connected Component (SCC) U of a directed graph G =
(V,E), is a mazimal set of vertices U C V', such that for every pair of vertices u and v in U
we have both u ~ v and v~ u; that is, vertices u and v are reachable from each other.

Definition 3.6 (TSCC) A Strongly Connected Component U of a directed graph G = (V, E) is
terminal (TSCC) if from the vertices in U it is not possible to reach any vertex in V — U.

A transition t enabled in all the TSCCs markings of the Petri net is L4-live, because from any
marking of [mg) we will reach some TSCC; where ¢ can be fired an infinite number of times.
L4-liveness of transition ¢ can be computed as follows:

tis Ld-live <= N\(TSCCiNE, #90) .
Vi

If there is some SCC; where transition t is enabled, then ¢ is L3-live because there is at least a
firing sequence from [mg) that leads to TSCC; where t can be fired an infinite number of times.
L3-liveness for transition ¢ can be calculated as follows:

tis L3-live <= \/(SCC;NE,#0) .
Vi

The algorithm to compute the TSCCs and SCCs of [mg) is shown in figure 3.12. First, the
transitive closure (T%) of the transition relation is computed, where T (z,y) = 1 if there is a
firing sequence from z that leads to y (z ~ y) [Bur90]. The following steps compute the sets of
markings that are in any SCC (InSCC) or in any TSCC (InTSCC). Finally, each individual SCC
(TSCQ) is obtained from InSCC (InTSCC).

3.8.3 Persistence

A Petri net is said to be persistent if, for any two enabled transitions, the firing of one transition
does not disable the other.

The algorithm in figure 3.13(a) verifies persistence for a Petri net. For each transition ¢, the set
of markings with ¢; enabled are calculated. Next, the sets of markings reachable in one step by
firing any transition different from ¢; are obtained. If ¢; is not enabled in some of those markings,
then the net is not persistent.

In terms of an STG, the idea of transition persistence is not as important as the concept of signal
persistence. Signal persistence means that an enabled signal will fire independently from the firing
of other signals.

Specification validation 41

/* Let Ty be the Transition Relation of N */
compute SCC_TSCC (N = (P, T, F,mq), [mp)) {
T}'{ := compute_Transitive Closure(TR);
Cy := T (z,y) - Th(y,2);
Cny := T§(z,y) Th (y,2);
InSCC := ,Cy(z,y);
InTSCC := (HyCNy(.’IJ,y))/;
SCCi..m := extract_Strongly Connected Components(InSCC);
TSCCy...m := extract_Strongly Connected Components(InTSCC) ;

Figure 3.12 Algorithm to compute the SCC and TSCC sets of [myg).

is_s_persistent ({(P,T,F,mg),V,\) {
foreach pe€ P,|p*| > 1 do {
foreach t; € p* do {
Enabled := ReachedNE ;
foreach t; € p*,t; #t; do {
/* Let \N(t;) = ax/i and \(t;) =bx/j */
if (6(Enabled,t;) NE,. # 0)
return FALSE;

is_t_persistent ({(P,T,F,mq)) {
foreach p€ P, [p*| > 1 do {
foreach t; € p* do {
Enabled := ReachedNE ;
foreach t; € p*,t; #t; do {
if (&(Enabled,t;) N Ey # 0)
return FALSE;

}
} } }
; }

return TRUE; return TRUE;

@) (b)

Figure 3.13 Algorithms to verify (a) transition persistence and (b) signal persistence.

However, we should distinguish between input and non-input signals. As input signals are con-
trolled by the environment, it is possible to have non-deterministic choice between several input
signals, i.e. firing an input signal disables other enabled input signal transitions. Such conflicts
are always interpreted as choice and therefore do not lead to hazardous behavior. For non-input
signals, driven by circuit gates should the circuit be implemented, signal transition disabling
my produce a glitch or wvoltage spike that may well cause circuit malfunction. Consequently,
non-persistence must be avoided when it involves some non-input signal. The algorithm in fig-
ure 3.13(b) illustrates how signal persistence can be verified.

Transition and signal persistence are closely related. Clearly, the only source of non-persistence
of signal v is the non-persistence of some transition labeled v*. Therefore transition persistence
implies signal persistence, but not the opposite. The example in figure 3.14 shows the subtle
difference between transition and signal persistence. Figure 3.14(a) presents non-persistent tran-
sitions, as firing transition a+ disables b+ and vice versa. Depending on the fired transition, the
forthcoming events will be different, either ¢c— or d+. On the contrary, the STG in figure 3.14(b)
is transition non-persistent but signal persistent. Numbers following transitions are used to dis-
tinguish different transitions of a same signal. Transitions a+/1 and b+/1 are non-persistent,
since there is an evident choice between them. However, the STG is signal persistent, as firing
transition a+/1 disables b+/1 but immediately enables b+/2, hence signal b is always enabled.
The case with the other branch of the choice is symmetric. Finally, figure 3.14(c) depicts a both
transition and signal persistent STG with a state graph equivalent to the one of figure 3.14(b).

42

a+ b+

@

PN

a+/1 b+/1

b+/2 a+/2

(b)

N
, N
,

a+

I

©

Figure 3.14 Transition and signal (non-)persistence.

3.8.4 Comnsistence

CHAPTER 3

b+

Not every STG can be associated with a process of switching circuit signals. For example, let
us assume that a sequence like a+/1,b+,a+/2,... is feasible in some STG. After firing a+/1 the
value of signal a is 1 and will not change until an a— transition occurs. Obviously, transition
a+/2 cannot take place, as a signal cannot switch twice from 0 to 1 without having become 0 in

between.

Formally, an STG is consistent iff for each pair of states such that s[t)s’ the following conditions

are met:

1. If t € T4, then v = 0 in state s and v = 1 in state s'.

2. Ift e T,_, then v = 1 in state s and v = 0 in state s’.

3. Any signal different from v has the same value in both s and s'.

Consistence can be checked by an algorithm like the one depicted in figure 3.15.

is_consistent (V,Reached) {

foreach transition t € T do {
if t€T,;+ then

Inconsistent := Reached N v;

else

Inconsistent := Reached N v;

if (Inconsistent #)

return FALSE;

return TRUE;

Figure 3.15 Algorithm for consistence checking.

Specification validation 43

3.8.5 Complete State Coding

Complete State Coding (CSC) is a necessary condition for an STG to be implementable by an
asynchronous circuit. A state graph satisfies the CSC requirement iff

1. each state has a unique binary code or

2. for pairs of states that have identical binary codes, the set of non-input enabled signals is the
same.

In other words, from any pair of states with the same code, the behavior of the circuit is the same.

For an STG with consistent state assignment, the CSC requirement is violated when two different
states with the same binary code produce different values on some non-input signal. CSC can be
checked for each non-input signal by defining the following characteristic functions:

ER(v+) = projy,(RNE.4)
ER(v—) = projy(RNE,_)
QR(v+) = proj,(RNv—E,_)
QR(v—) = projy(RNv—Eu)

where R represents the characteristic function of the set of reachable STG states.

ER(vx) is the set of binary codes that correspond to states in which some transition in 7, is
enabled (a set of excitation regions). It is obtained by abstracting the places (Ip) from the states
of the excitation region. QR(v+) (a set of quiescent regions) is the set of binary codes that
correspond to states in which v = 1 but v— is not enabled (similarly for QR(v—)).

The set of states violating the CSC requirement for non-input signal v can now be calculated as
follows [PC93]:

nonCSC(v) = (ER(v+) N QR(v—)) U (ER(v—) N QR(v+)) .
An STG has CSC if all its non-input signals (V — Vy) satisfy the CSC requirement, i.e. if the

following formula holds:
(U nonCSC(v)) =0 .

veV—-Vr

3.9 RESULTS

In this section we illustrate the power of using boolean reasoning and BDDs for the analysis of
Petri nets and Signal Transition Graphs.

3.9.1 Petri nets

We have chosen two simple and scalable examples to show how the approach can generate all the
states for fairly large nets. We present the results corresponding to the calculation of the set of
reachable markings, which dominates the complexity of the analysis. Most properties can then be
verified in a straightforward manner from [mg), as shown in section 3.8.

44 CHAPTER 3

The first example is the well-known dining philosophers paradigm, represented by the Petri net in
figure 3.16. The net has 7n places and 5n transitions, n being the number of philosophers sitting
at the table. By successively applying the reductions depicted in figure 3.5, the complexity of the
net can be reduced down to 6n places and 4n transitions.

®
Fi

(thi@gk_in»gi/o_»l_»o\ (eating)

|-=o—~
\O—>|—>O/

F(i +1) nod n
@

Figure 3.16 Petri net for a dining philosopher.

Table 3.2 shows the number of states of the original and the reduced Petri net, the size of the
BDDs representing the reachable markings and the number of iterations and CPU time spent by
the traversal algorithm. CPU times have been obtained by executing the algorithms on a Sun
SPARCStation-20, with 128 MB memory.

It is worthwhile to point out how a small BDD (2531 nodes ~ 40 KB memory) can represent the
complete set of markings of the Petri net for 64 philosophers (4.9 x 10*2). The BDD representing
[mo) has been calculated by using the traversal algorithm presented in figure 3.9. The algorithm
computes [mg) in only one iteration, although a second iteration is needed to find out that no new
markings are generated. This is a clear example of how an appropriate transition firing order can
reduce the number of iterations required for the computation of [mg).

of states BDD size # of | CPU

philos. | original | reduced | orig. | red. | peak (red.) | iters. | (secs.)
4 466 322 131 | 106 123 2 0.01
8 22x10° | 1.0x10° | 291 | 234 275 2 0.09
16 47x100 | 1.1 x10° | 611 | 718 579 2 0.64
32 2.2 x 10%! | 1.2 x10%° | 1251 | 1002 1187 2 2.65
64 4.9 x10%2 | 1.3 x 10%0 | 2531 | 2026 2403 2 11.16

Table 3.2 Results for the dining philosophers example.

The second example models a protocol for Local Area Networks called slotted ring. The Petri net
is depicted in figure 3.17. The example is scalable for any number of nodes in the network. The
results corresponding to the traversal of the net are presented in table 3.3.

Figure 3.18 illustrates how the symbolic traversal algorithm in figure 3.9 is capable of manipulating
alarge set of markings with comparatively small BDD variables. Figure 3.18(a) depicts the number
of states represented by the BDD variables From and Reached at each iteration of the innermost
loop. The evolution of the size of those variables during the traversal is shown in figure 3.18(b).
The example used for both graphics is the reduced net that specifies the slotted ring protocol with
eight nodes.

Specification validation 45

O—> givefreeslot —>@—> free; ...

/N
. acki O O=—intak =0 ©®= ackjyq -
N/ \/

put messagein slot —-—O— used -

other O

write
Figure 3.17 Slotted ring protocol for one node.

of states BDD size #of | CPU

nodes | original | reduced | orig. | red. | peak (red.) | iters. | (secs.)

4 8.2x 10" | 5.1 x10% | 443 | 200 594 5 0.34

6 3.7x107 | 5.8 x10° 950 | 414 1985 6 3.08

8 1.7x 1010 | 6.8 x 107 | 1641 | 704 5804 9 16.9

10 8.5x 102 | 8.3 x 10° | 2516 | 1070 13427 10 70.4

12 4.2 x 101 | 1.0 x 10'2 | 3575 | 1512 32559 12 258

14 2.1 x 108 | 1.3 x 10'* | 4818 | 2030 44578 12 445

Table 3.3 Results for the slotted ring example.
6E+07 — 5000
4000
% 4E+07 : — Reached g 200
:Yz ------ From :tct
2E+07 | 2000
1000
0~ e
0 100 200 300 400 500 0 100 200 300 400 500
next-state-function computations # next-state-function computations
(a) (b)

Figure 3.18 Symbolic traversal algorithm: (a) number of states calculated and (b) size of the
variables after each computation of § (for the 8-node slotted ring example).

3.9.2 Signal Transition Graphs

Several examples have been used to evaluate the efficiency of the proposed algorithms. Most STG
examples are also scalable, thus the number of states can be exponentially increased by iteratively

repeating a basic pattern.

Table 3.4 shows the obtained results. CPU time for each algorithm is presented. First, STG
traversal and consistent state assignment are executed simultaneously (T+C). Next, non-input
persistence (NI-p) and CSC are verified by using the set of reachable states. The last column

46 CHAPTER 3

of # of # of BDD size CPU (seconds)

Example n | places | signals states peak | final T+C | NI-p | CSC | Total
master-read - 36 13 8932 437 225 1 0 0 1
n-dining 10 90 30 | 6.0 x 107 2134 913 34 3 14 51
philosophers | 20 180 60 | 3.7 x 1015 8557 | 2019 765 | 142 18 927

30 270 90 | 2.2 x10% | 28002 | 3381 || 3296 | 551 45 | 3897
n-stage 30 120 30 | 6.0 x 107 7897 | 4784 132 0 38 170
Muller’s 45 180 45 | 6.9 x 1011 | 23590 | 10634 740 0 120 860
pipeline 60 240 60 | 8.4 x 105 | 53446 | 18788 | 3210 0| 315 | 3525
n-user 20 81 40 | 2.2x 107 1688 1688 9 2 2 13
DME 40 161 80 | 4.5 x 1013 6568 6568 82 17 16 117
arbiter 60 241 120 | 7.0 x 1019 | 14648 | 14648 286 56 56 403

Table 3.4 STG verification results.

shows the sum of all partial times. Since the master-read and Muller’s pipeline examples are
marked graphs, and hence they have no conflict places, the CPU time to check persistence and
commutativity is negligible. The BDD sizes reported in Table 3.4 correspond to the size of the
Reached set in the traversal algorithm. The number of variables of the BDD is the number of
places plus the number of signals. The results show how STGs with a high degree of parallelism
and a vast state space can be verified in moderate CPU times.

3.10 CONCLUSIONS

We have proposed a combination of boolean reasoning and BDD algorithms to manage the state
explosion produced in Petri net analysis. It has been shown that BDDs can represent large sets
of markings (102 in the example) with a small number of nodes (2500). In addition, once the
reachable markings have been generated, many properties can be verified in a straightforward
manner.

The ordering of variables is a topic of major interest that must be studied in order to reduce even
more the size of the BDDs, thus speeding up BDD operations.

4

ASYNCHRONOUS CIRCUIT VERIFICATION

Mentir bé és un art molt dificil, que poques persones arriben a practicar amb solvéncia
1 dignitat. Abunden els mentiders, pero en general son mals mentiders: se’ls coneir que
menteizen.

— Joan Fuster, “Diccionari per a ociosos”.

About this chapter

This chapter presents how a circuit can be proved to be speed-independent under a certain en-
vironment. The circuit is composed with a Petri net describing the environment, and the set of
reachable states of that closed system is computed. Both circuit and environment are modeled
by means of boolean functions, that can be efficiently manipulated by using BDDs. The notion
of failure state is given and it is shown that a circuit conforms to its specification, i.e. it is speed-
independent with that particular environment, if none of the reachable states is a failure state.
A sequence of events that produces a failure state, intended to help designers, is provided when
the circuit is not found to be speed-independent. In addition to speed-independence verification,
algorithms are provided to prove several properties.

Two approaches are described: a flat and a hierarchical one. The second method, more efficient,
is proved to be exact. The demonstration of this theorem, in section 4.7.4 can be skipped in
first reading. Finally, the features of the presented verification methods are illustrated through a
benchmark suite, as well as, by the comparison to other authors.

4.1 INTRODUCTION

Traditionally, asynchronous circuits have been considered difficult to verify. When the circuit
components are switching concurrently, the number of execution paths can be very large because
of the variation of the component delays. Thus, a proper circuit behavior must be assured for all
the possible execution paths. Since the number of feasible executions may be exponential in the
number of components, it is desirable to automate the verification process, otherwise designers
would probably be unable to face the problem.

47

48 CHAPTER 4

4.1.1 Previous work

The verification of asynchronous circuits has been studied by several authors with different ap-
proaches. In this section, some of the most relevant efforts related with the verification of speed-
independence and closest to the approach described in this chapter are presented.

When using theorem proving [Gor85], the asynchronous system and the specification are modeled
in an appropriate logic and a proof is built as the circuit implies the specification. Although
this is a flexible and powerful approach, the procedure is difficult to automate and might need to
demonstrate a great number of theorems, which makes this methodology inefficient in practice,
even for designers with good mathematical skills.

The following approaches are included in what has been called model checking, i.e. a description of
the circuit (often complex) is checked to satisfy the specification of the circuit, usually expressed
with some clear and concise formalism. Model checking was originally introduced in [CE81, QS81].
The original method consisted in building the state graph and verifying properties of the system
by using temporal logic.

A common problem when using the state graph is the state explosion problem, i.e. the number of
states grows exponentially with the size of the system. Burch et al. [CBM89, BCL*94] proposed
using Binary Decision Diagrams (BDDs) [Bry86] to represent the state graph, introducing symbolic
model checking, much more efficient than the previous approach.

Other authors modeled circuit and specification as separated automata that interact with each
other. In [Kur86], language containment techniques are proposed to verify that the language
generated by the circuit is included in the language of the specification. Later, the same author
proposed homomorphic reductions to simplify the problem [Kur87].

Trace theory [vdS83, Dil89] has been used to keep the history of the system. Then, properties of
the system can be verified on the state graph by using temporal logic. In his thesis [Dil89], Dill
already proposed hierarchical verification of speed-independence: if a component conforms to a
trace structure, the behavior of that component can be safely substituted by the trace structure.
However, this approach requires the designer to identify the basic components of the circuit and
know their expected behavior in advance. This makes the approach impractical when a flat netlist
of gates, with no explicit hierarchical organization, must be verified. Following Dill’s approach, a
subset of gates of the flat circuit, potentially substitutable by a complex gate, should be substituted
by an equivalent trace structure. Not knowing how the environment of the complex gate will be
inside the circuit, the trace structure should consider all possible input/output transitions and,
therefore, include the state of all internal signals, which would preclude the subset of gates to be
handled as a complex gate.

More recently, [McM92] has modeled both circuit and specification as Petri nets [Pet62], mitigating
the state explosion problem by means of Petri net unfolding. Similarly, [HHY92] also represents
circuit and specification as Petri nets, but the states are represented with BDDs and temporal
logic is used to check some properties.

Beerel et al. [BBM94] propose a two-step approach. After verifying the circuit is complez-gate
equivalent to its specification, hazard-freeness is verified by subsequently checking the monotonicity
and acknowledgment of all signal transitions. A cube approximation that overestimates the set of
states of the circuit is proposed to conservatively prove the absence of hazards. Although never
found in the examples presented by the authors, false negatives are theoretically possible. Other
limitations of this approach are that it is limited to externally-cut circuits (all memory elements

Asynchronous circuit verification 49

must appear in the specification) and that the specification of the circuit is not allowed to express
output choice (arbitration).

Kishinevsky et al. [KKTV94a, KKTV94b] presented a polynomial algorithm to verify a subclass
of speed-independence, distributivity, from circuit behaviors described by signal graphs. The main
limitation of their approach is that the signal graph must specify the transitions of all signals of
the circuit and that neither choice nor nondeterminism are allowed in the signal graphs.

4.1.2 Overview

The goal of circuit verification is twofold:

1. on the one hand, the circuit has to be proved to conform to its specification, which means
that no “bad” behavior is observed, and

2. on the other hand, the circuit must fulfill some properties, i.e. some “good” behavior is
produced.

sa
C — ual
ur2+
M }
ual2+
url U
T sr
ur2 E
X (ur2-

Figure 4.1 Verification scenario: a circuit composed with an environment.

The first part will construct the reachability set of a circuit when a certain environment, described
as a Petri net, is assumed. Figure 4.1 depicts an example of such a verification scenario. Circuit
correctness will be equivalent to say that none of the reachable circuit states is a failure state, as
it will be described in section 4.5. A first approach is presented in section 4.6 and it is further
refined in section 4.7.

The second part, verification of properties, is performed once the reachability set has been com-

puted, although some properties can be checked as that set is being built. Algorithms for verifying
several properties are given in section 4.8.

4.2 NOTATION AND TERMINOLOGY

A circuit is a triple (V, F, s°), where

50 CHAPTER 4

VY = {v1,...,v,} is a set of signal variables (also referred simply as signals or variables),
F maps each signal v; € V to an n-variable boolean function, f,,, that represents the
function computed by the gate that drives v;, and

0 is the initial state of the circuit.

We will denote by V; and Vg the set of signals corresponding respectively to input and gate signals.
When necessary, we will differentiate the set of internal or hidden gate signals, Vg, and the set of
output gate signals, Vp. Therefore, Vg = Vg U Vo and V = V; U V.

The fanin of signal v; € V, denoted fanin(v;) C V, is the set of signals that f,, depends on. For
sequential gates that, v; € fanin(v;). The fanout of signal v; € V, fanout(v;) C V, is the set of
signals that depend on v;, i.e. fanout(v;) = {vx € V|v; € fanin(vy)}.

For the sake of simplicity, in some sections we will assume the circuits to be autonomous. An
autonomous circuit has no inputs, hence its evolution only depends on its own state. This fact
simplifies notation, but the results can be extended to circuits with interface.

Given an autonomous circuit C' = (V, F, s%), let s[v)s’ denote the fact that state s’ can be reached
from s by switching v € V. The set of reachable states of C is denoted [s°).

The state graph of an autonomous circuit C = (V, F,s°) is a state graph, SG(C) = (S, E,V),
such that

S = [sY,

E {(s,s") € S x S| v €V with s[v)s'} and

vV = v

Normally, single states will be denoted in lowercase letters, whereas capital letters will denote sets
of states. Superindices may be used to distinguish different states, s, s’, s!, s*, etc, or different
sets of states, S, S’, S, S*, etc. Provided an encoding for states with n variables, s; indicates
the ith variable of that encoding, i.e. it is assumed that s = (s1,...,8Sxs).

4.3 SPEED-INDEPENDENT CIRCUIT MODELING

In clocked digital systems, the state is determined by the value of the so called state variables.
The order of the transitions along the combinational logic is not relevant, and the only restriction
is that those transitions must occur within the clock period. In contrast, all the transitions in
an asynchronous circuit have a meaning, and therefore, hazards, i.e. undesired or spurious signal
transitions, must be avoided. Since all feasible execution paths have to be explored to detect
possible hazards, the state of an asynchronous circuit will depend on all the signals.

We model a particular class of asynchronous circuits, speed-independent circuits, which correctly
operate regardless of the delays of their components. Speed-independent circuits are modeled fol-
lowing the unbounded gate delay model [MB59]. Under such a model, delay elements are attached
only to gate outputs and the delay magnitude is positive and finite, but unknown. The delay type
we assume is inertial delay, i.e. pulses shorter than the delay magnitude are filtered out. Following
this circuit model, the next state depends only on the present state, since once a gate is excited,
that gate will eventually switch in the future.

Even this model assumes all forks to be isochronic, it is worth mentioning that non-isochronic forks
can be also taken into account. One single variable is enough to represent the state of an isochronic

Asynchronous circuit verification 51

fork, whereas non-isochronic forks need as many variables as the fanout of the gate driving the
fork. Non-isochronic forks at primary inputs can be modeled by placing a buffer between the
primary input and its fanout gates, as it is graphically depicted in figure 4.2(a). If the non-
isochronic fork is driven by a gate v;, then the fork can be modeled, as figure 4.2(b) illustrates,
by replicating the gate v; as many times as fanout(v;). Therefore, modeling delay-insensitive and
quasi-delay-insensitive circuits is also possible by just preprocessing the circuit netlist.

gl

(€Y (b)

Figure 4.2 Modeling non-isochronic forks at (a) primary inputs and (b) gate outputs.

The states of a speed-independent circuit can be represented by boolean functions, with one
boolean variable for each signal. We use v; to indistinctly denote a circuit signal and the variable
that represents that signal. The state of a circuit with n signals (n = |V|) is determined by
the value of its signals and that state can be represented by a minterm of an n-variable logic
function. That minterm is the characteristic function of a state of the circuit. Sets of states can
be represented as the disjunction of the minterms representing those states. A circuit with n
binary signals can have as many as 2" states, and we will refer to Sy as the set of all possible
states of a circuit with the set of signals V. The set of all possible subsets of Sy is denoted 2.

4.3.1 Gate modeling

Let us recall the gate model for speed-independent circuits (section 1.3, Muller model), in which
each gate is modeled as an instantaneous logic function followed by an unbounded inertial delay.
Henceforth a “gate” will denote both the function and its associated delay. Two different types
of gates must be considered: combinational and sequential gates, also called memory elements.
An example of combinational gate can be found in figure 4.3(a). Under the unbounded gate delay
model, sequential gates are such that the delay output is connected to one of the gate inputs, as
depicted in figure 4.3(c). The sequential gate in figure 4.3(c) is equivalent to the symbol of the C
element in figure figure 4.3(b). Typically, when a sequential gate has an associated symbol, the
implicit feedback loop does not appear for simplicity. Without loss of generality, only one-output
gates will be considered, since n-output gates can be represented as n one-output gates.

92 CHAPTER 4

4
Vl V3 \Y 4 V6 V5 V6
A7) Vg
(3 (b) (©

Figure 4.3 (a) Combinational NOR gate. (b) C memory element and (c) its internal represen-
tation.

In our framework, gate switching is also simulated with boolean functions. We will indistinctly
use v to denote a circuit signal and the gate driving that signal. Let us assume that gate vy
implements the function f,, (v1,...,v;). Gate vy is said to be sequential only if vy € fanin(vk),
ie. v € {v1,...,v;}, and combinational otherwise. A gate v is said to be excited when v #
fur, (V1,...,v;), and stable otherwise. We represent the set of states in which a gate is excited and
the output will eventually become 1 by the positive excitation function, f+:

+(’Ul,...,'l)j) = U, 'ka(’l)l,...7’l)j) s

Similarly, we can define the negative excitation function, f—, as follows:

f,;z(vl,...,vj) = Vg 'ka(’l)l,...71}j) .

These definitions are analogous to the flow tables presented in [DC86]. Other authors have pro-
posed to model gates with Petri nets [McM92, HHY92]. However, each gate may result in a net
with several places and transitions that would cause a more complex model for verification. The
model proposed in this chapter, two excitation functions per gate, is more efficient. Next we show,
as examples, those characteristic functions for the NOR gate and the C element in figure 4.3:

- (’U1,112,1J3):1_J - U1 - V2
Vo = V1.0V = V1 + v
3 fva(1, 2) 1 2 { (’Ul,vz, 3):’U '('Ul +'U2) s
+ (v4,v5,v6) = Vg - V4 - U3
= = . ° e
V6 = fus(v4,Vs5,V6) Vg - V5 + Vg - (V4 + 05) { foe(Va,v5,06) = v6 - Vg - U5 .

The image computation function, §g : 25V x Vg — 25V is a function that given a set of states
S and a non-input signal v returns those states that can be reached by switching v. Formally:

dg(S,v) = {s' | Is € S with s[v)s'} .
The function dg can be computed by using excitation functions as follows:
0 (S,v) = (S ff) s v+ (S fi)du v
To illustrate this, we will calculate the new set of states S’ reached by switching the NOR gate in
figure 4.3(a) from the set of states S. Let us assume that
S = v1V2V304V5 + 0102030405 + D1 U2030405 .
The product of S by the excitation functions of the gate (ff, f,):

S - :; = 5. ’l_)3 - U1 - Vg = 1_)1172’1_)3’1_)41)5 5

S - 173 = S-v3- ('1)1 +'l)2) = V1V20304V5 ,

Asynchronous circuit verification 53

gives the states in which the gate is excited. The following operations simulate, respectively, the
rising and falling of signal vs:

(S- f«j;)»l«ﬁs <vV3 = V1020304055, - V3 = V102030405

(S fo)dvs - U3 = 0102030405 by - U3 = 01T20304V5 -

Finally, the set of states S’ is computed as the union of the states where signal vz has already
risen or fallen:

S'= (S ff) oy - vs+ (S - fo,) bvy - U3 = D10203T4v5 + V102030405

ENVIRONMENT (Petri net)

CIRCUIT

Figure 4.4 Environment-circuit system.

4.4 ENVIRONMENT AND CIRCUIT COMPOSITION

As shown in figure 4.4, the verification scenario consists of a closed system in which a circuit is
composed with its specification or environment. This environment could be described in many
different ways, e.g. process algebras [Ebe89], CSP [Hoa78] or Petri nets [Pet62]. Petri nets are a
powerful formalism for specifying asynchronous circuits, very popular in the asynchronous circuit
design community. In addition, there are several methodologies that use Petri nets as circuit
specification [RY85, Chu87, Van90, Lav92, Pas96]. Thus, it is very attractive to use the same
formalism for describing a circuit to be synthesized and afterwards for verifying that circuit against
its specification. Examples of a circuit and its Petri net specification can be found in figures 4.1
and 4.6.

Given a Petri net (P, T,F,mg) specifying the environment that interacts with a circuit, there is
a relationship between the circuit interface signals and some Petri net transitions. We denote by
T+ (Ty—) the set of transitions in the Petri net that specify a rising (falling) transition of signal
v. We use T, to denote either T, or T,,_. We will consider that 7 = T; UTo U Ty, where 71 and
To are respectively the sets of transitions associated to input and output signals, while T is the
set of internal Petri net transitions, i.e. transitions that are not associated to any circuit signal.

The set of all possible states of an environment-circuit system is a subset of the Cartesian product
of the possible sets of states of each subsystem, S = Mp x Sy. Therefore, if m = |P| and n = |V,
the state of such a system is defined by the ordered pair

((plv---7pm)a(1)17"'vvﬂ)))

where (p1,...,pm) is a marking of the Petri and (v, ..., v,) represents a state of the circuit. Thus,
states of an environment-circuit system can be represented as minterms of n + m variables, and
sets of states as the sum of the minterms of the states in the set.

o4 CHAPTER 4

C
b+ b- b+ b-
b i \ d b i d
a d+ c- a d+ c-
] V]
: c+—= a- c+—= a-
'10
-1 0 0
0
0 0
0 0

Figure 4.5 Transition a+ is synchronized with switching a from 0 to 1.

The previously defined image computation formulae, d (see section 3.2.2) and g, can be extended
for the environment-circuit system as:

oy 29xT — 25 and
dg : 29 x Vg — 25 .

These functions can be used for image computation of internal environment transitions and internal
gate switching. However, new functions have to be defined for interface signals, in order to simulate
the synchronization between Petri net and circuit. Figure 4.5 depicts a synchronized change in both
subsystems. For transitions associated to input and output circuit signals the image computation
functions are, respectively:

5; + 25x T — 2% and
do : 2SXT0—>2S.

The environment “decides” when an input signal of the circuit has to switch. Thus, when a
transition in T, is fired, signal v must switch accordingly. The image computation function for
STG transitions (see section 3.3.2) can be used to fire transitions associated to input signals:

_ _J on(Sit) v, ifteTuy
61(S,t) = ds(S,t) = { on(S,t) -0, ifteT,_

In the case of output signals, the circuit takes the initiative of the change. Given a transition asso-
ciated to an output signal, i.e. t € T}, with v € Vo, the function dp performs image computation
as follows:

60(57 t) = 6N(6G(Sv U)vt) .

Note that if more than one transition ¢ € T, is enabled in a given state, it may indicate nonde-
terminism or a bad environment specification. This can be reported as a warning.

4.5 VERIFICATION OF SPEED-INDEPENDENCE

Speed-independence is not a property of a circuit by itself but of the behavior of a circuit under
a certain environment. In our framework, the behavior of the environment will be represented
by a Signal Transition Graph (STG) [RY85, Chu87] in which the outputs of the STG will be

Asynchronous circuit verification 55

at+ o+ <=—-=c+ o+ <=—-c+

<Y, L AL
1] =1 47
e e ::>>\\\

@ (b) ©

Figure 4.6 (a) Circuit with a speed-independent behavior, (b) The same circuit with a hazardous
behavior, (c¢) Equivalent speed-independent complex-gate circuit.

inputs of the circuit and vice versa. Figures 4.6(a) and 4.6(b) depict a circuit excited by two
different environments. The circuit is speed-independent with environment (a), but hazardous
with environment (b). In the latter case, a static hazard can be produced on signal d when, in
the state abcde = 11110, the event ¢— arrives before e has switched to 1. However, note that an
equivalent complex-gate implementation of the same circuit (figure 4.6(c)) can be hazard-free.

Figure 4.7 shows the state graph obtained by a reachability analysis of the system in figure 4.6(a),
in which place variables do not appear for simplicity. Verification through reachability analy-
sis [BCL1T94] will check that each transition produced at the outputs of the circuit can be accepted
by the environment, i.e. a transition with the same label is enabled in the STG.

(abcde)

10000 b 9-

b+
[11000| [01000] [00010 |

ety “\{f-b— e-
11001 101010 | 100011 |
d+ c- e- V
(11011] [o01110| [01011]

c+ e- Cc—

11111 | {01111]

Figure 4.7 State Graph of the circuit in figure 4.6(a) (without place variables, for clarity).

4.5.1 Failure states

The verification procedure checks that the events generated by the circuit, in response to the
stimuli dictated at its inputs, can be accepted by the environment. Those states in which there
is a signal v € Vo positively (negatively) excited while no transition ¢t € T,y (T,) is enabled

56 CHAPTER 4

are called failure states. These states model situations in which the circuit generates a signal
transition not expected by the environment (see example in figure 4.8).

d+<=—c+ d+<=——c+
uy uy

a+ at
b i S b i ol d
a T ! a T

c- —o—=a | c- —o—=a
1 | 1

0 ' 0
1 ! 1
1] 0

0 P-- 0

Figure 4.8 Switching signal d from 1 to 0 is not accepted by the environment.

Failure states are produced when the circuit does not conform to its specification. This may be
due to a bad synthesis procedure that causes the circuit to have a hazardous or non-semi-modular
behavior. Also, if a circuit is verified (by mistake) against the specification of another circuit, e.g.
a nuclear reactor controller is verified against the specification of a kettle controller, failure states
will surely appear. In any case, an error in a set of states S is detected when any of the following
equations is satisfied:

U s-#E#0, U S-f7-E#0.

te€Ty+ teTy—

Note that function dp is correctly defined only if no failure states are contained in S, therefore
malfunction detection must be done before 6o (S,t) is computed.

A circuit with a given environment will be speed-independent if no failure state is present in the
set of reachable states of the environment-circuit system. This is equivalent to say that the circuit
conforms to its specification.

4.5.2 Semi-modularity

Semi-modularity is a more robust concept than speed-independence, but both concepts are tightly
related for most practical cases, as subsequently explained (see [YLSV92] for further details).
In addition to conformance to the environment, semi-modularity can be checked at each image
computation step, and violations of this property can also be reported as errors.

Definition 4.1 (Semi-modularity) A signal v; is semi-modular with respect to signal v, €
fanin(v;) (v; # vg) if the gate that drives v;, having been excited, cannot become stable by changing
the value of vi. Formally,

s[ve)s’ = [si # fo.(s) = i # fu(s)] -

A signal v; is semi-modular if it is semi-modular with respect to all its fanin signals. A circuit is
semi-modular if all its signals are semi-modular.

Asynchronous circuit verification 57

Definition 4.2 (Strongly-live circuit) A circuit is strongly live [YLSV92] iff its state graph is
strongly connected and for each signal v; there exists a state s € S in which v; is excited.

Theorem 4.1 ([YLSV92]) If a circuit is strongly live, then the circuit is speed-independent iff
1t 1s semi-modular.

4.6 FLAT VERIFICATION OF
SPEED-INDEPENDENT CIRCUITS

Formally verifying that a circuit is speed-independent under a certain environment can be done
by building a closed environment-circuit system, computing all the reachable states of the system
and proving that none of them is a failure state. Then we can say that the circuit conforms to the
environment or that the circuit is a speed-independent implementation of its specification.

Since the number of states can be exponential in the number of variables, explicit enumeration
techniques will result unfeasible even for circuits with just a few gates. On the contrary, sets
of states can be represented by their characteristic functions and, hence, BDDs can be used to
efficiently represent and manipulate such functions.

As a first approach, circuit and environment will be represented by using all their variables: places
and signals. Although this flat verification is an efficient approach itself, in further sections it will
be shown how it can be done even better.

The set of reachable states can be calculated by using a symbolic algorithm, similar to the one
described in section 3.5 for traversing Petri nets. The basic algorithm, depicted in figure 4.9,
works as follows. Given the initial state (or states) S°, at iteration 4, the set of states that can be
reached after ¢ transitions is computed. At the ith iteration three different set variables can be
distinguished:

m Reached contains the states visited until iteration i — 1,
m From keeps the last set of states reached after exactly ¢ — 1 iterations and

m finally, New accumulates the states reachable from the states in From by firing one transition
or by switching one signal.

The New set is calculated by successively applying the image computation functions described in
previous sections. Prior to image computation, the existence or absence of failure states must be
checked. Note that New may contain states not visited so far, as well as already visited states. The
really new states, New — Reached, constitute the From set for the next iteration, and the newly
visited states are also added to Reached. Since the number of reachable states is finite, after a
number of iterations a fized point, is reached and the BFS algorithm finishes.

The basic BFS algorithm in figure 4.9 can be significantly improved by using similar techniques
to those proposed in section 3.7.

4.6.1 Error diagnosis

Telling whether or not a circuit conforms to its specification is a useful information, but such a
simple statement may not help designers to find out why their design is wrong. On the other hand,

58 CHAPTER 4

basic_BFS_traversal {
Reached := From := S°;

do {
test_for_failure_states(From);
New := 0;

/* Let § be either da, 61, 6o or On */
/* depending on whether x in Vu, Tr, To or Ta */
for each signal/transition x € Vg UT {
New := New U ¢(From,z);
}

From := New - Reached;
Reached := New U Reached;
} while (From# 0);

}

Figure 4.9 Basic BFS algorithm.

an example of a situation producing an unexpected behavior can be of great help. The algorithm
in figure 4.11 gives a sequence of events that produces a failure state, i.e. a counterezample showing
when the circuit behavior is erroneous.

From a failure state, it is performed a backward traversal, restricted to the states that had been
visited during the forward traversal, and a trace from the initial state until the failure state is
given. To perform this backward traversal, we need to define the preimage computation functions.
The preimage computation function for transitions is computed as follows:

St (S,t) = (Sdasm, - NSMy) Inpm, - Ei

that intuitively is equivalent to changing the direction of the arcs of the Petri net. A gate will
switch backwards by changing the output value when it is stable and, therefore, becoming excited.
Figure 4.10 illustrates how a stable gate switches backwards to an excited state. The preimage
computation function of a signal is computed as:

361 (S0) = (S)b -7 + (S f)do-v

where fO and f! respectively represent the states in which v is stable at 0 or 1, ie. v =
fo(v1,-..,v;). Function 651 changes v into @ in those states in which the gate driving v is stable
at 1, an vice versa for the states with v stable at 0. Given 6;,1 and 6(_;1, the definition of preimage
computation functions for input and output signal transitions, 5;1 and 651, is as follows:

4, _ [0SO, ifteTy
(st = { o' (Sit)do v, iftE€T,- e
661(S7t) = 6]?71(6&1('5’”)’75) ’

provided that ¢t € T,.. Note that some of the states returned by the different preimage computation
functions may have not been visited, therefore it may be necessary to restrict those states to a set
of reachable states.

The diagnosis algorithm on figure 4.11 prints a sequence of transitions from the initial state, s°,
until a failure state when obtain trace(Failure,Reached) is called. We assure that the given
trace will not be an impossible trace by restricting ! to the reachable set of states, and by
eliminating the visited states we ensure the algorithm to converge.

Asynchronous circuit verification 59

, I
L N Py
o o

® O

ag@
\C

Figure 4.10 Stable AND gate becoming excited by backward switching.

obtain trace (From,Reached) {
/% Let 671 be either 65", 67", 65" or 65" */
/* depending on whether x in Vg, Tr, To or Ta */
for each signal/transition x € Vg UT {
Pre := §~!'(From,z) N Reached;
if (Pre # 0) {
if ((Pre N s°) # () then
r := TRUE; /* trace found */
else
r := obtain_trace(Pre,Reached-Pre);
if (r) then {
print_transition(From,2) ;
return r;

}
}
}

return FALSE;

Figure 4.11 Diagnosis algorithm.

4.7 HIERARCHICAL VERIFICATION OF
SPEED-INDEPENDENT CIRCUITS

The complexity of verification increases with the number of circuit signals, and in speed-independent
circuits all signals are relevant in order to keep the state of the circuit. An approach that consid-
erably reduces the required number of variables is to be presented in this section. The technique
consists of two steps such that:

1. At first, given a circuit C, most of its internal combinational signals are abstracted, thus
obtaining a reduced circuit, C, formed by several complex gates. Such a reduction can be
observed, for example, between figures 4.12(a) and 4.12(b). The reduced circuit C' is verified

to satisfy the specification of the original circuit C.

2. Having proved that circuit C is correct, the second step consists in verifying that C' is also
correct. As it will be demonstrated in section 4.7.4, the original circuit C' is correct if and
only if each complex gate in C is semi-modular.

60 CHAPTER 4

B B
d+ =——c+ d+ =——c+
R R
c 3 [3
at % % at % F-)L
d
b a b- - d b a - d-
b+ b+
a R R a R R
7 8 7 8
B B
C —(w—a c- ——=a-
B 3
Circuit C Circuit ©
}e

@ (b)

Figure 4.12 (a) Environment-circuit system and (b) its complex-gate equivalent system.

With hierarchical verification the number of variables relevant at each step of verification is drasti-
cally reduced: during verification of the complex gate equivalent circuit, only the input and output
signals of complex gates are required; during semi-modularity checking of a complex gate only the
interface and internal signals of the gate are needed. This last statement is true for most practical
circuits, although, in some contrived circuits, this number may be slightly increased, as it will be
explained in section 4.7.3. Since a critical factor that determines the complexity of verification
is the number circuit signals, the reduction of the variables needed along the various algorithms
results in a much more efficient verification method.

4.7.1 Functional and behavioral correctness

The two steps of hierarchical verification are tightly related with the concepts of functional and
behavioral correctness.

Functional correctness: A circuit is said to be functionally correct if an appropriate combina-
tion of the delays of its components can produce the behavior expected by the environment.

Behavioral correctness: A functionally correct circuit is said to be behaviorally correct if it
produces the behavior expected by the environment regardless the delay assigned to each
component, provided that the delays are within the margins assumed for the delay model and
the technology. For speed-independent circuits, delays are in the range (0, 00).

We can say now that the circuit in figure 4.12(a) is functionally correct, since by assigning the
AND gate a delay shorter than the delay between the transitions b+ — c—, the generated behavior
is the one expected by the environment. However, this circuit is behaviorally incorrect, because
long delays on the AND gate may produce a static hazard on d. The circuit in figure 4.12(b) is
both functionally and behaviorally correct, as the complex-gate architecture assumes zero delay
for the AND gate.

Asynchronous circuit verification 61

Verification of functional correctness

A speed-independent circuit must behave correctly for any finite delay of its components. A
particular case consists in “moving” the delay of a gate to its fanout gates. Let us take as example
the circuit in figure 4.12(a). We can move the delay of gate e to its fanout gate d, and we obtain
the complex gate in figure 4.12(b). We refer to this kind of gate clustering as collapsing. Since all
the delays are in the range (0, 00), the sum of the delays of d and e is still in the same range. The
behavior of the output of a complex gate is included in the behavior of the original circuit (prior
to collapsing).

In our framework, functional correctness is verified by collapsing some of the gates of the circuit.
In this way, multiple gates can be collapsed into one complex gate and, thus, internal signals
eliminated for the verification. Only for memory elements or outputs of complex gates, signals
cannot be eliminated.

In the example of figure 4.12(a), functional correctness is verified by first collapsing the AND and
OR gates into one complex AND-OR gate and eliminating signal e. The state graph of the system
formed by circuit C' and its environment is depicted in figure 4.13(a). The state of such system is
determined by the signals not abstracted plus the variables of the environment.

Functional correctness can be verified by an algorithm like the one used for flat verification (see
figure 4.9). If the collapsed circuit C reaches some failure state, the original circuit C' will also
enter some failure state, since the behavior of C 'is included in that of C. On the contrary, if no
failure states appear, it can be said that circuit C satisfies the specification of the original circuit
C. Verification of functional correctness becomes simpler and faster because of the elimination
of internal signals. Moreover, design errors that do not depend on the delays of the gates can be
detected soon, without requiring an exhaustive verification of the temporal relations among all
signals.

Verification of behavioral correctness

The second step of verification is devoted to detect hazards inside the complex gates. Intuitively,
this is performed as follows. Once verified that the collapsed circuit is speed-independent, the
state graph obtained in functional correctness verification is projected onto the interface signals
of each complex gate and taken as the environment of the complex gate. By traversing the gate
with this environment, the state graph of the complex gate is built and semi-modularity verified.
If all complex gates are semi-modular, the circuit is behaviorally correct, otherwise the circuit is
functionally correct but behaviorally incorrect.

The state graph in figure 4.13(b) has been obtained by projecting the state graph in figure 4.13(a)
onto the interface signals of the complex AND-OR gate, {a,b,c,d}. While the state graph of the
complex gate (figure 4.13(c)) is being built, the non semi-modular state 11010 appears, since firing
transition a— makes the AND gate to become stable before its output e raises. If a violation of
semi-modularity is detected, it is unnecessary to finish forming the rest of the graph and verification
concludes that the circuit is behaviorally incorrect.

In general, large circuits will be collapsed into several complex gates. As illustrated in figure 4.14,
this can be done hierarchically according to efficiency criteria for verification.

Isomorphic groups of gates can be mapped onto the same complex gate. In the example in
figure 4.14 there is a pattern repeated twice: an OR gate which inputs are an AND gate and
a primary input. We will show in section 4.7.5 that we can project the environment of several

62 CHAPTER 4

State: abed gli%pﬁ%%p%

State: abcde
0000 110000000

. 0100 010000010 00000

| 0010001000000| | 0001 100000001 | . “
d+ b- @@

0011 000100000 0101 000000011 d+
1011 000010000 1101 000000100 “
)

b+

violation of semi-modularity

@

State: abced

(b)

Figure 4.13 (a) State graph after functional correctness verification. (b) Projection onto the
interface signals of the complex gate. (c) Part of the state graph after behavioral correctness
verification.

complex gates onto one single state graph and verify their hazard-freeness at a time. This hierarchy
allows us to verify isomorphic subcircuits together.

In case the complex gate were verified to be hazard-free, its corresponding state graph would
be projected onto the input/output signals of its components and the same operation would be
performed at the next level of the hierarchy.

In order to ease the understanding of the presented approach, a key issue has been intentionally
kept hidden: projecting a state graph onto a subset of signals may map semantically different
states onto a same state and, consequently, the structure of the graph may drastically change.
In most practical cases, even with this apparent loss of information, behavioral correctness can

Asynchronous circuit verification 63

e
Dy

= Up

€Y (b)

Figure 4.14 (a) Flat circuit (8 gates). (b) Hierarchical complex-gate organization (3 complex
gates).

be ezxactly verified. How our method is still exact rather than conservative will be discussed in
section 4.7.3.

4.7.2 Reduction to complex gates

This section provides the means that enable to eliminate some signals of a circuit to simplify its
verification. We propose to collapse several gates into one complex gate with the same functional
behavior and eliminate the internal signals.

Let us assume we have a circuit C = (V,F, s") with signal v, being driven by a combinational
gate, i.e. v, & fanin(v,). Given a state s, for any function f,, that does not depend on v, it holds
that

fvi(s) = fw(sla"wsn—lao) = fvi(slv"'vsn—lvl) .

Let us build a new circuit ¢ = (X, F,3%), with X = V — {vn}. Assuming § = projx(s) and
1 < i < n, the boolean expression of each gate in C' is defined as follows:

£0.3) = { foi (S15...,8n-1,0) if v, & fanin(v;) ,

Soi(81y.eoy8n 1, fo,(S15- -3 8n_1,0)) if v, € fanin(v;) .

The above expression substitutes s,, by f., (s) and, therefore, f,,(5) does not depend on s,, as
vn, & fanin(v,). For this reason only combinational gates can be abstracted, because sequential
gates depend on their own output.

Figure 4.15 shows how the boolean expression of a complex gate is derived from the expressions
of the simple gates. In case |fanout(v,)| > 1, multiple complex gates will be created, as illustrated
in figure 4.16.

64 CHAPTER 4

U1 v Uy

Y Y5

U3 C v4 US U4
fa=vs-vs +vg-(v3+us) fa=wvs3- (V1 +v2) +vsg- (v + V3 +v3)

Figure 4.15 OR and C gates collapsed into a complex gate.

1 v 1
v, %2 v
D, .
U2 v 3 U2
v 7
3 U3
D, U
v C 6 v 6
4 UG 4
v
4
(@ (b) (©

Figure 4.16 (a) Gate with multiple fanout. (b) Complex gate considered for functional correct-
ness (c) and for behavioral correctness.

4.7.3 Projections adding nondeterminism

When a state graph is projected onto the interface signals of a complex gate, semantically different
states might be mapped onto a same state. This could turn a deterministic sequence of events
into a nondeterministic one. In other words, projection may not only hide some events, which is
good, but also introduce inexistent traces that could cause a circuit malfunction.

ro T {>

rz—T—D J—C

L—q

@ (b)

a0

p
at L]

L—q

al

U

HJL&J

Figure 4.17 Example of (a) flat and (b) collapsed circuit.

As an example, we show the circuit in figure 4.17, provided by Peter Beerel and Jerry Burch [BB95],
which work with alternating choice but not with nondeterministic choice. The original spec-
ification, in figure 4.18(a), has eight states, but there are two of them with the same code,
r0 = rl = a0 = al = 0. Thus, the projection onto {r0,r1,a0,al} gives the state graph in
figure 4.18(b), with only seven states and nondeterministic choice. Under such an environment,
the complex gate is not semi-modular. In one of the states with code 0000, the place p0 is marked,
whereas in the other state it has no token. As figure 4.18(c) depicts, place p0 can be kept in order
to disambiguate both semantically different states.

In practice, fortunately, introducing nondeterminism in the environment of a complex gate rarely
causes circuit malfunction. Therefore, initially the state graph will be mapped only onto the
interface of the complex gate. If a violation of semi-modularity occurs, we can always keep some
variables alien to the complex gate and then rerun the second verification step. This procedure is

Asynchronous circuit verification

65

po State: rOrla0al State: rOr1 a0 al p0
ro+ <e al- 00001
pl p7 1000 0100 10000 00010
a0+ rl- l l/ l T
p2 p6 1010 0101 10100 01010
ro- al+ l l l T
3 5
P P 0010 0100 00100 01000
(ZO- —rl+ \ 00000 /
p4
@ (b) ©

Figure 4.18 (a) Environment of circuit. Projections (b) adding nondeterminism (c) or not.

hierarchical verification {
C' := collapse(C);
SG' := obtain_SG(C',N);
exit_if (C'_is not_speed-independent;
for each complex gate G' € C' {
E := project(SG',G");
G := original gates(C,G');
if (NOT is_semi-modular(G,E)) {
E := project keeping USC(SG,G');
if (NOT is_semi-modular(G,E)) return FALSE;
}
}

return TRUE;

Figure 4.19 Hierarchical verification algorithm

depicted in figure 4.19. The function project_keeping USC(SG,G’) projects a state graph onto
the set of variables of G' plus some additional variables such that all states have distinct codes.

4.7.4 Why is hierarchical verification exact?

In our framework, the absence of hazards is proved by verifying that the circuit is semi-modular,
i.e. no gate can be disabled by changing the value of its inputs. Let us assume that C' is a circuit
and C is an equivalent circuit in which some gates have been collapsed into complex gates and
the corresponding internal signals eliminated. In this section we will prove that:

a) if C is not semi-modular, then C is not semi-modular either.

b) if C is semi-modular but C is not semi-modular, there is a complex gate of C for which the
behavior of the corresponding decomposed gate, under the projection of the state graph of C
onto the input/outputs of the gate, is not semi-modular.

Conjecture a) guarantees no false negatives, whereas conjecture b) guarantees no false positives.

66 CHAPTER 4

We have considered a circuit to be a set of gates connected to an environment, modeled as a
Signal Transition Graph. In particular, the behavior of the environment could also be modeled as
a set of gates which inputs are connected to the outputs of the circuit and vice versa. The system
resulting from such a connection, would not have interface, i.e. it would be an autonomous circuit.

Without loss of generality and for the sake of simplicity, we will consider autonomous circuits in
subsequent definitions and proofs. The obtained results can be naturally extended to circuits with
interface.

Given the state graph of an autonomous circuit, SG(C) = (S, E, V), relation E can be partitioned
into n subsets as follows:

E;
E

{(8,8/) S E|Si = S_il\Vj;siSi = S;} ,

Uz

v; €V

Note that the labeling function X is the identity. This means that each state s € S is a bit-vector
over V such that the ith element of s, denoted by s;, specifies the value of signal v; in state s.

Next, observational equivalence [Mil80] is defined. This is a concept that establishes an equivalence
among those circuits that produce the same events on a given set of signals. For simplicity, we
will use a restricted definition, since we are only interested in circuits in which the signals of one
of them is a subset of the signals of the other.

Definition 4.3 (Observational equivalence between two circuits) Let C = (V,F,s°) a
C = (X, F,3% be two circuits, with X CV, and let SG(C) = (S,E,V) and SG(C) = (S E,)
be their state graphs. C and C are observationally equivalent iff:

1. 3% = proj(s°) .
2. Vs € S,5€ S such that § = projy(s) and Yv; € X :

a) if sE;s' then 35 € S such that SE;§ and § = projx (s') .
b) if SE;S then s’ € S such that sELE;E%s' and 8 = projx (s') .

where EY, denotes any sequence of non-observable transitions.

In this section we propose to verify semi-modularity rather than speed-independence. As it has
been explained in section 4.5.2, both concepts are tightly related for most practical cases.

Theorem 4.2 Given two circuits C = (V,F,s°) and C = (X, F,3°), with X =V — {v,}, F
defined as above and ° = projx(s®), and their state graphs SG(C) = (S, E,V) and SG(C) =
projx (SG(C)) = (S,E,X), C and C are observationally equivalent iff all signals in fanout(v,)
are semi-modular with respect to vy, in SG(C).

Proof

Condition 1 of definition 4.3 holds by construction. Let s € S, 5 € S, § = projx(s) and v; € X.
In those cases where we prove that fy,(s) = fu,(5), it immediately follows that observational
equivalence holds. More precisely, f,,(s) = fv (S) = s; implies that v; is stable in both s and §
and, therefore, conditions 2.a and 2.b hold. If f,.(s) = f.,(3) = s; there exists s’ and ' such that

Asynchronous circuit verification 67

sE;s' and SE;3 and § = projx (s'), since the same signal transitions from s and 5. Therefore,
conditions 2.a and 2.b also hold.

If v, & fanin(v;) then f,,(3) = f,.(s) and, consequently, observational equivalence holds.
If v, € fanin(v;) then

ﬁ’z(g\) = fvi(slv"'vsn—lvo) 'fvn(s) +fvi(813"'73n—171) 'fvn(s) .

semi-modularity = observational equivalence‘

Since v; is semi-modular with respect to vy, a change on signal v,, cannot disable v;. Hence, f,(s)
does not depend on s, when signals v; and v,, are simultaneously excited, i.e.

[fo;(8) # 8i N fo,(8) #Sn] = [fui(S1,---y8n-1,0) = fo,(51,---,8n_1,1)] .

For the previous predicate to hold we need

[fo:(s) = 8] V [fo.(8) =8n] V [foi(s15---18n-1,0) = fu,(s1,---,8n_1,1)] .
If f,,(s) = sn, we have (by Boole’s expansion)

For®) = foi (515 8n1,0) - S+ fur (515, 8n_1,1) < 8 = fu,(5) -
If fo,(s15.--480-1,0) = fu,(51,-..,8n_1,1) it immediately follows that
Foi3) = fur(s1sey801,0) = fur(S15- s 8n1,1) = fur(5) -

It only remains the case

[fo;(8) = 8] A [fo,(8) =8n] A [foi(815---38n-1,0) = fu,(S1,---,8n_1,1)] -

which describes the situation in which v; is stable, v, is excited, and f,,(s) depends on the value
of signal v,. Hence,

ﬁ)i(é\):foL’(Sl?"'?sTL—l?l).8ﬂ+f’vi(817"'7s’n—171).S;Lfvi(s) = S .

Clearly, condition 2.a holds for state s, since v; is not excited in s. To prove 2.b, let us take s’ such
that SE;s'. We will prove that there exists s, s” € S such that sE,s"E;s' and §' = projx (s').

Since v, is excited in s then we have s’ € S such that sE, s”. But now, v; is also excited in s’ as

fv,j(sl7"'7sn—170) = f‘vi(slr--asn—lal) 9

and thus there exists s’ € S such that s”E;s’. Finally, s and s’ only differ in the i¢th and nth
elements and therefore 5 = projx (s').

— semi-modularity = — observational equivalence

If v; is not semi-modular with respect to v,, then 3s,s’,s"” € S such that sE;s’, sE,s" and v; is
not excited in s".
Since only v, changes between s and s”, we have that §= projy(s) = projx(s”). Thus,

ﬁii (:9\) = fUi (517 e -7571—170)) fvn (S) + fUi (517 <oy Sn_l, 1)) fvn (S) .

68 CHAPTER 4

Since v; is excited in s and stable in s” (after a transition of v,) then

fvi(517~~~73n—170) = fvi(317~~~75n_17]-) .

Moreover, f,, (s) = s, and f,,(s) = 3, as v, and v; are excited in s. Therefore,

ﬁ’i (‘/9\) = fUz‘ (517 <oy Sn_l, 1) “Sp + f’Ui (517 <oy Sn_1, 1) : s_nfw (S) = S,
which means that v; is not excited in § and, therefore, condition 2.a does not hold. O

Theorem 4.2 is the basis to prove that hierarchical verification is exact. This is the purpose of the
next corollaries.

Corollary 4.1 C not semi-modular = C not semi-modular.

Proof This immediately follows from the fact that the state graph of C is the projection of the
state graph of C. m|

Corollary 4.1 guarantees that hierarchical verification will not give false negatives.

Corollary 4.2 If C is semi-modular and C is not semi-modular, then either v, or some signal
v; € fanout(vy,) are not semi-modular in C.

Proof (by contradiction) Assume that v, and all its fanout signals are semi-modular. Then, by
theorem 4.2, C' and C should be observationally equivalent. Since C is semi-modular and C is
not semi-modular, then the only non-observable signal, v,, should be non-semi-modular, which
contradicts the initial assumption. m|

The following proposition is a result of definition 3.4 (projection of a state graph).

Proposition 4.1 Let C = (V, F,s%) be a circuit, SG(C) = (S, E, V) its state graph, and fanin(v;)U
{vi} €T X CV. Let projx(SG(C)) = {S, E, X) be the projection of the original state graph onto

X. Let s,s' € S and s € S such that projx(s) = projx(s') =35. Then

v; excited in s < v; excited in s’ < v; excited in'S .

Proposition 4.1 is crucial for our method, since it states that the excitation/stability of a complex
gate, and subsequently semi-modularity, can be locally checked by only knowing the values of the
input/output signals of the gate and regardless the state of the rest of the circuit.

Corollary 4.2 shows that hierarchical verification does not produce false positives. Consider a
complex gate that drives v; € fanout(v,), and that X, is the set of input/output signals of the
gate, i.e.

X = {vi} U (fanin(v;) — {vp}) U fanin(v,) .

It can be derived that, by taking projy, (SG (C)) as the environment of the complex gate, and s
as the initial value for signal v,,, non-semi-modularity of v; and v, in SG(C) is also detected in

projx, (SG (5)) (by proposition 4.1). Intuitively, it can be proved by showing that there is always
one state s of C' in which non-semi-modularity is manifested for the first time from s°. Because
of the observational equivalence, while semi-modularity holds from s°, the projection of s onto X;

~

will also belong to the set of states of projy, (SG(C)).

Asynchronous circuit verification 69

4.7.5 Verification of isomorphic subcircuits

As figure 4.14 illustrates, a circuit may have different levels of hierarchy. In some of these levels
isomorphic subcircuits may appear, for example the AND-OR gate in figure 4.14(c). A conservative
way of speeding-up the second verification step that takes advantage of isomorphic subcircuits will
be presented by means of an example.

’—————_-~
- -~
- ~h

-
-
al - a2 e W N D * a
b1 @ cl b2 @ o2 b ¢
000
b2+
cl-
000 <— 010 010
a1+¢ fbl— a2+
110
100 011 b2- a2-
¢02+
b1+¢ ﬁal— 111 c2-
110 —» 111
c1+ a2)—/ \gz—
011 101
c2- 2

b2~ a2-

001

Figure 4.20 Union of environments for different instances of the same gate.

Let us assume that a circuit has several instances of a same complex gate. Figure 4.20 shows two
AND gates of the same circuit with a different environment for each. In this example, AND gates
are used for simplicity, since verification of semi-modularity in simple gates could have been done
in the previous step. As previously mentioned, the environment of a complex gate is calculated
as the projection of the state graph onto X;. In this is example the states labeled with 010 in the
environment of G2 result from the projection of two different states. For the sake of clearness,
they are depicted as different states in the figure.

To verify the semi-modularity of each AND gate, we calculate the union of the environments of
all AND gates of the circuit, shown as the environment for the generic gate G in figure 4.20. This
many-to-one mapping may introduce choice and/or nondeterminism not manifested in the initial
state graph. In fact, the set of sequences of transitions accepted by the union of projected state
graphs can be larger than the union of the sets of sequences generated by each individual gate.
However, semi-modularity is a local property of a gate that needs to be checked only between
adjacent states of its environment (see proposition 4.1).

Interestingly, if the union of the projected state graphs produces a semi-modular behavior of
the generic gate G, it also describes a set of sequences of events that, if applied to each gate
individually, would produce a semi-modular behavior. In other words, if gate G is semi-modular
with the union of environments, each gate will be semi-modular with its own environment.

The conservativeness of this approach may come from both the projection onto the interface
signals, as explained in section 4.7.3, and the union of environments. The projection of the state
graph onto the interface signals, as well as the union of environments, will keep the edges involving

70 CHAPTER 4

interface signal switches (see proposition 4.1), but they may also fold semantically different states
onto the same state, thus introducing additional nondeterminism (choice). The whole approach is
exact rather than conservative, since there is always the possibility of verifying each isomorphic
subgraph separately.

Needless to say that, with the previous considerations, the presented approach allows to verify
circuits against an environment, possibly containing choice, nondeterminism and/or state variables
that do not correspond to values of input/output signals.

4.8 VERIFICATION OF PROPERTIES

Verification involves two different aspects: formally proving that a circuit does not behave in-
correctly, i.e. conformance to the specification, and, moreover, that it behaves “well”. At a first
glance, it could seem that the former statement implies the latter and vice versa, but this is not
necessarily true. Conformance to the specification only means that no unexpected behavior is
observed at the outputs of the circuit. Let us think of a block of wood circuit (the universal
do-nothing module proposed by Molnar). Such a circuit will accept any input transition but, obvi-
ously, will not produce any response at its outputs (shall we call them “outputs”). In conclusion,
no failure state would be reached and the circuit would be reported as correct.

Thus, there is also a need of assuring that the system has certain properties, e.g. absence of
deadlocks, liveness, home-state, or other more concrete properties like “all the markings in the en-
vironment are visited when connected to the circuit” or “the switching of signal x is acknowledged
by switching signal y”, etc.

In this section algorithms for proving deadlock freeness and the home-state property [Mur89] of
the whole system, are presented.

Other properties can be verified by using different algorithms, but listing them all would make
this section cumbersome. In particular, the algorithms in section 3.8 can also be used with minor
changes in order to check if properties of the specification Petri net still hold when its behavior is
restricted by the circuit.

4.8.1 Deadlock freeness

Figure 4.21 shows how deadlock freeness can be easily tested. A deadlock state is a state from
which the system cannot make any progress. In a deadlock state neither any transition is enabled
nor a gate is excited. States in which a transition ¢ is not enabled are found by the formula SNE;.
Similarly, the product SN fif N f, gives the subset of states in S in which signal v cannot switch.
The characteristic function of the states that produce a deadlock is given by the product of the
two previous formulae calculated for each transition and each gate.

4.8.2 Home state

The initial state s° of a system is a home state [Mur89] if s° can be reached from any other reachable

state of the system. Apart from the interest of the property itself, the home-state property is a

sufficient (but not necessary) condition for an L1l-live system to be L4-live!. Clearly, if every

11.4-liveness and home state are concepts used for Petri nets that we naturally extend to circuits.

Asynchronous circuit verification 71

system deadlock {
Deadlock := Reached;
for each transition t € T;
Deadlock := Deadlock N E;
for each signal v € Vg
Deadlock := Deadlock N fif N f. ;
return Deadlock;

Figure 4.21 Algorithm for checking deadlock freeness.

transition is enabled in some reachable state (L1-liveness) and from any state the initial state s°
can be reached, each transition can be fired infinitely often, i.e. the system is L4-live. Otherwise,
L4-liveness can be verified by other techniques with higher complexity as it was explained in
section 3.8.

The algorithm in figure 4.22 checks if the initial state s is a home state. The state s° will be
a home state if performing a backward traversal we reach the same states that going forward.
Nevertheless, we restrict the states found backwards to the reachable set of states, because of the
inherent nondeterminism when going backward. The algorithm is similar to a normal Breadth
First Search, but at each step the new states are removed from the reachable set of states. The
backward traversal completes when no more states can be removed. Only if Removable becomes
the empty set, s will be a home state.

home_state {

Removable := Reached;
From := s%;
do {

New := 0;

/x Let 61 be either 5%, 6,1, 65" or 65" */
/* depending on whether x in Vi, Tr, To or Tu */
for each signal/transition x € Vg UT {
New := New U (6~ !(From,z) N Removable);
}

From := New - Removable;
Removable := Removable - From;
} while (From# 0);
return (Removable = {));

Figure 4.22 Algorithm for checking the home-state property.

4.8.3 Verification of properties on the collapsed circuit

Let us assume C = (V, F,s°) to be a speed-independent circuit and C = (X, F,3°) a complex-
gate-equivalent circuit of C.

Corollary 4.3 Properties concerning the observable behavior of C can be verified in C.

72 CHAPTER 4

Proof It directly follows from theorem 4.2, which states that a speed-independent circuit and its
collapsed version are observationally equivalent. m|

Consequently, if circuit C reaches a deadlock state s, C will reach some state s, such that s =
projx (s), from which no change is produced in any signal v € X. Note that this does not implies
that the state s is a deadlock state, but a live-lock one. In other words, the only excited signals in
s and in any s’ reachable from s, if any, are signals inside the complex gates. Since by assumption
collapsed signals are not observable, the environment will observe that the interface of the circuit
is halted.

Similar reasoning can be done about other levels of liveness. Thus, if C is L4-live, then the interface
of C' will show this same behavior, even though some group of collapsed signals are dead. Let us
take figure 4.23 as an example. Clearly, both circuits have the same behavior, since the output of
the OR gate is always set to one. Despite of having the same observable behavior, the circuit in
figure 4.23(a) cannot be L4-live, because one of its signals is dead.

a
a

b . c c
b |

@ (b)

Figure 4.23 Two observationally equivalent circuits.

Corollary 4.3 also guarantees that properties concerning the causality between events in the circuit
interface can also be verified in the collapsed circuit. For example if in circuit C' an event z* is
properly acknowledged by event y+, the original circuit C' will generate this very same behavior.

4.9 RESULTS

Two tables illustrate the results obtained by running several experiments on our verifier. Table 4.1
reports the outcome of verifying speed-independent circuits, whereas table 4.2 presents the results
achieved when trying to verify non-speed-independent circuits. The end of this section is devoted
to compare our results to those given by other authors.

Verification of speed-independent circuits

The first example in table 4.1 is a circuit automatically generated following the techniques pre-
sented in [Pas96]. The other circuits are scalable, i.e. they can be enlarged by simply increasing
the number of instances of the basic cells. However, their intrinsic regularity has intentionally not
been exploited to verify the circuit. The scalable circuits are the following: a Distributed Mu-
tual Exclusion (DME) arbitration circuit [Mar85, Dil89], a tree arbiter [Sei80b], an asynchronous
FIFO [Mar86], a register file NUK*94] and a demultiplexer [BM92].

Results on flat and hierarchical verification are shown. The signals for hierarchical verification
are output or state signals, since internal combinational gates are eliminated. The number of
states of hierarchical verification is the one obtained during functional verification. The reported
BDD sizes are the largest ones encountered during the traversal of the circuit. The number of

Asynchronous circuit verification 73

example signals states BDD size iterations CPU (sec.) speed
flat | hier. flat | hier. flat | hier. flat | hier. flat | hier. up
master-read 27 14 [[1.7 x 10° 2.1 x 103 6432 1091 13 13 42 5 8.4
4 DME 72 36 || 7.5 x 10 | 4.1 x 103 1963 1082 34 19 39 7 5.6
8 DME || 144 72 || 8.0 x 108 | 2.1 x 106 5175 3035 58 31 428 86 5.0
16 DME || 288 144 || 4.5 x 10'% | 2.8 x 101! 11599 7181 || 106 55 3890 799 4.9
32 DME || 576 | 288 || 7.0 x 103! | 2.4 x 102! 24751 16391 || 202 103 || 28365 | 5788 4.9
6 Tree arb. 42 28 || 2.3 x 10° 6.3 x 104 3253 2457 22 22 40 25 1.6
8 Tree arb. 58 38 || 1.4 x107 | 2.3x 108 9084 6239 30 27 261 132 2.0
10 Tree arb. 74 48 || 7.9 x 108 | 8.4 x 107 20789 9184 39 37 1425 512 2.8
12 Tree arb. 90 58 || 4.5 x 1010 | 3.0 x 10° 26717 14703 49 45 4316 | 1318 3.3

5 FIFO 18 - 2.7 x 103 - 573 - 12 - 8 - -

10 FIFO 33 - 1.2 x 108 - 1765 - 22 - 130 - -

15 FIFO 48 - 5.8 x 108 - 3662 - 32 - 634 - -

20 FIFO 63 - 2.7 x 1011 - 6214 - 42 - 2200 - -
4-bit REG 74 50 || 7.6 x 107 1.2 x 10° 14000 10412 15 7 388 171 2.3
6-bit REG || 109 73 || 2.3 x 101! | 4.6 x 108 40346 31008 15 7 2156 681 3.2
8-bit REG || 144 96 || 7.1 x 10 | 1.7 x 10! 93913 70133 15 7 7246 | 1763 4.1
10-bit REG || 179 | 119 || 2.2 x 10'® | 6.7 x 1013 || 188040 | 149250 15 7 || 11330 | 4650 2.4
6-bit DMUX 91 49 || 1.6 x 1017 | 8.2 x 10° 19057 3083 9 5 662 95 7.0
8-bit DMUX || 121 65 || 6.9 x 1022 | 1.3 x 103 26473 4117 9 5 1268 181 7.0
10-bit DMUX || 151 81 || 2.9 x10%® | 2.1 x 106 33889 5151 9 5 2027 292 6.9
12-bit DMUX || 181 97 || 1.3 x 10%* | 3.4 x 10'° 41305 6185 9 5 2995 444 6.7

Table 4.1 Experimental results with speed-independent circuits.

iterations of the verification algorithm is also reported. CPU times have been obtained on a Sun
SPARCStation-20 with 128 MB memory.

All the circuits are dominated by memory elements. The one with most combinational gates is
the DME (half of the signals). The FIFO is a peculiar case, as all the signals are outputs of
memory elements and, therefore, no difference exists between flat and hierarchical verification.
The execution time of hierarchical verification is mostly dominated by the first step (functional
verification).

The size of the BDDs, often crucial to avoid running out of memory space, is reduced by the fact
that many variables are eliminated when reducing to complex gates. The significant improvements
in CPU time are basically due to two factors: 1) the reduction of the size of the BDDs and 2) the
reduction of the logic depth of the circuit, which directly influences on the number of iterations
required to reach a fixed point during the traversal.

The presented results confirm that hierarchical verification makes depend time complexity on the
number of state signals of the circuit, rather than on the number of gates. We believe that even
better results can be obtained for circuits generated by automatic synthesis techniques, in which
the ratio of combinational gates may be higher. However, at this moment there are no examples
large enough to be considered critical for verification (the largest ones can be verified in roughly
a dozen of seconds). As tools for synthesis and composition of circuits become more mature, the
complexity of the circuits will significantly increase.

Verification of non-speed-independent circuits

There are several synthesis methodologies that do not assume unbounded delays for their el-
ements [Van90, Lav92]. Consequently, the synthesized circuits will not necessarily be speed-
independent. The examples in table 4.2 are included to show how our verifier is also able to detect

74 CHAPTER 4

| example [signals [iterations | CPU (sec.) |
atod 22 1 0.25
chul50 13 3 0.17
converta 21 5 0.34
nowick 14 6 0.24
rpdft 18 3 0.32
vbeba 41 2 0.46

Table 4.2 Experimental results with circuits not satisfying its specification.

when a circuit does not satisfy its specification. The circuits have been generated from STG
specifications by using SIS [SSL*92]. We want to remark that the circuits generated by SIS are
correct if a bounded gate delay model is assumed and that those circuits have only been chosen
to illustrate some non-speed-independent circuits.

Comparing results with other authors

The flat verification algorithm will be contrasted with the work by Burch et al. In [BCL*94] an
extensive discussion on the DME example is presented. They build the reachability set of the
circuit and then use temporal logic to check different properties. In particular they verify that
never two or more requests are simultaneously granted.

Burch et al. model the asynchronous circuit by using the partitioned transition relation, and present
different traversal algorithms. Their best results are obtained by using the disjunctive partitioned
transition relation and the algorithm they call Modified Breadth First Search (MBFS). In order
to accelerate the reachability analysis, the authors also propose starting the BFS algorithm from
several initial states.

We have used a similar variable ordering, the same set of initial states and we have run these
benchmarks on a SPARC +1 machine, thus allowing a fair comparison. In both their and our
approach CPU time is mainly dominated by reachability analysis. Our CPU times are comparable
to those obtained in [BCL194], as it can be seen in figure 4.24. The corresponding lines are
respectively labeled “Flat” and “Burch et al.”

8192 —
4096 —
2048 —
1024 —

512 — —e— TR

256 — #— - Burchetal.
128 — —e— Flat

64_

32
16

7 T T T T !
2 4 8 16 32 64

DME cells

Figure 4.24 Comparison with Burch et al.

Asynchronous circuit verification 75

It is worth mentioning that in [BCL194] a state graph is used as model for the specification,
whereas we use a Petri net. Therefore, the number of variables used in the symbolic traversal
algorithms is smaller in their approach than in ours. Despite this disadvantage, our results are
still comparable.

In [BCL*94] they claim that transition function methods are less efficient that transition relation
methods. However, by using the improvements presented in section 3.7 we have achieved a very
fast symbolic traversal algorithm. In order to illustrate the advantage of our method we have
verified several DME arbiters against their Petri net specification using our traversal algorithm
and the Modified Breadth First Search algorithm proposed in [BCL194]. The outcome of this
comparison is also depicted in figure 4.24, marked with the label “TR”. If we used the transition
relation our method would be about one order of magnitude slower.

Recall that in the comparisons above we have used the flat verification, since we wanted to show
that our first approach was at least as good as the techniques proposed by other authors. This
gives relevance to the gain achieved by the hierarchical verification method, which has only been
compared to the flat one.

4.10 CONCLUSIONS

This chapter has presented how to verify speed-independent circuits against a Petri net (STG)
specification or environment. This Petri net may specify input/output choice and non-determinism.
Verification is performed by composing the circuit and its environment, thus forming a closed sys-
tem. The reachability analysis of this system allows to detect any reachable state that violates
the specification. In order to help to find design errors, diagnosis of erroneous circuits is also pro-
vided, in terms of a feasible trace leading from the initial state to a state violating the specification.
Moreover, different properties can be verified at both levels, environment and circuit.

Since the closed system formed by the circuit and its specification is modeled by using boolean
functions, efficient symbolic BDD techniques can be used for verification.

The complexity of formal verification of asynchronous circuits fundamentally depends on the size
of the circuit, i.e. the number of gates. Reducing the size of a circuit by collapsing gates into
complex gates only allows a partial verification in which a false positive might be given as a result.
However, the necessary and sufficient conditions assuring that a circuit and its complex-gate-
equivalent version are observationally equivalent have been proven in this chapter. Consequently,
we have proposed a two-step algorithm that takes advantage of the circuit complexity reduction
by using complex gates, but assures exact verification of speed-independence.

A verifier based on symbolic model checking has been implemented and several experiments with
large circuits reported. It has been shown that, by reducing the number of relevant variables
during verification, both the size of the BDDs and the computational cost drastically drop.

As future work, techniques for automatic regularity extraction will be explored [RK93]. They
should allow to further reduce the computational cost of those circuits in which combinational
gates dominate over memory elements.

3

TEST PATTERN GENERATION FOR
ASYNCHRONOUS CIRCUITS

If the aborigine drafted an IQ test, all of Western civilization would presumably flunk it.
— Stanley Garn.

About this chapter

This chapter is devoted to the particular aspects of testing of asynchronous circuits. The need for
testing has been previously justified in section 1.1.3. This chapter presents a novel approach to
test asynchronous circuits by using synchronous test patterns.

5.1 INTRODUCTION

Testing is one of the crucial problems that remains to be satisfactorily solved for asynchronous
circuits. Since they are implemented as arbitrary interconnections of gates and their behavior
is not subordinated to the timing dictated by a global clock, controllability and observability
of internal signals become significantly more costly than in synchronous circuits. Asynchronous
circuits tend to have more feedbacks and more state holding elements than their synchronous
counterparts. Thus, test pattern generation is harder and design for testability techniques like
full scan-path may be unacceptably expensive. Furthermore, testers are inherently synchronous
and cannot properly reproduce the environmental behavior for which an asynchronous circuit is
designed.

5.1.1 Terminology
A fault is any defect that can cause a circuit malfunction. Faults are further studied in section 5.2.

An input vector or input pattern is a set of values applied to the inputs of a circuit. Usually it is
simply referred as a vector or pattern. A test is a sequence of input patterns.

Definition 5.1 (controllability) A test makes a fault controllable if it produces a discrepancy
in the node supposed to be faulty.

Definition 5.2 (observability) A test makes a fault observable if it propagates a discrepancy
to the observable outputs.

"

78 CHAPTER 5

Definition 5.3 (strong detectability) A test is said to strongly detect a fault if when applied
to the circuit the fault is always detected.

For simplicity, by fault detection we will always mean strong detection.

5.1.2 Previous work

Several studies have been presented in the last years addressing the testing and design for testability
of asynchronous circuits.

Some classes of asynchronous circuits are self-checking [MH91, BM92, DGY95] for stuck-at faults,
i.e. in presence of a stuck-at fault a circuit will halt while it is being normally operated, a situation
easily detectable. Different fault models must be considered depending on the class of asynchronous
circuit:

m Since delay-insensitive circuits work independently of the delays of gates and wires in the
circuit, every transition in the circuit must be acknowledged by the receiver of such transi-
tion [MH91]. This fact makes that any stuck-at fault will cause the circuit to halt because
such protocol will not be completed. Thus, delay-insensitive circuits are self-checking under
the input stuck-at fault model.

m Speed-independent circuits assume negligible wire delays, hence a transition on the input of
a fork needs only to be acknowledged by one of the recipients. This condition is equivalent
to assuming all forks to be isochronic [Mar90a], i.e. a transition on the input of a fork arrives
simultaneously at the outputs of the fork. Therefore, a transition on the input of the fork has
to be acknowledged by at least one of the recipients and thus, a speed-independent circuit is
self-checking under the output stuck-at fault model [BM92].

m Finally, quasi-delay-insensitive circuits are built of basic elements that have delay-insensitive
interfaces, and only use isochronic forks inside such elements. For this type of circuits, the
isochronic transition fault model is introduced [RS93], which considers input stuck-at faults
for non-isochronic forks and output stuck-at faults for isochronic forks. Under such model,
every quasi-delay-insensitive circuit is self-checking.

The main drawback of self-checking testing is that covering all faults may be impractically long.
In addition, not all asynchronous circuits are self-checking due, for example, to the presence of
redundancies to avoid hazards. These reasons have encouraged the use of techniques to increase
the testability of asynchronous circuits. A simple design-for-testability approach can be based on
the addition of test points into the circuit: observation points used to access an internal node by
making it a primary output, and/or control points used to set the value of an internal node from
a primary input. Optimal insertion of test points is a difficult task [Haz92] and usually expensive
in terms of I/O pins. However, the number of them used for test points can be reduced at the cost
of added test time, by storing the value of the test points in an internal register whose contents
can be shifted in and out serially. This scheme requires only a few extra I/O pins regardless of the
number of test points. Generalizing this idea leads to the introduction of a so called scan-path,
where the registers in the circuit are extended to be scan-registers. In normal operation they work
exactly as a register, but in test mode they form a shift-register as the scan-output of one register
is connected to the scan-input of the next. Their content can be serially shifted-in to achieve full
controllability, and shifted-out to achieve full observability. By transforming all the registers in a
circuit to be scan-registers, the circuit is divided into a scan-path with combinational logic blocks
in between. Thus the problem of generating test vectors is reduced to such combinational blocks.

Test pattern generation for asynchronous circuits 79

The cost of so simpler test generation is an area increase and a potentially longer test time because
test vectors must be serially shifted in and out.

Several works have been presented based on these ideas [LKL94, KLSV95, BCR96]. Other
like [KB95] uses partial scan on some specific registers. Or as in [RS93] where instead of adding a
scan-path to the circuit, a single test signal is added. By introducing the test signal and modifying
some of the basic building blocks, a circuit can be tested in linear time regarding its size. Given
that the circuit is self-checking under the isochronic transition fault model, it is tested by executing
a single computation in test mode. The circuit is fault-free if a full handshake is performed on a

particular channel. The cost of this approach is an important area increase due to the extra logic
added to the basic building blocks.

Designing circuits under absolute delay assumptions, can lead presumably to smaller and faster
circuits. However, testing these circuits must also check the assumed delay properties. Under the
path delay fault model [Smi85], a given path in the fabricated circuit is faulty if it has a delay
outside the specified interval. To test a circuit under this model, the delay of all paths in the
circuit must be determined. The delay of a given path = is tested by applying two vectors (V;, V2)
at times to and t1, respectively. The time between ty and ¢; is long enough to assure that all
nodes are stable at time t;. The test vector has the property that when V5 is applied after V4, it
causes a transition on all nodes along m. If the output of the circuit, latched at time t5, differs
from the specification, the delay on x is larger than ¢» — ¢; and a path delay fault is detected.
A circuit can be made path delay fault testable by changing all state holding elements to scan
elements [LKL94, KLSV95]. However, in contrast to the scan elements used in the scan-paths,
they must be able to hold two values corresponding to a bit in the two vectors (Vi, Va).

A robust test is a test for a path delay fault which is independent of delays in gates, but not on the
path under test [LR87]. There may exist paths in a circuit that are not robust path delay fault
testable. In [KLSV91], a technique to make any boolean function delay fault testable is presented.

An alternative approach to make all paths delay fault testable is variable phase splitting [LKL94].
The idea is to make both phases of the variables controllable. If both a variable and its negated
are used in a block of combinational logic, the variable is split into two independent variables.
Under normal operation one will be the inverted of the other, but they will be independently
controllable under test. Variables are stored in registers which have outputs for the true and the
negated version of the variable, and must be able to hold two values in order to be able to perform
the delay test.

Testing circuits under the path delay fault model is much more expensive than other approaches.
The scan-registers must hold two bits, test points are required, and at least twice as many vectors
are needed. Furthermore, the skew on the clock to the scan-registers must be accurately controlled.

Since commercial testers are inherently synchronous, some authors have proposed testing asyn-
chronous circuits by synchronous test vectors. In [Bre74, BCR96], feedback loops are cut by
virtual synchronous flip-flops during ATPG. Thus, ATPG can be done by using standard state-
of-the-art synchronous techniques, but the obtained test vectors must be afterwards validated on
the asynchronous circuit.

5.1.3 Overview

Since the available commercial testers are synchronous, the presented approach proposes using
synchronous test vectors to test asynchronous circuits. The overview of such a methodology is as
follows:

80 CHAPTER 5

1. The non-faulty circuit is analyzed to find all input sequences that can be used in fundamental
mode with multiple input changes, i.e. “a la synchronous”. Any sequence producing either
non-confluence or oscillation is discarded. After this analysis, the asynchronous circuit is
modeled as a synchronous state machine (the Confluent Stable State Graph, CSSG, presented
in section 5.4) with stable and deterministic behavior.

2. A symbolic ATPG strategy on the CSSG looks for a test sequence for each uncovered fault.
Tests are found by a three-phase ATPG algorithm: first the states exciting a fault are searched,
then those states are justified from the initial state or states and last the discrepancy is
propagated to some output signal.

3. In order to accelerate the ATPG algorithm, two well known techniques are used:

(a) Random Test Pattern Generation (Random TPG) on the CSSG is initially used to
quickly cover a significant number of faults.

(b) Fault simulation of each obtained test sequence is tried on every remaining faulty circuit
to find all other faults covered by the same sequence.

Previous approaches that also proposed testing asynchronous circuits by synchronous test vec-
tors [Bre74, BCR96] use a synchronous model of the asynchronous circuit. Thus they have to
validate the obtained test vectors a posteriori on a more accurate model of the asynchronous cir-
cuit. On the contrary, we analyze the asynchronous circuit to find out those vectors that can be
used in ATPG, so no further validation is needed. In addition test vectors generated with our
methodology are independent from the technology and the gate delays. Further discussion can be
found in section 5.7.1.

The results are presented in section 5.7. Speed-independent circuits are 100% output stuck-at
testable in normal operation mode, and we show that with our method this fault coverage is
maintained. In addition we are able to cover more than 99% input stuck-at faults. Asynchronous
hazard-free with bounded delay circuits also showed a high fault coverage, although some partic-
ularly pathological benchmarks appeared.

5.2 FAULTS AND FAULT MODELS

Faults in a circuit may appear because of multiple failure mechanisms: a short-circuit between two
or more lines (or simply a short), a broken line causing an open, defects causing wrong transistor
threshold voltages or an increase in the resistivity of some line, etc. Despite of faults being
physical mechanisms, most testing techniques deal with logical faults rather than with physical
ones. Logical fault models are less accurate than physical fault models, but the former have been
traditionally much more popular because of the following reasons:

1. Logical faults provide an abstraction of physical faults by mapping malfunction caused by
several physical faults into a same logical fault. Therefore, testing becomes a logical problem
rather than a physical one.

2. Most logical fault models are technology independent. Since no physical implementation of
the circuit is needed to perform logical test, circuit testability can be checked (and, if needed,
improved by using design for testability techniques) as soon as a circuit netlist is obtained.

3. Experience shows that tests that detect logical faults also cover many other difficult-to-model
faults.

Test pattern generation for asynchronous circuits 81

~ =
— -

Figure 5.1 Two different short faults mapping to the same stuck-at 1 fault.

The most widely used logical fault model is the stuck-at model. Gates are assumed to be always
correct and the only faults are possible in the circuit wires. A fault is modeled as an open line and
a short-circuit between the line and the logical value zero or one (see figure 5.1). Depending on the
location of the stuck-at value, two models are possible: the output stuck-at and the input stuck-at
models. In the former faults can only appear at gate outputs, whereas in the latter inputs and
output of the gate are possible fault sites. The difference between both models appears when a
line has more than one fanout gate. Depending on the model, either a single fault location or n+1
fault sites are considered (being n the number of fanout gates). Figure 5.2 depicts the differences

between both models.

+

@ (b)

Figure 5.2 Fault location in the output (a) and input (b) stuck-at models.

Given a circuit with n signals, the number of faults under the output stuck-at model is clearly 2n.
If the input stuck-at model is used, this number is

0 if signal ¢ unconnected

2n+2 ki, where k; = { fanout(signal i) — 1 otherwise

=1

In principle a test for every different fault should be searched, but, fortunately, many of those
faults cause the same effect. Two faults are called equivalent if the function of the gate in presence
of both faults is the same. Therefore, there is only need to look for a test for each equivalence
class fault. Figure 5.3 shows examples of equivalent faults. In figure 5.3(a) three different faults,
a stuck-at-1, b stuck-at-1 and ¢ stuck-at-0, cause the function of the gate to be f(a,b,c) = 0.
Figure 5.3(b) illustrates how either a stuck-at-0 or b stuck-at-0 make the gate to compute the
function f(a,b,c,d,e) = cd.

From now on we will assume that at most one fault appears in the circuit. Experience shows
that in most cases a multiple fault is detected by applying the tests derived for each one of its
component faults.

82 CHAPTER 5

s-a-0
a_x
sa-1
@ b—x—
b ¢ sa-0 e
oy sat-0 ¢
sat.
d______|

@ (b)

Figure 5.3 Examples of equivalent faults in NOR (a) and AND-OR (b) gates.

5.3 ASYNCHRONOUS CIRCUIT-UNDER-TEST
BEHAVIOR

Given a circuit under test, we assume Vs to be the set of controllable inputs, whereas Vo is the
set, of observable outputs. A synchronous test procedure consists in setting the signals in V; to
some particular values or input pattern, wait a certain time for the circuit to stabilize and then
observe the outputs. As figure 5.4 depicts, the same patterns are applied to both correct and faulty
circuits. When the values at the outputs of the faulty circuit differ from the expected values, the
fault is detected.

Vii Good ‘6
circuit
CMP
:> Faulty o
circuit ‘6

Figure 5.4 Goal of testing: observing the discrepancies between good and faulty circuits when
the same patterns are applied.

Unlike synchronous circuits, asynchronous circuits may manifest non-deterministic and/or unsta-
ble behavior if an inappropriate environment is applied to their inputs. This is a consequence of
a usually contrived circuit topology, where many gates have reconvergent fanout. Two problems
may arise if input patterns are not selected conveniently: non-confluence of settling state and
oscillation. Assuming a logic model for the circuit, these are the only source that may invalidate
using a test vector. The former occurs when the final stable state of the circuit can be different
depending on the arrival times of the input events and the delays of the internal gates. This
phenomenon can potentially lead to metastability [Sei80a]. The latter occurs when the circuit
cannot rest in a stable state.

To show non-confluence of settling state we will take the circuit in figure 5.5(a). Let us assume
the circuit is in the stable state ABabcdey = 01010000 and that the input pattern AB = 10 is
applied. Even if A and B change simultaneously, because of the delay on primary inputs due to
input pads, we cannot assure that both a and b change at the same time. A “competition” between
all sensitized paths starts as soon as some input is switched. Figure 5.6 shows the state graph
generated by applying such pattern to the circuit in figure 5.5(a). Stable states are represented as

Test pattern generation for asynchronous circuits 83

Figure 5.5 Circuits showing (a) non-confluence of settling state and (b) oscillation.

boxes, whereas unstable ones are in ellipses. It is not difficult to see that if gate ¢ is slow to fall
the stable state 10101101 will be reached, otherwise the circuit will settle to state 10100000.

01010000

A+|B+
10010000
10110000 10000000
10111000 10100000
10111001 10101000 y-
% K ‘y
10111011 10101001 e 10100001

K e+

10101011

%

c-

10100011

Figure 5.6 State graph of a circuit showing non-confluence.

The other problem is oscillation or cycles of unstable states. Let the circuit in figure 5.5(b) be
in the initial stable state ABabcd = 000011. If input A is set to 1, the circuit starts oscillating.
After a+, the sequence of transitions c—, d—, ¢+, d+ is repeatedly generated and the circuit never
stabilizes. Other circuits may present transient oscillations that should or should not be avoided
depending on the maximum desired settle time.

Thus, there is a need of providing some technique that assures using only walid test vectors, i.e.
input patterns that produce neither non-confluence of the settling state nor indefinite or too long
oscillation cycles'.

n section 5.4.1 this notion of “too long” will be discussed.

84 CHAPTER 5

5.3.1 Circuit model

The model assumed for asynchronous circuits is analogous to the one described in section 4.3.
Asynchronous circuits are modeled following the unbounded gate delay model [MB59]. Under such
a model, delay elements are attached only to gate outputs and the delay magnitude is positive
and finite, but unknown. The delay type we assume is inertial delay, i.e. pulses shorter than the
delay magnitude are filtered out. The pair formed by a gate and its associated delay is referred
simply as a gate.

Test vectors that would be valid under a bounded delay model, might be considered invalid under
an unbounded delay model. On the other hand, test vectors generated assuming unbounded delays
will also work on circuits with bounded delays. Therefore, our methodology while pessimistic, is
independent of those aspects that may vary the gate delay, such as the technology, the fabrication
process or the temperature at which the chips are being tested.

Each primary input of a circuit will be modeled as the input of a gate implementing the identity
function. The circuits in figure 5.5 illustrate how primary inputs (A and B) are modeled. These
buffers introduce the idea of delay associated to primary inputs.

5.3.2 Circuit State Graph (CSG)

In synchronous circuits the state depends on a subset of circuit signals called state signals. Usually
this subset includes input and flip-flop signals. The order of the transitions along combinational
paths is not relevant. The only limitation is that they all must occur in a limited cycle time. On
the contrary, asynchronous circuits often have a more complicated structure. Since feedback loops
are not cut by clocked flip-flops, the state of an asynchronous circuit is defined by all the binary
values of both primary inputs and gates, rather than on a small subset of them.

Some of the following concepts may be slightly different from what was intended for verification.
The definition of the state graph of a circuit and the next state function of a gate are modified in
order to ease the mathematical formulation of testing.

A circuit state graph (CSG) is a 7-tuple (S, £, P, G, S° Ap, A\g), where S is a set of states, £ € SxS
is a set of edges or transitions between states, P = {p1,...,pm} is the set of primary inputs,
G = {g1,.--,9n} is the set of gates, and S° is the set of initial states. The labeling functions
Ap : § — B™ and Ag : S — B™ map each state s with a binary vector consisting of the
values in s of, respectively, primary inputs and gates. Regarding at the circuit in figure 5.5(a),
P = {A,B} and G = {a,b,c,d,e,y}. A state s in that circuit is given as a vertex of B®, in
particular, s = ABabcdey. The labeling functions “take” the part of the state corresponding to
the inputs and the gates, i.e. Ap(s) = AB € B2 and \g(s) = abcdey € BS.

Under the unbounded gate delay model the next state of a circuit uniquely depends on its present
state. A gate is said to be excited if its output differs from the function it implements, and stable
otherwise. If all the gates in a circuit are stable, the circuit is in a stable state. A next state
function § : S Xx G — S can be defined for each gate. Function 0(s,g;) returns either the state
reached by switching the output of g; if it is excited or s if g; is stable.

By using the next state function of each gate, the transition relation associated to circuit gates
can be defined as

Rs; ={(s,5') € Sx S| (sisstable A s=35s") V (Jg; € G such that s’ = (s, g;) #s)} .

Test pattern generation for asynchronous circuits 85

For each pair (s,s') € Rs, if s is stable, its successor is the same s, otherwise the successor is
obtained by switching an excited gate.

5.3.3 (CSG in test mode (TCSG)

In our approach, asynchronous circuits are tested in synchronous mode: provided the circuit is
stable, an input vector is applied and the circuit is allowed to, eventually, settle. The time between
the application of two input patterns is called the test cycle. Until otherwise noted, we will assume
the test cycle is long enough to let the circuit stabilize (unless it oscillates). Figure 5.7(a) illustrates
a possible CSG in test mode. In principle, in a circuit with n inputs, the number of possible input
patterns is 2™, but in this picture only a few patterns are represented for the sake of simplicity.
Labeled boxes represent stable states, while shaded circles are unstable states. The outgoing arcs
from a stable state are labeled with the changes at the circuit primary inputs. Only in such arcs
it is allowed more than one signal transition, whereas outgoing arcs from unstable states represent
single signal transitions. The latter are not labeled for clarity. We will refer to this circuit state
graph in test mode as TCSG.

[—

A+ C- A+|B+ AN

O O AN
O/ \O O/ \O / O\
SON N NN @) O
@) @) O @) O NS
O/ \O/ \O/ \O/ \O/ /O\
NS NSNS O @) A+B+ AB
O @) O/ NS

@ (b)
Figure 5.7 (a) A TCSG and (b) its corresponding CSSG.
The transition relation associated to input signals can therefore be defined as follows:
Ry ={(s,8') € S xS | sisstable A Ap(s) # Ap(s') A Ag(s) = Ag(s)} .
Relation R; describes all input patterns that can be applied to a stable state. Thus, sRys’ if s

is stable and s’ only differs in certain number of inputs. This represents the situation in which
several inputs have been changed but no gate has begun to switch yet.

86 CHAPTER 5

The transition relation of a circuit in test mode is defined as R = R; U Rs. Consequently, we
can formally define a TCSG as a CSG such that S and £ are strictly defined by the following
recursion:

1. SYCS.

sesS

!
2. se SAsRs :>{ (s,5') € €

The set S is the set of reachable states of a circuit in test mode, while £ is the transition relation
R restricted to S. § can be calculated by using a symbolic traversal algorithms similar to the ones
described in chapter 4.

5.4 SYNCHRONOUS ABSTRACTION OF THE TCSG

This section explains how the TCSG is pruned in such a way that the input patterns that pro-
duce neither non-confluence nor oscillation are considered as valid candidates for test sequences.
Roughly speaking, the TCSG will be reduced to a set of stable states and edges between stable
states. For an edge (s,s’) to exist, s must be stable and s’ must be stable and the only state
reached at the end of the test cycle. The finally obtained state graph will only contain the conflu-
ent and stable behavior of the original TCSG, hence the acronym CSSG, standing for Confluent
and Stable State Graph.

We will use figure 5.7 as an example. Let us assume that sl and s2 are initial states. A vector
producing non-confluence is A + C'— applied to state s1, since either s3 or s4 can be nondetermin-
istically reached. If vector D+ is applied to state s4 the circuit oscillates. The only valid vectors
are A+ B+ and A— B— applied respectively to s2 and s4. This fact is manifested in figure 5.7(b).
Note that the initial state sl appears in the CSSG, even though no valid input pattern can be
applied to it. Nevertheless, still some fault could be detected when forcing sl as reset state.

5.4.1 Estimation of the test cycle

Unbounded gate delays and “long enough” test cycles are unrealistic assumptions for testing.
Instead, bounded gate delays and short test cycles must be assumed. Moreover, the analysis of
oscillation conditions is a difficult problem still under investigation.

Let o be the longest sequence of transitions from a stable state s to the final stable state or states
when certain input pattern is applied to s. If a is the longest gate delay, then 7 = « - |o]| is
an upper bound of the test cycle. On the contrary, if a test cycle of length ¢ is desired, then
k = [t/a] can be an estimation of the maximum number of allowed transitions before the circuit
finally stabilizes. This is just an approximation we will use henceforth, but once the layout is
provided, a more accurate cycle time can be calculated.

5.4.2 Practical computation of the CSSG

In order to calculate the TCSG synchronous abstraction, we first will define the pairs of states
(s, ") such that s’ is reached from s at the end of the test cycle. Each pair has an associated input
pattern, given by the different values of inputs in s and s’. For the sake of clarity, subsequent

Test pattern generation for asynchronous circuits 87

pairs (s, s’) will be assumed such that s is stable and s’ is reached by propagating a single input
pattern applied to s. We call the set of all these pairs of states the test cycle relation. For practical
reasons we will assume that the circuit must settle in at most k transitions. The k-step test cycle
relation (TCR") represents the pairs (s, s') distant at most k transitions. Formally, given a TCSG
(S,£,P,G,5° \p,\g), TCR" is defined as:

k
TCRF = {(s,s’) €S x 8| 3s1,...,8k such that sRys; A (/\ si—1Rs8;) N s = s'}

=2

The next step consists of removing invalid pairs of states. Vectors causing non-confluence are
detected if pairs (s,s’) and (s,s”) such that both s’ and s” have the same input values exist.
Patterns producing oscillation or unacceptable long test cycle are found if s’ is unstable. The k-
Confluent Stable State Graph, denoted as CSSG*, is formed by those pairs in TCR" that neither
present non-confluence nor cause the circuit to be unstable after k transitions. Formally, it can
be defined as:

CSSG* = {(s,s') € TCR" | s' is stable A A(s,s") € TCR® such that [’ # s” A A\;(s') =)\I(s”)]}

Informally the CSSG* contains the following information. Each one of its nodes represents a stable
state. An arc between two nodes s and s’ exists if s’ is stable and the only state reachable from s
in at most k transitions by applying some input pattern.

O0—=0—=0—[] 0—=0—=0—=[]
D%OZO//O%O/ Deoéo//o

No -0 -0” No—cl-0—20
@ (b)
0—~0—0 O o—0
D%O/ g % D%O/.% O\Q
@< ~o«”

©)

Figure 5.8 Examples of (a) confluence, (b) non-confluence, (c) non-transient cycle and (d)
transient cycle.

Figure 5.8 illustrates the practical computation of the CSSG. Boxes represent stable circuit states,
whereas circles represent transient states. Let us assume that the test cycle estimation is k = 11
transitions. Black circles symbolize the states reachable after exactly k transitions. In figures 5.8(a)
and 5.8(b), the circuit always stabilizes in less than k transitions. In figure 5.8(a) the circuit always
settles to a single state, while on the contrary, in figure 5.8(b) the circuit can nondeterministically
stabilize in different states. Figure 5.8(c) shows a non-transient cycle, i.e. the circuit never reaches
a stable state. This oscillation is easily noticed because after k transitions the state of the circuit is
unstable. Finally, figure 5.8(d) presents a transient cycle. This situation is detected because after
k transitions the circuit can be in either a stable or unstable state. The examples of non-confluence
and oscillation given in section 5.3 correspond respectively to figures 5.8(b) and 5.8(c).

88 CHAPTER 5

5.5 AUTOMATIC TEST PATTERN GENERATION

Many techniques have been proposed for Automatic Test Pattern Generation (ATPG) for sequen-
tial synchronous circuits. As we have been explaining, however, non-confluence of settling state
and oscillation make that those techniques cannot be directly applied to asynchronous circuits.
Our approach resembles the Three-phase ATPG [CHS91] proposed for synchronous circuits. We
also propose a method with three phases: fault activation, state justification and state differenti-
ation, described in sections 5.5.1 to 5.5.3. The way these three phases are implemented, though,
will be different because of the asynchronous nature of circuits. Section 5.6 introduces Random
TPG and fault simulation as techniques to increase the speed of the whole approach.

5.5.1 Fault activation

The first step to generate a test is to find a set of states that activate or excite the fault. It is easy
to see that the fault signal x stuck-at-c is excited in some stable state if z # c. Since the set of
stable reachable states has been already obtained during CSSG computation, finding the stable
states exciting a fault is straightforward.

In most examples, there is always some stable state that excites a fault. However, it can occur that
some signal always equals either 0 or 1 when the circuit is stable and only takes the opposite value
in some unstable states. This situation arises when a signal switches an even number of times
between stable states. Finding a test for such faults is left directly to the last phase, explained in
section 5.5.3.

5.5.2 State justification

Justifying a state means to provide a sequence of input vectors that drive the circuit from the
initial or reset state to that particular state. In our case, a sequence of test vectors that put the
circuit in some of the excitation states must be given.

By using the reachability information it is easy to give a justification sequence. This sequence will
put the correct circuit in a state that excites a given fault. However, the test vectors applied on
the faulty circuit may result in a sequence of states that differs from that obtained in the correct
one. In addition it has to be taken into account that some available sequences for the correct
circuit can cause a faulty one to diverge or oscillate.

corruption always corruption sometim&
detected manifested

oG, 0*@
(Sequencein (Sequencein
the correct > the correct >
circuit) circuit)
@ (b)

Figure 5.9 Corruption detected (a) always and (b) sometimes.

As noted in [CHS91], there could be corruption, so the fault would manifest before. In a syn-
chronous circuit the sequence that produces the corruption can always be taken as a new shorter

Test pattern generation for asynchronous circuits &9

excitation sequence. However, in an asynchronous circuit corruption has to be noticed in all ter-
minal stable states. If this symptom does not appear in some stable states, the entire sequence
has to be applied. The consequence when testing the real circuit will be that sometimes the fault
will be detected before others.

Figure 5.9 illustrates this by means of an example. According to the reachability analysis done in
the correct circuit, the sequence of states Rst — S1 — S2 — Act is exercised. Act indicates the
proposed activation state actually being justified. When the same inputs are applied to a faulty
circuit the following situations might be observed. The stable state S1 in figure 5.9(a) has S3
as its successor, instead of S2 as in the correct circuit. Because of the different behavior of the
correct and the faulty circuit, the fault can be detected before expected. The case in figure 5.9(b)
is different. Now depending on the delays of the gates, two states, S2 and S3, are reachable from
S1. Since the fault can not always be detected, we have to apply the full sequence of input vectors.
During the real test operation however, the fault may be detected before.

5.5.3 State differentiation

Once a fault has been excited, it still has to be made observable. The most favorable case occurs
when the fault is propagated to some primary output. In general, the fault will propagate to some
memory element. By applying successive input vectors we have to make the difference noticeable
at a primary output. The CSSG gives all the feasible input vectors that can be used in each state.
All of them are simulated by using similar techniques to the ones described in section 5.7, and the
sequence resulting in a shorter test length is chosen.

& @ e
| N)7
I
G @

@

Figure 5.10 (a) Correct circuit (b) Faulty circuit.

As an example we can use figure 5.10. The different Act; are the fault activating states, while S1
and S2 are their stable predecessors. In the correct circuit, S1’ and S2' are reached, respectively,
from S1 and S2. In the faulty circuit, S3' is always reached from S1, therefore there is an
appropriate excitation vector. However, depending on the gate delays, from S2 the fault can
either be detected (S2') or not (S4'). In the latter case, the test would not be conclusive.

5.6 IMPROVING ATPG PERFORMANCE

Using an ATPG algorithm like the one described in the previous section is sufficient to find
a test vector for any testable fault. However, such a solution may be time consuming. For
synchronous circuits it is traditionally considered that ATPG algorithms are more costly than

90 CHAPTER 5

simulation algorithms. This assumption is true if neither non-confluence nor oscillation occur,
which is the usual case in synchronous circuits. For asynchronous circuits, in which such problems
are almost unavoidable, simulation considering binary values can be as costly as test generation.
Fortunately, if circuits are considered to work in ternary logic rather than boolean, i.e. signals
can have the values 0, 1 or ®, efficient although conservative simulation algorithms can be used.
Taking that into account, techniques that improve the speed of synchronous ATPG algorithms
can be adapted to asynchronous ones.

5.6.1 Ternary simulation

The state-explosion problem, that complicates asynchronous circuit synthesis, verification and
test generation, also makes simulation difficult. In addition, non-confluence and oscillation could
make unfeasible techniques like event driven simulation [Ulr65, Ulr69], that properly work with
synchronous circuits. Fortunately, if circuit signals are considered to have ternary values instead
of boolean, a very efficient method called ternary simulation [Eic65, BS95], can be used. With
this technique simulation becomes polynomial in the number of circuit signals, but at the cost of
being conservative.

Algorithm A((p,g), p') { AlgorithmB((p,g), p')
for i=1,...,|P| { for i=1,...,|P| {
pi 2= lub(pi, p}); pi 1= P
}
do { do {
g = 9g; g = g;
for i=1,...,|G| { for i=1,...,|G| {
g9i = lub(gi, fo,(p,9)); 9i = fo:(P9);
} while g #¢'; } while g #¢';
return (p,g); return (p,g);

Figure 5.11 Algorithms A and B making up ternary simulation.

In ternary simulation a signal can have any of the three following values: 0, 1 or ®. The symbols
0 and 1 have their usual boolean meaning, whereas the symbol ® stands for an uncertain value
which is neither 0 nor 1 (see section 2.5).

Ternary simulation consists of two algorithms namely A and B (see figure 5.11). Algorithm A sets
each signal to the least upper bound (lub) of its current value and its evaluation. The result is that
unstable signals are set to ®. By repeating this process, uncertainties are propagated through all
the circuit. Algorithm B sets each signal to its evaluation. Consequently, some signals are set to
a known value (either 0 or 1). Let us assume the circuit is in state s and we apply input vector a.
After algorithms A and B we reach the final state s’. We can conclude that if all the signals in s’
have a definite value (0 or 1), s’ is the only successor of s when a is applied. On the contrary, if
there are several final stable states or the circuit oscillates, some signal in s’ will have an unknown
value (®).

Ternary simulation is conservative because of the loss of information introduced by the ® uncertain
value [Bre72]. The best explanation to this problem is a simple example like the one in figure 5.12.
Clearly, the function driving signal b is a - @, which is identically zero for any value of a. However,

if a is set to @, b is consequently set to ¢ - = .

Test pattern generation for asynchronous circuits 91

Figure 5.12 Circuit illustrating why ternary simulation is conservative.

It has been proved that ternary simulation is polynomial in the number of circuit gates [BS95].
This is due to the fact that in the worst case 2n states are produced, n being the number of gates.
In each state at most n function evaluations are required. Therefore, detection of critical races
and/or oscillation can be detected in O(n?) for each pair of stable state and input pattern.

5.6.2 Fault simulation

Fault simulation is commonly used to tell whether a test for a given fault also detects other
faults. When a test is found to detect a fault, the same input patterns are simulated on the
remaining faulty circuits. This technique will be efficient only if fast simulation algorithms are
provided. Symbolic algorithms are good at managing multiple states of a same circuit, but the
problem when simulating a fault is just the opposite: dealing with one state for each different
faulty circuit. This problem can be solved by parallel fault simulation [Ses65].

Vii Good Y)
| circuit
Faulty CMP
circuitl [, 7
%
Faulty CMP
circuit
w-1 ‘{)

Figure 5.13 Parallel fault simulation handles several circuits simultaneously.

Parallel fault simulation exercises the good and a number of faulty circuits concurrently, as fig-
ure 5.13 illustrates. Each variable (signal, wire) of a circuit is packed in a same word together
with the same variable corresponding to other circuits, and every bit of that variable corresponds
to a different circuit (see figure 5.14). The bit 0 usually represents the variable in the good cir-
cuit, while the other bits keep the variable for the different faulty circuits. Since computers can
perform operations like AND, OR, NOT, XOR, etc, with words of w bits, executing one of those
instructions will produce a change in all w circuits. Stuck-at faults are simulated by inserting the
stuck value in the corresponding bit of the stuck variable. Whether a fault is detected or not can
be noticed by looking which bits of output signals differ from the bit 0.

As an example, let us take the AND gate in figure 5.14, with inputs a and b, and output ¢. The
previous values of signals a, b and ¢ can be seen in the table on the same figure (w = 8 bits is

92 CHAPTER 5

w bits
f—y%
w-1 w-2 2 1 0 a c
.. b__ |
Var. a ST
L [~ a incircuit # 0
a incircuit # 1
a incircuit # w-1
‘ ‘ circuit #1 ‘ circuit #2
previousvalues : ¢ :=a AND b : ¢ stuck-a-0 . c stuck-at-1
,,,,,,,,,,,,, 01101101 01101101 ° 01101101 01101101
b 10101000 ;o 10101000 ¢ 10101010 & - 10101010
c 11110010 00101000 00101000 00101100

Figure 5.14 Example of one step of parallel fault simulation.

assumed). In one single operation the value of ¢ in all 8 circuits is computed. If we assume that
circuit #1 has the fault ¢ stuck-at-0, and circuit #2 ¢ stuck-at-1, two new operations are required
to set the bits 1 and 2 of variable ¢ to 0 and 1 respectively. If variables represent signals, only
faults at the gate outputs will be taken into account (as in this example). The input stuck-at
model can be considered by assigning variables to the output of the gates and also to each end of
a fork.

We use a combination of ternary simulation and parallel fault simulation in order to simulate the

same input pattern in w different circuits. In this case, at least two bits are needed to encode the
three different ternary values. A possible encoding appears in the next table

value | encoding

0 00
1 01
® 10

We must say that the inherent conservativeness of ternary simulation does not affect the fault
coverage of our approach. The only loss will be in terms of time. The objective of fault simulation
is just to find out when the same test detects some other faults. If ternary simulation says that
a test for a given fault is unable to cover other faults, when in fact it could, tests for those faults
will be found by the ATPG algorithm.

5.6.3 Random TPG

Random Test Pattern Generation (Random TPG) has turned out as a very efficient method in
finding a test for an important number of faults at a very low CPU cost. The number of faults
covered by this technique highly depends on the circuit, but coverage ratios between 40% and 80%
are commonly achieved. By using ternary simulation with Random TPG the speed of the overall
approach can be improved in similar percentages.

Test pattern generation for asynchronous circuits 93

A random number of random test vectors is applied and parallel ternary simulation is used to decide
which faults are detected by a given test vector. A uniform signal change probability is assumed,
with the only exception of the RESET signal, that may become active with a probability smaller
than one half. New random test patterns are applied as long as new faults are being covered.

In order to choose a new random test vector, we follow the approach by Breuer [Bre71]. Given a
new test vector, in [Bre71] it is defined a cost function that depends on the number of new faults
detected, propagated and “lost”, i.e. faults that were propagated but applying the new vector
eliminates those effects. This function is evaluated for a certain number of candidate vectors, and
the one resulting in a higher value is chosen. This represents a local optimization technique.

5.7 RESULTS

We show the effectiveness of our ATPG methodology over a set of benchmarks. Table 5.1 presents
the results obtained for speed-independent and table 5.2 for hazard-free circuits with bounded
delays. Both sets of benchmarks have been automatically synthesized from the same specifications,
the former by Petrify [CKK*96] and the latter by SIS [SSL*92].

Table 5.1 Experimental results (speed-independent).

output-stuck-at input-stuck-at

example total | covered || total | covered | rnd | 3-phase | sim CPU
alloc-outbound 32 32 66 66 51 12 3 52
atod 26 26 40 40 36 1 3 5
chul50 26 26 52 50 50 0 0 10
converta 22 22 44 44 20 23 1 8
dff 20 20 44 40 7 33 0 18
ebergen 32 32 70 70 32 38 0 43
hazard 20 20 44 44 22 22 0 7
master-read 62 62 130 130 55 75 0 5049
mmu 60 60 136 136 44 92 0 || 21067
mp-forward-pkt 28 28 58 58 57 1 0 6
mrl 60 60 140 139 5 134 0 || 27231
nak-pa 40 40 80 80 68 5 7 43
nowick 28 28 54 54 54 0 0 4
ram-read-sbuf 42 42 82 82 54 26 2 465
rcv-setup 20 20 36 36 31 5 0 4
rpdft 32 32 62 62 60 1 1 14
sbuf-ram-write 50 50 102 102 40 60 2 1760
sbuf-send-ctl 40 40 86 86 45 41 0 254
sbuf-send-pkt2 40 40 116 116 31 85 0 7137
seq4d 40 40 86 84 28 52 4 256
trimos-send 58 58 132 132 6 126 0 16030
vbelOb 50 50 114 110 22 88 0 5534
vbe5b 22 22 42 41 33 8 0 9
vbeba 38 38 80 78 17 61 0 562
Total FC 100.00% 99.16%

The results in the tables are structured as follows. The second and third columns respectively
present the total and covered number of faults under the single output stuck-at fault model. The
fourth and fifth columns show analogous results for the single input stuck-at fault model. The
next three columns, namely “rnd”, “3-phase” and “sim”, detail the number of faults covered by
each step of our approach. The last column reports the CPU time, in seconds, needed to find
the whole set of test vectors. The benchmarks have been run on a Sun 4 workstation with a
SPARCStation-20 processor and 64 megabytes of RAM.

94 CHAPTER 5

The input stuck-at fault model includes all output stuck-at faults. The results on output stuck-at
faults are shown to illustrate that the well known theoretical result of speed-independent cir-
cuits being 100% output stuck-at fault testable in operation mode [BM92] still holds when our
methodology is used.

Table 5.2 Experimental results (hazard free with bounded delays).

output-stuck-at input-stuck-at

example total | covered total | covered | rnd | 3-phase | sim CPU
atod 44 44 66 66 52 11 3 487
chul50 26 26 48 46 44 2 0 15
converta 42 42 92 92 8 84 0 5008
ebergen 20 20 42 42 35 7 0 5
half 30 30 42 42 11 30 1 76
hazard 30 30 46 44 39 4 1 20
nowick 28 28 54 54 54 0 0 4
rpdft 36 36 48 48 48 0 0 8
trimos-send 72 24 126 29 12 17 0 254851
vbelOb 60 16 136 26 21 5 0 26774
vbebb 32 32 52 52 42 10 0 19
vbebc 24 24 36 36 34 2 0 4
vbeba 62 18 126 29 23 6 0 29647
Total FC 73.12% 66.30%

Conversely, this is not true for the set of circuits generated by SIS. Most circuits present similar
results to those of speed-independent circuits, but three benchmarks, trimos-send, vbe10b and
vbeba, presented a very poor fault coverage. This is due to the logic redundancies added by
the synthesis tools in order to avoid spurious pulses in this type of circuits. Note that these
examples also take a very long time to finish. When a test for an undetectable fault is searched,
all possible input patterns are tried, thus time is wasted with no positive results. Finding out
a priori undetectable faults may result in significant performance increase. In those cases with
very low fault coverage, testability can be assisted by partial scan-path [KB95] or variable phase
splitting [LKL94].

The number of faults detected by random TPG depends highly on the example topology, but an
average of 45% is achieved. This fact represents an important speed-up of our methodology. If a
low coverage is achieved in the random step, much work will be left to the 3-phase step. 3-phase
ATPG (fault activation, state justification and state differentiation) is the most complex step and
the one dominating CPU time. Note that the highest test generation times correspond to those
benchmarks where the random TPG step has covered a low number of faults (see e.g. converta
and trimos-send in table 5.1). In some cases the same vector is reported to cover different faults.
Due to the conservativeness of ternary simulation, it sometimes fails to detect equivalent tests.
This is the reason for the low number of faults covered by fault simulation. Despite the the low
number of faults covered by fault simulation, this last step is still performed because its execution
time is negligible when compared to the 3-phase ATPG algorithm.

As a general consideration, such results can be significantly improved by speeding up the 3-phase
step. Three possibilities we have in mind are: studying better variable ordering strategies in the
use of BDDs, using hierarchical techniques similar to those utilized in some formal verification
approaches [RCP95a] and characterizing undetectable faults to avoid wasting time in covering
them.

Test pattern generation for asynchronous circuits 95

5.7.1 Discussion

Banerjee et al. [BCR96] also propose synchronous testing of asynchronous circuits. They model
the asynchronous circuit as a synchronous one by cutting feedback loops by virtual synchronous
flip-flops. Hence, ATPG can be done by using efficient state-of-the-art synchronous techniques.
Test vectors are validated afterwards on the asynchronous circuit by using zero-delay and unit-
delay simulation [Ban97]. Clearly, that validation can detect oscillation, but it is unable to identify
non-confluence. This causes their approach to be optimistic.

Our approach assumes the pessimistic unbounded gate delay model, which assures that test vectors
generated with our methodology are independent from the technology and the gate delays. Another
difference between the method in [BCR96] and ours is that we analyze the asynchronous circuit to
find out those vectors that can be used in ATPG, so no further validation is needed. This analysis
is done on the asynchronous circuit, rather than on a synchronous simplification. Consequently,
our approach is computationally more expensive, but it can cope naturally with oscillation and
non-confluence. Possibly, a hybrid method could take the best of both approaches.

5.8 CONCLUSIONS

Testing of asynchronous circuits is a problem still far from being solved satisfactorily. This chapter
has presented a method for ATPG based on well-known techniques for synchronous circuits.

The results shown in this chapter indicate that asynchronous control circuits are highly testable
without applying partial scan techniques. Automatic techniques to select those signals in which
the insertion of scan paths can contribute to improve testability is also one of the goals to be
pursued in the future.

The main contribution of this work is the synchronous abstraction performed over an asynchronous
system such that real-life synchronous testers can be used to exercise the input signals.

This is only a preliminary work that will be further developed towards covering a wider spectrum
of fault models (e.g. delay faults) with more efficient approaches. In the near future we want to
explore the possibility of using hierarchy to tackle the testing of complex asynchronous systems.
The synchronous abstraction of the circuit’s behavior allows partitioning of large circuits into
several interacting asynchronous circuits. We believe this feature will help to generate test patterns
with techniques based on the composition of finite state machines.

6

CONCLUSIONS AND FUTURE WORK

NAPOLEON: What shall we do with this soldier, Guiseppe? Everything he says is wrong.
GUISEPPE: Make him o general, Excellency, and then everything he says will be right.
- G. B. Shaw, “The Man of Destiny”.

Obrd mucho el que nada dejé para manana.
— Baltasar Gracidn.

Asynchronous circuits offer potential advantages that make them an interesting design option for
high-speed low-power digital systems. Unfortunately, they are more difficult to design than their
synchronous counterparts. Hundreds of CAD packages are available to ease synchronous design,
but it has not been until very recently that the first experimental tools for asynchronous design
have begun to appear.

This work is a small step towards the ease of asynchronous design. Two crucial points have been
addressed in order to guarantee that neither incorrect nor faulty asynchronous circuits come to the
market: formal verification and testing. The promising results in both fields deserve new research
attention for increasing the features of the presented approaches.

6.1 MAIN CONTRIBUTIONS

The main contributions that have been presented are the following:

m Efficient manipulation of safe Petri nets and speed-independent circuits by using BDDs.
m Verification of asynchronous systems:

— Formal verification of Petri net properties.

— Formal verification of speed-independence by composing a circuit with its Petri net
specification (or environment).

— Formal verification of properties in closed environment-circuit systems.

Simplification of verification complexity by abstracting most combinational internal sig-
nals.

m Testing of asynchronous circuits:
— Characterization of asynchronous circuit behavior when synchronous input vectors are

applied.

97

98 CHAPTER 6

— Automatic test pattern generation for single stuck-at faults by using synchronous test
vectors.

m The above contributions have been implemented in form of automatic asynchronous circuit
verification and test generation tools, respectively versify and testify. Both tools, as well as
several examples, are available through WWW from the URLs:

http://www.ac.upc.es/recerca/VLSI/versify
http://www.ac.upc.es/recerca/VLSI/testify

6.2 OPEN PROBLEMS AND FUTURE WORK

The experimental results achieved by applying symbolic techniques to automatic verification and
test pattern generation are encouraging. However, more effort must be devised in order to extend
the presented methodologies to other classes of asynchronous circuits and different fault models.

6.2.1 Verification

The presented method is addressed to verify specifications and circuits designed assuming un-
bounded delays. By using more realistic delay models the accuracy of verification may be sig-
nificantly increased. In order to verify designs that suppose timing restrictions, bounded delays
should be used.

Possibly, in a recent future designs will be implemented in a mixed asynchronous-synchronous
fashion. The circuits will be locally synchronous, but will use asynchronous communication to
interact. Verification of these hybrid systems will also be considered.

6.2.2 Testing

Unlike in verification, we have seen in chapter 5 that the unbounded gate delay assumption is
not a problem when testing. Nevertheless, the contrived topology of asynchronous circuits implies
important modifications to the traditional ATPG algorithms. Hybrid structural-symbolic method-
ologies could probably be more efficient than our symbolic ATPG algorithm. Also, characterizing
untestable faults will significantly speed up the whole ATPG process.

Other fault models should also be taken into account in the future, e.g. bridging faults or path
delay faults, etc. Finally, similar methodologies could be used in order to take advantage of the
emerging IDD testing.

[Ban97]
[BBY5]
[BBM94]

[BBR90]

[BOL*94]

[BCR96]

[BM92]

[Boh96]

[Boo54]

[Bre71]

[Bre72]

[Bre74]

[Bro90]

[Bry86]

[BS95]

REFERENCES

Savita Banerjee. Personal communication, March 1997.
Peter A. Beerel and Jerry R. Burch. Personal communication, April 1995.

Peter A. Beerel, Jerry R. Burch, and Teresa H.-Y. Meng. Sufficient conditions for
correct gate-level speed-independent circuits. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 33—43. IEEE Com-
puter Society Press, November 1994.

K. S. Brace, R. E. Bryant, and R. L. Rudell. Efficient implementation of a BDD
package. In Proceedings of the 27th Design Automation Conference, pages 40—45,
1990.

Jerry R. Burch, Edmund M. Clarke, D. E. Long, Kenneth L. McMillan, and David L.
Dill. Symbolic model checking for sequential circuit verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 13(4):401-424, 1994.

Savita Banerjee, Srimat T. Chakradhar, and Rabindra K. Roy. Synchronous test
generation model for asynchronous circuits. In Proc. of the International Conference
on VLSI Design, Bangalore, January 1996.

Peter A. Beerel and Teresa H.-Y. Meng. Semi-modularity and testability of speed-
independent circuits. Integration, the VLSI journal, 13(3):301-322, September 1992.

Mark T. Bohr. Interconnect scaling — the real limiter to high performance ULSI.
Solid State Technology, pages 105-111, September 1996.

G. Boole. An Investigation of the Laws of Thought. Walton, London, 1854. (Reprinted
by Dover Books, New York, 1954).

Melvin A. Breuer. A random and an algorithmic technique for fault detection test
generation for sequential circuits. IEEE Transactions on Computers, C-20(11):1364—
1370, November 1971.

Melvin A. Breuer. A note on three valued logic simulation. IEEE Transactions on
Computers, C(21):399-402, April 1972.

Melvin A. Breuer. The effects of races, delays, and delay faults on test generation.
IEEE Transactions on Computers, C-23(10), October 1974.

F. M. Brown. Boolean Reasoning: The Logic of Boolean Equations. Kluwer Academic
Publishers, 1990.

R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEFE
Transactions on Computers, C-35(8):677-691, August 1986.

Janusz A. Brzozowski and Carl-Johan H. Seger. Asynchronous Circuits. Monographs
in Computer Science. Springer-Verlag, 1995.

99

100

[Bur90]

[Cad&9]
[CBMS89]

[CES1]

[CHS91]

[Chug6)

[Chu87]

[CKK*96]

[DCs6]

[DE95)
[DGY95]
[Dil89)
[ea95]
[Ebeg9]
[Eic65]

[FDG*93]

[GDKW92]

FORMAL VERIFICATION AND TESTING OF ASYNCHRONOUS CIRCUITS

Jerry R. Burch. Verifying liveness properties by verifying safety properties. In
Robert P. Kurshan and Edmund M. Clarke, editors, Proc. International Workshop
on Computer Aided Verification, volume 531 of Lecture Notes in Computer Science,
pages 224-232. Springer-Verlag, 1990.

Cadence Design Systems. Verilog XL Reference Manual, September 1989.

O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using
boolean functional vectors. In Proc. IFIP Int. Workshop on Applied Formal Methods
for Correct VLSI Design, pages 111-128, Leuven, Belgium, November 1989.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Dexter Kozen, editor, Logic of Programs: Workshop, volume
131 of Lecture Notes in Computer Science, 1981.

Hyunwoo Cho, Gary D. Hachtel, and Fabio Somenzi. Fast sequential ATPG based
on implicit state enumeration. In Proc. International Test Conference, pages 67 — 74,
Nashville, TN, October 1991.

T.-A. Chu. Synthesis of self-timed control circuits from graphs: An example. In Proc.
of the IEEE International Conference on Computer Design, pages 565—-571, October
1986.

T.-A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifications.
PhD thesis, MIT, June 1987.

Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and
Alexandre Yakovlev. Petrify: a tool for manipulating concurrent specifications and
synthesis of asynchronous controllers. In XI Conference on Design of Integrated Cir-
cuits and Systems, Barcelona, November 1996.

David L. Dill and Edmund M. Clarke. Automatic verification of asynchronous circuits
using temporal logic. IEE Proceedings, Part E, Computers and Digital Techniques,
133:272-282, September 1986.

J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press, Cam-
bridge, Great Britain, 1995.

Tlana David, Ran Ginosar, and Michael Yoeli. Self-timed is self-diagnostic. Journal
of Electronic Testing:Theory and Applications, (6):219-228, January 1995.

David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

W.J. Bowhill et al. A 300 MHz 64-b quad-issue CMOS RISC microprocessor. In
International Solid State Circuits Conference, pages 182—-183, February 1995.

J. C. Ebergen. Translating Programs into Delay-Insensitive Circuits, volume 56 of
CWI Tract. Centre for Mathematics and Computer Science, 1989.

E. B. Eichelberger. Hazard detection in combinational and sequential switching cir-
cuits. IBM Journal of Research and Development, 9:90-99, March 1965.

S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A micropipelined
ARM. In T. Yanagawa and P. A. Ivey, editors, Proceedings of VLSI 93, pages 5.4.1—
5.4.10, September 1993.

A.A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation of average switching
activity in combinational and sequential circuits. In Proceedings of the 29th Design
Automation Conference, pages 253—-259, 1992.

References 101

[Gor85] Mike Gordon. Why higher-order logic is a good formalism for specifying and verifying
hardware. In Formal Aspects of VLSI Design, pages 153—-177. North Holland, 1985.

[Haz92) Pieter J. Hazewindus. Testing Delay-Insensitive Circuits. PhD thesis, California
Institute of Technology, 1992.

[HHY92] Kiyoharu Hamaguchi, Hiromi Hiraishi, and Shuzo Yajima. Design verification of
asynchronous sequential circuits using symbolic model checking. In International
Symposium on Logic Synthesis and Microprocessor Architecture, pages 84-90, July
1992.

[HoaT78] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666-677, August 1978.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Huf64] D. A. Huffman. The synthesis of sequential switching circuits. In E. F. Moore, editor,
Sequential Machines: Selected Papers. Addison-Wesley, 1964.

[JQNT91] B. Johnson, T. Quarles, A.R. Newton, D.O. Pederson, and A. Sangiovanni-
Vincentelli. SPICES3 Version 3e User’s Manual. Dept. of Electrical Engineering
and Computer Science, Univ. of California, Berkeley, April 1991.

[KB95] Ajay Khoche and Erik Brunvand. Testing self-timed circuits using partial scan. In
Proc. of the 2nd Working Conference on Asynchronous Design Methodologies, pages
160-169, London, May 1995.

[KCK*95] Alex Kondratyev, Jordi Cortadella, Michael Kishinevsky, Enric Pastor, Oriol Roig,
and Alexandre Yakovlev. Checking signal transition graph implementability by sym-
bolic BDD traversal. In Proc. European Design and Test Conference (EDAC-ETC-
EuroASIC), pages 325-332, Paris, March 1995.

[KKTV94a] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Analysis and identi-
fication of speed-independent circuits on an event model. Formal Methods in System
Design, 4(1):33-75, January 1994.

[KKTV94b] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Concurrent Hard-
ware. The Theory and Practice of Self-timed Design. Series in Parallel Computing.
John Wiley & Sons, 1994.

[KLSV91] K. Keutzer, Luciano Lavagno, and A. Sangiovanni-Vincentelli. Synthesis for testa-
bility techniques for asynchronous circuits. In Proc. of the IEEE/ACM Interna-
tional Conference on Computer Aided Design, pages 326-329. IEEE Computer Soci-
ety Press, November 1991.

[KLSV95] K. Keutzer, Luciano Lavagno, and A. Sangiovanni-Vincentelli. Synthesis for testa-
bility techniques for asynchronous circuits. IEEE Transactions on Computer-Aided
Design, 11(1):87-101, December 1995.

[Kur86] Robert P. Kurshan. Testing containment of w-regular languages. Technical Report
1121-861010-33-TM, Bell Laboratories, 1986.

[Kur87] Robert P. Kurshan. Reducibility in analysis of coordination. In LNCS, volume 103,
pages 19-39. Springer-Verlag, 1987.

[Lav92] Luciano Lavagno. Synthesis and Testing of Bounded Wire Delay Asynchronous Cir-
cuits from Signal Transition Graphs. PhD thesis, University of California at Berkeley,
1992.

102

[Lee59]

[LKL94]

[LL92]

[Lon93]
[LR&7]

[Mar85]

[Mar86]

[Mar90a]

[Mar90b]

[MB59]

[McM92]

[MFRS85]

[MH91]

[Mil80]

[Min96]

[Mul63]

[Mur89]

FORMAL VERIFICATION AND TESTING OF ASYNCHRONOUS CIRCUITS

C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell
Technical Journal 38, pages 985-999, 1959.

Luciano Lavagno, Michael Kishinevsky, and Antonio Lioy. Testing redundant asyn-
chronous circuits. In Proc. European Design Automation Conference (EURO-DAC).
IEEE Computer Society Press, September 1994.

H-T. Liaw and C-S. Lin. On the OBDD representation of generalized boolean func-
tions. IEEE Transactions on Computers, 41(6):661-664, June 1992.

David E. Long. A binary decision diagram (BDD) package, June 1993. Manual page.

Chin J. Lin and Sudhakar M. Reddy. On delay fault testing in logic circuits. IEEE
Transactions on Computer-Aided Design, 6(5), September 1987.

Alain J. Martin. The design of a self-timed circuit for distributed mutual exclusion.
In Henry Fuchs, editor, Proceedings of the Chapel Hill Conference on VLSI, pages
245-260. Computer Science Press, 1985.

Alain J. Martin. Self-timed FIFO: An exercise in compiling programs into VLSI cir-
cuits. In D. Borrione, editor, From HDL Descriptions to Guaranteed Correct Circuit
Designs, pages 133-153. Elsevier Science Publishers, 1986.

Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
William J. Dally, editor, Sizth MIT Conference on Advanced Research in VLSI, pages
263—-278. MIT Press, 1990.

Alain J. Martin. Programming in VLSI: From communicating processes to delay-
insensitive circuits. In C. A. R. Hoare, editor, Developments in Concurrency and
Communication, UT Year of Programming Series, pages 1-64. Addison-Wesley, 1990.

D.E. Muller and W.C. Bartky. A Theory of Asynchronous Circuits. In Annals of
Computing Laboratory of Hardward University, pages 204-243, 1959.

Kenneth L. McMillan. Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In G. v. Bochman and D. K. Probst, editors,
Proc. International Workshop on Computer Aided Verification, volume 663 of Lecture
Notes in Computer Science, pages 164-177. Springer-Verlag, 1992.

Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis of
delay-insensitive modules. In Henry Fuchs, editor, Proceedings of the Chapel Hill
Conference on VLSI, pages 67-86, 1985.

Alain J. Martin and Pieter J. Hazewindus. Testing delay-insensitive circuits. In
Carlo H. Séquin, editor, Advanced Research in VLSI: Proceedings of the 1991 UC
Santa Cruz Conference, pages 118-132. MIT Press, 1991.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

Shin-ichi Minato. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer
Academic Publishers, 1996.

David E. Muller. Asynchronous logics and application to information processing.
In Symposium on the Application of Switching Theory to Space Technology, pages
289-297. Stanford University Press, 1963.

Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEF, 77(4):541-574, April 1989.

References 103

[New88] New York: The Institute of Electrical and Electronic Engineers, Inc. IEEE Standard
VHDL Language Reference Manual, March 1988.

[Now93] Steven M. Nowick. Automatic Synthesis of Burst-Mode Asynchronous Controllers.
PhD thesis, Stanford University, Department of Computer Science, 1993.

[NUK*94] Takashi Nanya, Yoichiro Ueno, Hiroto Kagotani, Masashi Kuwako, and Akihiro Taka-
mura. TITAC: Design of a quasi-delay-insensitive microprocessor. IEEE Design &
Test of Computers, 11(2):50-63, 1994.

[Pas96] Enric Pastor. Structural Methods for the Synthesis of Asynchronous Circuits from
Signal Transition Graphs. PhD thesis, Universitat Politécnica de Catalunya, February
1996.

[PCI3] Enric Pastor and Jordi Cortadella. Polynomial algorithms for the synthesis of hazard-

free circuits from signal transition graphs. In Proc. of the IEEE/ACM International
Conference on Computer Aided Design, pages 250-254, Santa, Clara, USA, November
1993. IEEE Computer Society Press.

[Pet62] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn, Institut fiir Instru-
mentelle Mathematik, 1962. (technical report Schriften des IIM Nr. 3).

[Pet81] James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall,
1981.

[PRCIT] Enric Pastor, Oriol Roig, and Jordi Cortadella. Symbolic Petri net analysis using
boolean manipulation. Technical Report UPC-DAC-97-8, Departament Arquitec-
tura de Computadors (UPC), 1997.

[PRCB94] Enric Pastor, Oriol Roig, Jordi Cortadella, and Rosa Badia. Petri net analysis using
boolean manipulation. In 15th International Conference on Application and Theory
of Petri Nets, volume 815 of Lecture Notes in Computer Science, pages 416—435.
Springer-Verlag, June 1994.

[QS81] J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. of the Fifth International Symposium in Programming, 1981.

[RCP95a] Oriol Roig, Jordi Cortadella, and Enric Pastor. Hierarchical gate-level verification of
speed-independent circuits. In Proc. of the 2nd Working Conference on Asynchronous
Design Methodologies, pages 128-137, London, May 1995.

[RCP95b] Oriol Roig, Jordi Cortadella, and Enric Pastor. Verification of asynchronous circuits
by BDD-based model checking of Petri nets. In 16th International Conference on
Application and Theory of Petri Nets, volume 935 of Lecture Notes in Computer
Science, pages 374-391, Torino, June 1995. Springer-Verlag.

[RCPP97] Oriol Roig, Jordi Cortadella, Marco A. Pefia, and Enric Pastor. Automatic generation
of synchronous test patterns for asynchronous circuits. In Proceedings of the 34th
Design Automation Conference, June 1997. (To appear).

[RK93] D.S. Rao and F.J. Kurdahi. On clustering for maximal regularity extraction.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
12(8):1198-1208, August 1993.

[RMCF88] Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and Ting-Pien Fang. Q-
modules: Internally clocked delay-insensitive modules. IEEE Transactions on Com-
puters, C-37(9):1005-1018, September 1988.

104

[RPC94]

[RS93]

[RYS5]

[Sei80a]

[Sei80b]
[Ses65]

[Shad9)

[Sil85]

[Smig5]

[SSL+92]

[Sut89]

[TSL*90]

[Ulr65]

[Ulr69]

[Van90]

[vdS83]

[YHTM96]

FORMAL VERIFICATION AND TESTING OF ASYNCHRONOUS CIRCUITS

Oriol Roig, Enric Pastor, and Jordi Cortadella. Verificacién de circuitos indepen-
dientes de la velocidad con modelos simbdlicos de redes de Petri. In IX Congreso
de Diseno de Circuitos Integrados, pages 307-312, Las Palmas de Gran Canaria,
November 1994.

Marly Roncken and Ronald Saeijs. Linear test times for delay-insensitive circuits:
a compilation strategy. In S. Furber and M. Edwards, editors, Asynchronous De-
sign Methodologies, volume A-28 of IFIP Transactions, pages 13—-27. Elsevier Science
Publishers, 1993.

L. Ya. Rosenblum and A. V. Yakovlev. Signal graphs: From self-timed to timed ones.
In International Workshop on Timed Petri Nets, pages 199—206, July 1985.

C. L. Seitz. System timing. In Introduction to VLSI Systems, chapter 7. Mead &
Conway, Addison-Wesley, 1980.

Charles L. Seitz. Ideas about arbiters. Lambda, 1(1, First Quarter):10-14, 1980.

S. Seshu. On an improved diagnosis program. IEEE Transactions on Electronic
Computers, EC-12(2):76-79, February 1965.

C. E. Shannon. The synthesis of two-terminal switching circuits. Bell System Tech-
nical Journal, 28(1):59-98, 1949.

Manuel Silva. Las Redes de Petri: en la Automdtica y la Informdtica. Editorial AC,
Madrid, 1985.

G. L. Smith. A model for delay faults based on paths. In Proc. International Test
Conference, pages 324-349, September 1985.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A system for
sequential circuits synthesis. Technical Report M92/41, UCB/ERL, May 1992.

I. E. Sutherland. Micropipelines. Communications of the ACM, June 1989. Turing
Award Lecture.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Im-
plicit enumeration of finite state machines using BDD’s. In Proc. of the IEEE/ACM
International Conference on Computer Aided Design, pages 130-133, November 1990.

E. G. Ulrich. Time-sequenced logic simulation based on circuit delay and selective
tracing of active network paths. In Proceedings of the 20th ACM National Conference,
pages 437-448, 1965.

E. G. Ulrich. Exclusive simulation of activity in digital networks. Communications
of the ACM, 13:102-110, February 1969.

P. Vanbekbergen. Optimized synthesis of asynchronous control circuits from graph-
theoretic specification. In Proc. of the IEEE/ACM International Conference on Com-
puter Aided Design, pages 184-187, November 1990.

J. L. A. van de Snepscheut. Trace Theory and VLSI design. PhD thesis, Department
of Computer Science, Eindhoven University of Technology, October 1983.

T. Yoneda, H. Hatori, A. Takahara, and S. Minato. BDDs vs. Zero-Suppressed BDDs:
for CTL symbolic model checking of petri nets. In Proceedings of Formal Methods in
Computer-Aided Design, volume 1166 of Lecture Notes in Computer Science, pages
435-449. Springer-Verlag, 1996.

References 105

[YLSV92] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli. A unified signal transition
graph model for asynchronous control circuit synthesis. In Proc. of the IEEE/ACM
International Conference on Computer Aided Design, pages 104-111. IEEE Computer
Society Press, November 1992.

LIST OF FIGURES

Chapter 1
1.1 Typical circuit design pipeline.
1.2 Universe of good/bad circuits given a fail/pass test.
1.3 Difference between pure and inertial delay.
1.4 (a) Feedback, (b) gate and (c) wire delay models.
Chapter 2
2.1 BDD example.
2.2 The ite algorithm.
Chapter 3
3.1 (a) A sample Petri net. (b) The same net after firing transition ¢;.
3.2 (a) A Petri net and (b) its reachable markings.
3.3 Isomorphic (a) Petri net and (b) STG.
3.4 (a) Algorithm for symbolic traversal and (b) graphical representation of Breadth
First Search.
3.5 Transformations preserving liveness, safeness and boundedness.
3.6 (a) Two consecutive transitions. Traversal (b) without or (c) with chaining.
3.7 (a)Traversal without chaining and (b) chaining.
3.8 BDD AND-toggle algorithm.
3.9 Improved BFS algorithm.
3.10 Improvements obtained by (a) chaining and (b) toggling techniques on the dining
philosophers example.
3.11 (a) Firing t produces an unsafe marking. (b) Algorithm for safeness checking.
3.12 Algorithm to compute the SCC and TSCC sets of [mg).
3.13 Algorithms to verify (a) transition persistence and (b) signal persistence.
3.14 Transition and signal (non-)persistence.
3.15 Algorithm for consistence checking.
3.16 Petri net for a dining philosopher.
3.17 Slotted ring protocol for one node.
3.18 Symbolic traversal algorithm: (a) number of states calculated and (b) size of the
variables after each computation of § (for the 8-node slotted ring example).
Chapter 4
4.1 Verification scenario: a circuit composed with an environment.
4.2 Modeling non-isochronic forks at (a) primary inputs and (b) gate outputs.
4.3 (a) Combinational NOR gate. (b) C memory element and (c) its internal repre-

sentation.

107

o 0o = N

20
22

24
26
29

32
33
34
35
37
37

38
39
41
41
42
42
44
45

45

49
51

52

108 FORMAL VERIFICATION AND TESTING OF ASYNCHRONOUS CIRCUITS
4.4 Environment-circuit system. 53
4.5 Transition a+ is synchronized with switching a from 0 to 1. 54
4.6 (a) Circuit with a speed-independent behavior, (b) The same circuit with a

hazardous behavior, (¢) Equivalent speed-independent complex-gate circuit. 55
4.7 State Graph of the circuit in figure 4.6(a) (without place variables, for clarity). 55
4.8 Switching signal d from 1 to 0 is not accepted by the environment. 56
4.9 Basic BFS algorithm. 58
4.10 Stable AND gate becoming excited by backward switching. 59
4.11 Diagnosis algorithm. 59
4.12 (a) Environment-circuit system and (b) its complex-gate equivalent system. 60
4.13 (a) State graph after functional correctness verification. (b) Projection onto the

interface signals of the complex gate. (c) Part of the state graph after behavioral

correctness verification. 62
4.14 (a) Flat circuit (8 gates). (b) Hierarchical complex-gate organization (3 complex

gates). 63
4.15 OR and C gates collapsed into a complex gate. 64
4.16 (a) Gate with multiple fanout. (b) Complex gate considered for functional

correctness (c¢) and for behavioral correctness. 64
4.17 Example of (a) flat and (b) collapsed circuit. 64
4.18 (a) Environment of circuit. Projections (b) adding nondeterminism (¢) or not. 65
4.19 Hierarchical verification algorithm 65
4.20 Union of environments for different instances of the same gate. 69
4.21 Algorithm for checking deadlock freeness. 71
4.22 Algorithm for checking the home-state property. 71
4.23 Two observationally equivalent circuits. 72
4.24 Comparison with Burch et al. 74

Chapter 5
5.1 Two different short faults mapping to the same stuck-at 1 fault. 81
5.2 Fault location in the output (a) and input (b) stuck-at models. 81
5.3 Examples of equivalent faults in NOR (a) and AND-OR (b) gates. 82
5.4 Goal of testing: observing the discrepancies between good and faulty circuits

when the same patterns are applied. 82
5.5 Circuits showing (a) non-confluence of settling state and (b) oscillation. 83
5.6 State graph of a circuit showing non-confluence. 83
5.7 (a) A TCSG and (b) its corresponding CSSG. 85
5.8 Examples of (a) confluence, (b) non-confluence, (c¢) non-transient cycle and (d)

transient cycle. 87
5.9 Corruption detected (a) always and (b) sometimes. 88
5.10 (a) Correct circuit (b) Faulty circuit. 89
5.11 Algorithms A and B making up ternary simulation. 90
5.12 Circuit illustrating why ternary simulation is conservative. 91
5.13 Parallel fault simulation handles several circuits simultaneously. 91
5.14 Example of one step of parallel fault simulation. 92

LIST OF TABLES

Chapter 3

3.1 Petri net reductions and their inverse transformations.
3.2 Results for the dining philosophers example.

3.3 Results for the slotted ring example.

3.4 STG verification results.

Chapter 4

4.1 Experimental results with speed-independent circuits.

4.2 Experimental results with circuits not satisfying its specification.

Chapter 5

5.1 Experimental results (speed-independent).
5.2 Experimental results (hazard free with bounded delays).

109

34
44
45
46

73
74

93
94

Symbols

Ay, 31

3, 19, 90

da, 52

dg', 58

07, 54

67t 58

on, 27, 36, 54

x', 58

do, 54

35", 58

55’7 @7 367 54

/\G7 &

Ap, 84

A
labeling function for states, 30, 66
labeling function for transitions, 29

m, 30

A

algebra, see Boolean or ternary algebra
AND-Toggle operation, 36
ASMq, 28
asynchronous circuits, 7
pros and cons, 5
asynchronous microprocessor, 9
ATPG, 10, 87
acceleration, 80
Automatic Test Pattern Generation, see
ATPG
autonomous circuit, 50, 66
average-case performance, 6

B

B, 16

B®, 16, 26

backward traversal, 58

BDD, 10, 19
complementing variables, 36
of an equation, 21
representing sets, 25

behavioral correctness, 60

BFS
algorithm, 32, 58

INDEX

improvements, 34
Binary Decision Diagram, see BDD
binary relation, see relation
Boole’s expansion, 21, 67
Boolean algebra, 17

of n-variable logic functions, 26

of classes, 18

of logic functions, 18

of sets of markings, 26

of sets of STG states, 29
bounded delay, 7, 98
Breadth First Search, see BFS

C

Cartesian product, 15, 53
chaining, 34
characteristic function, 26, 57

of a deadlock, 39, 70

of a relation, 27

of a set, 26

of states violating CSC, 43

of unsafe marking, 39
choice, 41
circuit, 49

autonomous, see autonomous circuit

levels of hierarchy, 69
circuit design task flow, 1
clock skew, 5
codomain of a function, 16
cofactor, 17, 28
collapsed circuit, 63, 66,

see also complex-gate-equivalent

circuit

verification of properties, 71
collapsing, 61, 63

example, 64

gates with multiple fanout, 64
Complete State Coding, see CSC
complex gate, 61

reduction to, 63
complex-gate-equivalent circuit, 63, 71,

see also collapsed circuit

composition of relations, 15
confluence, 87
Confluent Stable State Graph, see CSSG
conform to, 3, 48, 49, 56, 57

112 FORMAL VERIFICATION AND TESTING OF ASYNCHRONOUS CIRCUITS

conservative test, 4
consistence, 41

constrained image computation, 27, 28, 39

of a Petri net, 31
controllability, 77
counterexample, 58
CSC, 42
CSSG, 80, 86

example, 85
cube, 16

D

dead signal, 72

dead transition, 39
deadlock, 39

deadlock freeness, 70
delay, 7, 51
delay-insensitive circuit, 8, 51
design for testability, 78
detectability, 77
diagnosis, 58

domain of a function, 16
dual-rail encoding, 5

E

E;, 28

Eyx, 30

Ev+7 &

E,—, 30

element of a set, 14

enabled transition, 23

encoding function, 26

environment-circuit system, 10
verification of properties, 70

environment-circuit sytem, 53

equivalence relation, 16

equivalent faults, 81

existential abstraction, 17

externally-cut circuit, 48

F

f
flow relation, 25
mapping gates to functions, 50
failure state, 55, 70
false negative, 48, 65, 68
false positive, 65, 68, 75
fanin, 50, 52, 56, 63, 68
fanout, 50, 51, 63, 68
fault, 77
activation, 88

models, 80

simulation, 91
feedback delay, 7
fixed point, 32, 35, 73

fork, 50
function, 16
image, 16

functional correctness, 60
functional verification, 73
fundamental mode, 8

G

G (set of gates), 84

gate, 7
collapsing, see collapsing
combinational, 51
complex, see complex gate
excited, 52
modeled with Petri nets, 52
sequential, 51
stable, 52
switching, 51

gate delay, 8

H
hazard, 50, 61

hazard-free circuit with bounded delays, 9,

73
home state, 70
Huffman model, 8

I

identity relation, 16
idle component, 6
image, 16
image computation function, 52
extension of, 54
inertial delay, 7, 50
initial marking, 23
initial state
of a circuit, 50
of an STG, 29
input pattern or vector, 77, 82
input stuck-at fault, 81, 93
isomorphic circuits, 69
ite (if-then-else) operator, 21

L

LO- to L4-live, 3940
labeling functions, see A\, Ag, A1
least fixed point, 32

Index

least upper bound, 16, 90
literal, 16

liveness, 39, 70, 72
logic-level synthesis, 2

lub (least upper bound), 19

M

[m), 25
mtym', 25
mg, 25
[m0>7 38
[m0>7 2_57 32
M'Pv 26
marking, 10, 23, 25, 53
pre-unsafe, 39
member of a set, 14
memory element, see gate, sequential
memory elements, 61
metastability, 82
micropipelines, 9
minterm, 16, 26, 29
model checking, 48
Muller model, see speed-independent circuit
multiple fault, 81

N

n-variable function, 16
n-variable logic function, 26
negative excitation function, 52
next state function, 27, 84
non-confluence, 10, 80, 82, 83, 86, 87, 95
not detected, 95
practical detection, 87
non-transient cycle, 87
nondeterminism, 69
NPM;y, 28
NSM;, 28

(0]

observability, 77

observational equivalence, 66, 68

one-to-one function, 16

operations with sets, 14

optimistic test, 4

ordered BDD, 20

oscillation, 10, 80, 82, 83, 86
practical detection, 87

output stuck-at fault, 81, 93

113

P

P
set of places, 25
set of primary inputs, 84
*p, 25
p*, 25
Di, E
partial order, 16
path delay fault, 79
path in a state graph, 30
persistence, see transition or signal
persistence
pessimistic test, 4
Petri net, 10, 23, 25, 38
k-bounded, 26
analysis, 24
as circuit specification, 23, 53
bounded, 25
equivalent STG, 29
example, 24
modeling, 26
reduction, 24, 33, 44
safe, 26
place, 10
graphical representation, 23
marked, 23
predecessor /successor, 23
positive excitation function, 52
potentially fireable transition, 39
power set, 15
of circuit states, 51
predecessor place, 39
predicate, 13
preimage, 16
projection of a state graph, 30, 62, 68
proposition, 13
pure delay, 7

Q

quasi-delay-insensitive circuit, 9, 51

R

random test pattern generation, 92
reachable markings, 31, 38
reachable states, 38

reconvergent fanout, 82

recursive rule describing a set, 14
reduced BDD, 20

reflexive and transitive closure, 15
reject ratio, 4

relation, 15, 27

114 FORMAL VERIFICATION AND TESTING OF ASYNCHRONOUS CIRCUITS

Representation Theorem, see Stone’s

S
s[t)s’, 29
0
(initial STG state), 29
(initial circuit state), 50
[s°), 29, 38
SVv &7 51
safe Petri net, 39
safeness, 38, 39
scan-path, 78
self-checking circuits, 78
semi-modular, 59, 61, 6668
circuit, 65
semi-modularity, 56, 69
sequential depth, 33, 35
set, 14
of markings, 10
of reachable markings, 31
sets of states, 51
Signal Graph, 28,
see also STG
signal persistence, 40
Signal Transition Graph, see STG
silent label, 29
silent transition, 29
specification validation, 10
goal, 23
speed-independence, 54
speed-independent circuit, 8, 50, 71
state
disambiguation, 64
failure, see failure state
in asynchronous circuits, 50
in synchronous circuits, 5, 50
minterm, 51
notation, 50
of a Petri net, see marking
of an environment-circuit system, 53
of an STG, 29
state differentiation, 89
state explosion, 5, 25, 48, 90
state graph, 30
as environment of complex gate, 69
as specification, 75
associated to a Petri net, 31
associated to an STG, 31
example, 55
of a circuit under test, 84
of a complex gate, 61
of an autonomous circuit, 50, 66
projection, see projection of

projection adding nondeterminism, 63
showing non-confluence, 83
state justification, 88
STG, 25, 28, 38
as circuit environment, 55
as circuit specification, 25, 38
as environment, 66
equivalent Petri net, 29
implementability, 38
modeling, 29
shorthand form, 29
state, 29
Stone’s theorem, 18, 26
strong detectability, see detectability
strongly-live circuit, 57
stuck-at fault model, 81
successor place, 39
sum of minterms, 29
switching algebra, 17
symbolic BFS, 32
symbolic model checking, 48
synchronous circuits
pros and cons, 5
synthesis, 1

T

T (set of transitions), 25
.t’ E

t*, 25

Tu, 53

Tr, 53

To, 53

Tos, 29, 53

T+, 29, 53

Ty_, 29, 53

temporal logic, 25, 48
ternary algebra, 19
ternary simulation, 90
test, 77
test cycle, 85
estimation, 86
testing, 3
testing asynchronous circuits, 10
theorem proving, 48
three-phase ATPG, 88
toggling, 36
token, 25
topological image computation, 27
trace theory, 48
transient cycle, 87
transition
fired infinitely often, 71
firing, 23, 27

Index

graphical representation, 23
ordering, 36
transition function, 27
transition persistence, 40, 41
transition relation, 27, 40, 85
transitive closure, 15, 40

U

ULSI, iii

unbounded delay, 7, 60
unbounded gate delay, 50, 84
unfolding Petri nets, 48
universal abstraction, 17
universal set, 14

universe of discourse, 14
upper bound, 16

Vv

V, 29, 49
Vg, 50
Vm, 50
V1, 50
v, Uk, 29, 52
VOa @
valid test vector, 83
verification, 3
flat, 57, 61
goal, 49
hierarchical, 58
is not validation, 3
of asynchronous circuit, 10
of behavioral correctness, 61
of functional correctness, 60
of isomorphic circuits, 68
results, 72
scenario, 53
vertex, 16
VLSI, iii, 1, 9

w

wire, 7
wire delay, 8

Y
yield, 3

115

