RELATIVE TIMING BASED
VERIFICATION OF
CONCURRENT SYSTEMS

MARCO ANTONIO PENA BASURTO

Llicenciat en Informatica, Technical University of Catalonia, Barcelona, Spain 1993
Llicenciat amb grau en Informatica, Technical University of Catalonia, Barcelona, Spain 1995

Department of Computer Architecture
Technical University of Catalonia
Barcelona (Spain), February, 2003

A thesis submitted in partial fulfillment
of the requirements for the degree of
Doctor en Informatica

To Nuria and Pau

Para mi no hay emocion comparable a la que produce la activi-
dad creadora, tanto en ciencia como en arte, literatura u otras
ocupaciones del intelecto humano. Mi mensaje, dirigido sobre
todo a la juventud, es que si sienten inclinacion por la cien-
cia, la sigan, pues no dejard de proporcionarles satisfacciones
inigualables. Cierto es que abundan los momentos de desaliento
y frustracion, pero éstos se olvidan pronto, mientras que las sa-
tisfacciones no se olvidan jamds.
—Severo Ochoa

It has long been my personal view that the separation of practi-
cal and theoretical work is artificial and injurious. Much of the
practical work done in computing, both in software and hardware
design, is unsound and clumsy because the people who do it do
not have any clear understanding of the fundamental principles
underlying their work. Most of the abstract mathematics and
theoretical work is sterile because it has no contact with the real
computing.
—Christopher Strachey

CONTENTS

LIST OF FIGURES
LIST OF TABLES

ABSTRACT
ACKNOWLEDGMENTS
1 INTRODUCTION

1.1
1.2

1.3

1.4

1.5
1.6

Introduction

Formal methods
1.2.1 Formal methods in the design process

Formal verification
1.3.1 Verification versus simulation
1.3.2 Main approaches to formal verification

Formal verification of timed systems
Overview of the contributions

Structure of the thesis

2 MODELS FOR CONCURRENT SYSTEMS

2.1
2.2
2.3
2.4
2.5

2.6

Introduction

Transition systems
Timed transition systems
Lazy transition systems

Petri nets
2.5.1 Labeled Petri nets

Conclusions

3 VERIFICATION OF TIMED SYSTEMS

3.1
3.2
3.3
3.4

Introduction
Quantitative timing information
Timed automata

Timed specifications
3.4.1 Temporal logic
3.4.2 Timed temporal logic

vil

X1
XV
xVii

Xix

0 S =W N

10
11
14

17
18
18
21
24

27
31

33

35
36
37
39

42
42
45

viii

3.5

3.6
3.7

Verification of timed systems
3.5.1 Clock regions

3.5.2 Region automata

3.5.3 Zone automata

3.5.4 Difference-bound matrices
3.5.5 Discussion

Petri net-based methods

Conclusions

4 VERIFICATION WITH RELATIVE TIMING

5

4.1

4.2
4.3

4.4

4.5

4.6

4.7

Introduction
4.1.1 Relative Timing

Overview

Trace semantics

4.3.1 Traces and languages

4.3.2 Trace-based verification

4.3.3 Emabling compatibility

Event structures

4.4.1 Timing analysis on event structures
Enabling-compatible product

4.5.1 State-based representation of a CES

4.5.2 Refining the reachability space by timing constraints

Verification methodology

4.6.1 Iterative refinement

4.6.2 Off-line timing analysis of failures

4.6.3 Incorporation of relative timing constraints
4.6.4 Back-annotation

4.6.5 Correctness

4.6.6 Convergence

Conclusions

EXPERIMENTAL RESULTS

5.1

5.2

5.3

A brief introduction to TRANSYT

5.1.1 Representation of LzTSs with boolean algebras
5.1.2 TRANSYT input format

An example with forward unfolding

5.2.1 Model of a timed PN

5.2.2 Verification

5.2.3 Discussion

CONTENTS

46
46
48
48
49
50
o1

52

53

o4
95

57

62
62
63
66

70
74
7
7
79

81
83
85
86
87
87
88

90

93

94
95
98
102
104
106
111

Verification of complex-gate decompositions in speed-independent circuits 112

5.3.1 Speed-independent circuits
5.3.2 Experimental set-up
5.3.3 The sbuf-read-ctl controller

112
113
114

CONTENTS

6

7

5.4

9.5

5.3.4 Model of an STG

5.3.5 Model of the circuit

5.3.6 Specification of properties
5.3.7 Verification

5.3.8 Results and discussion

Verification of relative timing assumptions
5.4.1 Synthesis of asynchronous circuits with relative timing assumptions

5.4.2 The VME bus controller
5.4.3 Models and properties
5.4.4 Verification

5.4.5 Discussion

Conclusions

COMPOSITIONAL VERIFICATION

6.1
6.2

6.3

6.4

6.5

6.6

Introduction

The IPCMOS architecture

6.2.1 TPCMOS pipelines

6.2.2 Strobe circuit

6.2.3 Reset circuit

6.2.4 Valid circuit

6.2.5 The environment modules
6.2.6 About complexity
Compositional verification

6.3.1 Framework

Verification of IPCMOS pipelines
6.4.1 Verification strategy

6.4.2 Abstractions

6.4.3 Assume-guarantee verification
Verification of a stage

6.5.1 Modeling CMOS circuits
6.5.2 Modeling IPCMOS circuits
6.5.3 Verification results

Conclusions

CONCLUSIONS

7.1
7.2
7.3

Introduction
Contributions
Future research

A TIMING ANALYSIS
A.1 Introduction
A.2 Timing analysis on acyclic graphs

X

115
117
118
121
125

127
128
131
134
137
142

144

147
148

149
149
152
153
155
155
156

156
158

159
159
161
162

165
165
169
170

173

175
176
177
179

183
184
186

B ON THE ENABLING-COMPATIBLE PRODUCT

B.1 Enabling-compatible product
B.1.1 State-based representation of a CES
B.1.2 Refining the reachability space by timing constraints

B.2 Symbolic representation
B.2.1 Encoding of a LzTS
B.2.2 Encoding the state space of a LzCES

B.3 Computation of the new transition relations
B.3.1 Transitions entering the timed domain
B.3.2 Staying inside the timed domain: no synchronization
B.3.3 Staying inside the timed domain: synchronization
B.3.4 'Transitions re-entering the timed domain
B.3.5 Exiting or staying outside the timed domain
B.3.6 New transition relation
B.3.7 Lazy events
B.3.8 [Initial state

C VERIFICATION-RELATED COMMANDS

C.1 Failure analysis
C.1.1 The add_fail command
C.1.2 The check_fails command
C.1.3 The print_fails command

C.2 Analysis of delay relations
C.3 The uverif command

C.4 The tverif command
C.4.1 Output
C.4.2 Construction of the failure trace
C.4.3 Construction of the LzCES
C.4.4 Timing analysis
C.4.5 Miscellaneous
C.4.6 Summary of the tverif command

REFERENCES
GLOSSARY OF SYMBOLS

CONTENTS

189

190
190
191

192
193
193
194
194
195
195
196
196
196
196
197

199

200
200
200
201
201
202
203
204
209
209
211
211
212

215
227

LIST OF FIGURES

1 INTRODUCTION

1.1
1.2
1.3
1.4

Automaton modeling a modulo 3 counter.
Iterative design flow.

The theorem proving approach.

The model checking approach.

2 MODELS FOR CONCURRENT SYSTEMS

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

An example of transition system.

An example of timed transition system.
Portion of the timed state space of a TTS.
An example of lazy transition system.

Relations among the main notions related to transition systems.

An example of Petri net.
Reachability graph of a Petri net
Petri net of Figure 2.6 with labeled transitions.

3 VERIFICATION OF TIMED SYSTEMS

3.1
3.2
3.3
3.4
3.5
3.6

Three representations of time.

An example of timed automaton.

A simple automaton with atomic propositions.
Regions for two clocks.

Region automaton.

Zone automaton.

4 VERIFICATION WITH RELATIVE TIMING

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Relative timing in the synthesis of circuits.

Example of verification with relative timing.

Example of verification with relative timing (first iteration).
Example of verification with relative timing (second iteration).
From traces to language refinement.

Relation between runs and traces.

Enabling and disabling in a trace.

xi

Nl e

10

17
19
21
23
25
27
28
31
32

35
38
40
43
47
49
50

53
o6
59
60
61
63
64
65

xii

5

6

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

LI1ST OF FIGURES

Circuit with a potential disabling.

Enabling-compatible and non-enabling-compatible mapping.
Symmetric vs. asymmetric disabling.

Timing analysis over a CES and resulting lazy CES.
Graphs of reachable configurations and enablings.

Step by step refinement by enabling-compatible product.
Flow of the verification methodology.

Main algorithm of the relative timing-based verification approach.

Algorithm for the derivation of a LzCES from a trace.
Generation of the sufficient shortest suffix of a trace.
Example of a nodal and a not nodal point.

EXPERIMENTAL RESULTS

5.1
5.2
5.3
5.4
9.5
0.6
0.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

A binary-encoded LzTS.

TRANSYT input file for the LzTS of Figure 5.1.

Yoneda’s example.

Transition of an PN with its input and output places.

Yoneda’s example: first and second refinements.

Yoneda’s example: third and forth refinements.

Yoneda’s example: counterexample trace proving incorrectness.
System vs. specification verification scheme.

Input-output interface of the sbuf-read-ctl controller.

STG specification of the sbuf-read-ctl controller.

Two implementations of the sbuf-read-ctl controller.
TRANSYT input file for the circuit of Figure 5.11 (b).

Three refinements for the sbuf-read-ctl controller.

An example of relative timing assumptions.

VME bus controller.

Timing assumptions for the synthesis of the VME bus controller.

Implementation of the VME bus controller with timing assumptions.

TRANSYT input files for the VME bus controller.
First four refinements for the VME bus controller.
Last four refinements for the VME bus controller.

COMPOSITIONAL VERIFICATION

6.1
6.2
6.3
6.4
6.5
6.6

General block-level interlocking scheme.

Linear IPCMOS architecture.

Detailed 2-stage IPCMOS pipeline and waveform of its behavior.
Two-phase handshake mechanism.

The strobe circuit in detail.

The reset circuit in detail.

67
68
71
74
78
82
83
84
84
85
89

93

98
100
103
104
107
108
110
113
114
116
118
119
124
129
132
133
134
135
141
143

147
149
150
151
152
153
154

LIST OF FIGURES xii1

6.7 The wvalid circuit in detail. 155
6.8 STGs modeling the pulse-based behavior of the IN and OUT modules. 155
6.9 Assume-guarantee verification using abstractions. 157
6.10 Pipeline verification using abstractions. 160
6.11 STGs modeling the abstractions A;, and Ag,y;. 161
6.12 Scheme of the guarantee part of the verification. 163
6.13 LzCES used to prove correctness of the strobe switch circuit. 170
A TIMING ANALYSIS 183
Al Classes of timing analysis problems. 184
A2 Timing analysis on an acyclic graph. 187
C VERIFICATION-RELATED COMMANDS 199
C.1 An example of DOT file for a failure trace. 205
C.2 An example of DOT file for a LzCES. 207

C.3 An example of DOT file for the lazy state space of a system. 208

LIST OF TABLES

5 EXPERIMENTAL RESULTS

6

5.1
5.2
5.3

Failure situations in sbuf-read-ctl along the verification.
Experimental results for the verification of asynchronous circuits.

Failure situations in the VME bus controller along the verification.

COMPOSITIONAL VERIFICATTION

6.1
6.2
6.3
6.4
6.5
6.6

Summary of the results for the 5 steps of the verification.
Model of the strobe circuit.

Model of the strobe switch circuit.

Model of the reset circuit.

Model of the reset switch circuit.

Model of the wvalid circuit.

XV

93
122
125
139

147
164
166
166
167
167
167

ABSTRACT

The thesis presents a new theory and methodology for the formal verification of safety
properties in timed systems. The correct operation of such systems not only depends on
a set of functional properties but also on certain assumptions about the delays of the
components of the system and the response times of the environment in which the system
operates. The verification of this type of systems typically involves several computation-
ally hard problems. In particular, the combinatorial state explosion problem becomes
exacerbated by the time dimension.

The theory that supports the proposed verification approach extends the conventional
BDD-based symbolic methods to the verification of timed systems, modeled by means of
timed transition systems. The theory is based on the relative timing paradigm, which
instead of considering exact time differences in the occurrence of events, considers the
effect of delays in terms of relative orderings between events. For example, in order to
guarantee that a race is not propagated in a digital circuit, it is often sufficient to check
that certain signal switches before another, instead of identifying the exact instants of
time in which both signals switch. Moreover, the timing information does not need to
computed for the overall system, but only locally for the part of the system involved in
the proof or disproof of a given property. This is possible thanks to a crucial observation,
that the set of executions of a transition system can be covered by a set of partial orders.
As a consequence, only a subset of the events of the system is involved in the proof of a
property and the timing analysis can be carried out very efficiently.

Conventional methods for the verification of timed systems rely on the computation
of the exact timed state space of the system as the first step of the analysis. Although
efficient techniques have been devised to overcome the complexity issue (e.g. difference
bound matrices), symbolic methods cannot be easily applied. Thus, the combinatorial
time-state explosion problem often limits the applicability of such methods to moderate-
size systems.

Instead, the approach proposed in the thesis relies on an incremental refinement of the
untimed state space of the system, so that timing information is incorporated as soon as
it is needed. The timing information is derived by an efficient off-line timing analysis over
small sets of events. The refined state space is captured under the model of lazy transition

XVil

XViil ABSTRACT

system, which allows an efficient representation of the timed domain using conventional
symbolic methods. As a consequence, the approach can be potentially applied to bigger
systems or to systems with more level of detail, than those that can be handled by similar
methods for the verification of timed systems. Moreover, the incremental nature of the
approach provides a good way to obtain at least partial results even on systems for which
complete solutions could be too complex to compute.

A key feature of the proposed verification approach is that not only proves or disproves
the correctness of a timed system. If the system is correct the set of relative timing
relations used for the proof are provided. Such relations constitute a set of sufficient
timing constraints that guarantee the correctness of the system. On the other hand, if the
system is incorrect, a counterexample failure trace is provided. The most important aspect
of all this feedback is that it can be used as valuable back-annotation information along
the design process. This feature, which allows to bridge the gap between verification and
design, constitutes another differential aspect of our verification approach when compared
to other equivalent verification methods.

The verification approach has been fully implemented in an experimental CAV tool
called TRANSYT. The tool can handle hierarchical and distributed modular systems which
can inter-operate by a variety of communication mechanisms. TRANSYT has successfully
proved its functionality as well as the validity of the overall verification approach, by ver-
ifying a number of timed asynchronous circuits with up to more than 10° untimed states.
The experiments cover, for example, the verification of: complex-gate decompositions in
quasi-speed-independent asynchronous circuits, delay-reset domino circuits, pulse-based
systems, circuits optimized for speed using timing assumptions, etc. Additionally, compo-
sitional verification methods have been combined with the basic verification approach in
order to tackle the size/complexity issues involved in the verification of complex timed sys-
tems. Thus, abstractions, assume-guarantee reasoning and mathematical induction have
been used to prove the correctness the IPCMOS architecture. It is a scalable pipelined
architecture which is aimed to the interconnection of different clock zones in a system.

Thanks to the rather theoretical nature of the proposed verification approach, its poten-
tial applicability covers a wider range of systems than those cited above, such as: custom
transistor-level circuits that exploit the technology limits for performance, complex digital
structures where synchronization is a crucial issue (e.g. dynamic MOS), asynchronous and
GALS-type systems, real-time systems, etc.

ACKNOWLEDGMENTS

If I have seen further than others, it is because I was standing upon the
shoulders of giants.
—Isaac Newton - Letter to a friend, 1676

The first person that deserves my acknowledgment is my supervisor Jordi Cortadella.
He introduced me to the world of asynchronous circuits, Petri nets, formal verification,
etc. back in 1993 when I was still an undergraduate student. His deep insight into the
subject of this thesis provided me a lot of helpful suggestions. Without his guidance and
kind encouragement this thesis would have never been possible.

I am specially indebted to my other supervisor, Enric Pastor. His continuous support
and friendship have helped me to overcome the (technical and personal) difficulties during
the critical phases of this work.

My gratitude also to Alex Kondratyev and Alexander Smirnov for their contributions
to the theoretical soundness and the practical implementation of this work, respectively.
And to Luciano Lavagno, Alex Yakovlev and Alexander Taubin, for their kindness hosting
me in respective visits to the Politecnico di Torino, the University of Newcastle and the
University of Aizu. The numerous insightful discussions with them about different research
topics have contributed this thesis in a number of ways.

Thanks to the other members of the CAD/VLSI group at the Department of Computer
Architecture of the Technical University of Catalonia —Rosa Badia, Fermin Sdnchez and
Josep Carmona— and former members —Oriol Roig and Enric Musoll. Along these years
they have provided me with the kind of environment that makes work a much more
pleasant experience.

Thanks also to the reviewers at Department of Computer Architecture —Rosa Badia,
Antonio Gonzalez and Antonio Juan Hormigo— and the external reviewers —Abelardo
Pardo and Supratik Chakraborty. They read carefully the preliminary versions of this
thesis giving me valuable suggestions on the contents and the presentation of this work.
And the members of the thesis committee for the effort they put into judging this thesis.

Xix

XX ACKNOWLEDGMENTS

On the institutional and industry side I would like to acknowledge: the Ministry of
Science and Technology of Spain under contracts CICYT-TIC 95-0419, CICYT-TIC 98-
0410-CO-01 and CICYT-TIC 2001-2476-CO-03; the ACiD Working Group under contracts
ESPRIT-7225, ESPRIT-21949 and IST-1999-29119; and Intel Corporation. They all are
gratefully acknowledged for funding this research.

On the personal side my family deserves infinite gratitude: my father Antonio, my
mother Adoracién and my brother Jose. Thanks a lot for your efforts on infusing me the
values of a good education and supporting all my studies along the years.

And the most effusive thanks to Nuria. During all this time she has been my best
friend, providing lots of emotional support and love, and patiently suffering the numerous
moments of solitude she has been forced to because of my work. This thesis is dedicated
to her and our beloved son Pau.

Finally I would like to express my thanks to everyone I have not cited above but has
helped me, directly or not, in the long way until this thesis has been completed. Thanks
a lot to you all.

INTRODUCTION

The real value of formal methods lies not in their ability to eliminate doubt,

but in their capacity to focus and circumscribe it.
—John Rushby - [Rus93]

Summary

This chapter introduces the generalities of the use of formal methods in the design and
analysis of complex systems. Special attention is paid to the formal verification problem
and its differentiation from simulation-based methods to prove the correctness of a design.
The main approaches in the area of formal verification are also reviewed.

The chapter concludes with an overview of the motivations behind the work presented

in the thesis, together with the main contributions.

2 CHAPTER 1 : INTRODUCTION

1.1 Introduction

Continuous advances in electronics and software engineering have driven the increase in
size and functionality of systems into unprecedented levels of complexity. As a consequence
the probability of introducing design error has increased considerably. This fact, combined
with the ubiquity of such systems in our current lives makes necessary the development
of techniques that help to reduce the probability of failures.

Formal methods appear as a promising tool in such context. They bring the formaliza-
tion and reasoning power of mathematics and logic into system design. Thus, they can
help in systematizing the early specifications, providing appropriate abstract models of
systems, and allowing the development of automatic techniques for the analysis of such
models. Currently, tools for the automatic synthesis of circuits, or the formal verification
of real-time systems, to cite some, exist both in academia and in industry. Moreover, they
are gaining acceptance in this latter context.

This thesis relies on the use of formal methods to contribute to the formal verification
of systems whose correct behavior depends on timing issues. Formal verification, although
it is not a mainstream research topic, is getting increasing attention from industry due to

several reasons.

In contrast to simulation, formal verification consists in building a mathematically-based
proof that a system (implementation) behaves according to a given specification. For
the check, all possible behaviors of the system must be taken into consideration, leading
to the well-known state-explosion problem. In systems with a finite number of states,
this problem is often alleviated by using symbolic techniques to implicitly enumerate all
reachable states. Abstraction methods are also a common technique used to reduce the
complexity of the model, by hiding those implementation details that are irrelevant to the
properties begin verified.

The correctness of timed systems depends on the actual response times of the system
and not only on its functional behavior. Therefore, time becomes an essential dimension
in the verification problem and the complexity issue is exacerbated. For example, the
problem of computing the language of a timed system modeled as a timed automata has
been proved to be PSPACE-complete.

This thesis proposes a novel formal verification approach that extends the applicability
of the conventional methods based on symbolic reachability analysis to timed systems. A
major issue is the use of relative timing, which instead of considering exact delay separa-
tions, considers the effect of delays in a system in terms of relative ordering of events (e.g.
a happens before b). This leads to the model of lazy transition systems which allows to
represent the time domain in an efficient way, without increasing complexity when dealing
with untimed systems.

1.2 FORMAL METHODS 3

1.2 Formal methods

In recent years, hardware and software systems have experimented a continuous growth
in size and functionality. Due to this increase of complexity the probability to introduce
design errors has also increased considerably. Often, such systems are used in applications
where a failure has unacceptable consequences. Errors in electronic commerce systems,
communication networks, traffic control systems, medical instruments, etc. may be the
cause of important loss of money, time, or even human lives. One well-known example
is the error found in the divider unit of the Pentium microprocessor in the fall of 1994,
which correction and replacement costed Intel Corp. about 475 million US dollars [Pet97].
Another famous case is the launch failure of the Ariane 5 rocket, which exploded 37
seconds after lit-off on June 1996 due to a software error that interpreted the flight altitude
as a 16-bit integer when it was meant to be a 64-bit real [Lio96]. A long list of similar

incidents related to failures in computers and electronic systems can be found in [Neu].

A major goal of engineering is to provide mechanisms that allow the construction of
reliable systems despite of their complexity. One way of achieving this goal is to use
formal methods, which involve mathematically-based languages, techniques and tools for
the modeling, specification, design and verification of systems. The use of formal methods
for the specification of a system requires certain precision, due to which ambiguities can
be avoided along the design process. Also, the strict syntax and semantics provided by the
formalisms often forces the designers to achieve a deep understanding of the system, in
such a way that the relevant features are properly captured. On the other hand, the formal
nature of the analysis on the resulting implementation provides an objective point of view
about the degree of correctness of the system with respect to the original specification.
Altogether provides a systematic approach for the correct construction of systems, which
is suitable for its automatization by means of CAD/CAV tools.

Formal methods per se do not guarantee the construction of systems of better quality. In
order to benefit from formal methods, appropriate formalisms for the specific application
domain must be chosen. Also, if CAD/CAV tools are used one must remember that they
can be buggy and comparisons between more than one tool can be mandatory. Moreover,
the results of the formal analysis to check the correctness of the results obtained along the
design, must be properly interpreted, and this is not always an easy or evident task.

Finally, certain techniques such as formal verification often cannot be applied to a
system as a whole, due to size/complexity considerations. Hence, a compromise is usually
required between the size of the system and an adequate level of abstraction which allows
the successful application of formal methods. When too complex systems are involved
such that a complete formalization becomes intractable, the verification approach is used
only for the most critical parts of the system. Moreover, high-level reasoning techniques

4 CHAPTER 1 : INTRODUCTION

Figure 1.1 Automaton modeling a modulo 3 counter.

often come into play in order to allow dealing with the complexity issue at a higher level
of abstraction.

1.2.1 Formal methods in the design process

Formal methods can be used along the complete design flow, from the early stages where
the requirements are still being captured, until the latter stages where the system is yet
implemented and full details are available.

Formal modeling consists in selecting a mathematical representation expressive enough
to formalize a particular application, and powerful enough to explore and reason about
the behavior of the system. This often requires the translation from a non-mathematical
model, such as data-flow diagrams, pseudo-code, English text, etc., into formal models
that include, among others: process algebras [BW90|, Petri nets [Pet81], transition sys-
tems [Arn94], or timed automata [AD96]. The choice of one or another depends on the
expressiveness power and the level of abstraction required for the application. Some of
such modeling formalisms are discussed in more detail in Chapters 2 and 3.

ExXAMPLE 1.1 Informally, an automaton is a machine that evolves from one state to
another under the action of transitions. For example, a module 3 counter can be modeled
by an automaton with three states, one per counter value, and transitions that reflect the
possible actions on the counter, i.e. increment or decrement its value (see Figure 1.1).
Notice that details such as if the counter is implemented by a software program or by
a sequential circuit, for example, are abstracted away. Therefore, if the counter is finally
implemented as a circuit, with a so abstract model, it will be impossible to reason about
facts like if there is a short-circuit in a stack of transistors implementing a flip-flop, for
example. However, the model may suffice if we want to check, for instance, if the counting
process gets stuck after counting up to 2. m1ll

Formal specification covers the process of describing a system and its desired properties.
The specification describes how the system is expected to work in the given environment.

1.2 FORMAL METHODS 5

The specification avoids unnecessary details and provides a general-enough description
that can be adapted to system changes later on. This requires the use of a language with
a mathematically defined syntax and semantics, which must be related to the chosen for-
mal model. The kind of properties specified may include functional behavior, interface,
timing behavior, performance, etc. Formal specifications may serve as a sound communi-
cation mechanism between the people involved along the life cycle of a system: customers,
designers, implementer, testers, and so on. Examples of formal specification languages
include Z [Spi88], CCS [Mil89], CSP [Hoa85], temporal logic [Pnu8l, CE81], LOTOS
[ISO89], etc. Some of them are more focused on the system description, whereas others
are more suitable for the specification of properties. A good survey of the successful use
of formal specifications in a variety of areas can be found in [CW96].

EXAMPLE 1.1 (CcONT.) We may want to formulate a property that states that the
modulo 8 counter of Figure 1.1 is free of deadlocks, i.e. it cannot end up stuck in any
state. For example, such property is generally stated using the temporal logic CTL [CE81]
by the formula AG EX true which can be read as: “whatever the state reached may be
(AG), there will exist an immediate successor state (EX true)”. See Section 3.4.1 for more

details on CTL.
Hi1l1

Formal analysis refers to techniques that can be used to calculate and explore the
system behavior, and to verify properties of it. The main topic in this area of research is
formal verification, in which two main approaches have traditionally coexisted. Namely,
those approaches based in proof-theoretic automated deduction, such as theorem proving
[GMWT79]; and those based in finite state methods and state exploration, such as model
checking [CGP00]. More details on both approaches are given in Section 1.3.2.

EXAMPLE 1.1 (CONT.) Using the appropriate mechanism, for ezample model-checking,
it can be demonstrated that in the automata of Figure 1.1 which models a modulo 3 counter,

every state satisfies the deadlock freeness property stated above.
mil1

A typical design flow for concurrent systems consists of an iterative process in which
both CAD/CAV tools and also the designer are involved. First, the process of verifying
the specification is aimed at checking whether the system will not exhibit undesired be-
haviors. Then, the synthesis process generates an implementation of the system, using the
primitives provided by some sort of library. The library may consist of different objects
depending on the particular application: a set of logic gates to implement digital circuits,
a set of assembler instructions of a given microprocessor, etc. Once the implementation
is generated, the designer may want to prove if the functionality of the implementation
is equivalent to that initially specified, under certain equivalence criteria. Despite of the

6 CHAPTER 1 : INTRODUCTION

Specification =

Functional Incorrect

properties

Specification
validation

Correct

Modify
specification
'v
- Non-functional
Library @@ properties
|

!

Incorrect m@ “¢0dif¥ |
A verification non-functiona
Q properties

Correct

Y
Incorrect Non-functional Incorrect
verification

Correct

Figure 1.2 Tterative design flow.

equivalence with the specification, it is often required that the system satisfies other non-
functional constraints. Requirement such as a particular response time, a limit in the
amount of memory used by a program, etc. may be desirable at this point. In order to fi-
nally obtain a correct system that satisfies both functional and non-functional constraints,
it may be required to modify the specification, resynthesizing the system, etc. Therefore,
the whole process leads to an iterative design flow as that depicted in Figure 1.2.

The contributions of this thesis are focused on the verification of functional properties.
The properties may depend on timing aspects of the system and/or of the environment
in which it operates. The developed methods can be applied also to the verification of

general functional properties and the validation of certain aspects of the specifications.

1.3 Formal verification

Although more insightful details about the verification of timed systems are given in
Chapter 3, this section provides some fundamentals about the formal verification problem

in general.

1.3 FORMAL VERIFICATION 7

1.3.1 Verification versus simulation

In order to check if a system implementation behaves according to its specification
or satisfies certain properties, all possible behaviors of the system must be taken into
consideration.

Nowadays, the most common approach for design verification is still computer-aided
simulation. In simulation, input patterns are created which reflect typical or critical
execution traces, the implementation is excited with such patterns, and the output is
compared to that expected according to the specification. In case of sequential circuits,
for example, all possible input combinations in every possible state must be analyzed.
Since the number of required input patterns increases exponentially with the number of
inputs and the number of states of the circuit, the approach is impractical even for circuits
of moderate size. In consequence, the number of input patterns must be reduced and some
design errors may remain undetected. Although simulation is the most intuitive approach
for checking the correct behavior of a system, and is important for discovering failures
quickly, it is not satisfactory when too complex designs need to be extensively analyzed.

An alternative to simulation is formal verification, which consists in building a ma-
thematically-based proof that a system (implementation) behaves according to a given
specification. Often, some simulation-based methods are also called “verification”. To
distinguish them from verification, the prefix “formal” is used to differentiate between
both methods. The following example, taken from [Gor89], illustrates the fundamental

difference between simulation and formal verification.

EXAMPLE 1.2 The goal is to show that the expression (z +1)2 = 2? + 2z + 1 holds,
i.e. that both sides of the equation lead to the same result for all possible input values:

A simulation based approach would check the equation using concrete values for x as:

| (z+1)? |22 +22+1
0 1 1
1 4 4
2 9 9
3 16 16
9 100 100
67 4624 4624

Howewver, as long as the equality must hold for all numbers — not even restricted to the
subset of natural numbers as in the above table — simulation is not capable of establishing
the validity of the equation.

In contrast, a formal mathematical proof can do exactly this by applying mathematical
transformation rules as it is shown in the following table:

8 CHAPTER 1 : INTRODUCTION

1. [+ 1?2 =(@+1)(z+1) definition of square

2. | (z+D)(x+1)=(x+ Dx+ (z+ 1)1 | definition of distributivity

8 | (z+1)?=(z+ 1z + (z+1)1 substitution of 2. in 1.

4. | (z+1D)1l=z+1 neutral element 1

5. | (z+)z =2+ 1z distributivity

6. |(z+1)2=2zx+1lz+z+1 substitution of 4. and 5. in 3.
7. | lx=z neutral element 1

8 |+ 1)l =zz+z+r+1 substitution of 7. in 6.

9. | zx =2? definition of square

10. | z+z =2z definition of 2x

1. | (z+ 1) =22+22 +1 substitution of 9. and 10. in 8.

H12

In simulation, a complete model of the system is used, however only a partial verifica-
tion is achievable. In contrast, in formal verification a partial model of the appropriate
abstraction level is used, and a complete proof can be obtained provided that model. As a
consequence, it is often the case that both approaches are combined. Fast simulation may
be used to discover simple or expected failures in the early stages of a design, whereas
formal verification may be used to discover unusual or exotic failures in critical parts of
the system.

Finally, recall that in general, in order to be able to perform a formal analysis and even
be able to automate it, the specification, the implementation and the correctness relation

must be in a form which allows a rigorous formal treatment.

1.3.2 Main approaches to formal verification

As cited above, there are two major approaches to formal verification, namely theo-
rem proving and model checking. This section gives some general details on how these
approaches work.

In theorem proving, both the system (implementation) and the properties (specification)
are expressed as formulas in some mathematical logic. The logic is based in a set of axioms
and provides a set of inference rules. Then, the approach consists in finding a proof of a
given correctness relation between the implementation and the specification, following the
axioms and the inference rules of the logic (see Figure 1.3). Therefore, it can deal directly
with infinite state spaces, since no explicit state space exploration is required. However, the
high complexity of the algorithms involved makes theorem proving applicable in practice
only to moderate size or to particularly well-suited systems.

The proofs can be constructed automatically, although often require manual interaction
of experts on the underlying logic and proof mechanisms. As a consequence, the process
may become slow and often error-prone. In contrast, in the process of building the proof,
the user achieves deep knowledge of the details of the system and the properties it must
satisfy.

1.3 FORMAL VERIFICATION 9

Implication

Implementatio Specification

Logic formula Logic formula

Equivalence

Figure 1.8 The theorem proving approach.

Theorem proving methods have not yet achieved widespread use outside universities.
However, there are a number of representative theorem provers, such as HOL [GM93] or
pvs [ORSS94], which have been used successfully in several domains.

Model checking relies on building a finite model of a system and checking that the desired
property holds in that model (see Figure 1.4). In temporal model checking [CE81, QS81]
specifications are expressed in a temporal logic [Pnu81] and systems are modeled as finite
state transition systems. An efficient search procedure is used to check if the transition
system is a model for the specification. Other approaches use automata for both the
specification and the system model. Then, the system is compared to the specification
to determine if its behavior conforms to that of the specification. Different notions of
conformance have been explored, such as language inclusion [Kur94], refinements [CPS93,
Ros94], observational equivalence [CPS93], etc.

In contrast to theorem proving, model checking techniques are completely automatic.
The check is performed by an exhaustive state space exploration which requires the use
of specific algorithms and data structures to handle large state spaces. When the model
checking algorithms fail to prove a given property, they are able to produce a coun-
terexample, which indicates how is possible for the system to violate the specification.
Counterexamples often correspond to subtle design errors and therefore can be used for
debugging the system.

The main drawback of model checking is the so-called state explosion problem, which
refers to the exponential blow up of the number of states of a system, such that it exceeds
the available resources of a computer. Several approaches have been used so far to alleviate
this problem. These include low-level techniques such as: symbolic representations of
the state space [McM93] using binary decision diagrams (BDDs) [Bry86], partial order
reductions [KP88, Pel96], etc. But also techniques that work at a higher level, such as:
assume guarantee reasoning to exploit the modularity of the system [Pnu84], abstractions
that remove irrelevant details for a particular analysis [Mel88], use of symmetries [CTEF96,
ES96] and induction [BSV94, VK98] for systems with certain degree of regularity such as
pipelines, etc. However, except for certain well-suited examples, only systems with about
one hundred state variable can be handled as a whole. Clearly, this is far from the sizes of

the current integrated circuits and microprocessors, for example. The verification problem

10 CHAPTER 1 : INTRODUCTION

Finite state mod

\/

[Model checkeD

Counterexampl
L pig

Correct

‘ Implementation Property ’
I Temporal logic formud

Figure 1.4 The model checking approach.

becomes much more difficult in the case of timed systems, because timing information must
be taken into account when building the state space (see Chapter 3).

Several successful model checkers can be found nowadays, including: sMv [McM93]
which was the first model checker to use BDDs allowing symbolic analysis; SPIN [Hol97]
that takes advantage of partial orders for the verification of distributed algorithms; HSIS
[ABC*94] which combines model checking with language inclusion; KRONOS [Yov97] and
UPAAL [BLL195] for the verification of real-time systems using timed automata; COSPAN
[AK95] which verifies real-time systems by checking inclusion between w-automata; HYTECH
[HHWT97] which allows to perform parametrized analysis, i.e. to determine the values of
design parameters for which a linear hybrid automaton satisfies a temporal-logic require-
ment; and MOCHA [AHM 98] for modular verification of heterogeneous systems modeled
by reactive modules.

The success of all these tools developed at universities, combined with the intensified
need for formal methods has attracted the interest of the industry. As a result, inter-
nal tools have been developed (inside Motorola, Intel, IBM, etc.) and some commercial
tools are also available (FORMALCHECK from Lucent Technologies, RULEBASE from IBM,
INSIGHT from Crysalis Design, etc.).

Finally recall that there is no ideal verification approach which is powerful enough for all
proof tasks and which, at the same time, allows completely automated proofs. Moreover,
the choice of the best suited approach strongly depends on the actual verification problem.

1.4 Formal verification of timed systems

In systems whose correctness depends on a proper timing a quantitative notion of time
must be incorporated both into the system models and also into the specification for-
malisms. Since time constitutes an additional source of complexity, the way it is rep-
resented has a crucial impact on the size of the resulting timed state space. Two main
approaches exist for that purpose: discrete-time and continuous-time.

1.5 OVERVIEW OF THE CONTRIBUTIONS 11

Formalisms based on the discrete-time notion map time onto the integer domain. They
require to discretize time by choosing a fixed time quantum, so that the separation of
two events in the timed domain is always a multiple of such quantum. In continuous-
time models a non-negative real value is associated to each event of the system and to
each reachable state, so that the exact bounds on the actual delays between the events
can be expressed. The main advantage of discrete-time is that the timing analysis and
timed state space exploration techniques are generally simpler than their counterparts for
continuous-time. The main drawback is that determining the time quantum a priori may

not be easy and therefore may compromise the accuracy of the model.

It has been mentioned above that the verification of concurrent systems typically suf-
fers from the well known state-explosion problem. In systems with a finite number of
states, this problem is often alleviated by using symbolic techniques to implicitly enu-
merate all reachable states [Bur92]. Abstraction methods are also a common technique
used to reduce the complexity of the model, by hiding those implementation details that
are irrelevant to the properties begin verified [Mel88]. However, when time becomes an
essential dimension in the verification problem, complexity is drastically increased. The
correctness of timed systems depends on the actual values of event delays and not only
on its functional behavior. Typically, timing behavior is specified by a set of delays that
determine the time duration between the initiation and the completion of an event. This
is the valid model for the gates in a circuit, for example, in which gate delays denote the
time between the enabledness of the gate and the actual change at the output.

Most approaches for the verification of timed systems rely on the construction of the
timed reachability space. The problem is PSPACE-hard [AD94] since the number of
timed states is infinite. Therefore, typical model checking algorithms are no longer ap-
plicable. Also, in order to overcome the complexity, finite representations of the timed
state space must be provided. Although many techniques have been devised to alleviate
the state-explosion problem and the additional complexity due to the time dimension,
spectacular improvements in the resulting representations and algorithms are unlikely. In
consequence, other high-level techniques (e.g. abstraction, compositional reasoning, in-
duction, etc.) appear as the more promising ones for future developments in this area of
research. Nevertheless, several methodologies and tools exist for the verification of timed
systems.

1.5 Overview of the contributions

This thesis proposes a novel verification approach that extends the applicability of the
conventional methods based on symbolic reachability analysis to timed systems. The
approach is based on two fundamental facts:

12 CHAPTER 1 : INTRODUCTION

m The observation that the set of traces of a transition system can be covered by a
set of marked graphs. This reduces the verification problem to that of: the timing
analysis over small sets of events from which timing constraints that prove the
correctness or incorrectness of a system can be derived; and the incorporation of

such constraints into the system along an incremental refinement process.

m The use of relative timing [SGR99] to represent the time domain in an efficient way.
When considering precise delay bounds in timed systems, the complexity blow-up
often causes synthesis and verification to become intractable problems, even for
small systems. Instead, relative timing considers the effect of delays in a system in
terms of relative ordering of events (e.g. a happens before b).

The verification approach can be briefly summarized as follows. Rather than calculating
the exact timed state space, the verification approach performs an off-line timing analysis
on a set of event structures [NPW81] that covers the traces leading to system failures. This
timing analysis is efficiently performed by using McMillan and Dill’s algorithm [MD92].
The resulting timing constraints are incorporated to the system in the form of relative
timing information along a series of iterative refinements of the original untimed state
space. Finally, if some of the traces leading to failure situations cannot be proved to be
timing-inconsistent, then the system is incorrect and the failure trace is a counterexample.

Due to the incremental incorporation of timing information along the verification, our
approach works with over-approximations of the actual timed state space of the system.
Being the completely untimed state space used as starting point the roughest approxi-
mation possible. This fact allows the efficient verification of safety properties but makes
impossible the verification of liveness properties, for example. For safety properties, it is
enough to prove that no “undesired” situations (states) are reachable by the system. If
“undesired” states do not appear in the over-approximations, they will neither appear in
the exact timed state space, but not vice versa. Therefore, the verification can produce
“false-negatives” but never “false-positives”, i.e. it is conservative for safety properties.
On the contrary, for liveness properties it must be proved that some “desired” situation
is actually reachable. For that kind of proof, the exact timed state space (or an under-

approximation for conservativeness) must be computed.

The idea of using event structures for timing analysis was already proposed in [KBS02].
However, no algorithm was presented that can handle a general class of transition systems
for verification.

The approach presented here, not only verifies the correctness of the system with respect
to a set of given properties, but also provides as back-annotation a set of timing constraints

sufficient to prove correctness. This information is crucial in frameworks in which synthesis

1.5 OVERVIEW OF THE CONTRIBUTIONS 13

and verification are iteratively invoked to design systems that must meet functional and
non-functional constraints.

We want to remark that the use of the method for the verification of untimed sys-
tems does not involve any additional overhead with respect to the conventional symbolic
methods (e.g. [BCM192]).

The resulting verification algorithms have been fully implemented in the CAV tool
TRANSYT. The applicability of the approach and the functionality of the tool have been
proved by verifying a number of timed asynchronous circuits [PCKPO00].

The work on verification is completed by tackling the verification of a complex timed
system, namely the TPCMOS architecture [SRCT00]. The IPCMOS circuit is a controller
for asynchronous scalable architectures (such as pipelines, meshes, etc.) that can operate
at frequencies of up to 4GHz thanks to a pulse-driven protocol for the communication
with the environment. The correctness of the system highly depends on the delays of the
internal gates and the environment. The verification has been carried out by combining
the core verification algorithm outlined above, together with the use of assume-guarantee
reasoning [Pnu84] to perform a hierarchical verification by means of abstractions [Mel88],
and the use of mathematical induction to prove the correctness of infinite-state systems.
As a result, it has been proved the correctness of an IPCMOS pipeline regardless of the
number of stages that conform it [PCSP02].

The key features of the presented work on the verification of timed systems can be
summarized by the following topics:

s The use of relative timing allows to avoid the computation of the exact timed state
space of the system, which is a common practice of model checking methods for
timed systems. Instead in the proposed approach, the timed behavior of events
is captured by means of partial orders that represent simple facts as if an event
happens before another, i.e. relative temporal relations.

= As a consequence of the previous topic, the state space of the system can be repre-
sented and managed using symbolic methods with proved efficiency such as BDDs.
This allows a natural extension of traditional symbolic model checking techniques
for untimed systems into the timed systems domain of application.

= No global timing analysis is done for the whole system. Instead, the timing analysis
is performed locally for a set of failure traces that are covered by a marked graph.
Therefore, only a subset of the events of the system is involved and the timing
analysis can be carried out very efficiently.

= Although timed systems provide delays for all the events in the system, often many
of the constraints imposed by such delays are not required for the correctness of

14 CHAPTER 1 : INTRODUCTION

the system. Because of the iterative nature of the proposed verification approach,
timing information is only considered in an on-demand basis, as long as it is required
to prove the infeasibility in the timed domain of a set of failure traces.

m As a result of the previous topic, the untimed state space of the system is refined
incrementally as long as new timing information is taken into account. This incre-
mental nature of the approach provides a good way to obtain at least partial results
even on systems for which complete solutions could be too complex to compute.

m The proposed verification approach not only proves or disproves the correctness of
the system with respect to a set of properties. If the system is correct the algorithm
provides the set of relative timing relations used for the proof. Those relations
constitute a set of sufficient timing constraints that guarantee the correctness of
the system. On the other hand, if the system is incorrect, a counterexample failure
trace is provided. The most important aspect of all this feedback is that can be
used as valuable back-annotation information along a design process.

s The verification approach has been fully implemented into the CAV tool TRANSYT.
The tool has proved its functionality as well as the validity of the overall verification
approach, by verifying a set of different types of timed asynchronous circuits with
up to more than 105 untimed states.

m Compositional verification methods have been combined with our basic verification
approach in order to tackle the size/complexity issues involved in the verification of
complex timed systems. Thus, abstractions, assume-guarantee reasoning and math-
ematical induction have been used to prove the correctness of a scalable pipelined

architecture.

1.6 Structure of the thesis

The rest of this document is organized as follows.

Chapter 2 introduces the fundamentals of the different formal models used in the sub-
sequent chapters. Models such as Petri nets and several types of transition systems are
described, together with some of their basic properties.

Chapter 3 introduces general background on the formal verification of timed systems
and reviews the significant previous work on this area of research. Special attention is paid
to the verification using timed automata, since the currently most successful methods and
tools are based on them.

In Chapter 4 the main theoretical aspects of the relative timing-based verification ap-
proach for timed system, presented in this thesis are introduced. Examples of the ap-
plicability of the developed methodology are shown in Chapter 5, where different flavors
of asynchronous circuits are verified. Chapter 6 presents a complex case study in which

1.6 STRUCTURE OF THE THESIS 15

the basic verification approach is combined with assume-guarantee reasoning by means
of abstractions, and mathematical induction. The result is the successful verification the
IPCMOS architecture.

Chapter 7 summarizes the conclusions and contributions of this work and outlines some
open areas for future research.

Additionally, some appendixes are included.

First, Appendix A analyzes the problem of determining the time separation between
the events of a system. An algorithm for timing analysis on acyclic graphs is described in
detail.

Then, Appendix B provides implementation details of one of the key parts of the veri-
fication methodology.

And finally, Appendix C introduces the commands in the TRANSYT tool related to the
verification of timed systems, which implement the presented verification approach.

MODELS FOR CONCURRENT SYSTEMS

The best material model of a cat is another, or preferably the same, cat.
—Arturo Rosenblueth - Philosophy of Science, 1945

A theory has only the alternative of being right or wrong. A model has a
third possibility: it may be right, but irrelevant.
—DManfred Eigen - The Physicist’s Conception of Nature, 1973

Summary

This chapter introduces the fundamentals of the models used for the specification, syn-
thesis and verification of systems in the subsequent chapters. In particular, transition
systems and Petri nets are introduced as models for untimed systems. Other classes
of transition systems, such as timed transition systems and lazy transition systems are
introduced as the models used for timed systems.

Transition systems and Petri nets provide an abstract view of the events and states of
a system, without considering any binary encoding. In some cases, such as for the logic
synthesis of circuits, or simply in order to achieve efficient implementations of verification
algorithms, such encoding is required. The encoding allows the symbolic manipulation
of a system using compact representations and efficient algorithms based on BDDs, for

example. Chapter 5 provides details on the binary encoding of transition systems.

17

18 CHAPTER 2 : MODELS FOR CONCURRENT SYSTEMS

2.1 Introduction

As it will be seen in Chapter 4, the proposed verification approach uses timed transition
systems to model the timed systems under verification. The approach, however, does
not manipulate the exact timed state space of the system. Instead, the untimed state
space, modeled by a transition system, is used as the starting point of the verification
approach. Then, an incremental refinement of the untimed state space with relative timing
information is carried out, thus leading to the use of lazy transitions systems. This chapter
presents the fundamental concepts and notation related to the different types of transition
systems involved in the verification approach.

On the other hand, Petri nets and its interpretation as signal transition graphs are often
used to model asynchronous digital circuits and other concurrent systems. As a conse-
quence, a number of verification methods have been developed under such formalisms (see
Section 3.6). Moreover, in Chapter 5 some illustrative examples of the verification of timed
systems are presented, which are originally specified with Petri nets and signal transition
graphs. For this reason, we have considered appropriate to introduce the fundamentals of
such modeling formalisms at the end of this chapter.

2.2 Transition systems

Transition systems (TS) are a formalism used to describe systems of concurrent pro-
cesses [Arn94]. The formalism, although mathematically simple, can model most of the
properties of such systems, and so can be used to study their semantics. Several theoreti-
cal tools based on transition systems have been developed, including equivalence relations
with other formalisms (formal languages, Petri nets, etc.). The usefulness of these theo-
retical tools is supported by the existence of a variety of software tools.

Intuitively, a transition system consists of the set of possible states of a system, and
a set of transitions that the system can produce in order to change from one state to
another. In comparison to event-based models such as Petri nets, transition systems offer
a view of a system at a lower level of abstraction.

DEFINITION 2.1 (TRANSITION SYSTEM)
A transition system (TS) [NRT92] is a quadruple A = (S,%,T,sy), where S is a
non-empty set of states, 3 is a non-empty alphabet of events, T C S x X x S is a

transition relation, and sy s the initial state.

The elements of T are called transitions and are indistinctly denoted by s — s’ or
by (s,e,s’).

An event e is enabled at state s if 3 s — s’ € T. We will denote by E(s)

the set of events enabled at state s. The firing region of event e is defined as

FR(e) ={s €S | e € &(s)}, i.e. the set of states where e is enabled. - o1

2.2 TRANSITION SYSTEMS 19

S @
Atl/ } \tzs
S s
| 2
[] o
t7
t3 / N‘\ V \t6
° ° °
S, s, Sg Se
t3 6
t4 t5
o
s

Figure 2.1 An example of transition system.

A TS is finite if S and X are finite. A TS is called deterministic if for each state s and
each event e there is at most one state s’ such that s — s'. In the sequel, only finite

transition systems will be considered. Moreover, no multiple arcs should exist between

. . e
any pair of states, i.e. s — s €T As—s eT = e=¢.

EXAMPLE 2.1 A TS can be represented by an arc-labeled directed graph. A simple
example of a TS is shown in Figure 2.1. States are represented as dots, transitions are the
directed arcs between the states, and the events are the labels of the transitions. That is,
S ={so,...,s7}, E={t1,...,t7} and T ={sp BTN 1,51 ay Sa,...}. As an example,
the firing region of event t5 is FR(ts) = {s2,s6}-

H21

DEFINITION 2.2 (RUN)
A run of a transition system A = (S,%,T,so) is a sequence of transitions p =
S1 N S9 2, , such that sy =sg and Vi>1 : s i> siv1 € T. Event e; 1is

said to fire at step © of the run.
H22

With an abuse of notation, the expressions s; € p, s; Sy Siy1 € p, S; S e P,
Sty si+1 € p, etc, will be often used to denote the fact that different fragments of a
sequence belong to a run.

Several ordering relations between the events of a TS can be defined.

DEFINITION 2.3 (TRIGGERING, CONFLICT, CONCURRENCY)

Given a transition system A = (S,3,T,so) and two events ej,es € X :

(a) ey triggers eo if the firing of e1 enables es, i.e. if sy sy € T, such
that s1 € FR(e2) and so € FR(es).

20 CHAPTER 2 : MODELS FOR CONCURRENT SYSTEMS

(b) e; disables ey if Js; N so € T, such that s; € FR(eg) and sy & FR(eg).
e1 and ey are in conflict if either e; disables ey or ey disables ej.

(c) e1 and ey are concurrent if there is a state in which both events are en-
abled and the firing of one of them does not disable the other: 3s € FR(e1) N
FR(e2) 51>51€T A S%SQET = ds3 €S : 51&536
T N so i) s3eT .

H23

The following definition captures the notion of enabling of an event at a given state of

a run, and the conditions for such event to keep enabled along the run until it fires or is

disabled by the firing of another event.

DEFINITION 2.4 (ENABLING INTERVAL)
Let A = (S,%,T,sp) be a TS and let p = s1 L) 22, ... be a run of A.
Given an event e and a state s; € p such that s; € FR(e), FirstEnabled(p,s;,e) is
defined as the state sj, j <1, such that:

m j<k<i = s;€FR(e) (e iscontinuously enabled between s; and s;)

m ;>0 = s;_; FR(e) (e is not enabled before s;)

e; e;_
The sequence s; Ly s; 1s called the enabling interval of e with respect to s;.

H24

Notice that this definition imposes nothing about the necessity of event e to actually
o

fire in p. Therefore, given s; s si+1 € p and FirstEnabled(p,s;,e) =s; such
that s;;+1 & FR(e), e actually fires if e = e;, whereas e is disabled by the firing of
e; otherwise. As an example, consider the run p = s R S9 LN S LN s7--- of the
TS in Figure 2.1. In this case we have that FirstEnabled(p,sg,t5) = so.

The transitive closure of the transition relation T is called the reachability relation
between states and is denoted by T*. In other words, state s’ is reachable from state s if
there is a run between both, denoted by sy , or simply s—¢' if the run is not relevant.
The set of states reachable through all possible runs of the system is given by the following
definition:

DEFINITION 2.5 (REACHABLE STATES)
Given a TS A= (S,%,T,sy), the set of reachable states from a state s is recursively
defined as:
Reach(s,T) = {s} U U Reach(s',T)
s—s'eT mos

Henceforth, it is assumed that S = Reach(sy,T') for any TS.

2.3 TIMED TRANSITION SYSTEMS 21

3(a)g [12]
5(b)O [152]
o(c)d [34]
5(d)g [L15]
o(e)d [1,1.5]

(a) (b)

Figure 2.2 An example of timed transition system: (a) underlying TS, (b) associated delay intervals.

The firing region of c is shadowed.

2.3 Timed transition systems

Timed transition systems (TTS) [HMP92a] allow to model systems in which timing
information is particularly relevant for their operation, such as real-time systems. TTSs
generalize the basic computational model of transition systems by associating minimum
and maximum delays to the transitions. The real line is generally used as timed domain
although integer and rational values are also used by some authors.

Verification methods for timed transition systems have been developed for various logical
specification languages. The methods include both algorithmic techniques for finite-state
systems [AH90, HLP90, Ost90] and deductive techniques based on proof systems [Hen90,
Ost90, HMPI1].

Time is incorporated to transition systems by assuming that transitions happen in-
stantaneously, while minimum and maximum delay bounds restrict the times at which
transitions may occur. The delay bounds ensure that transitions occur neither too early
(i.e. never before the minimum delay bound) nor too late (i.e. never after the maximum
delay bound). The absence of a lower delay bound requirement is modeled by a minimum
delay bound of 0, whereas the absence of an upper delay bound requirement is modeled

by a maximum delay bound of co. Formally:

22 CHAPTER 2 : MODELS FOR CONCURRENT SYSTEMS

DEFINITION 2.6 (TIMED TRANSITION SYSTEM)
A timed transition system (TTS) [HMP92a] is a triple A = (A~,8',6%), where
A~ =(8,%,T,sp) is a TS called the underlying transition system, &' : ¥ — Rt and
6% 13 — RTU{oc} respectively associate a minimum and a mazimum delay bound
to each event, such that ¥V e € ¥ : 0'(e) < 6%(e) .

Min-maz delay ranges are represented by [d, D], or by [d,00) if the mazimum
delay is unbounded. H26

EXAMPLE 2.2 Figure 2.2 depicts an example of TTS described by means of: the un-
derlying TS , where the firing region of event c is shadowed, and the delays associated to
the events of the system. If the delay of an event is omitted we assume it belongs to the

less constraining interval [0,00). This is the case of event g, for example. -

The TS A~ captures the behavior of the system in the untimed domain, i.e. without
considering the delay information. The behavior of the system in the timed domain is
obtained by associating to each state a time stamp that indicates when the state was
reached. Thus, the same state can be visited at different time instants depending on its
prehistory, and the time stamps must comply with the delay bounds specified for each
event (see Definition 2.7). Conversely, a state can never be reached in the timed domain if
its incoming transitions are never fired due to their respective delay constraints. Time is
always relative to that of the initial state of the system, and must monotonically increase
along the firing sequences.

Because of the time dimension, the computation of the exact timed state space of a
system has been proved to be a PSPACE-complete problem [AD90] and demonstrated to
be a highly complex task in several contexts such as real-time systems [AD94, HMP91]
and asynchronous circuits [DKMW92, Bur92, HB94, MP95, SY96, VdJLI6].

The following definition characterizes which sequences of states of the system are actu-
ally feasible when the specified delay bounds are taken into consideration.

DEFINITION 2.7 (TIMING-CONSISTENT RUN)
Let A = (A=,6",6%) be a TTS and let p = s1—Ls9—25 - be a run of A=. pis
timing-consistent with A if a sequence 71 < 10 < .-+ of monotonically increasing

real-valued time stamps can be assigned to the states in p such that:
Vsi—tssii1 € p and Ve € E(s;) such that FirstEnabled(p,s;,e) =s; :
me=¢ = 5l(e) < Tiy1— 17 1ie. an event cannot fire before its minimum delay
has elapsed, and

7 —7; <d%(e) i.e. an event cannot remain enabled after its mazimum delay
has elapsed. m2.7

2.3 TIMED TRANSITION SYSTEMS 23

15 2 35 15 25 35
s2 f sa———— s4 ————
b e : Le
2\ L L L ‘\1 f\s 2:[5 L I I I 4\5 ?
S5t T T T T 1 s5 ¢ T T T T T !
C Cc
5 7.5 \ 55 7.5
510 f % 4 ; s10 | P |
: d ‘ ;od ‘
5 75 5.5 75
512 P——m———— 512 F———m———o

Figure 2.3 Portion of the timed state space of the TTS of Figure 2.2.

The previous definition characterizes those runs which are possible according to the
delay bounds associated to the events of the system. The time stamp 7;41 is assigned
to state s;y1 and corresponds to the firing time of event e; along p. Similarly,
7; corresponds to the enabling time. Thus, the firing time of an event only depends on its
enabling time plus certain delay amount within the given bounds. Moreover, the disabling
of an event must be produced before its maximum delay has elapsed, otherwise it should
have fired already.

A timing-consistent run can be represented as a sequence of transitions of the form:
(51,71)i>(52,7'2)2> -+ . Where for all 7 > 0 : each pair (s;,7;) is called a timed state
with s; € S and 7; € RT; and Sii)SZ'+1 €T . Also 71 =0 and lim; o7 = 00. We
will use this notation to represent the timed runs of a TTS when it eases the reading.

We say that a run is Zeno if it contains an infinite number of transitions in a finite
amount of time [AHI7], i.e. > ;i (Tiy1 — 73) < oo. For example, that could be the
case produced by a cycle of events with 0 delay. Without loss of generality, in the sequel
we will only consider systems modeled by non-zenoess TTSs, that is they can not produce

Zeno runs.

EXAMPLE 2.2 (CONT.) Figure 2.3 depicts a portion of the timed state space of the
TTS of Figure 2.2. The horizontal axis represents the time intervals in which the system
remains at each state, assuming that time begins at state sy. Notice that some states can
be reached, and also left, at different time instants depending on their prehistory.

To illustrate the behavior of the system in the timed domain assume the execution starts
at the timed state (sp,0). The system remains at such state until the minimum delay of
a elapses. Then the system can either fire a or wait until b becomes firable 0.5 time

24 CHAPTER 2 : MODELS FOR CONCURRENT SYSTEMS

units later. Thus, a can fire between time 0+6'(a) =1 and time 04 0"(a) = 2, whereas
b can fire between time 0+ 6'(b) = 1.5 and time 0+ 6“(b) = 2. Assume a fires at
time 1.5 leading to the timed state (s1,1.5). Now b is still enabled and can fire, while
e and c become newly enabled. e cannot fire until time 1.5+ 6'(e) = 2.5, whereas c is
much slower and cannot fire until 1.5+ 6'(c) = 4.5. Therefore, if for example b fires at
time 1.5 leading to the timed state (s4,1.5), it will be followed by e and c, leading for
example to the timed states (ss,2.5) and (s10,4.5) successively. The execution continues
by firing d, and so on.

None of the states ss, Sg, S7, S, Sg or S11 s reachable in the portion of the timed
domain shown in the figure. For example, state sg can not be reached from s3 by firing
c, since ¢ is slower than a, even in the case that both events were enabled at the same
instant. In fact, only the following three runs are potentially timing-consistent if appropri-
ate time stamps are assigned to each state: sg 2, S| LN So i) S5 SN S10 i) S12- -,
S) — 51 i>S4 5 55— 510 i>512--- and sg i>53 25y — 55— s1p i>512---.
For example, the following timed run is timing-consistent:

(50,0) = (s1,1) =2 (s4,1.5) -2 (s5,2) - (s10,4) —25 (512,5) - --
Conversely, the following timed run is not timing-consistent:

(50,0) =25 (s1,1) = (54,2) —= (55,3.5) —= (510,5) —2> (512,5) - -
since the firing of e happens at time 3.5, but according to its delays and the firing of its
trigger a at time 1, e must fire between time 2 and time 2.5. m22

To conclude this section, we want to remark that different notions of timed transition
systems with timing constraints for the discrete-time paradigm have been also proposed
by several authors [PH88, Ost90, HMP91]. Similarly, clocked transition systems were
defined in [MP96] as an alternative model for real-time systems, where time is explicitly
represented by means of a set of timers (often called clocks) which increase uniformly
whenever time progresses, and can be set to specific values by the firing of transitions.
This type of transition systems is inspired by a more commonly used model called time
automata which is analyzed in detail in Chapter 3.

2.4 Lazy transition systems

When time becomes an essential magnitude in a model for concurrent systems, a com-
plexity dimension is added to the derived analysis and verification methods. In those for-
malisms and analysis mechanisms where time is an explicit magnitude, such complexity
is specially noticeable when computing the timed state space of the system. For exam-
ple, the problem of reachability in timed automata is proved to be PSPACE-hard [AD94],
where the exponentiality depends on the number of clocks and on the encoding of the
maximum values that can be taken by the clocks (see Section 3.3). This complexity makes
the analysis of systems with a moderate amount of untimed states almost impractical.

2.4 LAZY TRANSITION SYSTEMS 25

8(a)g [1,2]
5(b)O 152
d(c)Od [34]
5(d)O [L15]
o(e)d [L15]

(a) (b)

Figure 2.4 An example of lazy transition system: (a) LzTS corresponding to the TTS in Figure 2.2, (b)

delays associated to the events.

Several approaches have been devised to represent timed states in a succinct form, e.g.
[BM00]. However, the incorporation of the timed domain in the representation of the
states hampers an efficient representation of large state spaces with BDDs [Bry86]. Even
the discretization of time [HMP91] poses serious problems when the number of clocks or
the constants of the timing constraints are large. An interesting approach to face this
complexity problem was proposed in [AK95], where the clocks used during the analysis
of the system and their accuracy, are determined dynamically upon demand. In this way,
only that timing information relevant to the analysis emerges during the calculation of the
reachable states.

In some cases, however, rather than calculating the exact time intervals in which each
state can be visited by any valid run of the system, the only information required is
to know whether each state is visited by some timing-consistent run and what are the
enabling conditions for every visited state. In other words, only the set of reachable
states in the timed domain and the transition relations for every event are required. This
information can be represented by abstracting absolute time information out of the model.
The abstraction leads to the definition of a new computational model called lazy transition
systems [CKK™98], in which timing information is represented in terms of the notion of
laziness. This notion explicitly distinguishes among the enabling and the firing of an event,
assuming certain implicit delay between them. Formally:

26 CHAPTER 2 : MODELS FOR CONCURRENT SYSTEMS

DEFINITION 2.8 (LAZY TRANSITION SYSTEM)
A lazy transition system (LzTS) [CKK' 98] is a five-tuple A = (S, %, T,so, EnR) ,
where (S,%,T,so) is a TS, and the function EnR:X — 25 defines the enabling

region of each event.
H 28

Event e is said to be enabled at state s € S if s € EnR(e) . Similarly, event e is
said to be firable at state s € S if s € FR(e) . For each event e € ¥ the condition
FR(e) C EnR(e) must hold. Event e is said to be lazy if FR(e) # EnR(e). Therefore,
any state of a LzTS in the set EnR(e) \ FR(e) is a state in which the event e is enabled
but cannot fire due to the delays associated to the events of the system.

EXAMPLE 2.2 (CONT.) Fligure 2.4 shows the lazy transition system corresponding to
the timed transition system in Figure 2.2. Analyzing the delays, it can be proved that
event c s always slower to fire than events a, b and e. Therefore, ¢ becomes lazy
in those states where it is concurrently enabled with those faster events. Thus, although
c is enabled in states EnR(c) = {si1,s9,53,54,55}, it can only fire in FR(c) = {s5}, once a,
b and e have already fired. m2.2

Notice that a TS is just a particular case of LzTS in which both enabling and firing
regions coincide for all the events. Thus, the notion of enabling interval (see Definition 2.4)
is naturally extended to lazy transition systems by considering EnR(e) instead of FR(e)
for the enabledness of event e. Similarly, the ordering relations defined between the events
of a TS (see Definition 2.3) can be extended for LzTSs as follows:

DEFINITION 2.9 (TRIGGERING, CONFLICT, CONCURRENCY)
Given a lazy transition system A = (S,3,T,so,EnR) and two events ej,e; € X :

(a) ey triggers eo if the firing of e1 enables eq, ie. if sy BN sy € T, such
that s; € EnR(eg) and sy € EnR(es).
(b) e; disables es if Js; N so € T, such that s; € EnR(e2) and sy & EnR(es).
e1 and ey are in conflict if e; disables ey or ey disables e;.
(c) e1 and ey are concurrent if EnR(e;) N EnR(ez) # 0 and they are not in
conflict, and 3 s € FR(e1) NFR(e2) : s l>51 eT A s 2>52 €eT = ds3€
S s i>536T A 52353ET.
H29

Notice that the second condition for concurrency is analogue of the non-conflict require-
ment, but applies to the FR rather than to the EnR.

The use of LzTSs enables to reason in terms of partial orders of events, i.e. in terms
of the so-called relative timing paradigm [SGR99], which is much more intuitive than

2.5 PETRI NETS 27

delay Timed TS
bV \ Timed domain
Run
Transition \

system Enabling _, Timeconsistent _, 182y TC
interval (TC) run
(TS) \ /
Firing
region
Enabling # Firing Lazy TS

Figure 2.5 Relations among the main notions related to transition systems.

defining absolute time separations between pairs of events (see also Chapter 3). Moreover,
whereas absolute timing information requires complex techniques to represent the space
of reachable timed regions or states [Alu98] (e.g. using difference bound matrices, time
polyhedra, etc.), the generation of the reachable state space for relative timing is of the
same complexity as for untimed systems. Thus Definition 2.5 can be extended to LzTSs

in a straightforward manner.

Figure 2.5 depicts the relationships among the major notions around tansition systems,

and their timed and lazy counterparts.

2.5 Petri nets

Petri nets (PNs) were initially proposed in [Pet62] as a graphical and mathematical
formalism for describing information processing systems, characterized as being concur-
rent, asynchronous, distributed, parallel, non deterministic and/or stochastic. Since their
introduction, Petri nets have been used in a wide range of areas such as communica-
tion networks, computer architecture, distributed systems, manufacturing, digital circuit
synthesis and verification, etc.

Even though Petri nets constitute a powerful model, they consist of a few objects,
relations and behavior rules. Namely, a Petri net consists of:

m The net structure, a bipartite directed graph containing places, transitions and arcs,
that represent the static nature of the model.

m The net marking, which represents a distributed state of the model, in which a place

can be marked by several tokens.

m The execution rules, which represent the dynamic evolution of the state of the model,
1.e. describe how the tokens evolve through the places and transitions.

28 CHAPTER 2 : MODELS FOR CONCURRENT SYSTEMS

Figure 2.6 An example of Petri net.

Places can be seen as the state variables of the model. Transitions can be seen as
the events that transform the state of the model. Arcs determine which are the necessary
conditions for an event to occur and the values of the variables once an event has occurred.

A PN may also have additional information in its structure or in the markings, leading
to different classes of nets, such as High-level Petri nets [JR91] or Coloured Petri nets
[Jen92]. In the sequel, we restrict ourselves to the use of Place/Transition Petri nets, in
which the tokens do not carry any particular information. For a good introduction to the
different classes of Petri nets, their properties and usage, the reader is referred to [Pet81],
[Rei85] and [Mur89], for example.

The remaining of this section introduces the notions related to Petri nets necessary for
the work presented in the subsequent chapters.

DEFINITION 2.10 (PETRI NET)
A Petri net (PN) is a quadruple N = (P, T, F, M,), where P is a finite set of places,
T is a finite set of transitions, F : (P x T)U (T x P) — N is the flow function, and

M, : P — N is the initial marking (state) of the Petri net.
W 2.10

If the flow function is a relation on PUT, i.e. a mapping F': (PxT)U(T x P) — {0, 1},
then the PN is called ordinary. In the sequel we will assume all the PNs to be ordinary,
and will often talk about the flow relation F' instead of the flow function.

The pre-set and post-set of a node z € P UT are denoted by *xz = {y | (y,z) € F}
and z* = {y | (z,y) € F}, respectively. Informally, the pre-set of a transition (place)
corresponds to its input places (transitions), whereas its post-set corresponds to its output
places (transitions).

2.5 PETRI NETS 29

When Petri nets are graphically represented, places are drawn as circles, transitions
are drawn as boxes (or bars), the flow relation is represented by directed arcs, and tokens
appear as dots circumscribed into the places.

If restrictions are imposed on the structure of the net, several subclasses of PNs can be
defined [Mur89]: state machines, in which each transition has exactly one input place and
one output place; marked graphs, in which each place has exactly one input transition and
one output transition; free-choice Petri nets, in which if (p,t) € F then *t x p* C F for
every place p; etc.

EXAMPLE 2.3 Figure 2.6 depicts a Petri net, consisting of seven places, P = {p1,...,p7}
and seven transitions, T = {t1,...,t7}. The initial marking is indicated by the token in
place p1. When a place has only one predecessor and only one successor transition, it is
often replaced by a simple arc between both transitions. According to this, in the PN of
Figure 2.6, places pa, p3, pa and ps could be omitted.

This Petri net has only one choice place, p1, which has two successor transitions, tq
and to. Since p1 is the only predecessor of t1 and to, p1 is a free-choice place and so it is
the Petri net. m23

The structure of a Petri net defines the rules that determine its dynamic behavior. That
is, what are the conditions that make a transition to become enabled and what happens
when such transition actually fires.

DEFINITION 2.11 (ENABLING AND FIRING)
Given a Petri net N = (P, T, F, M,):

(a) A marking is a function M : P — N, which can be represented by a vector in
NPl such that a place p is said to be marked at M by M(p) tokens if M(p) > 0.

(b) A transition t € T is enabled in marking M, denoted by M|t), if all places in
*t are marked by at least one token. That is Vp €t , M(p) > 0. We denote by

[t) the set of all markings where transition t is enabled.

(c) When a transition t € T is enabled in marking M, it can fire reaching a new
marking M, denoted by M[t)M', by removing a token from each place in *t and

adding a token to each place in t*. Formally:

M(p) -1 if pe*t\t*
VpeP, M(p)=q M) +1 if pet®\%
M(p) otherwise
H 211

With the rules provided by the previous definition, the complete state space determined
by the PN can be defined as follows:

30 CHAPTER 2 : MODELS FOR CONCURRENT SYSTEMS

DEFINITION 2.12 (REACHABILITY)
Given a Petri net N = (P, T, F, M,):

(a) Marking M' is reachable from marking M if there is a firing sequence of tran-
sitions 0 = tity ... € T* that transforms M into M, i.e. M[o)M'. The reacha-
bility set of N, denoted by [M,), contains all the markings reachable from M,.

(b) The reachability graph (RG) of N contains all the reachable markings and all
the possible firing sequences of N. It is a directed graph RG = ([M,), E) where
E C [M,) x T x [M,) is the set of arcs such that (M,t, M') € E & M[t)M'. A

formal definition of RG in terms of transition systems is given in Section 2.2.

H 212

EXAMPLE 2.3 (CONT.) Figure 2.7 (a) depicts the reachability graph corresponding to
the Petri net of Figure 2.6, consisting of eight markings. For example, marking M, =
{p2,ps} indicates that places pa and p3 contain one token each, whereas the rest of the

places are empty. m23

In marking M; of the previous example, transitions ¢3 and ¢4 are both enabled
simultaneously and can fire in any order without disabling each other. Thus, it can be
expected that they can potentially fire together at the same instant, as it is shown by
the arc between M7 and M7 if Figure 2.7 (b). The semantics of PNs that allow this type
of step-transitions is called a true concurrency semantics, see the RG in Figure 2.7 (b).
Conversely, the semantics that only allows a single transition to fire at a time is called
interleaving semantics, see the RG in Figure 2.7 (a). Although true concurrency is more
general than interleaving, it is often much more difficult to deal with it. In the sequel, only
interleaving semantics is considered since it is general enough for our purposes. In fact,
Definition 2.12 for reachability of PNs is already built upon the interleaving semantics.

Transition systems and Petri nets are linked through the notion of reachability graph.
In fact the reachability graph of a PN is a transition system, Thus, given a PN, N =
(P, T, F, M,), its reachability graph is a transition system, RG(N) = (S, %, T, sp), in which
the set of states of the TS corresponds to the reachability set of the PN (S = [M,)), the
events of the TS correspond to the transitions of the PN, and a transition (M, ¢, My) exists
in the TS if and only if M;[t)Ms in the PN. For example, it can be easily seen that the
TS depicted in Figure 2.1 is isomorphic to the reachability graph depicted in Figure 2.7
(a) derived from the PN of Figure 2.6.

Even though the construction of a TS equivalent to a PN is a straightforward task, the
opposite is not that simple in general. The interested reader is referred to [NRT92] and
[CKLY98] for more details on the problem.

2.5 PETRI NETS 31

M
0 {p1
t1 {f ! 2
M1)
2, p3 . p5
{ P2, p3} 7 { P4 p5}
ts{ \ % 6
{ p3,p6} {p2,p7} { p5,p6} { P4, p7}
M3 t3 t6 Mg
t4 15
{p6,p73 M7

(a) (b)

Figure 2.7 Reachability graph of the Petri net of Figure 2.6: (a) assuming interleaving semantics, and

(b) assuming true concurrency.

A PN is called live iff every transition can be infinitely enabled through some feasible
sequence of firings from any marking in [M,). A PN is called safe if no marking in [M,)
assigns more than one token to any place. Safe PNs are widely used in many applications
since they have simple analysis algorithms and simple semantics [EN94]. Without loss of
generality for our pusposes, in the sequel we assume all the PNs to be safe. For example,
the Petri net of Figure 2.6 is safe.

A static characterization of the dynamic behavior of the PN was defined by [Chu87] in
terms of the so-called temporal relations. The relations define which pairs of transitions are
causally related or are concurrent. Conflict relations are also defined, ¢.e. if the firing of
one transition prevents the firing of another transition which was already enabled. These
relations are often defined using the reachability graph of the PN, however they can be
computed efficiently from the structure of the net [KE96]. Since the reachability graph
of a PN is actually a transition system and these relations are also naturally defined for
them, we omit the definition of the temporal relation at this point and refer the reader to
Definition 2.3.

2.5.1 Labeled Petri nets

A labeled Petri net is a PN augmented with a labeling function which puts in corre-
spondence every transition of the net with a symbol (called label) of an alphabet. If no
two transitions have the same label (unique labeling), then each transition in the net can

be uniquely identified by its label. Formally:

32 CHAPTER 2 : MODELS FOR CONCURRENT SYSTEMS

Figure 2.8 Petri net of Figure 2.6 with labeled transitions.

DEFINITION 2.13 (LABELED PETRI NET)
A labeled Petri net is a triple LPN = (N, X, A), where N is a Petri net, ¥ is a finite
alphabet, and A : T — Y U {e} is a labeling function. The special symbol € is used
to label those transitions without a particular meaning. Such “silent” transitions

are often called dummy or sequencing transitions. 213

Figure 2.8 depicts a labeled PN with 3 = {a+,a—, b+,b—, c+,c-}.

Signal Transition Graphs (STGs), which are a particular class of PNs, are used in
Chapter 5 to model asynchronous circuits. STGs were introduced independently in [RY85]
and [Chu87] as a formalism for modeling the behavior of asynchronous circuits and their
environment. In short, an STG is a labeled Petri net interpreted such that transitions
describe value changes at the signals of a circuit. A signal transition can be represented
by a+ (or a—) for the transition of signal a from 0 to 1 (or from 1 to 0), while ax is a generic
name for either a rising or a falling transition of signal a. Formally:

DEFINITION 2.14 (SIGNAL TRANSITION GRAPH)
A signal transition graph (STG) is a labeled Petri net LPN = (N,%,A), where
X=X UYoUXyg is a set of signal names formed by the union of three non-
intersecting subsets of input, output and internal signals, and A : T — ¥ x {4+, -}

is the labeling function.
W 214

The PN in Figure 2.8 can be interpreted as an STG that specifies the behavior of a circuit
with, for example, two input signals (3; = {a, b}) and an output signal (Xp = {c}).

2.6 CONCLUSIONS 33

2.6 Conclusions

This chapter has presented the fundamentals of the formal models for concurrent sys-
tems that will be used in the subsequent chapters.

Transition systems (TS) are introduced as a state-based formalism for untimed systems.
A TS is a mathematically simple formalism, however it allows to deal with a wide variety
of other formalisms and to reason about them using a common formalism. As an example,
the relation between PNs and TSs has been outlined. Fundamental notions for our later
developments, such as the notion of enabling interval are presented.

Time can be incorporated on top of TSs in different forms. Timed transition systems
(TTS) constitute the most common alternative, which associate time intervals to the events
of the system. Therefore time is incorporated as an explicit real-valued exact magnitude.
This fact causes that the state explosion problem becomes even less tractable than in the
case of TSs. Another fundamental notion, that of timing-consistent run, is presented.

Conversely, lazy transition systems (LzTS) incorporate time using the relative timing
paradigm, thus abstracting exact timing away and dealing only with partial orders of the
events in the timed domain. LzTSs are the model underlying the development of the
formal verification algorithms for timed systems in Chapter 4 and the related.

Petri nets provide a graphical and mathematical formalism for describing concurrent
systems in a very intuitive way at the level of events. Apart from the net structure
and its graphical representation, some basic properties have been briefly introduced. We
have chosen PNs as the model for systems in which time is not a relevant magnitude.
In particular, STGs will be used in Chapter 5 to model speed-independent asynchronous

circuits.

VERIFICATION OF TIMED SYSTEMS

Time has no divisions to mark its passage, there is never a thunderstorm or
blare of trumpets to announce the beginning of a new month or year.
—Thomas Mann - The Magic Mountain, 1924

Time is such a simple, almost primitive idea. It is just a means of material
differentiation, a way of uniting us all; for in our external, material lives we
value the synchronized efforts of individual people.

—Andrei Tarkovsky - Time Within Time: The Diaries, 1989

Summary

This chapter reviews the previous work on the formal verification of timed systems. The
attention is focused in those modeling, specification and analysis alternatives more widely
used. For a deeper insight, the interested reader is addressed to the provided references.

The correctness of timed systems depends on their timing properties. As a consequence,
quantitative time information is essential for their analysis. The main paradigms for the
incorporation of quantitative timing information to the system’s models are first reviewed.
A widely used approach is that of continuous-time for which the most popular represen-
tative, the timed automata modeling formalism, is analyzed.

The concept of timed temporal logic is introduced as an appropriate mechanism for the
specification of timing-related properties. Several alternatives are briefly commented.

Since most verification methods rely on the analysis of the timed state space of the
system, the reachability problem on timed systems is analyzed.

Finally, a brief review is provided of the approaches that use Petri nets for the timing

analysis and the verification of timed systems.

35

36 CHAPTER 3 : VERIFICATION OF TIMED SYSTEMS

3.1 Introduction

Three major ingredients are required to accomplish the verification task successfully:

® A model of the system, which is capable to capture those behaviors of the system
that are relevant for the verification.

m A specification language, expressive enough to state the properties of interest.

m A verification methodology, which is suitable to be used in conjunction with the
modeling and the specification formalisms.

Several modeling formalisms have been already introduced in Chapter 2, namely those
used for the research presented in this work. Among the formalisms used by other re-
searchers, timed automata [AD94] deserve particular attention since they are the model
of choice in many verification methodologies.

Regarding the specification formalisms, there exists a wide spectrum which can be
roughly divided into two categories: logic-based and automata-based approaches.

In the logic-based approach, originally introduced in [Pnu77], the properties under
verification are stated as formulas using a temporal logic (see [Eme90] for an overview).
Despite of a number of derivatives, two main families of temporal logics exist: linear
temporal logic (LTL) pioneered by [Pnu77, OL82], and computational tree logic (CTL)
pioneered by [BAPMS81, EC82]. Provided the specification in the form of a set of formulas
of the logic, the state space of the system is explored checking whether each formula is
satisfied in all possible behaviors of the system. The resulting verification methods, i.e.
the so-called model-checking methods, were pioneered by [LP85, CES86, BCM ™92, GW91]
among others.

In automata-based approaches, the same formalism is used for describing both the
system and the specification containing the properties of interest. Then, the verification
consists in showing that all behaviors of the system are also part of the specification.
This is often achieved by showing an implementation relation between the system and
its specification in terms of language containment [Tho81], simulation [DHWT91] or an
homomorphism [Kur94], for example.

The following sections review the major approaches used for the modeling, the specifi-
cation and the analysis of timed systems. First, several alternatives for the representation
of quantitative timing information are reviewed. Next, timed automata are presented as
the most commonly used model for timed systems, whereas timed temporal logic is intro-
duced as a specification formalism used to state properties in which a quantitative notion
of time is required. Then, some strategies for the representation of the system’s timed
state space are analyzed. Finally, some approaches that use Petri nets for the verification

of timed systems are reviewed.

3.2 QUANTITATIVE TIMING INFORMATION 37

3.2 Quantitative timing information

Most of the early works in formal verification were only focused at verifying the func-
tional properties of systems (see Section 1.2.1). In those works, time was present into
the models (mostly finite automata) and into the specifications (mostly temporal logic),
only as a qualitative notion. In such cases, properties only assert, for example, that a cer-
tain condition is always true or that a expected response of the system eventually occurs.
While qualitative modeling of time allows the efficient verification of certain properties, it
is not satisfactory for verifying the correctness of systems that depend crucially on timing:
combinatorial circuits must meet some given clock requirements, embedded controllers
must respond to interrupts within some time interval, etc. As a more precise example,
consider the statement “trigger the alarm upon detection of an intruder” referred to a se-
curity system. This temporal sequencing carries no quantitative information on the delay
allowable between the detection and the alarm action. Hence, it is not possible to directly
model the triggering of the alarm “less that 5 seconds after detecting the intruder”.

For those systems whose correctness depends on a proper timing, often called time-
critical or real-time systems, a quantitative notion of time must be incorporated both into
the system models and also into the specification formalisms. The way time is represented
has a crucial impact on the size of the resulting timed state space. Three main approaches
exist for that purpose: discrete-time, fictitious-clock and continuous-time.

Formalisms based on the discrete-time notion (e.g. [AK83, JM86, EMSS90, BMPY97])
map time onto the integer domain. This approach is appropriate to describe the behavior of
synchronous systems where all components are driven by a common global clock. However,
in order to model asynchronous systems they require to discretize time by choosing some
fixed time quantum, so that the separation of two events in the timed domain is always a
multiple of such quantum. The main advantage of this approach is that the timing analysis
and timed state exploration techniques are generally simpler than their counterparts for
continuous-time. However, the main drawback is that determining the time quantum a
priori may not be easy and therefore may compromise the accuracy of the resulting model.
In this sense, in [BS91] it is shown that the reachability problem for asynchronous circuits
with bounded delays cannot be solved correctly using the discrete-time model. Also, the
choice of a sufficiently small time quantum to model the system accurately enough, may
blow up the timed state space so that verification becomes a no longer feasible task.
Figure 3.1 (a) illustrates the concept of discrete-time, where events can only occur at
instants multiple of the fixed time quantum.

The fictitious-clock approach introduces a special tick event into the model (e.g. [AH89,
Bur89, Ost90, HLP90]). Thus, time is understood as a global state variable that ranges
over the domain of natural numbers, and is incremented with every tick event. Generally,
this paradigm allows arbitrarily many events of any process between two successive tick

38 CHAPTER 3 : VERIFICATION OF TIMED SYSTEMS
quantum
——————
0 q 2q 3q Time 0 1 2 3 Time
— > - >
§ tick ftick tick
el €2 e4 Events el e2 e4 Events
e3 e3
(2) (b)
o exact separation Time
I - >
el e e4 Events
€3
(c)
Figure 3.1 Three representations of time: (a) discrete-time, (b) fictitious-clock and (c) continuous-time.

events. The timing delay between two events is measured by counting the number of ticks
between them. When it is required that there be & ticks between two events, it can only
be inferred that the actual delay between them is at least £ — 1 time units and at most
k+1 time units. Therefore, it is impossible to determine precisely some typical and simple
requirements on the delays between events, e.g. “the delay between the detection and the
alarm equals 2 seconds”. In general, the models based in the fictitious-clock approach
require a somewhat cumbersome encoding mechanism to measure time intervals. This
reduces the readability of the model and makes modifying the model a tricky and prone
to errors task. As a result, ensuring that the model obtained is a good characterization
of the actual system is often very difficult. Finally, notice that the discrete-time approach
can be seen as a special case of the fictitious-clock approach where the events occur only in
lock-step with the ticks. Figure 3.1 (b) illustrates the fictitious-clock approach. Although
events may occur at any time, the precise occurrence instant can only be approximated

to be in between of two tick events.

The third approach for the modeling of real-time behavior, models time more realisti-
cally as a continuous magnitude. Some examples of the use of the so-called continuous-
time or dense-time can be found in [Dil89b, Koy90, ACD90, HMP92a, HNSY92, YSSC93,
RM94, LPY95, SB97]. These approaches associate a non-negative real value to each event
of the system, and therefore to each reachable state. Continuous-time differs from the

3.3 TIMED AUTOMATA 39

other time models because the exact bounds on the actual delays between the events can
be expressed. Moreover, the use of continuous-time allows a more precise modeling of ana-
log or asynchronous systems, as well as systems that operate at different clock frequencies.
Figure 3.1 (c) illustrates the continuous-time notion.

Since this approach does not rely on the use of a discretization constant, one possible
drawback of using the reals as time domain is the added complexity. However, it has been
shown that with appropriate techniques (e.g. [ATKY92, HMP92b, ABH97, TKY98]),
the analysis of continuous-time models does not increase in complexity, if compared to the
discrete-time counterparts. The main idea behind such techniques consists in breaking the
infinite continuous timed state space into equivalence classes, such that all states in the
same class lead to the same behavior and can be analyzed together.

3.3 Timed automata

With the wide adoption of the continuous-time paradigm, the timed automata frame-
work, pioneered by [Dil89b, ACD90], has become one of the most popular choices to
incorporate quantitative time into the system’s models. Several timing verification tools
use this formalism as their basis: COSPAN [AK95], KRONOS [Yov97], UPAAL [BLL'95],
MOCHA [AHM™98], among others.

A timed automaton is a classical finite automaton augmented with a finite set of real-
valued clocks. That is, a timed automaton is built from two elements: a finite automaton
which describes the (control) states or locations, and the transitions between them; and a
set of clocks used to specify the quantitative time constraints. Transitions are assumed to
happen instantaneously, whereas time can elapse when the automaton is at a given state.
In the initial location all clock values are set to zero. Then, the clocks evolve at a uniform
rate taking non-negative real values. At any instant, reading a clock tells how much time
has elapsed since the last time the clock was reset.

Besides the source and target locations, a transition is formed by other three elements:
a guard, also called clock constraint or firing condition, such that the transition cannot
be taken unless the current values of the clocks satisfy the guard; a label, or action name;
and a set of clocks that must be reset after the transition has been taken.

A clock constraint is often associated to each location of the automaton. This type of
constraint, called the invariant of the location, forces that time can elapse in the location
only as long as the invariant is still satisfied.

In order to provide a formal definition of a timed automaton, clock constraints must be
precisely defined first. Let X be a set of real clocks, the set ®(X) of clock constraints
@ allowable as location invariants and enabling conditions, is defined as:

» All inequalities of the form z <c¢, z<c¢, ¢<z, ¢<z arein ®(X) where

x is a clock and ¢ is a non-negative real number.

40 CHAPTER 3 : VERIFICATION OF TIMED SYSTEMS

Figure 3.2 An example of timed automaton.

m If o1 and ¢y arein ®(X) then the constraint @1 A ¢y isin @(X).

Notice that if X contains k clocks, then each clock constraint delimits a convex region
in a k-dimensional Fuclidean space. This observation provides a way for representing the
timed state space of a timed automaton (see Section 3.5).

The formal definition of a timed automaton follows:

DEFINITION 3.1 (TIMED AUTOMATA) [ADY4]

A timed automaton is a 6-tuple A = (3,5,S,, X, I,T) such that: ¥ is a finite
alphabet; S is a finite set of locations (states); S, C S is a set of initial
locations; X is a set of clocks; I :S — ®(X) is the location invariant; and
TCSxYx®(X)x2X xS isasetof transitions.

The 5-tuple (s,a,p,\,s'Y € T is a transition from location s to location s’ cor-
responding to the action labeled as a. The clock constraint ¢ specifies when the
transition is enabled, and X\ C X s the set of clocks that are reset when the

transition s taken.
3.1

ExAMPLE 3.1 Consider the timed automaton in Figure 3.2.

When the system switches from the initial location sg to location sy by the action a,
the clock x is reset to 0. Therefore, in all the other locations, the value of clock = shows
the time elapsed since the last occurrence of action a.

The invariant x < 1 associated to locations s; and s9, ensures that the c-labeled
switch from location so to s3 happens within time 1 of the preceding a. Resetting the
other independent clock y together with the b-labeled switch from sy to so, and checking
its value on the d-labeled switch from s3 to sy ensures that the delay between b and
the following d is always greater that 2.

Notice that locations sy and s3 have no invariant constraint. This means that the
system can spend an arbitrary amount of time in such locations. As a consequence, there
is no guarantee that the a-labeled switch from sy, or the d-labeled switch from s3 are
taken at some time instant. m31

3.3 TIMED AUTOMATA 41

The semantics of a timed automaton A is defined by associating a transition system,
T(A), to it. At any time, the configuration or global state of the system modeled by the
timed automaton is given by a location, s, of the automaton and a clock interpretation,
v, that assigns a real value to each clock. Thus, a configuration is a pair (s,v) where
s€S and v: X — Rt . The set of initial configurations is given by the set {(s,v) |
s €S, N Vre X [v(z) =0]}, i.e. the set of initial locations in which all the clocks are
set to 0.

The system changes from one configuration to another by means of two types of tran-

sitions:

m Delay transition: which lets a time delay § € R to elapse, i.e. increasing the
value of all clocks by §. Then, the system moves from configuration (s,v) to
configuration (s,v'), written as (s,v)i>(s,v’), where Vz € X v'(z) = v(z) + 9.

» Action transition: which executes an actual transition (s,a,¢,\,s’) € T of the
automaton. This is written as (s,v)—(s’,v'), such that v satisfies the guard
¢ and o =wo[XA:=0].

Thus, the timed state space of a timed automaton can be seen as an infinite transition
system T(A) = (Q,X2UR R,Q,), where: @ and @, are the set of configurations and
the initial configurations, respectively; the original alphabet 3 is augmented with the
real numbers to include the delay transitions; and R is the transition relation obtained
by combining the delay and the action transitions.

EXAMPLE 3.1 (CONT.) Let the timed automaton in Figure 3.2 be called A .
The state-space of T(A) is given by Q C {sp,s1,s2,53} X R2. A sequence of possible

transitions is, for example:

(s0,0,0) 23 (s9, 1.2, 1.2) —25(s1, 0, 1.2) 255 (51, 0.7, 1.9) —25 (52, 0.7, 0) 25 (5, 0.8,0.1) 25 - ..

where the numbers at each configuration are (from left to right) the values of the clocks

x and y. m3.1

Solving the reachability problem for a timed automaton is a nontrivial task since the
number of potential configurations is infinite. In order to solve the task, finite representa-
tions of the infinite state space are required (see Section 3.5). However, even using such
representations, the state explosion problem often limits the practical applicability of the
algorithms and tools that rely on the reachability set. More precisely, the problem is
PSPACE-hard [AD94]. Moreover, in [CY91] it was proved that both sources of complex-
ity, the number of clocks and the magnitude of the constraints yield to PSPACE-hardness
independently of each other.

42 CHAPTER 3 : VERIFICATION OF TIMED SYSTEMS

3.4 Timed specifications

Given the model of a timed system, the next step is to state and then verify properties
of such system. Some of the properties are just temporal e.g. “when the gate is opened
the alarm is always triggered”. Other properties involve quantitative delay information,
e.g. “the alarm 1is triggered if the gate keeps opened more than 30 seconds”. For the first
type of properties, temporal logic may be a good choice. For the second type of properties
it is more suitable to use a timed logic, which is an extension of a temporal logic with

primitives expressing conditions on the duration of events.

3.4.1 Temporal logic

Temporal logic is a form of logic specifically tailored to state and reason about the
notion of order in time, using a simple and clear notation. Time is represented as an
implicit magnitude by means of constructs that mimic the time adverbs of natural language
(e.g. “always”, “until”, etc.). The remaining of this section assumes the reader has some
familiarity with temporal logic. A good survey about the theoretical foundations behind
temporal logic can be found in [Eme90].

Each type of temporal logic offers its own temporal operators which can deal with time
according to two basic paradigms. A linear time model assumes that for each time in-
stance there exists exactly one successor time point. This model is particularly well suited
for physical time. The resulting linear temporal logic (LTL) was originally pioneered by
[Pnu77, OL82]. Conversely, a branching time model allows several successors of each time
instance. This model is appropriate to capture computations, where different execution
traces can be selected at a certain step of the ongoing calculation. Hence, time is modeled
by tree-like structures where the different possible successor computation paths are cho-
sen non-deterministically. The so-called computational tree logic (CTL) [BAPMS81, EC82],
follows the branching time paradigm.

In order to establish a comparison between both paradigms, the more expressive logic
CTL* [EH86] is briefly introduced first. Despite of the boolean propositions used as the
atomic formulas of the logic, CTL* contains both LTL and CTL, thus provides operators

for linear and branching time.

Linear time operators make statements about a single computation path (a sequence of
states) which starts in the actual state. Thus, the G (always) operator indicates that a
formula must hold for all successor states on the path; the the F (sometimes) operator
indicates that a formula must hold in some successor state (without telling which one) on
the path; the X (nezt) operator indicates that a formula must hold in the immediate
successor state on the path; and the U (until) operator which combines two formulas,
where the first one must hold along the path until the second formula becomes true.

3.4 TIMED SPECIFICATIONS 43

sO

Figure 3.3 A simple automaton with atomic propositions.

The previous operators deal with a single execution path from a given state. Branching
time provides two quantifiers over sets of executions which allow to express formulas about
the many possible executions starting from a given state. Thus, the quantifiers A and
E indicate respectively that, for all paths out of the current state a given formula holds,
and that there ezists at least one path where the formula holds. It is important not to
confuse A and G : the formula A¢ states that all the possible executions from the
current state satisfy ¢, whereas G¢ indicates that ¢ holds at every state of a particular
execution being considered.

The aforementioned constructs are summarized in the following grammar for CTL* :

bp = P | Py ...
[=l Ao = 4.
| Fo | Go | X¢ | pUy
| A¢ | E¢

(atomic propositions)
(boolean operators)

(temporal operators)
(

path quantifiers)

EXAMPLE 3.2 Let us consider some properties related to the automaton in Figure 3.3
and how they can be expressed using temporal logic. The automaton consists of three states
and three atomic propositions simply called pa, pb and pc.

In any execution of the automaton, either the proposition pa holds infinitely often or the
automaton ultimately remains forever in state so where pc holds. This can be expressed
with the formula: GF pa V FGpc.

Notice that there is one execution from sy which does not satisfy the formula pb U pc,
i.e. that execution in which states sy and s alternate forever.

Notice also that all executions out of sg visit state s;. Since in one step from s; a state
satisfying pc is reachable, any execution out of sg satisfies the formula FEX pc . Observe
that the E quantifier is important in this formula, since the execution in which sy and sq
alternate does not satisfy FX pc . Thanks to the E quantifier the executions in which s

follows sy are also covered. H32

Although the origins of LTL and CTL differ, both can be seen as subsets of the more
expressive logic CTL*. LTL is obtained from CTL* by subtracting the A and E path
quantifiers. Thus, a formula in LTL cannot cover the possible alternative executions

44 CHAPTER 3 : VERIFICATION OF TIMED SYSTEMS

which split at every state. Similarly, CTL is the subset of CTL* in which the use of a
temporal operator must be under the immediate scope of a path quantifier. The basic
valid combinations are: AF, EF, AG, EG, AX, EX, A.U_ and E_.U_.

From a syntactical point of view, there are LTL formulas that cannot be expressed in
CTL, and vice versa. Moreover, there are CTL* formulas which cannot be expressed in
neither of both. The analysis of the differences between LTL and CTL from a semantical
point of view requires a more detailed study of the types of properties that can be expressed
with each (see [BBFT01] for more details).

Reachability properties state that some particular situation can be reached by the sys-
tem. CTL to models reachability properties in a natural way by means of the EF con-
struct. Thus, EF¢ can be read as “there exists a path, from the current state, along which
some state satisfies ¢”. In order to state a reachability property from all reachable states,
the AG and EF constructs must be nested, e.g. AG(EF¢) . Conversely, and since LTL
implicitly quantifies for all executions of the system, only the negation of reachability can
be expressed in LTL. That is, “something is never reachable”, e.g. G(—¢). However, this

type of property is often seen as a safety property.

Safety properties express that, under certain conditions, something never occurs. Safety
can be expressed naturally in both LTL and CTL, by means of the expressions G¢ and
AG¢, respectively.

Liveness properties express that, under certain conditions, something will ultimately
occur. Despite of the discussion of whether liveness properties are useful in practice (see
[BBFT01]) it is not easy to formally capture such notion. Two types of liveness properties
are often distinguished: simple liveness or progress, and repetitive liveness or fairness.
Progress is generally easier to formalize, as in the following typical example. The property
“any request will ultimately be satisfied” is expressed as AG(req = AFsat) in CTL and
as G(req = Fsat) in LTL. Regarding fairness, in [EH86] it is shown that in contrast to

LTL fairness properties cannot be expressed in CTL.

Deadlock-freeness is a special property relevant in systems which are supposed to operate
indefinitely. Although deadlock-freeness is often seen as a safety property (“something
undesirable will never happen”), theoretically it is not clear if it is actually a liveness
property. Anyway, deadlock-freeness can be expressed in CTL as AG EX true, i.e.

“whatever the state reached is (AG), there exists an immediate successor state (EX true)”.

Finally, remark that both linear and branching time have their strengths and weak-
nesses. Thus the resulting logics, LTL and CTL (and their derivatives) are better suited
for a particular subset of properties and also for a particular class of systems. Moreover,
the verification methodology is often tailored to a specific logic thus gaining in aspects
like efficiency, for example. See [Kro99, BBF+01] for more details about this discussion.

3.4 TIMED SPECIFICATIONS 45

3.4.2 Timed temporal logic

In order to state and verify timing properties, the simplest way is to express them
in terms of the reachability (or non-reachability) of some sets of configurations of the
automaton. For more complicated properties observer automata can be used. For example,
given a property ¢ and a timed automaton A , a new automaton Ay is built and
synchronized with A. Then, verifying ¢ is reduced to testing reachability of some
particular states in the resulting composed automaton Ag.

Another possibility is to use a timed temporal logic, which consists in extending with
timing constraints the operators of temporal logic. The timing constraints are often ex-
pressed in terms of one-sided inequalities or time intervals, and may take integer, rational
or real values. Thus, for example the formula EF_5 ¢ indicates that “there exists a state
satisfying ¢ along some execution within 5 time units”. Similarly, the formula F5 0] ¢ in-
dicates that “some state in which ¢ holds is actually reachable, after a minimum of 5 time
units, and never later than 10 time units”. Also, the formula ¢Uo9 states that propo-
sition ¢ holds until proposition 1 becomes true, and that 1 will become true within
two time units.

To provide an example, the grammar of the timed version of CTL (TCTL) [Koy90] is
the following:

b,pu= P | Py ... (atomic propositions)
| = |d AN = 9| ... (boolean operators)
| EF ety | EG(ary@ | EAU(py?p (temporal operators)
| AF ()@ | AG(ryd | AQU(wpytp
where ~ is a comparison operator from the set {<,<,=,> >} and k is a rational
number.

A wide range of timed temporal logics have been developed along the years by extending
in several ways the original LTL and CTL. Corresponding verification algorithms have been
also developed, mostly under the paradigm of model-checking.

As derivatives of LTL, the following remarkable examples can be cited [Hen98]: TPTL
[AH89] and MTL [Koy90] whose formulas can be verified in exponential time if discrete-
time is assumed, but are undecidable if continuous-time is chosen; MITL [AFH91] which
can be verified in exponential time regardless of the time paradigm; and ECL [HRS98]
which can be always verified in polynomial time. For discrete-time, all these logics are
equally expressive. For continuous-time, TPTL is more expressive than MTL, which in
turn is more expressive than MITL and ECL.

As derivatives of CTL, RTCTL (real-time CTL) [EMSS90] and TCTL (timed CTL)
[Koy90, ACD93] are the most common representatives. Both use the continuous-time do-
main, are very similar syntactically and semantically, and their verification has PSPACE-
complexity. TCTL, for example is supported by the verification tool KRONOS [Yov97].

46 CHAPTER 3 : VERIFICATION OF TIMED SYSTEMS

3.5 Verification of timed systems

Most approaches for the verification of timed systems rely on the construction of the
timed reachability space. However, the number of timed states is infinite (in fact uncount-
able). For example, in the case of timed automata such infiniteness has two sources: the
clock values are potentially unbounded, and even when they are restricted to a bounded
interval, the set of real valuations is dense. Therefore, typical model-checking algorithms
are no longer feasible. In order to overcome such complexity, finite representations of the
timed state space must be provided.

Although the remaining of this section refers to timed automata, the presented tech-
niques are generally applicable to the reachability problem in timed systems.

3.5.1 Clock regions

The main idea to overcome the aforementioned complexity is the use of clock regions
[ACD90] which we introduce intuitively as follows. Consider two configurations (s,v) and
(s,v") of a timed automaton, where the clock valuations v and v’ are very close. Assume,
for example, that there is a single clock z and that v(z) = 1.2347 and o'(z) = 1.235.
Given a certain notion of closeness for configurations (see below), the automata will behave
in roughly the same way from either of both configurations, and hence the same properties
will be satisfied.

If the the clock constraints only contain integer numbers, an equivalence relation [ACD90)]
can be defined on the space of configurations, that equates two configurations if: they cor-
respond to the same location, they agree on the integral part of the clock valuations, and
they agree on the ordering of the fractional part of the clock valuations. The integral
parts of the clocks are needed to decide if a particular clock constraint is met, whereas
the ordering of the fractional parts is needed to decide which clock will change its integral
part first. Although the integral part of a clock x can get arbitrarily large values, if z is
never compared with a constant greater that c, , the actual value of z beyond ¢, does
not affect the behavior of the automaton.

More formally, let wv(z) € RT be the valuation of a clock, |v(z)] denotes the
integral part of the valuation whereas fr(v(z)) denotes its fractional part, such that
v(z) = |v(z)| + fr(v(z)). The region equivalence vy = v9 for two clock valuations
v1 and v is defined by the following conditions:

m Ve X, either |vi(z)] = |va(z)] or, [vi(x)] > ¢, and [ve(x)] > ¢y

n Vz,y € X with vi(z) < ¢ and vi(y) < ¢y, fr(vi(z)) < frvi(y)) iff fr(ve(z)) <
friva(y)) -

m VzeX with vi(z) <cgp, fr(vi(z)) =0 iff fr(ve(z))=0.

3.5 VERIFICATION OF TIMED SYSTEMS 47

ra r27

rv..

ro.

Figure 3.4 Regions for two clocks z and y, with constraints z ~ k (k € {0,1,2}) and y ~ k (k € {0,1}).

~

Then, a clock region is an equivalence class of clock valuations induced by 2. Each region
can be characterized by the finite set of constraints it satisfies. For example, given a clock
valuation v(z) = 0.5 and wv(y) = 0.8 for clock z and vy, every clock valuation in the
clock region for v, denoted [v], satisfies the constraint 0 < z < y < 1. The following
example illustrates these ideas more intuitively.

EXAMPLE 3.3 Figure 3.4 [Kro99] shows the set of possible clock regions for two clocks
x and y. Only constraints of the form = ~ k with k € {0,1,2}, and y ~ k with
k € {0,1} have been considered. Recall that ~€ {<,<,=,>,>}.

The example contains 28 clock regions. Some of them correspond to corner points, like
r0, characterized by the constraint [z = y = 0]. Other regions are open surfaces in the
plane, like 9 characterized by [0 <y < z < 1], or r27 characterized by [z >2 A y > 1].
Finally, the other regions are open segments, like r7, characterized by [0 < z =y < 1].

The system starts in r0 and as time passes, the clocks increase their values simulta-
neously. Thus, 7 is visited next, then r4, etc. If instead of letting time to elapse, a
transition that resets some of the clocks is performed, a region on the azxes is reached. For

example, the reset of clock y while in r7 leads to r8. H33

Although the set of clock regions is finite, its cardinality grows exponentially with the
number of clocks: for n clocks with constraints in which every constant k& is upper
bounded by K , the number of regions is O(n!K™). As a consequence, whereas determin-
ing the truth of a CTL formula has linear complexity, the problem is PSPACE-complete
for a timed automaton and a TCTL formula [ACD93]. Therefore, efficient representations

for handling sets of regions must be devised.

48 CHAPTER 3 : VERIFICATION OF TIMED SYSTEMS

3.5.2 Region automata

~

The equivalence relation = over the clock valuations can be extended over the set of
possible configurations of the timed automaton. Thus, two configurations are equivalent,
i.e. (s1,v1) = (sg,v9) iff s; = sy and wv; = ve. The resulting equivalence classes of
configurations of a timed automaton A, are captured by the so-called region automaton
[AD94], denoted by R(A). A state in R(A) is of the form (s,«) where s is a location
of A and « is a clock region.

The interpretation is that whenever the configuration in A is (s, v), the state of R(A)
is (s,[v]). Thus, the initial states of R(A) are of the form (s,,[v,]) where s, € S, and
Vz € X vy(z) = 0. Also, there is an edge (s, a)—=(s',a’) in R(A) iff (s,v)—=(s',v') in
A for some v € @ and v € .

ExXAMPLE 3.4 Consider the timed automaton and its corresponding region automaton
shown in Figure 3.5. Only the regions reachable from the initial region (so,[z =y =
0]) are shown. Notice that the timing constraints cause that the switch from sy to
sg is never taken. The only reachable region for location sy satisfies the clock constraint
[l =y < z]. This region has no outgoing edges because, in order for event c to happen,

the constraint [z < 1] must hold, and that is not possible. W34

3.5.3 Zone automata

Region automata can be easily simplified by collapsing groups of regions into convex
geometric regions or clock zones [BD91, ACDT92, AD94]. For example, in the region
automaton of Figure 3.5 (b), there are three regions for location s; with associated clock
regions [y =0<z<1], [y=0,z=1] and [y = 0,2 > 1]. These regions could be
collapsed to obtain the union [y = 0 < z|, for example. More precisely, a clock zone is
formed by a conjunction of clock constraints each of which puts a lower or upper bound
on a clock or a difference of two clocks. Given a timed automaton A, its zone automaton
Z(A) can be obtained in a similar way as for the region automaton.

EXAMPLE 3.5 Figure 5.6 depicts the zone automaton for the timed automaton in Fig-
ure 3.5. Notice that unlike the region automaton, in the zone automaton each vertex has
at most one successor per symbol. Also, the number of vertexes of Z(A) s less than

those in R(A). m35

Theoretically, in the worst case, the number of zones is exponential with respect to
the number of regions, therefore the zone automaton may be exponentially bigger than
the region automaton. However, in most practical cases, the zone automaton has less
reachable vertexes and provides an improvement in performance. The reason is that,
while the number of clock regions depends on the magnitudes of the constants used by the

clock constraints, the number of zone regions is relatively insensitive to such fact.

3.5 VERIFICATION OF TIMED SYSTEMS 49

e

s3
x>1,y>1

Figure 3.5 Timed automaton (a) and corresponding region automaton (b).

3.5.4 Difference-bound matrices

Clock zones can be efficiently represented by sets of linear inequalities using difference-
bound matrices (DBM) [Dil89b]. Suppose a timed automaton has k clocks, z1,...,z.
Then a clock zone can be represented by a (k + 1) x (kK 4+ 1) matrix D. The entry
D;y gives an upper bound of the clock z;, whereas the entry Dy; gives a lower bound
of the clock. For every pair 4,j the entry D;; gives an upper bound on the difference
of clocks z; and z;. To distinguish between a strict and a non-strict bound and allow
the absence of a bound, the so-called bounds-domain 1D for the entries of the matrix is

50 CHAPTER 3 : VERIFICATION OF TIMED SYSTEMS

sO
x=y=0
a
d
\i
[sl = s3 d s3
0=y<X | O<y<x<l1 x>1,y>0

a

Figure 3.6 Zone automaton for the region automaton in Figure 3.5 (b).

defined to be Z x {0,1} U {oo}: the constant oo denotes the absence of a bound; the
bound (¢,1) for ¢ € Z, denotes the non-strict bound < ¢; and the bound (c,0) denotes
the strict bound < c¢. A clock valuation v satisfies a DBM D iff for all 1 <7 <k,
z; < Djp and —x; < Dy, and for all 1 <1i,5 <k, x; —x; < D;;. Every DBM represents
a clock zone, and every clock zone is represented by some DBM.

EXAMPLE 3.6 Consider the clock zone defined by the following constraints:
[0§$1<2] A [0<l‘2<1] A []71—]7220]

It can be represented by the following difference-bound matriz:

0 1 2
0 oo (0,1) (0,0)
1 (2,00 o0 00
2 (1,0) (0,1) 00

H 3.6
A good source of information on the construction of difference-bound matrices can be

found in [CGPO0O].

3.5.5 Discussion

Although many techniques have been devised to alleviate the state-explosion prob-
lem, e.g. partial orders [YSSC93, RM94] or approximations [HPR97], super-exponential
improvements in the resulting representations and algorithms are unlikely. This fact is
specially true for timed systems. In consequence, other high-level techniques (e.g. ab-
straction, compositional reasoning, induction, etc.) appear as the more promising ones for
future developments.

Nevertheless, several tools exist for the verification of timed systems. The real-time
extension of COSPAN [AK96] allows the analysis of timing constraints using both region

3.6 PETRI NET-BASED METHODS 51

or zone automata. The state space exploration can be performed either by an on-the-
fly explicit enumeration or by a BDD-based symbolic approach. With a similar approach,
KRONOS [Yov97] supports model-checking of the branching real-time temporal logic TCTL,
and has interfaces to a variety of process-algebraic notations. In [BMPY97], an experi-
mental extension to KRONOS is presented, which relies on a canonical representation of
discretized sets of clocks configurations using BDDs. The method takes advantage of
the symbolic representation and allows to deal with systems that cannot be treated with
stae-of-the-art DBM-based tools. UPAAL [BLL™95] allows the verification of safety and
liveness properties on networks of communicating automata. The check relies on an on-
the-fly reachability analysis of the zone automaton. Moreover, compositional reasoning
techniques are used to reduce the search space [LPY95].

3.6 Petri net-based methods

Time has been incorporated to Petri nets in several ways. In timed PNs [Ram74] a finite
fire duration is associated to each transition of the net. Thus, the firing rule is modified
such that transitions must fire once they are enabled but the actual firing has a given
duration. Time PNs [MF76] generalize this model by associating a time interval (delay
bounds) inside which the transition can fire once it has been enabled. This model is more
general than timed PNs and hence has been much more widely used. In contrast to these
models, orbital nets [Rok93] associate a pair of delay bounds to the places of the net. The
notion of age of a token is defined to capture the time elapsed since a token was put in a
place. Then, transitions become enabled only when all its predecessor places are marked
and the age of all the tokens belongs to the corresponding time interval. In general, PNs
with time associated to places can be easily modeled by PNs with time associated to
transitions, whereas the reverse is more complicated [SY96].

PNs augmented with timing information have been extensively used for the verification
of timed systems. Two main areas of research can be distinguished: timing analysis, i.e.
the computation of the separation time between the occurrence of events; and techniques
to alleviate the state explosion problem.

Regarding timing analysis, [MD92] presents a polynomial algorithm for the computation
of the minimum and maximum separation time between events in acyclic graphs. Although
this work does not refer to PNs it is the precursor of many later works. For example, in
[MM93] a polynomial algorithm is presented that estimates the minimum and maximum
time differences between events in a cyclic free-choice net. The algorithm unfolds the
net into an infinite acyclic graph and examines two finite acyclic sub-graphs to determine
the time-separation bounds. The limitation to free-choice nets is partially overcome by
the work in [HB94, Hul95]. It provides a way to compute a single exact time separation
between two events in a cyclic PN with more general types of choice.

52 CHAPTER 3 : VERIFICATION OF TIMED SYSTEMS

A number of approaches have been provided to alleviate the state explosion problem in
timed systems. Most of them [YSSC93, KT94, SY96, VdJL96, BJLY98] rely on the use
of partial order techniques derived from the original work on unfoldings of PNs [McM92].
Although these techniques allow significant improvements for highly concurrent systems,
their major drawback is that they still require a time region per every sequence leading
to each reachable state. To solve this problem, the works in [Rok93, RM94, MRM99] and
the related verification tool ORBITS, take a different approach. They reduce the number
of time regions per state by using POSETs of events rather than linear sequences, to
construct the geometric regions. In turn, they can only handle a class of systems in which
the firing time of an event only depends on a single predecessor event. The work started in
ORBITS has been extended to deal with a wider class of systems [BM97] and improved with
more efficient representations of the timed state space [BMHO1]. The resulting techniques
have been incorporated to the verification tool ATAcs [BMH99].

On a completely different approach, recently [KBS02] have proposed a verification
method for timed systems that uses the relative timing paradigm to avoid the compu-
tation of the exact timed state space. However, they restrict to a class of systems with

only certain types of causality relation between the events.

3.7 Conclusions

The chapter has reviewed the most relevant approaches for the modeling, specification
and verification of timed systems: timed automata, timed temporal logic and timed model-
checking. Also, relevant approaches to the timing analysis and verification based on the
use of Petri nets have been briefly summarized.

A number of verification tools have resulted from all these approaches, however their
practical applicability is often restricted to systems with a small state space, or with a
particular structure that fits well with a given verification approach. Although efficient
methods for the representation of the state space have been devised, the underlying prob-
lem is still the state-explosion, which is exacerbated when timing information comes into
play.

The verification methodology we propose in the next chapter uses timed transition
systems as the underlying formalism to model timed systems under the continuous-time
paradigm. Instead of computing the exact timed state space, the relative timing paradigm
is used to abstract exact time information from the representation. Hence, LzTSs are used,
which represent the ordering relations between events in the timed domain, by explicitly
distinguishing between their enabling and their actual firing conditions. The approach
is applicable to systems modeled by timed transition systems without restrictions. For
example, no requirement is imposed about the causality relations between events or about
the types of choice allowed.

VERIFICATION WITH RELATIVE TIMING

When you are courting a nice girl an hour seems like a second. When you
sit on a red-hot cinder a second seems like an hour. That’s relativity.
—Albert Einstein - Quoted in the News Chronicle, 1949

Summary

This chapter presents the theoretical aspects of our relative timing-based verification
approach for timed systems. Most of the material was already published in [PCKPO00].

First, two small examples conduct a review of the notion of relative timing and an
outline of the overall verification strategy.

Next, the different theoretical aspects of the verification approach are introduced. A
trace semantics is defined to unify the reasoning with the different computational models
used by the verification. The main notion presented is that of enabling compatibility,
which makes possible that the timing analysis over the set of events in a trace, can be also
applied over a set of traces which share the same enabling orderings. Event structures are
then introduced as a model that represents succinctly a set of enabling-compatible traces,
and for which efficient timing analysis algorithms exist. The enabling-compatible product
of transition systems is then presented as a way to refine the untimed state space of a
system with a set of relative timing constraints.

Finally, all these ideas are combined together in a fully automated iterative verification
methodology. Relevant aspects such as the correctness and the convergence of the approach
are discussed.

53

54 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

4.1 Introduction

The verification of concurrent systems typically suffers from the well known state ex-
plosion problem. In systems with a finite number of states, the problem is often alleviated
by using symbolic techniques to represent the reachable states. This is also combined
with partial order techniques or abstractions that reduce the complexity of the models.
However, when time is an essential dimension in the verification problem, complexity is
drastically affected. Since the correctness of the system depends on the actual values of
event delays and not only on its functional behavior, the verification becomes unmanage-
able even for moderate-size systems. More precisely, computing the reachability space of
a timed system is proved to be a PSPACE-complete problem [AD94], and demonstrated
to be highly complex in several practical contexts. Although several techniques have been
devised to alleviate such complexity (see Chapter 3), the size of the untimed state space
is still the major bottleneck for the analysis of highly concurrent systems.

This chapter describes a novel approach that extends the applicability of the conven-
tional methods based on symbolic reachability analysis, to the verification of safety prop-
erties in timed systems. The approach is based on two fundamental facts:

m The observation that the set of runs of a transition system can be covered by a set
of event structures [NPW81]. This reduces the verification problem to that of: the
timing analysis over small sets of events from which timing constraints that prove
the correctness or incorrectness of a system can be derived; and the incorporation

of such constraints into the system along an incremental refinement process.

» The use of relative timing [SGR99] allows to represent the timed domain of a system
in an efficient way. When considering precise delay bounds in timed systems, the
complexity blow-up often makes the analysis an intractable problem, even for small
systems. Instead, relative timing considers the effect of delays in a system in terms
of relative ordering of events (e.g. a happens before b).

The verification approach can be briefly summarized as follows. Rather than calculating
the exact timed state space, an off-line timing analysis is performed on a set of event struc-
tures that covers the runs leading to system failures. Several timing analysis algorithms
have been provided for acyclic graphs, including exact and approximated methods. In our
case, the timing analysis is efficiently performed by using McMillan and Dill’s algorithm
[MD92], which is the precursor of most latter algorithms. The resulting timing constraints
are incorporated to the system in the form of relative timing information along a series
of iterative refinements of the original untimed state space. If some of the runs leading to
failure situations cannot be proved to be timing-inconsistent, then the system is incorrect
and the failure run is a counterexample.

4.1 INTRODUCTION 55

Due to the incremental incorporation of timing information along the verification, our
approach works with over-approximations of the actual timed state space of the system.
Being the completely untimed state space used as starting point the roughest approxi-
mation possible. This fact allows the efficient verification of safety properties but makes
impossible the verification of liveness properties, for example. For safety properties, it is
enough to prove that no “undesired” situations (states) are reachable by the system. If
“undesired” states do not appear in the over-approximations, they will neither appear in
the exact timed state space, but not vice versa. Therefore, the verification can produce
“false-negatives” but never “false-positives”, i.e. it is conservative for safety properties.
On the contrary, for liveness properties it must be proved that some “desired” situation
is actually reachable. For that kind of proof, the exact timed state space (or an under-
approximation for conservativeness) must be computed.

The use of event structures for timing analysis was also proposed in [KBS02]. However,
no algorithm was presented that can handle a general class of transition systems for
verification. Moreover, the approach presented here, not only verifies the correctness of the
system with respect to a set of given safety properties, but also provides as back-annotation
a set of timing constraints sufficient to prove such correctness. This information is crucial
in frameworks in which synthesis and verification are iteratively invoked to design systems
that must meet functional and non-functional constraints.

We want to remark that the application of the method for the verification of untimed
systems does not involve any additional overhead with respect to the conventional symbolic
methods (e.g. [BCM192]).

4.1.1 Relative Timing

So far we have talked about the idea of relative timing but no illustrative example has
been provided that can help to understand some of its benefits, specially in areas other
than the verification of timed systems. In this section we reproduce partially an example
from [CKK™'02] where relative timing is used to improve the synthesis of asynchronous
control circuits. The synthesis process takes relative timing information into account thus
allowing the generation of smaller and faster circuits.

EXAMPLE 4.1 Consider the asynchronous circuit in Figure 4.1 (a). The delays of the
gates are represented by intervals of the form [d, D], which indicate that the output of the
gate driving a given signal x will change §(x) time units after the gate became enabled,
with d < §(x) < D. That is, the firing time is bounded by the given delay interval.

After the occurrence of a rising transition of signal y, the behavior represented by the
STG of Figure 4.1 (b) is enabled to happen. The rising transition of signal b appears to
be concurrent with the rising transition of signals ¢ and d. The corresponding underlying
TS is depicted in Figure 4.1 (c).

56 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

[1,3]
o
. =By
c d
23] >G MIZBI
12,41 1341

(a)

@/ L

[13]

o
>OC\

[23]

[2.41 [3.4] [2.31

Figure 4.1 Relative timing in the synthesis of circuits: (a) timed circuit, (b) portion of the STG and (c)
corresponding TS for the untimed behavior, (d) corresponding LzTS and (e) optimized circuit.

If the actual delays of the gates driving these signals are considered, it is easy to realize
that b+ will always happen before d+. Clearly, the earliest time for d+ to occur is § time
units after a—, whereas the latest time for b+ to occur is only 3 time units after a—. This
observation can be translated into the fact that state s5 of the untimed TS will never be
reached (see the resulting LzTS in Figure 4.1 (d)).

Provided that b+ will always happen before d+, the causality relation b+ — e— is always
guaranteed by the actual delays and the causality relation d+ — e—. Thus, a potential
optimization of the circuit may consider the relative timing constraint between b+ and d+,
and ignore the explicit causality relation b+ — e—, which leads to the optimized circuit
of Figure 4.1 (e). W4l

Along the process described in the example, neither the exact times at which each event
occurs nor the exact times at which the states are reached need to be determined. Instead
the reasoning is done in terms of “which event occurs before each other”. This type of

reasoning is particularly useful in the early stages of the design flow, when the exact

4.2 OVERVIEW 57

timed behavior of a system is difficult to determine and precise delay constraints are hard
to satisfy. Conversely, it is much simpler to deal with constraints that just state which
event must be faster than other, without taking care of the exact delay slack between
them. Moreover, it is much easier to keep these type of constraints satisfiable along the
successive design steps.

Using similar ideas, Intel’s Strategic CAD Lab has recently designed an asynchronous
instruction length decoder for the x86 instruction set [RSG199]. The circuit exhibits a
promising increase in performance with respect to its synchronous counterpart, thanks to
the optimizations achieved using the relative timing information. The techniques pioneered
by this design have been evolved and formalized using the LzTS model [CKK 98] and
automated in the logic synthesis tool PETRIFY [CKK197].

Finally remark, that although this section has referred to asynchronous circuits, they
are just an example of application. The relative timing paradigm is applicable to the
design, synthesis and verification of timed systems in general.

4.2 Overview

This section provides an overview of the verification approach with relative timing
presented in this chapter. For that purpose, an simple illustrative example is developed.

This work develops a formal approach to verify that a system with certain timing
constraints satisfies a given safety property P. The system is modeled by means of a
timed transition system, A, composed by an underlying transition system, A~, and two
functions, ' and §%, which associate minimal and maximal delays, respectively, to each
event of the system. A given sequence of events of a TTS is said to be timing-consistent if
it is possible to assign increasing time values to all the events such that their firing times
are within the allowed bounds. The modeling formalism of timed transition systems was
introduced in Section 2.3.

The verification problem is posed in terms of the following language inclusion test:
L(A) C L(P) [Gup92], where L(A) corresponds to the set of all possible behaviors of
A, and L(P) is the set of all possible behaviors satisfying property P. The approach
consists in building successive conservative approximations of £(A) starting from L£(A7),
by adding relative timing constraints [SGR99] in an iterative manner. We start from the
TS Ag = A™, i.e. the original system without timing constraints, and try to prove the
inclusion L(Ag) C L(P). If the inclusion holds, then L(A) C L(Ay) C L(P), which
indicates that A satisfies P without any timing assumption. The verification succeeds.

If P is not satisfied in some state, a run p that leads to a failure is generated. If the
run is timing-consistent, then the system is incorrect, i.e. violates the required property.
However, if the run is not timing-consistent, it can be used to refine the untimed state
space and remove other timing-inconsistent runs leading to failure states. To do this, a

58 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

suffix p' of the run p is taken and an event structure that covers p’' is built. Timing
analysis on the event structure is performed by using the polynomial algorithm for acyclic
marked graphs in [MD92]. A set of relative timing constraints are derived that prove the
timing-inconsistency of p'.

The state space of the (timed) event structure is composed with the untimed abstraction
of the system Ag, in such a way that at least the failure run p is removed and no
timing-consistent run is removed. A series of successive approximations A; of A are
constructed iteratively, with containment L(A) C L(A4;) and monotonic convergence,
L(Aj11) C L(A;). At every step L(A;) C L(P) is checked. Verification stops successfully
if the inclusion holds, or fails if a counterexample run is found. For a discussion on the
convergence of the method refer to Section 4.6.6.

Iterative approaches for the verification of real-time systems have been also presented
in [AK95, BSV95]. The major novelty of the approach presented in this thesis is the use
of event structures to perform efficient off-line timing analysis, and to incorporate the

resulting timing information in the form of relative timing constraints.

EXAMPLE 4.2 Figure 4.2 depicts the TTS modeling a simple timed system. Figures 4.2
(a) and (b) show respectively, the underlying (untimed) TS and the delay intervals of events
a, b, ¢ and g. The delay interval for the rest of events is assumed to be unbounded,
i.e. [0,00). Figure 4.2 (e) depicts the state space of the system, when the delays are taken
into account the shadowed states are not reachable. A crucial observation is that all runs
in the TS of Figure 4.2 (a) that start and end at state sy can be covered by the two
event structures depicted in Figures 4.2 (¢) and (d): black states are covered by the event
structure (c¢), white states are covered by the event structure (d) and grey states are covered
by both event structures. Thanks to this fact the later verification process can be carried
out with just a couple of refinements.

Assume that the property to be verified indicates that event g must always precede event
d in any possible run after having visited state so. The property holds in the timed state
space since no state where d can fire before g is reachable. Conversely, the property does
not hold in the untimed state space, for example in state syy where d can fire before g.

The analysis starts by generating a run that leads to the failure situation, for example
a run from sy to sig followed by the firing of d before g can be generated (Figure 4.3
(a)). Next, an event structure that captures the causality relations of the events in the
run is derived (Figure 4.8 (b)). Notice that, in the event structure, c is only triggered
by a but not triggered by b, as one may expect by looking at the transition system. This
is due to the fact that the event structure only contains those causality relations derived
from the run. In the failure run under analysis, ¢ is not enabled in s; and is enabled
after having fired a from si. Thus a triggers c, while b is concurrent to it.

4.2 OVERVIEW 59

X X
b \a b a
a0 1.2 Y\ INAN
5(b)] [L 2] l: 9 C\ 9
5(c)0 1253 d l d '/
5(g)] [05,08] Y Ny

Figure 4.2 Example of verification with relative timing: (a,b) TTS and delay intervals. (c,d) Event
structures covering the runs starting from so. (e) Timed state space (shaded states are unreachable).

By timing analysis over the event structure, we find that b and g always precede c.
These timing relations are shown as the dotted arcs incorporated to the event structure in
Figure 4.3 (c). Such timing analysis is only valid for the causal relations expressed in the
event structure, but it is not valid, for example, in the case when b triggers c. Figure 4.3
(d) depicts the state space of the timed event structure, where the shadowed states are not
reachable due to the timing relations. Namely, event c is prevented to fire in some states,
where its firing would be inconsistent with the timing analysis.

Finally, all this information is incorporated into the system (Figure 4.3 (e)) by compos-
ing the original system and the event structure. An event structure being derived from a

60

CHA

PTER 4 : VERIFICATION WITH RELATIVE TIMING

(s1,c1)

k

(s11,C10)

g (262
-
($3C3) ¢! X
ciN\op ! S g 65 L)
; g 55 -
v - (s6, 1) ic 9, L)
(s6,C8) c: ‘a/
Y [+
c g (10,1
-
(s11, |)

oo e

(s13,C12) (s13, 1)

Figure 4.3 Example of verification with relative timing (first iteration): (a) A failure run and its corre-

sponding event structure (b). The event structure annotated with timing arcs (c). (d) State space of the

event structure (shaded states are unreachable). (e) LzTS obtained after composition.

particular run gives only partial behaviors of the original system. When the behaviors of

the system and the event structure mismatch, the special symbol 1 is used. Some states

in the composed system are split into two instances depending on whether they are reached

by runs matching (enabling compatible) the event structure or not (see states ss, Sg, Si1

and s13). Figure 4.3 (e) shows the resulting system. Notice that the set of runs is smaller

than that of the original system, but larger than that of the actual state space when the

delays are considered (Figure 4.2 (e)), and that only timing-inconsistent runs have been

removed.

4.2 OVERVIEW 61

(s0, T)
X
(s1.C1)
b
x [0,0) x [0,m)
(s4,C6)
c b[12] a [12] b[1.2] a (12
(s9, L) ’
[253] ¢ g [2.5,3] C oo g
2 i [0.5,0.5] [05,05]
(s10, 1)
®
d d [0®@)
(s14, 1)
g (b) (c)
(s13, L (SO,T T) (d)
X
(a)
4 (SLCLXD)
-—
g (52.C2.%2)
-
($3.C3.X3) ¢! X ‘aﬁca‘xa,)
cN\b ' (;9 (s5, 1, X5) i c
‘ g 58C7X5) 7
' - (6 Lx °
(s6.C8X6) ¢ ! '
' ci
c
y (s11, | ,X9)

(s11,C10,X9)

oo

(s13.C12.X11) (s13, | X11)
(e)

Figure 4.4 Example of verification with relative timing (second iteration): (a) A failure run and its
corresponding event structure (b). The event structure annotated with timing arcs (c). (d) State space of

the event structure (shaded states are unreachable). (d) LzTS obtained after composition.

This completes the first refinement of the untimed state space taken as starting point.
This step has removed some of the failure runs but not all of them. For example, if the
new state (sig, L) is reached, d can fire before g and this contradicts the property under
verification. Figure 4.4 summarizes one more refinement. In the resulting system all
the failure runs have been removed, which proves that the system satisfies the property.
Although it is not generally true, in this case the final state space contains exactly the

same runs than the actual state space shown in Figure 4.2 (e).

W42

62 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

Several objects and notions have been mentioned along the previous example, such as
event structures, enabling compatibility, etc. These and other notions, as well as the
theoretical aspects of the verification with relative timing are presented in detail in the

following sections.

4.3 Trace semantics

As we have discussed in the previous section, the verification problem is posed in terms
of the language generated by the system under verification and the language of all behav-
iors satisfying a given property. The verification process involves lazy transition systems
and event structures (see Section 4.4) as major models. The process consists in an itera-
tive incremental refinement of the system under verification with the timing information
derived from the event structures.

A common semantics that unifies the models involved in the verification process can be
defined in terms of traces. Based on traces, we will derive several notions that formalize
our refinement approach for verification. This flow, illustrated in Figure 4.5, covers the
contents of Sections 4.3 and 4.4.

4.3.1 Traces and languages

We extend the usual notion of trace [Maz88] by associating the set of enabled events
to the firing of each event in a sequence of event firings. Thus, each element of the trace
keeps track of which events are enabled and which event fires at each step.

DEFINITION 4.1 (TRACE)
Let X be an alphabet of events. A trace 6 = Ey i)Egl -+ 18 a sequence such
that Vi > 1 : E; C X and e; € E;, where E; denotes the set of events enabled
when €; fires.
H41
Henceforth, and for the sake of simplicity, all events in a trace will be assumed to be
distinct. This assumption can always be enforced by renaming different occurrences of the
same event. This renaming does not affect the validity of the theory presented.

Although it is an abstract notion, a trace has a direct correspondence with the notion of
run in transition systems. Since a TS is a particular case of LzTS, and a TTS is described
in terms of a TS plus certain delays, the following definition also applies to those models.

DEFINITION 4.2 (TRACES IN LAZY TRANSITION SYSTEMS)
e e e e
Each run p=s; —1>52—2> -+ of a LZTS defines a trace 0, = E; —1>E2—2> -« where

E; is the set of events enabled at s;, i.e. FE; = E(s;).
W 4.2

Notions defined over the runs of a transition system can be naturally extended for
their traces counterparts. Specially relevant for the verification problem are the notion of

4.3 TRACE SEMANTICS 63

Separation — Lazy CES

times
Ordering / l
relations
—_—

Trace Causal event Language
suffix structure (CES) ¢

delay
bounds

TS

\ Projection — Enable

Trace ——* compatible — | Refinement
traces

Language

Figure 4.5 From traces to language refinement.

enabling interval of an event along a run (see Definition 2.4), and the notion of timing-
consistent run (see Definition 2.7).

Figure 4.6 (a) depicts a run, taken from the TTS in Figure 4.2, and its corresponding
trace. A state of the run is substituted in the trace by the set of events enabled at such
state in the transition system. The enabling intervals of the events in the trace are depicted
as vertical lines in Figure 4.6 (b).

Next, the language of a system is defined by the set of traces that it can generate. In
the case of a TTS only the traces defined by the runs that satisfy the delays associated to
the events of the system are considered. That is:

DEFINITION 4.3 (LANGUAGES)
The language L(A) of a LzTS A s the set of traces defined by all runs of A.
The language L(A) of a TTS A= (A7,6",8%) is the set of traces defined by all
timing-consistent runs of A~.
W43
LEMMA 4.1 (LANGUAGE INCLUSION)

Let A= (A™,6',6%) bea TTS. Then, its language is a subset of that of its underlying
TS, ie. L(A) CL(AT).
41

The proof of the lemma directly follows from Definition 2.7 and Definition 4.3.

4.3.2 Trace-based verification

In order to solve the verification problem for safety poperties, the language of the
TTS that models the system under verification must be computed or, at least, conserva-

64 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

sO {I} {I} ,,,,,,,,,,,,,,,,,,,,,,,
X X X X
sl {a,b} {a,b} L ...
. ” 516 < f16 < 5*(0)
=P 6'(2) < ft(a) — ft(x) < 6% (a)
s2 {b,c,g {b,c,g}
e C 5(b) < fi(b) — fr(x) < 5" (b)
’ 5'(c) < ft(c) — fi(a) < 6°(c)
57 (b9} ooy
b ib b 5'(g) < ft(g) — ft(a) < 5(g)
s10 {d, g} tdygy Ll 6l(d) S ft(d) - ft(b) S 6u(d)
d id d J
s14 {9} 9y b ft(x) < ft(a) < ft(c) < ft(b) < ft(d) < ft(g)
g g g
s13 {g} {g} 777777777777777 o (C)

(a) (b)

Figure 4.6 A trace taken from the TTS in Figure 4.2: (a) the original run (left) and the trace (right),
(b) enabling intervals of the events in the trace, and (c) timing analysis of the trace.

tively estimated. According to Definition 4.3 this requires a mechanism to check whether
a trace of the underlying TS is timing-consistent or not (see Definition 2.7). Checking the
timing-consistency of a trace can be formulated quite simply by means of a set of expres-
sions that bound the firing times of the events in the trace according to their delays.
The firing time of event e;, denoted by ft(e;), is bounded according to the expression:

ft(e;) +0'(er) < ft(es) < fte;) + 0" (es) (4.1)

where e; is the event that triggers e; in the trace. Event enabled in the initial state of
the trace have no trigger event, therefore its firing time is only bounded by its delays.

On the other hand, there are events in the trace which are disabled by the firing of
another event. For example in the right of Figure 4.7, event e; is enabled in the trace
but its actual firing is prevented by the firing of another (disabler) event e;. The disabling
of e; must occur before the maximum delay since e; was enabled, has elapsed. Otherwise
er should have fired yet. Conversely, the disabling can occur as soon as e is enabled,
no matter if its minimum delay has already elapsed or not. Therefore, the firing time of
the disabler event e; is bounded according to the following expression:

ftlej) < ftlei) < ftlej) + 6" (ex) (4.2)

where e; is the event that triggers e, in the trace. Since for the disabling to occur in
the trace (firing of e;), the disabled event e, must be already enabled by the firing of

4.3 TRACE SEMANTICS 65

eieéEj e CE,
ej e,

ei6Ej+1 ekng‘Ei+1

Figure 4.7 Enabling and disabling in a trace: (a) event e; enables event e;, and (b) event e, is disabled
by the firing of event e; (the disabler).

e;, the firing of e; always happens before that of e;. Hence, the inequality in the left of
expression (4.2) is actually redundant.

Finally, the order in which the events fire along the trace provides additional information
for the timing analysis, .e. time must monotonically increase as long as new events fire.
Assuming that the events that fire in the trace are numbered according to their firing

order, the following expression must hold:

V1<i: ft(er) < ft(eir1) (4.3)

The conjunction of expressions (4.1), (4.2) and (4.3) determine the timing-consistency
of the trace. If a solution can be found that assigns firing times to the events of the trace
according to the set of inequalities, the trace is timing-consistent. Otherwise, the trace
is not timing-consistent and therefore it does not belong to the language generated by
the system. Checking the timing-consistency of a trace using the formulation provided by
expressions (4.1), (4.2) and (4.3) can be easily performed using linear programming.

EXAMPLE 4.2 (CONT.) Fligure 4.6 (¢) shows the set of constraints of the linear pro-
gramming model to check the timing-consistency of the trace of Figure 4.6 (b). Since no
disabling situation appears in the trace, only expressions (4.1) and (4.3) apply.

In this case, the problem has no solution if the delays shown in Figure 4.2 (b) are con-
sidered. Therefore, the trace is not timing-consistent and does not belong to the language
of the system. Notice that this result is coherent with that obtained in Exzample 4.2. The
trace was removed from the LzTS obtained after the first refinement of the verification

approach (see Figure 4.3). W42

Provided the formulation developed above for the timing analysis on a trace, a trace-
based method for the verification of timed systems can be devised. The method must
consider all the traces leading from the initial state of the system up to the states where

violations of the properties under verification occur. The system is correct if no failure

66 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

trace exists when the delays are taken into account, i.e. if none of the failure traces in
timing-consistent. On the contrary, a timing-consistent failure trace provides a counterex-
ample that proves the incorrectness of the system.

The impossibility of this trace-based method for verification is obvious. The number of
traces between two states of the system may be extremely large or even infinite if cycles
are allowed. Moreover, the number of failure states would suffer from the state explosion
problem as well. Therefore, some strategy to alleviate this complexity is required.

4.3.3 Enabling compatibility

This section provides a fundamental result that helps addressing the complexity problem
exposed by the trace-based verification method outlined above. In short, Theorem 4.1
estates that the results obtained from the timing analysis over a given trace can be applied
to all those traces that have the same causality relations. The theorem is based upon the
notion of enabling-compatibility, that characterizes the relation between traces in which
events are enabled (disabled) by the same triggers (disablers), and events fire in the same
order. Since the time at which an event fires or is disabled only depends on the instant
it became enabled plus certain delays within the given bounds, the timing analysis for a
trace is also applicable to all the traces that are enabling-compatible.

The notion of trace, as it is given by Definition 4.1, does not explicitly distinguish
between those events in a trace that fire after being enabled for some time, and those
events that are disabled by the firing of another event in the trace. However, the disabling
phenomenon is relevant for the timing analysis over a set of traces and must be properly
modeled. In the following definition, that complements Definition 4.1, each element of the
trace keeps track of which events are enabled, which event fires at each step, and which
events are disabled due to such firing.

DEFINITION 4.4 (DISABLING IN A TRACE)
Let 0 = E11>E22> -« be a trace. The set D; C E;, 1 > 1 1is the set of events
disabled by the firing of event e; in 0, defined by D; ={d € E; |d #e; ANd &€ Ej11}.
The set of all the events disabled along trace 6 s the set D(0) = UDi . We
i>1
denote by e; dis d the fact that event e; disables event d . FEvent e; is the

disabler of d in 6. W44

EXAMPLE 4.3 The circuit in Figure 4.8 (a) reacts to changes at the input signal a by
producing some changes at the output signals d, e and f. In a particular run, after firing
a+, the AND gate driving signal d is enabled to rise since inputs b and e are both
high. However, a negative transition of e disables the gate switch. This situation can be
observed in the corresponding untimed TS of Figure 4.8 (b). Transition d+ is enabled

4.3 TRACE SEMANTICS 67

.SO
-
b+ @®sl
d+ g
a b (3.5] 5134/+. i c-
(LY [y T\ d ¢ Oi o
>O c e f_i sl. - .52
>—i °
[0,®) [1,7] a1 ® o i &
> f \i o 3
slle s9 o°
6.1 N) 5><.»>< i
d_

S0 {at} 2®a- *
ar a e (b)
o el 0'(a+) < ft(a+) < 0" (a+)
b+ b+ orojem |k 8'(b+) < ft(b+) — ft(a+) < 6“(b+)
s7 {o-dr =}] §'(c-) < ft(c-) — ft(a+) < 8%(c-)
< C_ o §'(F-) < ft(f-) — ft(a+) < 6“(f-)
8 {d+ e-f-} | 6'(e=) < ft(e=) — ft(c—) < 6%(e-)
- - e
s11 {dt e} ft(e-) < ft(b+) +0"(d+)
s12 fa-}... fta+) < ft(b+) < ft(c-) < ft(f-) < ft(e-)

Figure 4.8 (a) Circuit with a potential disabling at gate d. (b) Portion of the timed state space (shad-
owed states are unreachable). (c¢) A run and the corresponding trace illustrating the enabling intervals and

the disabling of event d+ due to the firing of e-. (d) Timing analysis of the trace.

in state sy after b+. However, when e— occurs and state sia is reached, d+ cannot
happen anymore. Thus, event d+ is enabled for some time and then becomes disabled.

The trace in Figure 4.8 (c) illustrates the disabling phenomenon. Given Es = {d+,e-}
corresponding to state sy and the firing of e-, Fg ={a-} (s12) is reached where d+ is
no longer enabled. Thus we have D5 = {d+} C E5 and e- dis d+ .

Figure 4.8 (d) shows a linear programming model to check the timing-consistency of
the trace. According to Definition 2.7 for timing-consistency and the formulation of the
problem in the previous section, the inequality ft(e-) < ft(b+) + 0“(d+) indicates that
e~ must disable d+ before its maximum possible firing time has elapsed. This constraint

to expression (4.2) from Section 4.5.2. i3

68 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

bling— ibl —enabling— ibl —enabling— ibl
{X} enal n;l’;%p(ilr?gl’npatl e {X} non err:]e;ml)ri]rg]]gcompatl e {X} non err:]e;ml)ri]rg]]gcompatl e
X X X
{ab}----------= {a} {ab}--------- -={b} {ab}----------={a,b}
a a a b a a
{bcg}--------= {cg} {b.c.g}-" ¢ {bcgt— - ={b,c.g}
b ///// g b /,’/:/ C b b
{cgr- = {c} gt - d fcgt-—={g
g - ¢ g o d g g9
{C}/’/ //,7 {d} {C}// //// ///g {C}f_E"""i::?/g
c - d c . c
{dy- B {dy” ’ fdp-
d .-~ d - d -
- Z'={acdg} - Z'={b,.c,d} v Z={abcg}
y y y

Figure 4.9 Enabling-compatible (left) and non-enabling-compatible mappings (center and right).

With all the above, the following definition introduces the cornerstone notion of the
verification strategy presented in this thesis.

DEFINITION 4.5 (ENABLING-COMPATIBLE TRACE MAPPING)
Let 6 = ---—>E02>E11>E22>---e—n>En+1—>--- be a trace over the alphabet
e’ el /
of events ¥ and let 0" = Ei—1>Eé—2>e—m>E,'n+1 be a trace over the alphabet
W CX. Let 0, = EllEzl oo I Eniy be a fragment of 6.

An enabling-compatible mapping of 0; onto €' is a function map : {E1,...,Ept1} —
{El,....E], .} such that:

a) map(E;) = E} (initialization)
b) V1<i<n, map(E;) = E;NY (projection)
¢) V1<i<n, (map(E;) =map(Eiy1) N & ¢ X)) V
(map(E;) = E; A map(Ei;1) = E;'—I—l N e = e;) (firing)
W45

The mapping of § onto €' is a function that preserves the enabledness of the events in
¥'. Initially, the events enabled in E| must also be enabled in E) (initialization condition).
Next, the events of ¥’ enabled along 6 and 6’ must be the same (projection condition).
Moreover, § may fire events that are not relevant to 8 (when map(E;) = map(F;11) in
the firing condition). The second part of of the firing condition captures implicitly the
disabling of events produced by the firing of e; in 6 and the firing of € in ¢', that is if an

event is disabled in one trace it must be disabled also in the other trace. Since the firing

4.3 TRACE SEMANTICS 69

time of an event only depends on its enabling time and its delay (see Section 2.3), this
notion will allow us to apply the timing analysis of 6 to € in the fragment 6.

Figure 4.9 shows three examples of trace mapping of the shadowed fragment. The
mapping at the left, with X' = {a,c,d, g}, is enabling-compatible. The mapping at the
center, with ¥’ = {b,c,d}, is not enabling-compatible since it violates the projection
condition when taking E; = {b,c,g} and map(E;) = {b}. Clearly, a enables c in 6,
whereas c is enabled by b in #'. The mapping at the right, with ¥’ = {a, b, c, g}, is not
enabling-compatible since it violates the projection condition when taking E; = {c,g} and
map(E;) = {g}. The firing of b in #' disables ¢ whereas this does not happen in 6.

The following theorem is the main theoretical result of the verification approach pre-
sented in this thesis. The theorem relies on the notion of enabling-compatibility between
traces. Since the time at which events fire or are disabled only depends on the enabling
instant plus certain delay, the timing analysis on a trace is also applicable to all the traces
that share the same enabling, disabling and firing order. That is the timing analysis
applies to the set of enabling-compatible traces.

THEOREM 4.1 (ENABLING-COMPATIBILITY AND TIMING-CONSISTENCY)
Let 6, 6 and 0; be traces with the same conditions as in Definition 4.5. Let
map be an enabling-compatible mapping from 60, onto 0. Let &' and 6* be two
functions that assign arbitrary min/max delays to the events in %' and 0 and oo
delays to the events in X\ X', respectively.

Then, 0 is timing-consistent <= 6 is timing-consistent.

Proof:

Given that events not in X' have delays in the interval [0,00), no attention must
be paid to their timing-consistency. So the proof can be concentrated on the events
in X' that appear in 0; and 0.

Let 71 < --- < 1, be the time stamps assigned to FEy,...,Ey,y1 that make
0 timing-consistent. The same time stamps can be assigned to 6 as follows.
Let j be the smallest index such that map(E;) = E.. Then we assign the time
stamp t; to E;. Under this assignment we have that for any e, € X', the
time stamp assigned to FirstEnabled(6, E;,e) is the same as the one assigned to
FirstEnabled(¢', map(E;),e;). This is ensured by Definition 4.5, that enforces the
set of enabled events in X' to be the same in E; and map(E;). Then, since
the disabling of an event e € X N'Y' must be due to the firing of another event
e, € XNY and such events are enabled and fire at the same time in both sides,
the disabling of e must also occur at the same time stamp in 6 and 6. Now, by
Definition 2.7 of timing-consistency, it immediately follows that the assignment of
time stamps also makes ' timing-consistent.

70 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

Given a set of consistent time stamps assigned to Ej,... ,E;nﬂ, they can also be

1

assigned to Ey,...,E,+1 by the function map™". Timing-consistency immediately

follows by using a reasoning similar to the previous case. w4l

The previous theorem states that the timing analysis of a trace can be reduced to the
timing analysis of those events that are causally related (events in 3'). Therefore, the
events that are concurrent with all the events of ¥’ can be abstracted out. Hence, the
timing analysis for one trace can be applied to all those traces that have the same causality

relations among the events in Y.

We want to remark that the notion of enabling-compatibility as well as the previous
theorem have been updated with respect to those in [PCKPO00] in order to properly ac-
commodate the disabling notion into the theory.

4.4 Event structures

This section presents the basic theory on causal event structures (CES). A CES describes
all the possible sequential and concurrent executions of a set of events. Thus, it allows
to capture a set of enabling-compatible traces under a single mathematical object. Event
structures are the only object for which we perform timing analysis, which is rather simple
and efficient because CESs are acyclic directed graphs. The timing constraints derived from
such analysis apply to the whole set of enabling-compatible traces covered by the CES.

The usual notion of CES is not able to model the disabling of events, which is a relevant
phenomenon for our verification approach. A class of event structures with conflict rela-
tions was proposed in [NPW81]. However, such relations are symmetric and correspond
to mutual disabling of competing events. A more general relation is required for our pur-
poses that models the asymmetry of event disabling, such as it appears in digital circuits,
for example. The main reason for considering asymmetric conflict relations is because, in
our verification approach, event structures are derived from traces and a particular trace
can only capture a single branch of a conflict relation. Consider the portion of TS in
Figure 4.10 (a). It contains a symmetrical conflict since x and y mutually disable each
other. Two important facts are observed in the trace of Figure 4.10 (b) extracted from
such TS:

m Only the disabling of y due to the firing of x is captured by the trace.

m Since y is disabled, it can no longer fire along the trace and therefore it cannot
enable other events.

The first fact leads to the need for considering an asymmetric conflict relation. The second
fact imposes the restriction that a disabled event cannot have causal successors in the event

4.4 EVENT STRUCTURES 71

.. Ny S >
& |
Y {b} \
° o b Disabling arc
d i k
{}

() (b)

Figure 4.10 (a) Portion of a TS with a symmetric disabling relation. (b) A trace and the corresponding
CES that capture the disabling.

structure. With these two ideas in mind an asymmetric conflict relation, denoted by >, is
added to the notion of causal event structure used in [PCKPO00], such that the disabling
of events along a trace is properly handled.

DEFINITION 4.6 (CAUSAL EVENT STRUCTURE)
A causal event structure (CES), CS = (3, <,p), is a finite set ¥ of events, a
precedence relation <C X x X (irreflezive, antisymmetric and transitive) called the
causality relation, and a conflict relation > C X xX (irreflezive and antisymmetric).
> s inherited via < in the sense of: V e1,ez,e3 € ¥ | ej>ex A e <e3 = egbes.
Moreover < and > satisfy the following two properties:

m <N>=0 and
me ey = AHAe3EX : ey <eg.

That is, the causality and the disabling relations are disjoint, and disabled events

cannot be causal predecessors of other events in the CES.
4.6

Notice that this definition excludes symmetric conflicts, i.e. mutual disabling between
events, by the anti-symmetry of >. This fact does not constitute a limitation of the model
but an intended feature that fits in our purposes.

Given a CES CS = (3, <,>) and two events e, e’ € X, the disabling relation between
e and €' is defined as follows:

de
e n, € 2] e>e AVe,el€X i [eg<e ANef<e ANep>e] = eg=e A el =¢]

>, identifies the minimal elements (under <) of the > relation. The > relation identifies
pairs of events which are inconsistent due to the disabling of some of the predecessors,
and propagates to causally-related events generating other conflicts.

72 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

A CES can then be depicted as a Hasse diagram, by showing the transitivity-irredundant
< relations in form of solid arcs and the >, relations as dashed arcs. Figure 4.10 (b)
shows a CES that contains the disabling relation x>, y. Other examples of causal event
structures without disabling relations can be seen in Figure 4.3 (b) and Figure 4.4 (b).

Given a CES CS = (X,<,>) and a set of events X C X, the following sets can be
defined [RE8S]:

(TX)s = {e1€¥|Te2e€X : e <eg}
(X7)s Y {ee0|TereX @ ey <e}
CX)s Y {eeX| BeyeX : eg<e}
(X°)< o {e1€X | Aea € X : e <ea}
UX)s © {e1e2|TFeyeX : ey <e} = (CX)JUX

When it is clear from the context, we will just write X, X7, °X | X°and | X .
Intuitively, X is the part of CS before X , X7 is the part of CS after X ,
°X are the root (with no predecessors) events of CS , and X° are the sink (with no
successors) events of CS. Finally, | X is called the left-closure of X .

DEFINITION 4.7 (WORDS AND PREFIXES)
A word of the events of CS = (X, <,>) is a sequence w =ej---e, € &" (n <| X),
such that all the events are distinct and V1 <1i,7<n:

e <e = i<j (events are ordered in w according to <), and

moe>,e; = e €w (disabled events do not appear in w).

Given a word w = ey ---€;ej41 - €y, thei-th prefix of w is denoted by w; = ey ---¢;.
The empty prefiz is denoted by wy.
4.7

Notice that an event e; for which a disabling relation e;>,e; exists in the CES cannot
fire along a word w. However, e; will become enabled somewhere in w as long as its
predecessors by < fire in w. Also, e; will be disabled when its predecessors by > fire
in w. This notions are formally captured by the following definition:

DEFINITION 4.8 (EVENTS ENABLED /DISABLED BY A PREFIX)
Let CS = (2,<,>) be a CES and let w be a word of CS. The set of events
enabled by a prefix w; is defined as E(w;) = {ey Fwi | Ve; €X 1 ej <e, = ¢ €
wi N ejbyer = e €w} . Similarly, the set of events disabled by a prefix w; is
defined as D(w;) ={ep w; | Jej €X : ejp e =€ € w;} .
W48

That is, an event e is enabled by a prefix w; if all the causal predecessor events (by <)
are in w;, none of its disablers are in w; and e is not in w;. Also, an event is disabled by

4.4 EVENT STRUCTURES 73

wj if it was enabled and later disabled along w; but it never fired. £(w;) contains all the
events still enabled by the sequence of firings in w;, while D(w;) accumulates all the events
disabled along w;. In the sequel we will denote by D C X the set of all events that are
disabled along some word of a CES, i.e. D={e; € ¥ |Je; € L:ej>e;}.

The notion of word in a CES is similar to the general notion of trace. This fact is
expressed by the following definition:

DEFINITION 4.9 (TRACES GENERATED BY WORDS)
Let CS = (3,<,>) be a CES andlet w=-ejey---e, be a word of CS. The trace

generated by w is defined as: 0, = E(wg)gg(wl)l---en;;ﬁ(wn_1)e—n>® .
W49

According the this definition, events disabled in the CES can appear only in the sets of
enabled events in each state of 6, but never in the transitions between states.

DEFINITION 4.10 (CAUSAL EVENT STRUCTURE GENERATED BY A TRACE)
Let 0 = E11>E22>---en;>1Ene—n>En+1 be a finite trace with D(6) as the set
of disabled events along it. The causal event structure CSy = (X, <,>) generated
from 0 s defined as follows:

n
" Y= UE
=1

Not only the firing events are included but all those enabled along the trace,
including the disabled ones.

Iei<ej<:>7j<j/\{/3Ek69:{ei,ej}gEk}AeigD(O).
The last condition emphasizes the fact that disabled events can not be causal
predecessors of other event since they do not fire along the trace.

e; dise; im0 ,or
B e b>e &
er>e; N ep <g

> captures the non-symmetric conflicts along the trace, that is e; may disable
e; but this has nothing to do with e; disabling e;. Both relations can never
appear together in the same trace. >, corresponds ezactly to the dis relation

of the trace.
W 4.10

EXAMPLE 4.3 (CONT.) Figure 4.11 (a) depicts a trace extracted from the TTS in
Figure 4.8. The trace contains the disabling of event d+. Figure 4.11 (b) shows the
CES derived from the trace according to Definition 4.10. The disabling relation between
e— and d+ s represented by the dashed arc.

74 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

{a+}

{b+, c-, f-}

b+ [11] a+ [1,1] a+
{c-, d+, -} /i\ /¢\

[1,1]b+ [0,0)c— [6,8] f- [1,1]b+ [0,®)c- [6,8] f-
{d+ e f-} l i l \,\
_ _e-[1,

- [3,5] d+ D [35]d+ =7~ al Lazy arcs
{d+ e-}

e (b) (c)

Figure 4.11 (a) A trace extracted from the TTS of Figure 4.8, (b) CES obtained from the trace (events
are annotated with their delay bounds), and (c) lazy CES induced by the delays.

The following sequences of events are words of the CES : a+b+c—f-e—, a+f-c—e-b+,
a+c-bte-f— | ete.

Consider w = a+b+c-f-e— , then w; = a+ s the first prefir of w, wy = a+b+ is
the second prefix of w, etc. The set of events enabled and disabled by wy are E(we) =
{c—,d+,f=} and D(we2) = 0. Similarly, the set of events enabled and disabled by ws are
E(ws) =0 and D(ws) = {d+}. Finally, according to Definition 4.9, w generates the
trace of Figure 4.11 (a). W43

Despite of the previous example, Figure 4.10, Figure 4.3 and Figure 4.4 show other
examples of CESs derived from a given trace.

We use CESs derived from failure traces to perform timing analysis. Hence, relative
timing relations among the events in the CES can be found that help to prove the timing-
consistency or timing-inconsistency of a failure trace. Moreover, thanks to Theorem 4.1,
the timing relations derived from the analysis also apply to the set of traces enabling-

compatible with the failure trace.

4.4.1 Timing analysis on event structures

CESs with timing assumptions can be derived from traces with events annotated with
minimum and maximum delay bounds (see Definition 4.10). These assumptions are cap-
tured by the notion of mazimal separation time between the events of a CES. The mazimal

separation time of two events e; and ey is computed as the maximum difference be-

4.4 EVENT STRUCTURES 75

tween their firing times, provided any possible assignment of delays to the events in the
CES. That is, Sepmaz(e1,e2) = max{ft(e1) — ft(ez) | for any delay assignment}, where
ft denotes the firing time of an event.

In [MD92] several algorithms for the timing analysis on acyclic graphs where presented.
Those algorithms included: a polynomial algorithm for the timing analysis with max
constraints only; an exponential, but feasible in practice, algorithm for the case with max
and linear constraints; and a branch and bound approach for the general case including
min/maz and linear constraints. The information obtained from these algorithms can be
used to analyze whether two concurrent events are actually ordered in the timed domain.
That is, e; precedes ey in the timed domain if Sepq.(e1,e2) < 0. Appendix A provides
details on the timing analysis algorithm of [MD92] for maz constraints.

The verification approach presented in [PCKPO00] used the algorithm of [MD92] with
only maz constraints to perform timing analysis on CES derived from traces without
disabling relations. However, such algorithm is not sufficient when the disabling of events
is involved. The following example illustrates why.

EXAMPLE 4.3 (CONT.) Recall the circuit of Figure 4.8 (a) where a falling transition
of gate e disables the rising transition of gate d. Assume also, that a situation in which
if “f— occurs before e~ once a+ has happened” is considered a failure by the designer
of the circuit. A trace that captures such failure and also includes the aforementioned
disabling situation is shown in Figure 4.11 (a). Provided the delay bounds of the events
shown in Figure 4.8 (a), it can be proved that the trace is not timing-consistent. Notice
that if e- disables d+, then e— must fire before the maximum possible firing time of
d+ has elapsed (see Definition 2.7). That is, the latest firing time of e— must be, some
amount of time before 6 time units, after a+ fired. This means that e— will always fire
before f—, whose minimum delay is also 6 time units and is also triggered by the reference
event a+. This fact can be better analyzed by looking at the CES in Figure /.11 (b), in

which events have been annotated with their respective delay intervals.
W43

According to the discussion in the previous example, the timing analysis on the CES should
provide a relative timing relation showing the fact that e— always fires before f—. How-
ever, the maz-only algorithm cannot handle the disabling situation and no such timing
relation can be obtained. This indicates that e— and f— can occur concurrently in the
timed domain. Which, in turn, implies that the failure trace is possible even when the
delays are considered. Therefore the circuit is faulty. This leads to contradiction since the
failure trace of the example is not timing-consistent.

The source of the contradiction resides in the fact that the disabling relation between
e— and d+ cannot be expressed in the maz-only algorithm for timing analysis, which can
only handle the causal relations among the events. Moreover, such disabling relation is

76 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

relevant for the timing analysis of this case. If the disabling is not considered, the relative
timing relation between e- and f- necessary to prove the timing-inconsistency of the
failure trace, cannot be found.

Disabling relations are incorporated to the timing analysis of a CES in the form of linear
constraints. Such constraints express the fact that if event e; disables event e, then
e; fires before the maximum delay of e; has elapsed, since it was enabled by its trigger
e;. Otherwise e; should have fired before the disabling could take place. More formally,
given a CES CS = (¥, <,»), such that e; >, e, and e; < e, (e;,e5,e, € X) a linear
constraint of the form ft(e;) < ft(e;) +0"(ex) is added to the timing analysis. Then the
timing analysis algorithm for maz and linear constraints in [McM92] can be used.

In the previous example, a linear constraint corresponding to the disabling of d+ by
e— is imposed to the timing analysis, such that e— must fire before the delay of d+ elapses.
That is ft(e-) < ft(b+) + 0“(d+). Under this condition, which reflects what happens in
the trace, we have that Sepp,.,(e—,f-) < 0. As we expected, this means that e~ precedes
f— in the timed domain.

The maximum separation times computed by the timing analysis algorithm can be
incorporated to the CES in the form of relative timing constraints between pairs of events.
Thus, e; precedes ey in the timed domain if Sep,,q:(e1,e2) < 0. We refer to these new
relations as lazy relations, expressing the fact that es is lazy to fire until e; has fired.
This notion of laziness is similar to that for lazy transition systems (see Section 2.4).

DEFINITION 4.11 (LAzy CES GENENERATED BY A TRACE)
Let 0 = EIL---Ene—%EnH be a trace of a TTS A = (A~,6',6%) , and let
CSy = (X, <,>). Thetriple LCS = (X, <',>) is called a lazy causal event structure
(LzCES), where <’ = <UT ,and T CX x X isa set of lazy relations such

that T = {(ej,e;) € xX | e £ej A e £e A Sepmaz(ei,e) <0} .
411

The LzCES obtained after the timing analysis on the CES of Example 4.3 is shown in
Figure 4.11 (c). The lazy relations corresponding to the relative timing information are
depicted as dotted lines. Despite of the previous example, Figure 4.3 and Figure 4.4 show
other examples of LzCESs derived from a given trace.

The delays assigned to the events in the CES for timing analysis play a crucial role in
the context of our verification approach. Failure traces and/or CESs may come from a
variety of sources: a designer, who’s knowledge about the possible sources of failures in a
system can be useful to guide the verification; a CES derived not from a whole trace that
starts from the initial state, but from a portion of trace that ensures a localized failure
analysis that involves less events; etc. In these cases, the prehistory of the enabledness of

some events involved in the analysis may be unknown to the verification algorithm. As

4.5 ENABLING-COMPATIBLE PRODUCT 77

a consequence, given a CES C'S = (X, <,>) , the minimum delay bound for all the root
events ((°X)<) i.e. those for which no causal predecessor exists, is conservatively set to 0.
That is, mimicking an infinitely early enabling time. With this strategy, timing analysis
is still exact in case the CES has only one root event, since the relative firing order of all
other events does not depend on the enabling time of their common predecessor.

A LzCES , obtained by the techniques described in previous sections, partially specifies
the behavior of the system under verification and incorporates a set of relative timing
constraints. Such timing constraints are mapped back to the system under verification by
means of composing appropriately the system and the LzCES.

4.5 Enabling-compatible product

This section describes how to refine the set of traces produced by a LzTS by considering
the timing constraints coming from event delay bounds. The timing constraints are derived
by a timing analysis on a CES corresponding to an eligible trace of a LzTS in the untimed
domain. The refinement is performed through the parallel composition of a LzTS and a
LzCES. Defining such composition requires both descriptions to be represented in a uniform
way. To satisfy this requirement we first introduce a state-based representation for CESs.

4.5.1 State-based representation of a CES

An underlying transition system can be obtained from a CES. This process relies on the
notion of configuration, which plays the role of global state of the CES.

DEFINITION 4.12 (CONFIGURATION)
Let CS =(2,<,>) be a CES.C CX is a configuration iff:

m C s left-closed, i.e. Ve; € C all predecessors of e; by < are in C, and

m disabled events do not belong to C, ie. & €C = JAej €X : e, 6.

Notice that both) and the set of not disabled events X\D are trivial configurations.
Event e € ¥ is enabled in configuration C iff ~{e} CC and Ve; € ¥ | ;b

e; : e &C. We denote by E(C) the set of all enabled events in configuration C.
W 4.12

Configuration C precisely identifies a state of a CES, as the set of events occurred so far,
such that if e € C all its causal predecessors must be also in C.

Every prefix w; of a word w in a CES is left-closed and disabled events do not
fire along it (see Definition 4.7). Thus every prefix w; defines a configuration which is
reached by firing the events from w;. Consideration of all possible words of a CES and
their prefixes gives the set of reachable configurations, C', where the initial configuration
due to the empty prefix wy is denoted by T. The set of reachable configurations together

78 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

T {a+}
l at l a+
Ab/{aﬂ !
{a+, b+} \f‘ < {c-, d+, -} J <
{ ><{a+, -} {a+, c-} J {b+, c-} {b+, e—, -}

{a+, b+, f-} {a+, b+,c>—}< l X {c-, d+} {d+, e:§< { \

{a+, b+, c-, f-} {a+, b+, c-, e-} { - {d+, e-} -} { _

{a+, c-, e-, -} {b+}

b+ ‘/b+
{a+, b+, c-, e-, -})

(a) (b)
Figure 4.12 (a) Graph of reachable configurations for the LzCES of Figure 4.11 (c). (b) Corresponding

graph of reachable enablings. Shadowed configurations are not reachable due to the laziness of event f—.

with the partial order induced by the strict set inclusion C, defines the graph of reachable

configurations.

DEFINITION 4.13 (GRAPH OF REACHABLE CONFIGURATIONS)
Let CS = (X,<,») be a CES, and C be the set of reachable configurations of
CS. The graph of reachable configurations (GRC) of CS is a Hasse diagram over

C and the partial order C interpreted in set-theoretical sense. - i3

For the general case of a LzCES, LC'S = (X, </,), the graph of reachable configurations
can be modeled by a LzTS G = (C,%,T, T,EnR) where: there is one state per config-
uration; C;——Co € T iff Cy is reached by firing e € & from C;; the initial state
corresponds to the initial configuration T; and EnR(e) ={C e C | e € £(C)}.

EXAMPLE 4.3 (CONT.) Figure 4.12 (a) depicts the resulting graph of reachable con-
figurations for the CES in Figure /.11 (b). In this graph every arc (Ci,e,C2) 1is at-
tributed by an event e which expands configuration Cy into Cy (the firing event).
The shadowed configurations are those unreachable due to the laziness of f— relative to
b+ and e- as imposed by the lazy arcs of the LzCES of Figure 4.11 (¢). Thus, we have
that EnR(f+) = {{a+}, {a+,b+},{a+,c-},{a+,b+,c-},{a+,c—,e-},{a+,b+,c—,e-}} and
FR(f+) = {{a+,b+,c—,e-}}. W43

4.5 ENABLING-COMPATIBLE PRODUCT 79

The following theorem shows that a configuration in a CES is uniquely defined by the set
of events enabled in it. The result applies in general to a LzCES since its set of reachable
configurations is a subset of that of the original CES from which the LzCES was derived.

THEOREM 4.2 (CONFIGURATIONS AND ENABLINGS)
Any pair of configurations C1 and Cy (C1 # Co) of a CES CS = (3,<,>) has
different sets £(C1) and E(C2) of enabled events, i.e. Cy #Co = E(C1) # E(C2) .
Proof:
By contradiction. Suppose that E(C1) = E(C2) . Two cases arise:

The configurations are ordered (similarly for Cy C Cy).

Then, any sequence of firings o , from Cy to Co must contain at least one event
e€ &(Cr) . If £(C1) =E&(Ca) , we have that e fires in C; but is again enabled in
Co . Therefore, e < e , which is a contradiction.

‘ CigC N CoCy ‘ The configurations are not ordered.

Let us consider the nearest predecessor configuration Cs such that C3 C Cy and
C3 C Cy , and there is no configuration C4 such that C4 C Cy, C4 C Cy and
C3CCy .

Let e be the first event firing in any feasible sequence of firings o1 from Cs3 to Cy .

Clearly, e does not appear in any feasible sequence of firings oo from Cs to Co
otherwise C1 and Co would be reachable from C4 such that Cgi>C4. Therefore,
e should be still enabled in Cy. Since we assumed that E£(C1) = £(C2) we have
that e is again enabled in Ci and therefore, e < e , which is a conlradiction. g ,,

In the sequel we will indistinctly use configurations or their enablings to characterize
the states of a CES. Based on this one-to-one correspondence instead of a graph of reach-
able configurations one could consider an isomorphic graph of reachable enablings (GRE).
Figure 4.12 (b) shows the GRE corresponding to the GRC of Figure 4.12 (a).

4.5.2 Refining the reachability space by timing constraints

At this moment we have two objects at hand: a lazy TS A, and another lazy TS G
obtained from an event structure CSy. CSp is derived from a particular trace 6 of
A (actually by an appropriate suffix), thus giving only a partial specification of the
behavior of A. CSp is refined through timing analysis yielding the lazy TS G.

Refining the behavior of A by the timing constraints incorporated in G can be done
by calculating the enabling-compatible product of G and A, which is a particular case of
transition system product under the restrictions of making synchronization by the same
transitions and the same enabling conditions.

For sake of simplicity, and before introducing the rules of the enabling-compatible prod-
uct below, we will add the special configuration | to G. 1 denotes the fact that the

80 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

product is not synchronizing, i.e. there is no enabling-compatibility with the state space
of the CES and therefore, timing analysis does not apply for the involved traces.

Given the system A = (S, X 4,T4,s0, EnR4) and the state space of the LzCES containing
G = (CU_L,Eg,Tg,T, EnRg>, with Xg C X4, the
enabling-compatible product of A and G is a new LzTS (S',%4,T",s), EnR’) where:

the relative timing constraints

" S'CSx(CUL),
m sy =(sp, T) if E(T) C&(sp), and sy = (sp, L) otherwise, and
m Ve € X4, EnR'(e) = {(s,C) € S" | s € EnR4(e)} .

The transition relation 7" is defined by the rules below. The rules are implied by the
conditions of Definition 4.5 on enabling-compatibility of traces. The fact that (s,C) €
S’ denotes that s and C have been reached by prefixes that are enabling-compatible,
and that map(€(s)) = £(C). Given a state of the product (s,C) with C # L, we will
say that the state is in the timed domain, indicating that the timing analysis performed
on (CSy can be applied to s.

The rules that define the enabling-compatible product are as follows:

Transitions entering the timed domain

Conditions
enter = s—s' €Ty A E(T) CE(S)NBg

Transition
(s, L)=>(s, T)

These transitions are fired when the events enabled in T are also enabled in s’. Thus,

timing analysis can start being applied from (s', T).

Staying inside the timed domain

Transition

Conditions

(s,C)—=(s',C)
(s,C)—=(s,C")

insidel = s—s' €Ty A E(s)NBg=E(s)N g

inside2 = s—s' €Ty A C—=C'e€Tg A E(S)NZSg =E(C)

Insidel corresponds to the condition in which e does not synchronize with G. Here
the enablings of configuration C must be preserved, i.e. the firing of e cannot disable
or enable events in Y.

For inside2, both A and G make a synchronized move which might affect the events
from g in exactly the same way: if a € 3¢ becomes enabled in A due to this move,
it should also become enabled in G, and viceversa.

Exiting or staying outside the timed domain

Conditions
exit = s—s' € Ty A —(enter V insidel V inside2)

Transition
(s,C) (s, 1)

4.6 VERIFICATION METHODOLOGY 81

It can be shown that, in the enabling-compatible product, only the traces of the original
LzTS which are enabling-compatible with the event structure are refined. This refinement
excludes the traces which are not timing-consistent with respect to the timing constraints
coming from the timing analysis on the event structure. All other traces are not changed,
thus guaranteeing the conservativeness of the approach.

EXAMPLE 4.3 (CONT.) Figure 4.13 summarizes the refinement of the state space of
the circuit of the running Example 4.3. The figure shows the circuit (a) and a portion
of its untimed state space (b). A given trace and the LzCES derived from it using the
delays of the circuit are shown in (c) and (d), respectively. The LzTS corresponding to
the GRC of the LzCES is shown in (e). Finally, (f) shows a portion of the resulting
LzTS after performing the enabling-compatible product of (e) and the original TS of (b).
States annotated with L correspond to those states where the enabling-compatibility is
not satisfied, and thus are out of the product. Notice that all traces where event d+ fires
lead out of the product, since they are not enabling-compatible with the LzCES (d), where
event d+ is disabled. W43

Despite of the previous example, Figure 4.3 and Figure 4.4 show other examples of

enabling-compatible product.

4.6 Verification methodology

The different elements of the verification methodology have been introduced along the
previous sections. The complete verification algorithm is presented in this section. Rele-
vant aspects such as the correctness and the convergence of the approach are discussed.

The proposed verification methodology follows a fully automated iterative approach.
The verification flow is graphically depicted in Figure 4.14.

The verification starts by taking a LzTS equivalent to the underlying TS of the system
under analysis, modeled as a TTS. In that case the enabling and the firing information of
all the events coincide since no timing information has been considered yet.

Given a safety property P, a trace is identified that leads to some state in which P is
violated. If the trace is timing-consistent then the system does not satisfy the required
property and the trace provides a counter-example. On the contrary, if the trace is not
timing-consistent, it is used to refine the untimed state space and remove other timing-
inconsistent traces. Causality information between the events in the trace is extracted and
a CES is built from it. Timing analysis on the CES is performed by using the algorithm
in [McM92]. The extracted temporal information is used to obtain a LzCES which is
composed with the original LzTS, thus including the temporal information necessary to
prove that some of the states in the system are unreachable. In particular, at least the

82 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

{a+}
a+
{b+, c-, f-}
a b [35] o A=
B
[1,1] [1,1] ji (o ¥ -1 /i\
>o c : e |: . [L1] b+ [0,®)c- [6,8] f-
> f {d+ e 1-} \[\
_ 1’
68l = Esjgs = O Lazy arcs
(3,) {d+ e-}
e (d)
.SO 0O
= I
b+ sl (C) a+
d+ .57‘/. o i
s.13 i b+ C1l
i .S4 /1 _
f_i s10 @52 C4 =\ C
@ S8 V
[) s14 .)><i x_\ ; .
i><’ss V —

ST
S "
_i’L .

-

s18, |
sl2

i
®

Figure 4.13 (a) Circuit with a potential disabling at gate d. (b) Portion of the untimed state space and
(c) trace extracted from it. (d) LzCES induced by the trace (c) and delays. (e) LzTS of the corresponding
GRC and (f) resulting LzTS after the enabling-compatible product of (b) and (e).

4.6 VERIFICATION METHODOLOGY 83

Property LzTS

constraint
comp

no yes osition

Failure Trace

Timing
consistent?

@ " Reachability
example [Causality extraction j

T fscgs] S
CES [analysis LZCES ackannotation

Figure 4.14 Flow of the verification methodology.

LzTS

failure trace found in the initial step is removed. The process is repeated until no violation
of the property P exists or a timing-consistent failure trace is found.

Along the series of refinements each LzCES is reported. At the end of the process,
the resulting set of LzCESs constitute a set of sufficient relative timing constraints that
prove the correctness of the system. They can also be used as valuable back-annotation
information to help the designer improve his/her knowledge of the parts of the system
which are critical for its correct operation.

4.6.1 Iterative refinement

Figure 4.15 shows the timed verification algorithm, where A is the TTS that models
the system under verification, and P is a safety property. In general, a set of safety
properties can be handled simultaneously with similar computational effort.

First, a LzTS A’ is obtained corresponding to the underlying TS of A. The enabling
information in A’ coincides with that of firing, since no refinement with the timing
information has been carried out yet.

The function untimed_verification checks whether a trace violating the property P is
present in A’. If such a trace exists, a finite prefix, 6, demonstrating the wrong behavior
is returned. This prefix is checked for timing-inconsistency by building and analyzing the
corresponding causal event structure (see function build_event_structure in Figure 4.16).
If no CES can disprove the feasibility of the trace 6 the verification returns 6 as an

84 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

function timed_verification (A = (Sz,%4,Ta,504,0',6%), P)
A" = (54,84,Ta,504,EnR) ;
repeat
0 := untimed_verification(A’, P);
if (empty 6) return(SUCCESS);
LCS := build_event_structure(A’, 8, 6', 6»);
if (empty LCS) return(FAIL, 6);
A" := compose(A’, LCS);
A= A",
end repeat
end function

Figure 4.15 Main algorithm of the relative timing-based verification approach.

function build_event_structure (A' = (S, %, T, so, EnR), 6, &', 6%)
0" := shortest_suffiz(0);
repeat
0" := add_predecessor (6", 0);
CS := build_event_structure(A’, 0");
if (timing_consistent(CS, &', 6*))
L := compute_lazy_arcs(CS, &', 6*);
LCS := add_lazy_arcs(CS, L);
return (LCS);
end if
while (6" # 0);
return (empty CS);
end function

Figure 4.16 Algorithm for the derivation of a LzCES from a trace.

example of violation of P. Otherwise the system is refined through the composition with
the LzCES LC'S. LCS contains a set of relative timing constraints that apply over a set
of enabling-compatible traces, including 6.

The timed_verification algorithm does not depend on any particular implementation of
the untimed_verification function. We have implemented, however, an approach based on
efficient symbolic model checking techniques [BCM™92]. Basically, we explore A’ looking
for failure states where P is violated. Then, a backward traversal is performed to generate

4.6 VERIFICATION METHODOLOGY 85

{x} {x} {x}
X iX X
{a,b} {a,b} {a,b}
a ia a
{b.c.g} {b.c.g} {bc.g}
I° e I
{b.g} {b.g} {b.g}
,,l,b,,, b b2 ib
{d.g} {d.g} {d.g}
d d id
{9} d g {9} d 9 {9}
© 0,0.5
ig 0. @) 1003 g 0 o) [0S ig

{y} {y} {y}

() (b) (c)

Figure 4.17 Generation of the sufficient shortest suffix of a trace. Three steps are needed to obtain a
LzCES that proves the timing-inconsistency of the trace.

a trace, leading from the initial state to the failure one, reproducing the discrepancy with
P. A fast simulation-guided traversal technique [PP03] has been also implemented. With
this technique, the cost of the search for property violations is drastically reduced, and
the failure trace is incrementally built during the process. Moreover, significant savings in
CPU time and memory requirements are achieved.

4.6.2 Off-line timing analysis of failures

The function build_event_structure (see Figure 4.16) builds the shortest suffix 6" of
the trace 6 generated by the function untimed_verification. 6" is built such that the
timing analysis shows a timing-inconsistency with the delays §' and 6% imposed by A.
A causal event structure C'S is constructed by using the causal relations of the events in
0" (see Section 4.4).

Function timing_consistent performs timing analysis over C'S. It implements the al-
gorithm described in [MD92] for timing analysis over an acyclic graph of events with
min/max and linear constraints (see Section 4.4.1).

If the timing analysis shows that the trace is not timing-consistent, function com-
pute_lazy_arcs extracts a set of relative timing constraints from C'S, i.e. a set of additional
orderings between the events of #” imposed by the delay bounds. These new constraints
are added to the initial CS in the form of lazy arcs by the function add_lazy_arcs. The
resulting lazy event structure LC'S models only those orderings of the events of #” which

are timing-consistent with the delays imposed by A.

86 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

EXAMPLE 4.4 Recall the example developed in Section 4.2. Consider the TS of Fig-
ure 4.2 (a) and the delay bounds specified in Figure 4.2 (b). Recall also that, in this
ecxample, the property being verified states that event g must always fire before event d.
Thus, the following trace {x}i%{a,b}i>{b,c,g}%{b,g}i){d,g}i){g}é{y} illus-
trates a violation of the property.

The shortest possible suffixz is given by the trace {d,g}%{g}i{y}, from which the
simple event structure of Figure 4.17 (a) is derived. Clearly, the timing analysis cannot
be exact since g was already enabled in the pre-history of the trace. Thus, the lower
delay bound of g 1is conservatively set to 0. The timing analysis can conclude nothing
about the occurrence order of events d and g, since both can fire concurrently. The
algorithm continues by moving one step backwards along the trace and repeats the same
process again, building the corresponding CES incrementally. Figure /.17 depicts the three
attempts needed to find the shortest sufficient suffix of the original failure trace.

According to the causality relations extracted from the suffiz of Figure 4.17 (c), timing
analysis concludes that events b and g occur before event ¢ (and consequently before
d). This relative timing constraints are depicted by the dotted arcs in the corresponding
lazy event structure. The derived timing relations demonstrate the infeasibility of the given

failure trace in the timed domain. W44

We have illustrated the process of deriving a sufficient LzCES that proves the timing-
inconsistency of a trace, by considering its shorter suffix. This, however, does not guarantee
the maximum effectiveness of the later refinement of the state space of the system, with
the timing constraints in the LzCES. In some cases, using the shortest prefix of the trace
results in better pruning of the set of failure traces. Similarly, the removal from the
LzCES of timing-unrelated concurrent events, or the addition of causal predecessors that
improve the knowledge of the enabling prehistory of the events, may affect the quality of
the LzCES obtained.

A set of trade-offs must be considered, which correlate aspects such as: how many events
are added to the CES such that the timing analysis can still be carried out effectively; how
readable will be the resulting LzCES so that it can be useful for back-annotation; how
effective in removing failure traces will be the later enabling-compatible product with the
system, etc.

4.6.3 Incorporation of relative timing constraints

Finally, we develop the composition algorithm (the compose function) that implements
the enabling-compatible product (see Section 4.5) between A’ and the LzCES LC'S. The
result is a new LzTS A” in which all traces contradicting the timing orderings of the
events in LCS have been removed from A’. Therefore L(A") C L(A’). The resulting
system A” is a new LzTS where:

4.6 VERIFICATION METHODOLOGY 87

s The state space may be split in two parts: one following the enabling orders
(enabling-compatible) of the events in LCS, and the other one where the en-
ablings are not followed. The former corresponds to the state subspace where the
constraints imposed by LCS apply (the timed subspace). In the latter, LC'S does
not apply (the untimed subspace).

m In the timed subspace, some events are prevented to fire when they are enabled.
More precisely, the composition with LC'S allows only those firing orderings which
are consistent with the timing analysis.

4.6.4 Back-annotation

A nice feature of the verification approach is its back-annotation capability. Namely,
the LzCESs used to represent the timing constraints applied along the series of iterative re-
finements of the state space of the system under verification, are reported at each iteration
of the process.

Given the causality relations modeled by a LzCES and the delays of the events, each
LzCES contains a set of additional ordering relations between the events in the timed
domain. They provide a set of sufficient conditions for the system under verification to
be correct. Moreover, the relative timing nature of such ordering relations and the fact
that a CES often contains a small set of events, make the information contained in the
LzCES rather easy to interpret.

As a result, the verification approach, not only verifies the correctness of a timed system
with respect to a set of safety properties. In case the system does not satisfy the properties,
a timed trace showing the sequence of events that lead to a failure and their firing times
according to the delays of the system, is provided as counterexample to prove the system
malfunction. Otherwise, if the system is correct, a set of timing constraints that prove
such correctness is provided in the form of LzCESs.

All this back-annotation information may result crucial in design frameworks where
synthesis and verification are invoked iteratively, for the design of systems that must meet

functional and non-functional constraints.

4.6.5 Correctness

The correctness of the timed_verification algorithm is guaranteed by the following facts:

m The language of the TTS being verified is a subset of the language of the initial
untimed abstraction, i.e. its underlying TS. This condition is proved by Lemma 4.1.

s Conservativeness: the compose function does not remove any trace which is timing-
consistent with the delays §' and 6 of the verified TTS. This is guaranteed by
the composition rules of the enabling-compatible product (see Section 4.5).

88 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

m Convergence: for a particular class of systems the verification requires only few re-
finements to converge (more details in Section 4.6.6). For the general class of systems
a pre-defined upper bound on the number of refinements can be imposed. Although
this could produce false negatives during verification, it is in full correspondence to
the conservative nature of the suggested verification approach. However, in most
practical cases, those systems where the upper bound on the number of refinements
is required, are systems which untimed state space is indeed too big to be handled
by conventional symbolic techniques.

4.6.6 Convergence

Each composition step of the original LzTS A’ with the lazy event structure LCS im-
plicitly performs an unfolding of A’ separating traces that are enabling-compatible with
LC'S and those which are not.

The convergence of the refinement procedure for the class of Marked Graphs is guaran-
teed by the known results on termination of separation times analysis in a finite number
of unfolding iterations [HB94]. Nevertheless the upper bound on the number of iterations
could be quite high (depends on the ratio of critical and sub-critical cycles). This is an
inherent limitation of exact separation analysis and, for practical applications, it is better
to work with pre-established separation bounds and do not unfold beyond those bounds.
Although it gives only conservative verification, an acceptance of pre-defined upper bounds
seems to be a reasonable option because the largest class of systems for which the separa-
tion times analysis could be performed exactly are free and unique choice systems [HB94].
Beyond them the calculation of separation times is inherently conservative.

However there is an important practical class of systems for which the refinement pro-
cedure is especially simple and is exact for few unfolding iterations. The characterization
of this class is done in terms of the so-called nodal states.

DEFINITION 4.14 (NODAL STATE)

Let A= (S,%,T,sp) beaTS. A state s € S is called nodal if Vs’ € S, s3s€eT,
e€&(s)=edg&(d).
W 4.14

Definition 4.14 points that all direct predecessors of a nodal state are synchronized in
that state, i.e. at the moment when a system arrives to a nodal state all concurrent
activities have been finished. Figure 4.18 illustrates the concept by showing two portions
of a transition system. State s in the left portion is a nodal state since all the events
enabled in s (c and d) are not enabled in any of the precedessor states of s. Conversely,
in the right portion state s is not nodal since event e is not newly enabled in s. Other
examples of nodal states can be found, for example, in the TS of Figure 4.2, where states

4.6 VERIFICATION METHODOLOGY 89

SN NS
7 7

Figure 4.18 Example of a nodal (left) and a not nodal state (right).

so, s1 and sj3 are nodal. This TS has no conflicting events (no choice) and therefore
each of the nodal states is a “global synchronizer” because it breaks all the TS cycles.

Nodal states are natural points from which the timing analysis is convenient to start.
Any event enabled somewhere in a path to a nodal state must fire before reaching this
state and, hence, timing analysis from a nodal state does not depend on the prehistory of
the process behavior. We will call a TS in which every trace passes through at least one
nodal state as strongly synchronized. Note that the requirement of breaking traces by a
set of nodal states is essential here because it is easy to construct an example of TS with
choices, in which different branches of a choice would have different nodal states and none
of them could serve as a “global synchronizer” for the whole TS.

In a strongly synchronized TS, given a failure trace € with an “improper” ordering
of the pair of events a and c, checking the timing-consistency by a and c¢ might
be reduced to consideration of the suffix 6; starting from the nodal state closest to the
enabling of events a and c.

By 6; one can construct the corresponding CES to check whether a and c¢ might
occur in the order they have in 6. However in case of cyclic behavior, 6 might continue
in such a way that the first n occurrences of events a and c¢ satisfy the checked
properties while their n 4+ 1 occurrences have an “improper” ordering. The nice feature
of strongly synchronized TSs is that timing analysis made for trace 6 can be equally
applied for “later” occurrences of a and c¢ because the analysis, started at a nodal
state, does not depend on the enabledness prehistory of the events. Therefore timing-
inconsistency of 6 implies also timing-inconsistency for any cyclic unfolding of 6, from
which it immediately follows the exactness and convergence of the suggested procedure
for verification.

The practical significance of the class of strongly synchronized TS could be shown
by analyzing the known set of asynchronous circuits benchmarks (see Chapter 5): more
than 80% of the specifications are strongly synchronized. Beyond the class of strongly
synchronized TSs our verification procedure would be conservative in general. Still in
many cases it might require just few iterations in unfolding the TS to reach the exact

90 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

separation analysis. For example, [AH99] shows the fast convergence of separation times
analysis for pipelined specifications, which are inherently not strongly synchronized.
Finally remark that no formal study has been carried out about the convergence of the
verification method in the absence of nodal states. Nevertheless, our intuition indicates
that the method should generally converge after a bounded number of iterations that
guarantee a precise-enough timing analysis. Similar results have been already obtained in
the context of marked graphs, where a bounded number of unfoldings suffice to compute
the cycle times of a system [NK94]. A detailed formal study on the topic is left for future

work.

4.7 Conclusions

This chapter has presented a novel verification methodology for safety properties in
timed systems. The methodology combines relative timing with conventional methods
based on symbolic reachability analysis. Two fundamental facts are at the basis of the
approach: the set of traces of a transition system can be covered by a set of event struc-
tures, and the use of relative timing allows to represent the timed domain of a system in
an efficient way.

Rather than calculating the exact timed state space, the verification approach performs
an off-line timing analysis on a set of event structures that covers the traces leading to
failure states. This timing analysis is efficiently performed by using McMillan and Dill’s
algorithm [MD92]. The resulting timing constraints are incorporated to the system in the
form of relative timing information along a series of iterative refinements of the original
untimed state space. Finally, if some of the traces leading to failure situations cannot be
proved to be timing-inconsistent, then the system is incorrect and the failure trace is a
counterexample.

The approach presented here, not only verifies the correctness of the system with respect
to a set of given safety properties, but also provides as back-annotation a set of timing
constraints sufficient to prove correctness. This information is crucial in frameworks in
which synthesis and verification are iteratively invoked to design systems that must meet
functional and non-functional constraints.

The key features of the verification approach can be summarized by:

m Relative timing allows to avoid the computation of the exact timed state space of
the system. Instead, the timed behavior of events is captured by means of partial
orders that represent simple facts, such as if an event happens before another.

m The timing analysis is performed locally for a set of failure traces that are covered
by an event structure. Therefore, only a subset of the events is involved and the
timing analysis can be carried out efficiently.

4.7 CONCLUSIONS 91

m Because of the iterative nature of the approach, timing information is only consid-
ered in an on-demand basis, as long as it is required to prove the infeasibility in the
timed domain of a set of failure traces.

m The verification not only proves or disproves the correctness of the system with
respect to a set of safety properties. In case the system is correct the algorithm
provides the set of relative timing relations used for the proof, which can be used as
valuable back-annotation information. In case the system is incorrect, a counterex-

ample failure trace is provided.

Several issues remain open for future developments of the proposed verification ap-
proach. Among others:

m Although BDDs are a good data structure for the representation of symbolic boolean
information, they often suffer from a memory blow-up during the intermediate com-
putations, thus limiting the applicability of certain algorithms. Therefore, it would
be desirable to experiment with other data structures which provide similar benefits
than BDDs and allow better manipulation of bigger sets of states.

® Similarly, in order to reduce the memory requirements during the verification of big
systems, partial order techniques [GW91, Pel96, VdJL96, ABHT97, BJLY98] could
be combined with symbolic methods for state space representation and exploration.

» Incorporate symbolic algorithms for timing analysis (e.g. [AH99]), such that actual
delay values are not required for verification. Instead, the verification can be tuned

to discover the appropriate delays that make a system correct for a given property.

m CESs can model only conjunctive causality relations. However, the causality rela-
tions in a TS can be more general, involving disjunctive causality or combinations
of both. As a consequence, our approach may need several refinements in order to
cover the different causality relations among a set of events. Therefore, it would
be desirable to allow the CESs to incorporate other types of causality relations.
This would require to review the notions of enabling-compatibility, the way timing
analysis is carried out in a CES, the enabling-compatible product, etc.

m Another interesting feature to enrich the verification approach would be the possi-
bility to quantify the effectiveness of an enabling-compatible product before actually
performing it. This would allow to choose the best LzCESs at each iteration, so that
the biggest number of failure traces are pruned, or the least possible state splitting
is produced, etc.

m The back-annotation produced by the tool consists of a set of LzCESs that contain
the relative timing constraints used along the verification process. Some of those

92

CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

constraints may appear several times in different iterations, thus being redundant.
Therefore, it would be desirable to have a mechanism to summarize the set of timing
constraints and provide them in a more readable form to the user of the tool.

EXPERIMENTAL RESULTS

Now microscopic pulses would be bouncing through the complex circuitry of

the unit, probing for possible failures, testing the myriads of components to

see that they all lay within their specific tolerances. This had been done,

of course, a score of time before the unit had ever left the factory; but that

was two years ago, and more than a half a billion miles away. It was often
impossible to see how solid-state electronic components could fail; yet they

did.

?Circutt fully operational”, reported HAL after only ten seconds. In that
time, he carried out as many tests as a small army of human inspectors.

—Arthur C. Clarke - 2001. A Space Odyssey, 1968

Summary

This chapter briefly introduces TRANSYT, the CAD/CAV tool which incorporates the
implementation of the verification methodology presented in Chapter 4. The presentation
is carried out through a number of experiments that illustrate the applicability of the
approach and the basic capabilities of the tool.

In order to introduce the notation and basic notions of the symbolic analysis of a
system, details on the mapping of transition systems onto boolean algebras are provided.
Additionally, the input format of the tool is briefly introduced in order to ease the reading
of the chapter.

The experiments start with a small example that illustrates the need for forward un-
folding of the state space of a system in order to achieve the timing analysis required
to prove or disprove a given property. Next, the verification of quasi-speed-independent
asynchronous circuits in which complex-gate decompositions have been performed, is il-
lustrated. Both a small example and a complete set of benchmarks are analyzed. Finally,
the verification of relative timing assumptions in timed asynchronous circuits is illustrated
by analyzing a bus controller.

Along the chapter, the capabilities of TRANSYT in order to model timed PNs, timed
STGs and digital circuits in terms of binary-encoded TTSs are also illustrated.

93

94 CHAPTER 5 : EXPERIMENTAL RESULTS

5.1 A brief introduction to TRANSYT

The verification methodology presented in Chapter 4 has been fully integrated into
a CAD/CAV experimental tool called TRANSYT. In short, the tool uses conventional
symbolic BDD-based [Bry86] techniques for state representation and reachability analysis
combined with the relative timing-based approach for verification.

TRANSYT can handle systems modeled by means of transition systems, being them un-
timed (TS), timed (TTS) or lazy (LzTS) transition systems. The systems are specified with
the native format of the tool, called tsif [PPa]. The tool also allows the specification
and manipulation of complex systems by using modularity and hierarchy constructs incor-
porated to the basic model for transition systems. Synchronization and variable sharing
mechanisms are also provided to support the communication between modules.

Apart of transition systems, TRANSYT can also handle timed PNs and timed STGs
specified with the astg format [CKK™97], and digital circuits specified with the blif
format [SSLT92]. These types of systems are automatically translated by the tool into
equivalent transition systems for internal manipulation.

The user interface of TRANSYT is based on a console-type interactive shell. The different
commands can be typed-in by the user or read from command files. The tool can run also
in non-interactive mode by providing a command file when the tool is launched. The
analysis of the systems can be done using both textual and graphical interfaces, including
the specification of the system and the outputs produced by certain commands.

Despite of the relative timing-based verification functionality that we illustrate in this
and the next chapter, TRANSYT also provides a number of other features. For example,
different algorithms for complete or partial state space traversal are provided, as well
as fast symbolic simulation, bug-hunting and guided-search algorithms [GA98, YD98].
Currently, the reachability analysis engine is capable of computing both the untimed state
space and the timed state space of a system under the relative timing paradigm. In both
cases, symbolic techniques that rely on BDDs are used for efficiency. In the exact timed
state space of a system, states must be labeled with integer or real values (see Chapter 3)
that capture explicitly the precise instants at which the states are visited. Hence, symbolic
techniques based on BDDs cannot be easily applied. Although the exact time state space
of a system cannot be computed with TRANSYT, it is not required to support our relative
timing-based verification approach. Nevertheless, we plan to incorporate representation
mechanisms and traversal algorithms for exact timed reachability in the future.

Some of the features of TRANSYT are illustrated in the following sections, however the
full set of features provided by the tool is beyond the scope of this thesis. The reader is
referred to [PPb] for more details on the functionalities of TRANSYT.

To conclude this brief presentation of the tool, just say that the resulting tool suite
is composed of about 84000 lines of ANSI C code, not counting the BDD package and

5.1 A BRIEF INTRODUCTION TO TRANSYT 95

other libraries. Around 34000 lines of code correspond to the implementation of the
verification methodology described in Chapter 4. Currently, the tool is only available for
32-bit Unix/Linux systems, although it could be ported to other Unix/Linux or Windows
systems without too much effort.

The following section introduces some basic notions on boolean algebras and how they
can be used to model transition systems. This introduction is completed with a brief
review of the modeling capabilities of the tsif format used in TRANSYT.

5.1.1 Representation of LzTSs with boolean algebras

In order to provide an efficient symbolic representation of LzTSs, we map them onto
boolean algebras. Each state of the system is described by a unique vertex in the algebra.
Thus, the sets of states of the system, the functions and transition relations that define the
system behavior, and the properties for verification, are all modeled as boolean functions.
Such functions are represented in TRANSYT using BDDs [Bry86].

Boolean algebras

A boolean algebra is a fifth-tuple (B,+,-,0,1), where: B is aset, + and - are binary
operators on B that satisfy the commutative and distributive laws; and 0 and 1 belong
to B and are respectively the neutral elements of + (b+0=1">) and - (b-1 =), with
b e B. Also, for all b € B there exists a complement b € B such that b+b=1 and
b-b = 0. Under this conditions, the system (B,+,-,0,1), with B = {0,1} and with
+ and - being the logic OR and the logic AND operations respectively, is a boolean
algebra (often called the switching algebra).

An n-variable logic function f :B" — B (i.e. a boolean function) transforms each
element (vy,...,vn) € B" into an element of B. Let Fj,(B) be the set of n-variable
logic functions on B, then the system (F,(B),+,-,0,1) is also a boolean algebra, where
+ and - stand for addition and multiplication of n-variable logic functions, and 0 and
1 stand for the “zero” and “one” functions (f(vi,...,v,) =0 and f(vi,...,v,) = 1,
respectively). Given the boolean algebra of n-variable logic functions, with n symbols
V1,...,0,, we call a vertex each element of B™. A literal is either a variable wv; or its
complement v;. A cube c¢ is a set of literals, such that if v; € ¢ then 7; € ¢ and vice
versa. A cube is interpreted as the boolean product of its literals. Note that the cubes
with n literals are in one-to-one correspondence with the vertexes of B".

Cofactors and abstractions are useful operations for the manipulation of boolean func-
tions with BDDs. The following functions denote respectively the positive and negative
cofactors of an n-variable boolean function f(vy,...,v,) with respect to a variable wv;:

f’ui = f|vi:1 = f(Ulv"'avifla]-an‘Fla"'7Un)7
f’UT = f|vi:0 f('Ula---,'Ui—laO,'Ui-i—la---,'Un)-

96 CHAPTER 5 : EXPERIMENTAL RESULTS

An interesting property of cofactors is given by the Boole’s expansion theorem, which
shows that a boolean function can be represented in terms of its cofactors. That is:

f(vla---avn) = ,U_Zfﬁ + (% 'fvi = [U_z+fv,] . [Ul_i_fﬁ]
The existential and universal abstractions of a n-variable boolean function f(v1,...,v,) with
respect to a variable wv; are respectively defined in terms of cofactors as follows:

avif:fvi+fv_i and vvif:fvi fW .

In order to illustrate these concepts, let us consider the function: f(a,b,c) = bc+ abé +
@c . The positive and negative cofactors with respect to variable a are: f, = bc+bé and
fa = ¢ . The abstractions with respect to variable a are: 3,f = fo + fa = b+ ¢ and
Vof = fo - fza = bc . The existential abstraction 3,f is the function that evaluates to
1 for all those values of b and ¢ such that there is a value of a for which f evaluates
to 1. The universal abstraction V,f is the function that evaluates to 1 for all those

values of b and ¢ such that f evaluates to 1 for any value of a.

On the other hand, it is well known that given a finite set S, the system (2°,U,N, 0, S) is
also a boolean algebra, i.e. the algebra of subsets of S. The representation theorem
(Stone, 1936) says that: “every finite boolean algebra is isomorphic to the boolean algebra
of subsets of some finite set S”. Therefore, according to this result, reasoning in terms
of union, intersection, etc. , on a finite set is isomorphic to performing logic operations
(+ and -) with logic functions. This result establishes the basis of the symbolic tech-
niques used in this work since it allows the manipulation of sets of states using boolean
operations.

The interested reader is referred to [Bro90] for a complete introduction to boolean

algebras.

Representation of LzTSs

Let A = (S,%,T,sp,EnR) be a LzTS. According to the above discussion, the system
(2%,U,n,0,8) is the boolean algebra of sets of states of system A. Therefore, there is
a one-to-one correspondence between the states of S and the vertexes of B”, given an
appropriate value of n.

Each state s € S can be represented by means of an encoding function Q:S — B*,
such that n > [log2(| S |)]. That is, given the set of boolean variables V = {vy,...,v,},
each state s € S is encoded into a vertex (v1,...,v,) € B". Provided such encoding,
any set of states P € S can be represented by a characteristic (boolean) function XPQ :
B* — B that evaluates to 1 for those vertexes of B" that correspond to states in the
set P, encoded using Q. Whenever the encoding is understood, we simply write Xp.
When implemented with BDDs, characteristic functions provide, in general, compact and

efficient representations.

5.1 A BRIEF INTRODUCTION TO TRANSYT 97

Characteristic functions can also be used to represent binary relations between sets of
states. Given two sets of states P; and P, to represent the binary relation R C Py x Py it
is necessary to use two different sets of variables to identify the elements of each set. For
example, variables wvy,...,v, for P, and variables vf,... v, for P,. Provided the
two sets of variables, the cartesian product of a relation between P; and P, can be
simply expressed as the product of the respective characteristic functions. Since the binary
relations we will represent are the transition relations of the transition system, we will call
these two sets as the current-state set of variables and the next-state set of variables.

Let V ={vy,...,v,} and V' = {v],...,v]} be respectively, the set of current and
next-state boolean variables used to encode the states and transitions of the LzTS A =
(S,%,T,sp,EnR) . In such a way that o) is the next-state variable corresponding to
the current-state variable wv; , and vice versa. Thus, the usual definition of LzTS can be
extended to contain V and V', ie. A=V, V' S X T, sy, EnR). Now, given an event
e € 3 we can represent its enabling region, its firing region and its transitions relation,
by means of the following characteristic functions:

m FF(e) : B* - B such that EF(e) = 1 for all the states (encoded using V)
belonging to the enabling region of e , i.e. EnR(e).

m FF(e) : B* - B such that FF(e) = 1 for all the states (encoded using V)
belonging to the firing region of e , i.e. FR(e).

m TR(e): B> — B such that TR(e) =1 for all the relations (s1,s2) such that there
is a transition of event e , s; — sy € T. The part of the relation corresponding to
state s; is encoded using the current-state variables in V), whereas the part of the
relation corresponding to state sy is encoded using the next-state variables in V' .

When characteristic functions of the enabling and firing regions are expressed using the
set of next-state variables V') we will write FEF’'(e) and FF'(e), respectively. Also,

when the sets of variables in a transition relation are interchanged we will write TR(e)~!.

Figure 5.1 (a) shows a simple LzTS. The states of the system can be encoded us-
ing at least three (current-state) boolean variables, i.e. V = {vj,v9,v3}. Figure 5.1
(b) shows the same LzTS but encoded using an arbitrary binary encoding of the states.
Thus, given a set of states P = {sg,s1,s2}, its characteristic function will be: Xp =
Vo U1 U2 + Tg vi Uz + Vg vy v2 = Uy (vi + Uz). Similarly, EF(c) = vy U3 and
FF(c) =11 vy 3.

In order to encode the transition relations, corresponding next-state variables, V' =
{v},v},v4}, are also required. Thus, with the given encoding we have that TR(b) =

—_— 7 T —_—
U1 Ug U3 v} vy vy + 1 U3 U3 v] vy Uh.

98 CHAPTER 5 : EXPERIMENTAL RESULTS

vliv2v3

b 000

0 a

01
c
011/

a 100
/b
a C 1
.

(b)

Figure 5.1 A simple LzTS (a) and the same LzTS but binary-encoded (b).

Finding the set of states, P, € S, that can be reached after the firing of a given event,
e € X, from any of the states in another set, P, € S, is reduced to compute:

XII:’Q = El’l)l,...,vlvl (TR(e) : XPl)

Thus, in the example, in order to compute the states reached after firing event b from
state s we just have: Ty, 4,05 (TR(b) X5y}) = Fuy 00,05 (V1 02 03 of vh vk) = v} vh vh.
As expected, this corresponds to state s; but encoded using next-state variables.

5.1.2 TRANSYT input format

The TRANSYT input format, called tsif (see [PPa] for a complete description), is
intended to be a basic and simple low-level format used to describe most types of transitions
systems. The basic model is augmented to accept modular and hierarchical systems that
are coordinated by some synchronization mechanism. The behavior of each coordinated
subsystem is defined by means of a detailed specification of its events.

Transition systems are often used to model highly concurrent systems which suffer
of the well-known state explosion problem. Clearly, in those cases it is not viable an
explicit enumerative declaration of all the states of the system, thus some form of symbolic
modeling mechanism must be used. The tsif format requires the transition system to be
modeled by a boolean algebra, as described in the previous section. Each individual state is
assigned a unique binary code in the algebra, but no explicit representation of the relation
between the states and their encoding is required. Thus, the states of the system can be
represented by means of boolean characteristic functions, and the transition relations of
the events can be described by means logic relations.

Flat systems

The basic elements required for the description of a flat transition system (i.e. without
hierarchy) are the following:

5.1 A BRIEF INTRODUCTION TO TRANSYT 99

A set of boolean variables used to describe the state of the system and its environ-
ment (if any).

m A set of labels that capture the different operations that can be performed by the
system (e.g. signals in a digital circuit).

m A set of events for each label. The transition relation of each event is specified by
means of a boolean relation that describes how the current state of the system is
modified into the next state each time the event is executed.

s The initial state of the system. Since it is given in terms of a boolean equation, it
is not restricted to a single state.

Variables. There exist three types of variables: input, output and internal variables.
Internal and output variables are used to describe the internal and the visible behavior
of the system, respectively. Whereas input variables are used to describe the state of
the environment. The variable declaration consists of three elements: the variable type,
followed by the VARS keyword and by the list of declared variables ended by a semicolon.
Namely:

{INPUT|OUTPUT|INTERNAL} VARS <list_of_variables> ;

Besides the current-state variables, TRANSYT requires an associated set of next-state
variables in order to specify, for example, the transition relations. Next-state variables can
be either specified explicitly in the tsif format or leave TRANSYT create them internally.
User defined next-state variables can have any desired name. However, internally created
next-state variables will share the name of the corresponding current-state variable but
with the NS operator. For example, the current-state variable varl will be assigned a
next-state variable named NS(varl) .

Labels. There exist four different types of labels: input, output, internal and dummy.
Input labels correspond to operations executed by the environment. Output (internal)
labels correspond to operations executed by the system and that can (cannot) be observed
by the environment. Dummy labels correspond to instantaneous (zero delay) operations
and are provided to ease the modeling of certain complex systems. The label declaration
consists of three elements: the variable type, followed by a LABELS keyword and by the
list of declared labels ended by a semicolon. Namely:

{INPUT|OUTPUT|INTERNAL|DUMMY} LABELS <list_of_labels> ;

Events. Since the same operation (label) may need to be executed in quite different
circumstances, a second level of detail is provided by means of a set of events associated
to each label. For example, a label could model a signal of a circuit, whereas the events
of the label could model the different signal switches.

100 CHAPTER 5 : EXPERIMENTAL RESULTS

TS example INTERLEAVED

INTERNAL VARS vl v2 v3;
INTERNAL LABELS a b c d;

EVENT a a

EQN TR v1’ NS(vl) (v2 = NS(v2)) (v3 = NS(v3));
END

EVENT b b

EQN TR (vi = NS(vl)) v2’ NS(v2) v3’ NS(v3)’;
END

EVENT c c

EQN TR (vl = NS(v1)) v2 NS(v2) v3’ NS(v3);
EQN FF v1’ v2 v3’;

END

EVENT d d

EQN TR v1 v2 v3 NS(v1)’ NS(v2)’ NS(v3)’;
END

EQN ISTATE v1’ v2’ v3’;

END

Figure 5.2 TRANSYT input file for the LzTS of Figure 5.1.

An event declaration consists of five elements: the EVENT keyword is followed by the
name of the event and the name of the label to which it is associated; then a number of
boolean equations (EQN keyword) can be specified to declare the transition relation of the
event (TR keyword), failure conditions (FAIL keyword), etc. The equations are expressed
as a list of logic functions, each one ended with a semi-colon. Each equation accepts logic
operators such as negation (! or ’), addition (+), product (*, or simply by joining terms),
equivalence (=) or difference (<>), as well as parenthesis. The list of equations ends with
the END keyword. Namely:

EVENT <event name> <label name>
<list_of_equations>

END

Finally, a set of different equations can be specified for the transition system, such as
failure conditions (FAIL keyword) or the initial states of the system (ISTATE keyword).
The equation for the set of initial states is mandatory.

Figure 5.2 shows the tsif specification of the binary-encoded LzTS of Figure 5.1 (b).
The explanation about the FF equation associated to event ¢ can be found in the
following section devoted to timed systems.

Finally, remark that the basic TS model is augmented in TRANSYT to allow the de-
scription of complex systems as hierarchical structures of coordinated subsystems. Two

general mechanisms are provided to implement the inter-system communication:

5.1 A BRIEF INTRODUCTION TO TRANSYT 101

m Synchronized execution of events with common labels between multiple systems,
but without any data exchange (pure rendez vous).

m Sharing of boolean variables between systems, but without synchronization.

All the examples that follow in the chapter are modeled as flat transition systems. Hence
we do not enter into the details of the specification of hierarchical modular systems. The
interested reader is referred to [PPa].

Timed systems

The tsif format allows to specify both absolute and relative timing information. Absolute
timing information is incorporated by specifying a delay interval for each event of the
system. Relative timing information is incorporated by explicitly distinguishing between
the enabling and the firing of the events.

The TTS formalism is supported by allowing the specification of a minimum and maxi-
mum delay values (or just a typical fixed delay) to each event in the system. Specifying a
typical delay implies that the maximum and minimum delays are equal. A maximum de-
lay with value zero implies a minimum delay with the same value. If no delay information
is provided for an event, it is assumed to have unbounded delays. That is, the minimum
delay is zero and the maximum delay is unbounded (but finite). Absolute delay values
must be specified inside the scope of the EVENT declaration. The specification of delay

information must be in the following format:
{ DELAY: [MAX=<max_delay>; MIN=<min_delay>; TYP=<typ_delay>;] }

Examples of tsif files where delay information is specified can be found in Sections 5.2,
5.3 and 5.4.

The LzTS formalism is supported by allowing the specification of characteristic equa-
tions for the enabling and firing functions of an event. Both the enabling (EF keyword) and
the firing (FF keyword) functions must be specified inside the scope of the EVENT decla-
ration. If no EF is specified for an event, it is automatically extracted from the transition
relation of the event. If no FF is specified, it is assumed to be equal to its EF.

See the specification of the firing function of event c in the tsif file of Figure 5.2.

Properties

TRANSYT supports the automatic verification of safety properties specified by the char-
acteristic function of the corresponding failure condition. Each property is specified as a
boolean proposition that can pose conditions on the value of the current-state variables
as well as the next-state variables. Failure conditions that only depend on current-state
variables are called state conditions because they define properties on the reachable states
of the system. Failure conditions that depend on a mixture of current and next-state vari-

102 CHAPTER 5 : EXPERIMENTAL RESULTS

ables are called transition conditions, because they define conditions on potential transi-
tions from reachable states of the system. To tool automatically detects the the type of
the failure condition by inspecting the boolean equation that defines it.

Failure conditions can be specified with equations in the tsif file or directly provided
from the TRANSYT command-shell (add_fail command). When specified in the tsif file
the FAIL keyword is used. Examples of both cases are shown in the following sections.

A failure condition can be associated to different objects in a transition system: the
system itself, a label or an event. The semantics of the condition depends on the type of
the object to which it is associated. In a case of a TS, a state condition can characterize
failures at any reachable state of the system, whereas a transition condition can charac-
terize failures due to the enabling of a transition at any reachable state of the system.
Failure conditions for a TS can be specified at any point between the TS and the last
END keywords. State conditions associated to labels (or events) can characterize failures
at any reachable state in which the label (or the event) is enabled. Transition conditions
associated to labels (or events) can characterize failure situations caused by a firable tran-
sition of the label (or the event) from any reachable state of the system. Failure conditions
for events can be specified at any point inside the EVENT scope. Failure conditions for
labels can only be specified at the label declaration.

Finally, remark that TRANSYT also supports several built-in failure conditions for com-
monly used properties in the analysis of concurrent systems. Using built-in conditions
avoids the explicit specification of characteristic functions for the properties. Since this
type of conditions are not used in the subsequent sections, we skip the details here and
refer the reader to [PPa] for details.

The remaining contents of this chapter are organized as follows. Section 5.2 devel-
ops a small example that illustrates the need for forward unfolding of the state space of
a system in order to achieve the timing analysis required to prove or disprove a given
property. The section also illustrates the capabilities of TRANSYT in order to model a
timed PN as a binary-encoded TTS. Section 5.3 describes the details of the verification
of quasi-speed-independent asynchronous circuits in which complex-gate decompositions
have been performed. The section also illustrates the way a timed STG and a digital circuit
are handled in TRANSYT, and how certain crucial properties for verification are modeled.
Finally, Section 5.4 illustrates the use of our verification methodology for the verification

of relative timing assumptions in timed asynchronous circuits.

5.2 An example with forward unfolding

Section 4.6 dealt with the convergence issues of the proposed verification methodology.
Such issues arise from the fact that the refinement procedure performs an unfolding of the

state space in order to separate those traces which are enabling-compatible with the timing

5.2 AN EXAMPLE WITH FORWARD UNFOLDING 103

#Yoneda’s example
TS yoneda INTERLEAVED

INTERNAL VARS pO pl p3 p2 p4 p5;
INTERNAL LABELS a b c d e f;

EVENT a a

EQN TR pO NS(p0O)’ pl’ NS(pl) p3’ NS(p3);
{DELAY: [TYP=0;1}

END

#Fair process A: events b, c, d and e
EVENT b b

EQN TR pl NS(pl)’ p2’ NS(p2);

{DELAY: [TYP=1;]1}

END

EVENT ¢ ¢

EQN TR p1’ NS(pl) p2 NS(p2)’;
{DELAY: [TYP=0;1}

END

EVENT d d
EQN TR pl1 NS(p1)’ p4’ NS(p4);
{DELAY: [TYP=1;]1}

END

EVENT e e

EQN TR p0’ NS(p0) p3 NS(p3)’ p4 NS(p4)’;
{DELAY: [TYP=1;1}

END

#Unfair process B: event f
EVENT f f

EQN TR p3 NS(p3)’> p5’> NS(p5);
{DELAY: [TYP=4;]1}

END

#Initial state: "only pO is marked"
EQN ISTATE pO pl’ p3’ p2’ p4’ pb’;

#Failure condition: "p5 is marked"
EQN FAIL p5;

END

(c)

Figure 5.3 Yoneda’s example: (a) timed PN, (b) untimed state space and (c) TRANSYT input file.

analysis, and those traces which are not. However, that is not the only source of unfolding
of the state space. As was discussed in Section 4.6, in order to perform an accurate-enough
timing analysis, the critical cycles of the state space involved in the analysis might need
to be wunrolled. Moreover, depending on the characteristics of the system, the number
of unrollings could be very high. In our methodology, such unrollings require a series of
forward unfoldings of certain regions of the state space, which may drastically affect the
efficiency of the verification. Although a pathological example that requires an enormous
number of forward unfoldings in order to prove or disprove a given property, can be easily
generated by hand, we believe that they are not likely to appear in practice. The claim is
supported by the fact that none of the circuits verified in this and the next chapter show
such a pathological behavior.

This section develops an example that illustrates the above ideas, i.e. the need for
forward unfolding of the state space of a system in order to achieve the timing analysis

104 CHAPTER 5 : EXPERIMENTAL RESULTS

|p1© Q P,
NS

 {

O
op1© O op,,

Figure 5.4 Transition of an PN with its input and output places.

required to prove or disprove certain property. The example is due to Tomohiro Yoneda,
who suggested it during some discussions we had at the 6th International Conference on
Advanced Research in Asynchronous Circuits and Systems (ASYNC’2000). The example
models, in a simplified way, the behavior of a system where two processes, say A and B,
compete for a shared resource. If process A takes the resource, it is fair and releases it
after some bounded amount of time. However, process B retains the resource forever,
making the resource no longer available for process A. The correct behavior of the system
depends on the timing properties of processes A and B.

The system was originally modeled by means of the timed Petri net of Figure 5.3
(a). The shared resource is represented by place p3. The unfair process B is modeled by
transition f, so that if the resource is taken, place ps gets marked forever. The fair process
A is modeled by transitions b, ¢, d and e, being e the transition that represents the
allocation of the shared resource for process A. Finally, fixed delays are associated to the

transitions.

5.2.1 Model of a timed PN

Although TRANSYT supports a timed PN as the input specification of a system ' and
translates it into a TTS, we show here how to model timed PN directly using TRANSYT
native formast.

In order to model a timed safe PN using TRANSYT input format, the state of the
corresponding TS can be specified using one boolean state variable for each place of the
PN in a similar way as in [PRCBY94]. The variable is set when the place holds a token
and reset otherwise. Thus, for every transition of the PN, a transition relation in the
corresponding TS must be specified, in which the variables for the input (output) places
of the PN transition are set (reset) in order for the transition to become enabled, and
the variables become reset (set) after the transition is executed. To illustrate this idea,

Figure 5.4 depicts a portion of a PN where a transition, t, and all its input (ipy, ..., ip,) and

!The read_pn command of TRANSYT reads PNs and STGs specified using the astg format of PETRIFY [CKK197].

5.2 AN EXAMPLE WITH FORWARD UNFOLDING 105

output (op1,...,0pn,) places are shown. Hence, for transition t, the following transition
relation will be specified:

n m

TR() =L ip; - [[ow; - [[NSGp) -
j=1

NS(opj)

—

1

J

where NS(x) represents the value of variable x in the next state of the system, after
the transition relation has been executed. Thus, for example, transition a of the PN in
Figure 5.3 (a) will be modeled by the following equation:

TR(a)=po - 1 - P3 - NS(po) - NS(p1) - NS(ps3)

Similarly, the initial state of the TS, corresponding to the initial marking of the PN, is
also specified by a boolean equation. In the equation, the variables for the marked places
are set, whereas the variables for the unmarked places are reset. Thus, the initial marking

Notice that the encoding of a PN using boolean variables as described above, assumes
the PN to be safe, i.e. each place can hold at most one token at any state of the system.
Although the details are beyond the scope of this thesis, say that TRANSYT also allows non-
safe PNs as specifications, which are automatically translated into TSs using appropriate
encoding mechanisms (see [PCP99] for details).

With all the above considerations, Figure 5.3 (c) shows the tsif file (yoneda.ts) cor-
responding to the PN of Figure 5.3 (a). Since no communication with other systems is
required, only internal variables and labels are declared. The set of variables is used to
specify the boolean equations that define the behavior of the system. Such behavior is
specified by means of a transition relation for each individual transition of the PN. In order
to keep things separated, one internal label is declared for each transition of the PN and
one event containing the actual transition relation is defined for each label. Also, each
event specifies the delay bounds associated to the corresponding transition in the timed
PN. In this case, a fixed typical delay is specified. The file concludes with the specification
of the initial values of all the state variables, and an equation that specifies the failure
condition. The result is a simple state condition which is activated whenever place ps gets
marked.

What follows is the result of starting a session with TRANSYT for the verification of
the system. First, the tsif file is read into the tool (read_ts command). Then, all
the reachable states are computed (traverse command) and those states which satisfy
the given failure condition are annotated. Finally, the print fails command prints the
fail conditions and the actual failure states (-s flag) detected. The three cubes shown
correspond to failure states ss, sg and s4 of Figure 5.3 (b), respectively. Recall that in
TRANSYT, the negation operator is indicated by a prime symbol.

106 CHAPTER 5 : EXPERIMENTAL RESULTS

$ transyt

TRANSYT 1.6.3 (compiled mon may 6 16:17:42 CEST 2002 on linux) running at minkar
By E.Pastor (enric@ac.upc.es) and M.A.Penya (marcoa@ac.upc.es)

Dept. of Computer Architecture (UPC)

Copyright (c)1998-2002 Universitat Politecnica de Catalunya

Welcome to the interactive version.

ts > read_ts yoneda.ts

ts:: Opening TS file ’yoneda.ts’.
ts:: Transition System ’yoneda’ successfully read.

ts > traverse

ts:: Traversing system ’yoneda’ using atom-partitioned TR.
ts:: End of Traversal with depth : 3

ts:: Final reached states: 7 Fail states: 3

ts:: Number of TR applications: 24 of which 10 useful

ts:: Time 0.00 sec for the fix-point computation.
ts:: Time 0.00 sec for the traverse.

ts > print_fails -s

ts:: Fail conditions for TS ’yoneda’.
ts:: Condition #0 defined (on states) in the TSI model
ts:: with equation:
ts:: EQN FAIL pb;
ts:: Detected #3 failure states
ts:: p0’ pl p3’ p2’ p4’ p5 + p0’ pl’ p3’ p2 p4’ pb + p0’ pl’ p3’ p2’ p4 pb

For illustrative purposes, the reachability analysis and the set of failure states has been
computed before starting the verification process. Actually, this step can be avoided since
the verification algorithms can perform partial state space analysis in order to discover
failures, prove if they exist in the timed domain or not, and incrementally refine the state

space.

5.2.2 Verification

Figure 5.3 (b) depicts the (untimed) state space of the system which is the starting
point for the verification process. Failure states where event f has fired and place p5 is
marked are drawn as squares.

Before actually going for the verification process, let us briefly analyze the behavior of
the system in the timed domain. Thus, assuming that the system is in its initial state (sp)
at instant 0, it can be seen that the firing time of the first occurrence of event f is fixed
at time 4. On the contrary, the firing time of the first occurrence of event e depends on
how many of the loops formed by events b and ¢ are completed before d fires and
triggers e. For example, if d fires right after a, event e is enabled at time 1. Therefore,
e fires before f and prevents the failure. Similarly, if b fires before d right after a,
but not after c, the run sg l>52 i>53 L>52 i>51 i>so is time-feasible since the firing of
e happens at time 3. Conversely, if the b —c loop happens twice, the firing of e will
happen at time 4, which conflicts with that of f. Moreover, if the b —c loop is produced

5.2 AN EXAMPLE WITH FORWARD UNFOLDING 107

{a}

{a} *
a a \
d [11]
{b,d,f} {b,d,f} L i
V4
b d [Ldb ¢ [0g)
{c f} {e.f} aat™
f f '
{c} {1 (b2)
(al) (a2) c2
e
C d T
T —»Cc1—— C2 C‘IlH ‘
vf vt if vt vt
(c2)
© (c1) w
[J
sl d s2 b s3 C s2 b s3
-—
:] :
f Vf Vf
< f s5' c s6
d
(d1) @ 2

Figure 5.5 Yoneda’s example: first (left) and second (right) refinements.

more than twice, the system will always end up in a failure state. In consequence, no
guarantee of correct behavior can be given for the system.

The verification process, as implemented in TRANSYT, requires five iterations to discover
a counterexample trace that proves the incorrectness of the system. Figures 5.5 and
5.6 depict the four refinements of the state space before the counterexample is found.
For each refinement four pictures are provided: (a) the untimed failure trace, (b) the
LzCES obtained from the trace after timing analysis, (c¢) the LzTS corresponding to the
GRC of the LzCES, and (d) the resulting LzTS after the enabling-compatible product of (c)
with the LzTS obtained in the previous refinement. The asterisk drawn as the root event of
the LzCESs represents a generic event that enables, at a nodal state, the events connected
to it. Therefore, the delays of such events can be set to their respective min-max bounds.
Moreover, the timing analysis for the resulting CES will apply to any portion of the state
space where those events get enabled simultaneously, no matter who is their actual trigger

108 CHAPTER 5 : EXPERIMENTAL RESULTS

{a} *
{a} * e
~ a b [1,1]
a .
\ b {b,d,} i
’
{b,d,f} , b [11] d c [00]
b 11 d ¢ [00]
7\ “ie
{c,} c d [11]
. b1y d1y
VR {b,d,f} i
(b.d,1} [44] f d e [1,1]
. [44) t 4"
(b3) {e, 1}
{b.d} f (b4)

(d4)

Figure 5.6 Yoneda’s example: third (left) and forth (right) refinements.

event. Hence the asterisk. Finally, Figure 5.7 depicts the counterexample trace found in
the fifth iteration, which concludes the verification process.

The first refinement is depicted in the left of Figure 5.5. The failure is given by the
firing of f in state s3 after having fired a and b (al). The timing analysis on the
CES (bl) reveals that c, and therefore b, must fire before f. The LzTS (cl) corresponding
to the GRC of the LzCES in (bl) is composed with the original TS of the system. The
LzTS (d1) is obtained, where f has become lazy in states sy and s3. However, states
so and s3 can be also reached after subsequent firings of the loop formed by events

5.2 AN EXAMPLE WITH FORWARD UNFOLDING 109

b and c. This makes that the performed timing analysis cannot apply for subsequent
occurrences of states sp and s3 in the timed domain. As a consequence, an unfolding
of the state space is produced by the enabling-compatible product. Hence, states s, s,
st and s in the resulting LzTS, will require further analysis in later iterations of the
verification process. Remark, that those states where the enabling-compatibility applies
are represented by white dots. Also, those states unfolded are annotated with as many
primes as the number of the refinement that produced them. That is, s} is produced by
the first refinement, whereas s’ is produced by the third refinement.

The next three refinements continue to prune and unfold the different parts of the state
space of the system. In particular, the loop formed by events b and c¢ is progressively
unrolled, so that the enabling of event e is postponed more and more. As a result, when
state s{” is reached in the LzTS of Figure 5.6 (d4), event e becomes enabled whereas
f is already enabled since state sy. The trace in Figure 5.7 (a) depicts this situation,
where f fires and disables e, thus producing the failure. The trace is timing-consistent
with the delays of the events and therefore exists in the timed domain of the system. The
enabling intervals and the firing times of the events in the trace are shown for clarity.
Also, Figure 5.7 (b) depicts the LzCES obtained from the complete trace. The only timing
relation in the LzCES (d must fire before f) is already given in the trace.

Notice that the LzCESs of Figures 5.5 (b1) and (b2), and those in Figures 5.6 (b3) and
(b4), include the disabling relations that appear in the respective traces. Such disablings
are not relevant for the timing analysis and therefore they can be simply removed from the
LzCESs without affecting the later enabling-compatible product. The disabling relations
are included here just for illustrative purposes. TRANSYT automatically removes them
when they are irrelevant for the timing analysis.

What follows is the textual output produced by TRANSYT during the verification ses-
sion. Brief information is given about the process of each refinement performed. More
extensive information is stored in an browsable HTML file which contains links to the
different graphical objects produced by the tool during the process. In this case, the
options -VwriteTracel, -VwriteTES1, -VwriteGRC1 and -VwriteSTD indicate that DOT?
files must be generated at each iteration for the failure trace, the timed event structure,
the corresponding GRC, and the resulting state space after the refinement, respectively.
The remaining options stand for the method to use in order to generate the failure traces
(-VfailTrace?2 option specifies a partial traversal using chaining), and the methods to use
for building the simplest possible event structures (-AfilterTedges and -AfailGuided
options). More details on the options of the tverif command can be found in Appendix C.

2DOT is text-based format for specifying graphs, developed by AT&T research labs. Tool for editing and displaying
the graphs are also included in the pack.

110 CHAPTER 5 : EXPERIMENTAL RESULTS

a) oy 0
a a

{b,df} 0
b b |d f

{c,f} N
c Cc

{b.df} -l 1t
b b |d

{c.f}- 2
c C

{bdf}y L fe 2
d b |d

{ef}- 3
f e

1 -4

Figure 5.7 Yoneda’s example: (a) counterexample trace proving incorrectness annotated with enabling

intervals and firing times; (b) corresponding LzCES.

ts > tverif -HTML -VwriteTracel -VwriteTES1 -VwriteGRC1 -VwriteSTD \
-AfilterTedges -AfailGuided -VfailTrace2

ts:: Starting verification iteration 1.
ts:: Searching a failure trace

ts:: Try to build timed ES from trace by "escape fail" criterion ... Succeeded
ts:: Time-compliance: escape fail.
ts:: Reachability analysis of the ES ... 4 markings visited

ts:: Composing GRC with the TS. 0+1 encoding vars required...
ts:: Timing constraints successfully applied.

ts:: Traversing the system....

ts:: Number of untimed states reached: 9

ts:: Checking fail conditionms....

ts:: Number of fail states detected: 3

ts:: End of iteration 1.

ts:: Starting verification iteration 2.
ts:: Searching a failure trace

ts:: Try to build timed ES from trace by "escape fail" criterion ... Succeeded
ts:: Time-compliance: escape fail.
ts:: Reachability analysis of the ES ... 4 markings visited

ts:: Composing GRC with the TS. 0+1 encoding vars required...
ts:: Timing constraints successfully applied.

ts:: Traversing the system....

ts:: Number of untimed states reached: 10

ts:: Checking fail conditioms....

ts:: Number of fail states detected: 3

ts:: End of iteration 2.

5.2 AN EXAMPLE WITH FORWARD UNFOLDING 111

ts:: Starting verification iteration 3.
ts:: Searching a failure trace

ts:: Try to build timed ES from trace by "escape fail" criterion ... Succeeded
ts:: Time-compliance: escape fail.
ts:: Reachability analysis of the ES ... 8 markings visited

ts:: Composing GRC with the TS. 1+1 encoding vars required...
ts:: Timing constraints successfully applied.

ts:: Traversing the system....

ts:: Number of untimed states reached: 11

ts:: Checking fail conditioms....

ts:: Number of fail states detected: 3

ts:: End of iteration 3.

ts:: Starting verification iteration 4.
ts:: Searching a failure trace

ts:: Try to build timed ES from trace by "escape fail" criterion ... Succeeded
ts:: Time-compliance: escape fail.
ts:: Reachability analysis of the ES ... 7 markings visited

ts:: Composing GRC with the TS. 1+1 encoding vars required...
ts:: Timing constraints successfully applied.

ts:: Traversing the system....

ts:: Number of untimed states reached: 12

ts:: Checking fail conditioms....

ts:: Number of fail states detected: 3

ts:: End of iteration 4.

ts:: Starting verification iteration 5.
ts:: Searching a failure trace
ts:: The failure trace found is time-feasible.
ts:: Verification FAILS after 5 iterationms.
ts:: End of iteration 5.
The overall verification process takes less than one second of CPU time in a 866 M H =z

Pentium-III computer running Linux.

5.2.3 Discussion

In this example, the unfolding mechanism has lead to discover a suitable timing analysis
that demonstrates the incorrectness of the system. In other cases, the unfoldings are
necessary to achieve an exact-enough timing analysis to prove the non-existence of a given
failure trace in the timed domain. In general, when this type of forward unfoldings are
required, the actual number of unfoldings depends, among other factors, on the delays
of the events involved in the timing analysis. In the example, the number of unfoldings
needed to demonstrate the incorrectness of the system is in direct dependence on the delay
of event f. Therefore, a pathological example can be easily built by increasing the delay
of f sufficiently as to make the number of refinements of the state space too big to be
handled by TRANSYT. However, we believe that these cases do not arise that often in
practice.

Despite of the results related to the unfolding mechanism in the verification process,
this section has briefly illustrated the capabilities of TRANSYT in order to model a timed
PN as a binary-encoded TTS. Also, some fundamental commands of the tool have been
introduced through the examples.

112 CHAPTER 5 : EXPERIMENTAL RESULTS

5.3 Verification of complex-gate decompositions in
speed-independent circuits

This section illustrates the verification of the correctness of complex-gate decompo-
sitions in quasi-speed-independent asynchronous circuits. Additionally, the section also
illustrates the way STGs and digital circuits are handled in TRANSYT, and how certain
crucial properties for verification are modeled using boolean equations.

5.3.1 Speed-independent circuits

Several formalisms and methodologies have been proposed in recent years for the design
and analysis of asynchronous control circuits (see [Mye0l, SF01] for complete surveys
on the topic). In particular, a lot of research has been carried out around the speed-
independent paradigm [MB59, Dil89a, BM92, CKK*02].

Speed-independent circuits work under the input-output mode of operation, assuming
the unbounded gate delay model. On one hand, the input-output mode of operation allows
the environment of the circuit to change again after a circuit output, with no assumption
about the stabilization of the internal signals of the circuit. Thus, speed-independent
circuits are faster than those designed under the fundamental mode of operation [Huf54].
On the other hand, the pessimistic unbounded delay model for the gates allows a robust
(i.e. hazard-free) operation regardless of the actual delays of the gates implementing the
circuit. The interested reader is referred to [CKK™02] for a precise characterization of the

speed-independence property, the associated design style, etc.

A speed-independent circuit is specified in terms of the behavior observed in the com-
munication between the circuit and its environment. Such behavioral specifications are
often given in terms of STGs (see Section 2.5). Both, speed-independent circuits and STGs
have become very popular in the community of asynchronous circuits researchers. As a
consequence, several logic synthesis tools have been developed, being PETRIFY [CKK197]
the most advanced of them.

The synthesis process requires the specification STG to satisfy certain properties. Once
they are ensured, reachability analysis is performed to obtain the equivalent state graph
from which boolean equations for each non-input signal can be derived. Finally, the
equations can be implemented, for example, in terms of atomic complex-gates (i.e. one
complex-gate per non-input signal). Often, the actual implementation of the circuit in
terms of complex-gates is not feasible, since it is difficult to find such gates in traditional
technology libraries. Therefore, the designer must face the decomposition of the complex-
gates into structures of simpler logic gates (see [Bur96, KCKL99] for more details of the
difficulties involved). Unfortunately, the decomposition process might introduce violations
of the conditions that guarantee the correct operation of the circuit, may be a source for

5.3 VERIFICATION OF COMPLEX-GATE DECOMPOSITIONS IN SPEED-INDEPENDENT CIRCUITS 113

Closed system

A |Implementation | B
Mirrored Specification =

= Environment
VS.

Mirrored
A | Specification | B |r“ . A | Implementation | B
Specification

@ (b) (©)

Figure 5.8 Verification scheme: (a) specification and implementation, (b) the specification is mirrored

and (c) closed system used for verification.

hazards, etc. In these cases, however, the circuit can often operate correctly if certain
timing assumptions on the delays of the gates are taken into account.

5.3.2 Experimental set-up

The experiments described in this section have been performed on a set of well-known
STG behavioral specifications of academic-size asynchronous circuits. A speed-independent
complex-gate circuit implementation of each specification has been obtained by using PET-
RIFY. Then, the complex gates have been decomposed and mapped into a library with
only 2-input gates (NAND2, NOR2 and inverters). Finally, conventional decomposition
methods for synchronous circuits have been applied for technology mapping, using the
map command in SIS [SSLT92]. As a consequence, after decomposition the resulting cir-
cuits not hazard-free under the unbounded gate delay model. However, the circuits were
expected to operate correctly if appropriate delay bounds were provided for the gates.

Consequently, a delay interval [d — e,d + €] is assigned to each circuit gate, where
d = 1 for inverters, d = 3 for NAND2 and NOR2 gates, and & represents a 10%
variation over the value of d, i.e. ¢ = d/10. We will consider also that the communication
of the circuit with the environment is slower than the internal behavior of the circuit itself.
Thus, the events produced by the environment are assumed to be 10 times slower than
those produced by an inverter, i.e. d = 10. In summary, the delays for the experiments
were set to: [0.9,1.1] for inverters, [2.7,3.3] for NAND2 and NOR2 gates and [9, 11] for
the environment. It is important to remark, that the actual values of the delay bounds
do not influence the performance of the verification algorithm, as often happens in other
verification approaches (see [CY91] for details).

Two properties were considered for verification on each circuit (see Section 5.3.6). One
of the properties is the input-output conformance of the circuit with respect to the original
specification. That is, the circuit always accepts the events produced by the environment,
and vice versa. The other property is the absence of hazards in the circuit, which is

114 CHAPTER 5 : EXPERIMENTAL RESULTS

- Bus >
+ Bus control
RAM busreq busack ¢
port
req ramrdsbuf
sbuf-read—ctl)
Port control Static buffe
ack | controller ackread

Figure 5.9 Input-output interface of the sbuf-read-ctl controller.

modeled in terms of signal persistency. Although absence of hazards is a desirable property
of the internal behavior of a circuit, it does not guarantee correct input-output operation
according to the specification. On the other hand, the circuit may conform with the
specification but may also have internal hazards that do not propagate to the outputs.
For the experiments, both properties were verified with the given delays.

The composition of the environment (mirrored specification) with the circuit defines
the transition system that must be used for verification (see Figure 5.8). The specification
is mirrored such that the input labels and variables are turned into output labels and
variables, and vice versa. Then, the mirrored specification can be interpreted as the envi-
ronment that exercises the inputs and listens to the outputs of the circuit implementation.

5.3.3 The sbuf-read-ctl controller

This section introduces the details of the modeling of a circuit example and its specifi-
cation given as an STG, using TRANSYT. The circuit chosen to illustrate this section is a
small asynchronous controller of the classical HP’s Post Office benchmark suite [CDS93],
commonly used by the asynchronous circuits community. The Post Office is the com-
munication component for a distributed memory multiprocessor, that uses a buffering
protocol to interface with the memory. The implementation of the control-circuitry re-
quires 95 asynchronous finite-state machines, from which we have chosen the one called
sbuf-read-ctl.

Figure 5.9 depicts the input-output interface of the sbuf-read-ctl controller. Its
function is to control the data transfer from the static buffer to a port of the RAM through
a shared bus. The behavior of the controller is basically as follows [Ste02]. First, it waits
until a data request (req+) arrives from the control circuitry of the RAM port. Then the
controller requests (ramrdsbuf+) the data packet to the static buffer, which acknowledges
(ackread+) the request when the data is ready to be sent across the bus. Thus, the
controller asks for bus mastership (busreq+ and busack+) and the data is placed on the

5.3 VERIFICATION OF COMPLEX-GATE DECOMPOSITIONS IN SPEED-INDEPENDENT CIRCUITS 115

bus to be consumed by the RAM. Then, the bus mastership is released (busreq— and
busack-), the buffer is freed (ramrdsbuf-) and the RAM port is acknowledged (ack+).
Finally, the return-to-zero of all the lines is produced.

Figure 5.10 (a) depicts an STG that summarizes the intended behavior of the controller.
In the STG, transitions corresponding to input signals are underlined and arcs between
two transitions are assumed to hold an implicit place, which is not drawn. However,
all places are explicitly named for better correspondence with the TRANSYT input file in
Figure 5.10 (b). Also remark that signals y0_sbufreadctl and yl_sbufreadctl are not part
of the original specification. They correspond to internal state signals required for the
implementation of the controller as a speed-independent circuit [Ste02].

Using PETRIFY, a speed-independent circuit implementation of the specified behavior
can be obtained. Figure 5.11 (a) shows the circuit obtained using a complex-gate per
each non-input signal. Then, each complex-gate has been decomposed into structures
of 2-input gates applying traditional methods for synchronous circuits. The siS tool has
been used for that purpose, which has generated the circuit of Figure 5.11 (b). As yet
discussed above, the decomposition process might have introduced hazards that can cause
circuit malfunction. However, if appropriate timing conditions are met due to the delays
of the gates, the circuit might still operate properly in the specified environment. Thus
the verification task will consist in checking such correct behavior and searching for a set
of timing assumptions that guarantee it, provided the delays associated to the gates of the
circuit.

Although TRANSYT supports both STGs (astg format) and circuit descriptions (blif
format [SSL192]) as input formats, and translates them automatically into TTSs, we show
next how to model both types of systems using the tsif format.

5.3.4 Model of an STG

In order to model an STG with TRANSYT input format, a similar mechanism to that
presented for PNs in Section 5.2.1 can be used. The only actual difference is that when
modeling an STG, the values of the signals must be also considered to properly model the
state of the system. Thus, besides the variables for the places, one boolean state variable is
used for each signal of the STG. Such variable is set if the signal has a high-level value and
reset otherwise. Hence, for every transition of the STG, a transition relation of the TS must
be specified in which the variables for the input (output) places of the STG transition are
set (reset) in order for the transition to become enabled, and the variables become reset
(set) after the transition is executed. Moreover, the variable for the signal value must
switch according to the sense of the STG transition. For example, transition busack+ of
the STG in Figure 5.10 (a) will be modeled by the following equation:

TR(busack+) =ps - Pg - pr - busack - NS(ps) - NS(ps) - NS(p7) - NS(busack)

116 CHAPTER 5 : EXPERIMENTAL RESULTS

#HP’s Post Office sbuf-read-ctl specification
TS sbuf-read-ctl INTERLEAVED

INPUT VARS req ackread busack;
OUTPUT VARS ack ramrdsbuf busreq yl_sbufreadctl yO_sbufreadctl;
INTERNAL VARS pO pl p2 p3 p4 p5 p6 p7 p8 p9 plO pll pl12 pl3 pl4 pi5 pl6 pl7 pl8;

INPUT LABELS req ackread busack;
OUTPUT LABELS ack ramrdsbuf busreq yl_sbufreadctl yO_sbufreadctl;

#Behavior of the input signals

EVENT req- req

EQN TR p13 NS(p13)’ pl4 NS(p14)’ pl5’ NS(p15) req NS(req)’;
END

EVENT req+ req
EQN TR p0’ NS(p0O) pl8 NS(p18)’ req’ NS(req);
END

EVENT ackread+ ackread

EQN TR p3 NS(p3)’ p4’ NS(p4) ackread’ NS(ackread);
END

EVENT ackread- ackread y1_sbufreadctl+

EQN TR pl1’> NS(pl) pl7 NS(pl7)’ ackread NS(ackread)’;
END V \\po

EVENT busack- busack

EQN TR pi0 NS(p10)’ pi1’ NS(pi1) pi2’ NS(p12) busack NS(busack)’; ramrdsbuf+ req+
END 3i p1 'ea
p
EVENT busack+ busack
EQN TR p5 NS(p5)’ p6’ NS(p6) p7’ NS(p7) busack’ NS(busack); ackread+ ackread—
END
Py N
#Behavior of the output signals pl7 / p18
EVENT ack- ack busreq+ ack—
EQN TR p16 NS(p16)’ pl7’ NS(pl7) pl8’ NS(p18) ack NS(ack)’;
END p5i ?plG

EVENT ack+ ack _
EQN TR p12 NS(p12)’ p14’ NS(p14) ack’ NS(ack); busack+ y0_sbufreadctl

END
p7\\ T p15

EVENT ramrdsbuf- ramrdsbuf p6
EQN TR pil NS(p11)’ p13’ NS(p13) ramrdsbuf NS(ramrdsbuf)’; yl sbufreadctl- req-
END p pl?/ \“)14
EVENT ramrdsbuf+ ramrdsbuf yO_SbUfreadCt|+

bl 3 3 .
E]l\llg TR p2 NS(p2)’ p3’ NS(p3) ramrdsbuf’ NS(ramrdsbuf); p8 ramrdsbuf— ack+
EVENT busreq- busreq busreq— pl;\ /1312
EQN TR p8 NS(p8)’ p9 NS(p9)’> pl0’ NS(p10) busreq NS(busreq)’;
END p10 busack-—
EVENT busreq+ busreq
EQN TR p4 NS(p4)’ p5’ NS(p5) busreq’ NS(busreq);
END (a)

EVENT y1_sbufreadctl- yl_sbufreadctl
EQN TR p7 NS(p7)’ p9’ NS(p9) yl_sbufreadctl NS(yl_sbufreadctl)’;
END

EVENT yl1_sbufreadctl+ yl_sbufreadctl
EQN TR pO NS(pO)’ pl NS(pl)’> p2’ NS(p2) yl_sbufreadctl’ NS(yl_sbufreadctl);
END

EVENT yO_sbufreadctl- yO_sbufreadctl
EQN TR p15 NS(p15)’ p16’ NS(p16) yO_sbufreadctl NS(yO_sbufreadctl)’;
END

EVENT yO_sbufreadctl+ yO_sbufreadctl
EQN TR p6 NS(p6)’ p8’ NS(p8) yO_sbufreadctl’ NS(yO_sbufreadctl);
END

#Initial state

EQN ISTATE CONJUNCTIVE

p0’ pl p2’ p3’ p4’ p5’ p6’ p7’ p8’ p9’ pl0’ pll’ pl2’ pl3’ pl4’ plb’ pl6’ pl7’ pl8;
req’ ackread’ busack’ ack’ ramrdsbuf’ busreq’ yl_sbufreadctl’ yO_sbufreadctl’;

END (b)

Figure 5.10 (a) STG specification of the sbuf-read-ctl controller and (b) TRANSYT input file.

5.3 VERIFICATION OF COMPLEX-GATE DECOMPOSITIONS IN SPEED-INDEPENDENT CIRCUITS 117

Similarly, in the boolean equation that specifies the initial state of the TS, the variables
for the signals will be set to the initial values of the signals according to the STG.

With all the above considerations, Figure 5.10 (b) shows the sbuf-read-ctl.g.ts file
corresponding to the STG of Figure 5.10 (a). Input and output variables are declared
for each input and output signal of the specified circuit. Internal variables are declared
for the places of the STG. The whole set of variables is then used to specify the boolean
equations that define the behavior of the system. Such behavior is specified by means of
a transition relation for each individual transition of the STG. Thus, one label is declared
for each signal, whereas one event containing the actual transition relation is defined for
each transition of the signal. Finally, the initial values of all the variables are specified.

Notice that the state signals y0_sbufreadctl and yl_sbufreadct! have been modeled by
means of two output labels. They could have been modeled as internal labels, since they
do not correspond to any observable behavior of the controller. However, we have made
them visible on purpose, so that we can perform an stricter verification process.

5.3.5 Model of the circuit

In order to model a gate-level circuit, a straightforward procedure is followed. A variable
and a label are used for each signal of the circuit. Each variable encodes the value of a
signal, whereas the events associated to the label specify the signal switches according to
the boolean functions implemented by the logic gates driving such signal. For example, two
transition relations can be specified for the events produced by the complex-gate driving
signal busreq in Figure 5.11 (a), as follows:

T R(busreq+) = (yO_sbufreadctl - busreq + ackread - yl_sbufreadctl) - busreq - N.S(busreq)

and

T R(busreq—) = (yO_sbufreadctl + busreq) - (ackread + y1_sbufreadctl) - busreq - N.S(busreq)

Notice that the part of the equations inside the parenthesis correspond to the excitation
conditions for a positive and a negative signal switch of the complex-gate, respectively.
Additionally, appropriate delay intervals can be specified for each event according to
the criteria discussed above. Although it is possible to assign different delay intervals to
each individual event of a label, in this case, the same delay bounds are assigned for all the
changes of a given signal, no matter if they correspond to a rising or a falling transition.
Figure 5.12 depicts the resulting tsif file (sbuf-read-ctl.m2.blif.ts) for the quasi-
speed-independent circuit implementation of Figure 5.11 (b). Notice that the behavior
specified for the input signals allows them to switch freely. What this actually means
is that there will exist an environment system responsible of driving the input signals of
the circuit and setting the input state variables to appropriate values, according to the

118 CHAPTER 5 : EXPERIMENTAL RESULTS

yO0_sbufreadctl ack yO_sbufreadctl ack
busack busack

y1_sbufreadctl ramrdsbuf y1_sbufreadctl ramrdsbuf
busac busac

y0_sbufreadctl —— y0_sbufreadctl

busreq busreq busreq

ackread

ackread

y1 sbufreadctl y1_sbufreadctl

y1_sbufreadctl y1_sbufreadctl |
busack—-0q y1_sbufreadctl busack y1_sbufreadctl
ackread— ackread
red req H

busack y0_sbufreadctl busack y0_sbufreadctl
req req
J

yO_sbufreadctl yO_sbufreadctl

i

(a) (b)
Figure 5.11 Two implementations of the sbuf-read-ctl controller: (a) complex-gate speed-independent
and (b) after decomposition into structures of 2-input gates.

specification. Such system will be no other than that for the specification in Figure 5.10,

but mirrored, i.e. inputs become outputs and vice versa (see the experimental set-up in
Figure 5.8).

5.3.6 Specification of properties

According to the experimental set-up described above, both input-output conformance
of the circuit with respect to the specification, and the absence of hazards in the circuit
need to be considered. In TRANSYT, a property or invariant to be verified is specified in
terms of its negated, i.e. as a failure condition expressed by a boolean formula.

Input-output conformance. Fail conditions to check input-output conformance are
computed for those labels which are synchronized in order to build the closed system for

verification (see Figure 5.8). More precisely, the fail conditions are only computed for those

5.3 VERIFICATION OF COMPLEX-GATE DECOMPOSITIONS IN SPEED-INDEPENDENT CIRCUITS 119

#HP’s Post Office sbuf-read-ctl circuit implementation
TS sbuf-read-ctl_net INTERLEAVED

INPUT VARS req ackread busack;
OUTPUT VARS ack ramrdsbuf busreq yl_sbufreadctl yO_sbufreadctl;
INTERNAL VARS F G H I J;

INPUT LABELS req ackread busack;
OUTPUT LABELS ack ramrdsbuf busreq yl_sbufreadctl yO_sbufreadctl;
INTERNAL LABELS F G H I J;

#Circuit behavior

EVENT rise ack

EQN TR NS(ack) ack’ (busack’ yO_sbufreadctl);
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT fall ack

EQN TR NS(ack)’ ack (busack’ yO_sbufreadctl)’;
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT rise ramrdsbuf

EQN TR NS(ramrdsbuf) ramrdsbuf’ (yl_sbufreadctl + busack);
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT fall ramrdsbuf

EQN TR NS(ramrdsbuf)’ ramrdsbuf (y1l_sbufreadctl + busack)’;
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT rise busreq

EQN TR NS(busreq) busreq’ (G’ + F’);
{DELAY: [MIN= 2.7; MAX= 3.3; 1}
END

EVENT fall busreq

EQN TR NS(busreq)’ busreq (G’ + F’)’;
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT rise yl_sbufreadctl

EQN TR NS(yl_sbufreadctl) yl_sbufreadctl’ (I’ + H’);
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT fall yl_sbufreadctl

EQN TR NS(yl_sbufreadctl)’ yl_sbufreadctl (I’ + H’)’;
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT rise yO_sbufreadctl

EQN TR NS(yO_sbufreadctl) yO_sbufreadctl’ (J’ + busack);
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT fall yO_sbufreadctl

EQN TR NS(yO_sbufreadctl)’ yO_sbufreadctl (J’> + busack)’;
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

#Internal gates

EVENT rise F

EQN TR NS(F) F’> (yO_sbufreadctl + busreq’);
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT fall F

EQN TR NS(F)’ F (yO_sbufreadctl + busreq’)’;
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT rise G

EQN TR NS(G) G’ (ackread’ + yl_sbufreadctl’);
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT fall G

EQN TR NS(G)’ G (ackread’ + yl_sbufreadctl’)’;
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT rise H

EQN TR NS(H) H’ (ackread + req’);
{DELAY: [MIN= 2.7; MAX= 3.3; 1}
END

EVENT fall H

EQN TR NS(H)’> H (ackread + req’)’;
{DELAY: [MIN= 2.7; MAX= 3.3; 1}
END

EVENT rise I

EQN TR NS(I) I’ (yl_sbufreadctl’ + busack);
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT fall I

EQN TR NS(I)’ I (yl_sbufreadctl’ + busack)’;
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT rise J

EQN TR NS(J) J’ (req’ + yO_sbufreadctl’);
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

EVENT fall J

EQN TR NS(J)’ J (req’ + yO_sbufreadctl’)’;
{DELAY: [MIN= 2.7; MAX= 3.3; 1}

END

#The environment changes freely
#and has big delay

EVENT switch req

EQN TR NS(req)=req’;

{DELAY: [MIN= 9; MAX= 11; 1}
END

EVENT switch ackread

EQN TR NS(ackread)=ackread’;
{DELAY: [MIN= 9; MAX= 11;]}
END

EVENT switch busack

EQN TR NS(busack)=busack’;
{DELAY: [MIN= 9; MAX= 11; 1}
END

#Initial state

EQN ISTATE CONJUNCTIVE

req’ ackread’ busack’ ack’ ramrdsbuf’ busreq’;
F G H I Jyl_ sbufreadctl’ yO_sbufreadctl’;

END

Figure 5.12 TRANSYT input file for the circuit of Figure 5.11 (b).

120 CHAPTER 5 : EXPERIMENTAL RESULTS

cases in which an output label of the implementation system is synchronized with an input
label of the environment. Intuitively, the condition identifies as an incorrect behavior the
fact that some event on an output label x may be produced by the implementation in a
given state, but the environment is not ready to process such event. In other words, the
implementation system is producing an event which was not expected according to the
specification system.

More formally the condition for the synchronized label x (IMP.x in the circuit and
ENV.x in the environment) to cause an input-output conformance failure in a given state

can be posed as:

Fail(x) = FF(IMP.x) - FF(ENV .x)

Where IMP.x and ENV.x are the corresponding local versions of label x in the
implementation system (IMP.x is an output) and in the environment system (ENV.x is an
input), respectively. In practice, the condition identifies as failure situations all those states
where a change of the circuit’s output signal IMP.x is not expected by the environment.
That is, although IMP.x can fire, ENV.x cannot.

Failure conditions for input-output conformance can be automatically computed by
TRANSYT.

Signal persistency. The presence of a potential hazard at the output of a gate is
modeled in terms of non-persistency. That is, a label is persistent if once some of its
events becomes enabled to fire, it cannot be disabled by the firing of any of the events of
another label. Non-persistent labels may result in undesired hazards at the corresponding
circuit signals, therefore the failure condition only applies to the non-input labels of the
implementation system. Although this type of condition is mainly used for circuit analysis,
it can be useful also in other contexts where the undesired disabling of a given event must
be considered.

The following condition specifies the fact that the firing of label x disables some other
label vy, i.e. x induces non-persistency to y:

Fail(x) =TR(x) - FF(x) - |J (EF(y)-EF'(y))
y

where TR is a transition relation, EF and FF are respectively enabling and firing
functions expressed in terms of current-state variables, and FEF’ is a firing function
expressed in terms of next-state variables. Finally, y is any non-input label of the
(implementation) system, different from x.

The resulting condition identifies as failure situations all those attempts to execute label
x from a state where another non-input label y was ready to fire, and the firing of x leads
to a state where y it is no longer ready to fire.

5.3 VERIFICATION OF COMPLEX-GATE DECOMPOSITIONS IN SPEED-INDEPENDENT CIRCUITS 121

Failure conditions for induced non-persistency can be automatically computed by TRAN-
SYT.

Although these and other failure conditions can be explicitly specified in the TRANSYT
input file or through the command line, the verification engine is also able to compute
them automatically just by specifying certain options when building the closed system for
verification (see the uverif command below). In this example, we will leave TRANSYT to

compute such failure conditions.

5.3.7 Verification

In the verification session, the specification (sbuf-read-ctl) and the circuit implemen-
tation (sbuf-read-ctl net) models are read first. Then, the closed system for verification
is built (uverif command with the -Vclose and -Vnotdestroy options). Internally, the
specification model is mirrored and the failure conditions are automatically computed by
default (see Appendix C for more details).

What follows is an excerpt of the textual output produced by TRANSYT for these an
other commands of the verification session.

ts > read_ts sbuf-read-ctl.g.ts
ts > read_ts sbuf-read-ctl.m2.blif.ts

ts > uverif -Vclose -Vnotdestroy sbuf-read-ctl sbuf-read-ctl_net
ts:: Mirroring specification ...

ts:: Building closed system ...

ts:: Building automatic CONFORMANCE fail conditions

ts:: Building automatic PERSISTENCY fail conditions

ts >

ts > traverse

ts > print_fails

ts:: Fail conditions for label ’IMP.F’.

ts:: Condition #0 defined (on transitions)

ts:: with equation:

ts:: busreq NS(busreq) yO_sbufreadctl’ IMP.F NS(IMP.F)’ IMP.G + busreq’ IMP.F’ NS(IMP.F)
(NS(busreq) NS(IMP.G)’> + NS(busreq)’ NS(IMP.G))

ts:: Detected #1 failure states

ts:: Fail conditions for label ’yl_sbufreadctl’.

ts:: Condition #0 defined (on states)

ts:: with equation:

ts:: yl_sbufreadctl IMP.H IMP.I (busreq’ + ramrdsbuf’ + ack + busack’ + ackread’ + req’) +
yl_sbufreadctl’ (IMP.I’ + IMP.H’) (yO_sbufreadctl + busreq + ramrdsbuf + ack + busack +
ackread + req’)

ts:: Detected #4 failure states

Next, the system is traversed detecting 16 failures from a total of 74 untimed states.
Also, part of the textual output of the print fails command is shown: induced signal

122 CHAPTER 5 : EXPERIMENTAL RESULTS

Signal Failure type Initial | It.1 It.2 It.8
F Induces non-persistency to busreq 1 1 - -
I Induces non-persistency to yl_sbufreadctl 4 - - -
J Induces non-persistency to yO_sbufreadctl 4 4 4 -
req Induces non-persistency to J 1 1 1 -
busack Induces non-persistency to I 4 - - -
yO_sbufreadctl | Induces non-persistency to F 6 6 - -
busreq Non-conformance 1 1 - -
y1l_sbufreadctl | Non-conformance 4 - - -
yO_sbufreadctl | Non-conformance 4 4 4 -

Table 5.1 Failure situations in sbuf-read-ctl along the verification.

persistency condition for circuit’s internal label F (1 failure situation detected) and
conformance condition for synchronized label yl_sbufreadctl (4 failure situations detected).
The first three columns of Table 5.1 summarize the failure situations detected for the
different signals. Notice that the total amount of failure situations (the sum of the column
named Initial is 29) is bigger than that reported after the traversal of the system (16).
This reason is because the same state or transition may cause a property violation due to
more that one failure condition.

Although in general, the actual number of failure situations to deal with is bigger that
that reported after the traversal of the system, it also happens that some of the failure
situations are consequence of other failures. That is, a cascade effect is produced as
long as the effect of a failure is propagated through the system under verification. As
a consequence, it is often the case that when a failure situation is eliminated along the
verification process, other failure situations are eliminated as well. On the other hand,
the -VextendTrace option of the tverif command (see Appendix C for details) allows
to include more that one failure situation in a single failure trace, if it is possible. In such
a way, several failure situations can be directly refined in a single iteration. The former
side effect and the latter optimization, help to reduce the number of iterations required

by the verification process.

The same options for the tverif command as those used in Section 5.2.2, have been
used for verification. The verification process needs three iterations in order to prove the
correctness of the quasi-speed-independent circuit implementation of the sbuf-read-ctl
controller against the original specification. Hence, although the circuit is not speed-
independent, the delays in the gates and the assumption of a slow environment (see Sec-
tion 5.3.2), guarantee the correct operation of the circuit. Table 5.1 summarizes the

5.3 VERIFICATION OF COMPLEX-GATE DECOMPOSITIONS IN SPEED-INDEPENDENT CIRCUITS 123

evolution of the number of failure situations along the three refinements. Also Figure 5.13
depicts the failure trace and the corresponding LzCES used in each iteration. The resulting
LzTSs obtained after each refinement are not shown for space reasons.

In the first iteration of the verification process, the trace of Figure 5.13 (al) is generated.
In the trace, the firing of |- causes the disabling of yl_sbufreadctl—. Therefore, the state in
which |- fires is one of the four failure states indicated in the second row of Table 5.1. The
failure situation arises since after the rising of signal H and being | high, the gate driving
yl_sbufreadctl (see Figure 5.11 (b)) is excited to produce a falling transition. However,
the transition is prevented by the (long enabled) fall of signal I. Clearly, the failure would
not exist if |- occurred before H+. In this sense, the timing analysis derived from the
causal relations extracted from the trace reveals that when |- is concurrently enabled
with ramrdsbuf+ (which triggers the input ackread+), |- actually occurs earlier than
ackread+ (see the LzCES of Figure 5.13 (b1l)), and consequently before H+. Therefore,
the failure is proved inexistent and the verification process continues. As a side result of
the refinement, the non-persistency of | induced by busack and the non-conformance of
yl_sbufreadctl have been also removed (see Ite. 1 in Table 5.1).

The second iteration analyzes a persistency violation of the falling transition of signal F,
induced by an early rising transition of y0_sbufreadctl right after busack+ (see the failure
trace in Figure 5.13 (a2)). Looking at the circuit in Figure 5.11 (b), the disabling of F- is
clear since a high value of y0_sbufreadctl will prevent the OR gate driving F from falling.
The failure would not exist if F— was allowed to happen before yO_sbufreadctl+ fires. As
a consequence of the timing analysis on the events of the failure trace, F- is faster than
the input busack+ when both are triggered simultaneously (see the LzCES in Figure 5.13
(b2)). Therefore, since busack+ triggers y0_sbufreadctl+, the failure cannot happen. The
refinement of the state space has removed also the non-persistency on busreq (induced
by F) and the subsequent non-conformance (see Ite. 2 in Table 5.1).

In the third and last iteration, a persistency violation on y0_sbufreadctl induced by
J is analyzed. Notice that, although the potential firing of y0_sbufreadctl- would also
cause a conformance violation, it is not observable by the trace since such transition never
occurs along it. The resulting failure trace is too long and it is only depicted partially
in Figure 5.13 (a3). However, the beginning of the trace (up to the firing of G-) is the
same than that of the trace of the second iteration. Looking at the circuit of Figure 5.11
(b), the disabling of y0_sbufreadctl- due to the falling transition of J is obvious. For
the failure to be avoided, J- should have occurred before busack- in such a way that
y0_sbufreadctl keeps at a high value, and does not get enabled to fall after busack-.
Precisely, this condition is discovered by the timing analysis (see the LzCES of Figure 5.13
(b3)). As a consequence of the subsequent refinement, all the remaining failure situations
are removed from the system. This concludes the verification process, which proves the

124 CHAPTER 5 : EXPERIMENTAL RESULTS

{reg+} {reg+} {req+}
req+ reg+ req+
{H-} {H-}
H- H-
G_
{y1_sbufreadctl+ } {y1_sbufreadctl+ }
y1_sbufreadctl+ y1_sbufreadctl+ { H+, busreq+}
H+
{ ramrdsbuf+, |-} { |-, ramrdsbuf+ }
b +
ramrdsbuf+ - {busreq+}
busreq+
{ ackread+, I-} { ramrdsbuf+}
ackread+ ramrdsbuf+ { F-, busack+}
F_
{G-, H+ I-} { ackread+ }
G ackread+ {lbusack+}
busack+
{ H+, busreqg+, I- } {G- H+}
G { y0_sbufreadctl+, I+}
H+ -
yO_sbufreadctl+
{y1_sbufreadctl-, busreq+, |-} { busreq+, H+} A
+, 14, J-
- busreq+ {F+ 149}
F+
{ busreq+ } { busack+, H+, F-}
I+, J—
busack+ { }
(al) I+
{ yO_sbufreadctl+, H+, F—, I+}
{y1_sbufreadctl-, J-}
yO_sbufreadctl+
y1_sbufreadctl-

{H+ 1+}
{G+,J-}

(3,2) G+

{ busreq-, J-}

busreq-
*

i[0,3.3] i [0,3.3] \ i[0,3.3] i [0,3.3] { busack-, J-}
I- ramrdsbuf+ F-[2.7,3.3] J- busreq-

. busack-
RN / » RN /

ackread+ [9,11] busack+ [9,11] busack- [9,11] { ramrdsbuf-, J-, yO_sbufreadctl-, ack+ }

ramrdsbuf-

(b1) (b2) (b3)

{J-, yO_sbufreadctl-, ack+ }

J-

{ack+}

(a3)

Figure 5.13 Three refinements for the verification of the sbuf-read-ctl controller: failure traces and

corresponding LzCESs.

5.3 VERIFICATION OF COMPLEX-GATE DECOMPOSITIONS IN SPEED-INDEPENDENT CIRCUITS 125

Circuit ¥ S @ Sy Sy TC C CPU
sbuf-read-ctl 8(5) 19 10 74 16 3 Y 1
rcv-setup 5(2) 14 6 78 34 2 N 1
alloc-outbound | 9(5) 21 11 82 20 4Y 3
ebergen 5(3) 18 9 83 22 1 N 1
mp-forward-pkt | 8(5) 22 8 186 70 8 Y 5
dff 3(1) 14 6 255 164 6 N 3
half 42) 14 7 227 133 1 N 1
chu133 7(4) 24 9 288 204 2 N 1
converta 5(3) 18 12 408 244 10 N 12
nowick 6(3) 20 10 510 292 4 Y 3
chu150 6(3) 26 8 520 339 3 N 1
sbuf-send-ctl 8(b) 27 13 1592 1081 18 N 54
vme 6(3) 24 12 1736 1460 21 Y 30
rpdtf 5(1) 22 8 2612 1841 2 N 2
tsend-bm 9(4) 40 12 3880 2999 N 46
sbuf-send-pkt2 | 9(5) 28 13 4544 4044 19 Y 103
sbuf-ram-write | 12(7) 64 15 14016 12362 34 N 415
ram-read-sbuf | 11(6) 39 16 19328 17488 36 Y 550
mri 9(5) 190 16 21076 11574 29 'Y 317
mr0 11(6) 302 20 727304 642291 2 N 48
trimos-send 9(6) 336 24 2.110° 1.810° N 127
mmu 8(4) 174 22 5610° 5210° 3 N 480

Table 5.2 Experimental results for the verification of asynchronous circuits.

correct behavior of the circuit according to the given specification and the properties
imposed.

The overall verification process takes less than one second of CPU time in a 866M H z
Pentium-IIT computer running Linux.

5.3.8 Results and discussion

Table 5.2 reports the results obtained in the verification of a set of asynchronous circuits
to which complex-gate decompositions, similar to those described for the sbuf-read-ctl
example, were applied. The experimental set-up described in Section 5.3.2 and a verifica-
tion procedure similar to that of Section 5.3.7 has been used for all the benchmarks.

126 CHAPTER 5 : EXPERIMENTAL RESULTS

In the table, columns ¥ and S contain, the total number of signals of the circuits
(the number of non-input signals are shown in parenthesis) and untimed states of the
corresponding specification, respectively. Columns G and §,, indicate the number of gates
and the number of untimed states of the circuit. Column S; indicates the number of
untimed failure states. Column 7'C indicates the number of event structures (timing
constraints) generated for timing analysis. This corresponds to the number of iterations
of the main verification algorithm presented in Chapter 4 (see Figure 4.15). The column
C indicates whether the circuit is proved correct or not for the aforementioned properties.
Finally, CPU times obtained in a 866 M Hz Pentium-III computer with 1GB of memory
running Linux are given in seconds. Although it is not explicitly mentioned in the table,
we want to remark that the peak memory usage for most of the benchmarks keeps below
265MB.

It can be observed that the synchronous decomposition of the complex-gates of the
speed-independent implementations produces a large amount of failure states (see column
Sy in the table). Namely, in average, about 65% of the untimed states of each circuit
correspond to failures. Although the number of untimed states of the circuits is not too
big, the number of failure situations makes the verification very hard in some cases.

Most specifications were marked graphs, i.e. choice-free Petri nets. However, the tran-
sition system obtained after the composition with the circuit to build the closed system
for verification, in some cases manifested a great variety of causality relations among the
events (conjunctive, disjunctive, and complex combinations of both) produced by the func-
tionality of the gates. This fact, complicates the verification process in some cases. Those
where several LzCESs must be generated in order to cover all the causality relations that
lead to a given failure situation.

The results show that systems with more than 10° untimed states could be verified
in reasonable CPU times. The computational cost of the verification algorithm highly
depends on the number of timing constraints required to refine the untimed state space.
Some heuristics to improve the strategies to select adequate event structures will be ex-
plored in the future. On the other hand, the memory requirements keep reasonable in all
cases (below 256 MB for most benchmarks).

The three largest examples were proved to be incorrect. Only few iterations were
required to find an erroneous trace. On the other hand, some circuits required a lot of
timing constraints to prove its correctness (e.g. ram-read-sbuf, sbuf-ram-write and
mrl). We believe that many of these constraints can be redundant and simplified when
considering the complete set of constraints as a whole. This is left for future optimizations.

It is important to notice that the experiments have been performed using the generic
verification methodology presented in Chapter 4, without any tunning or specific strate-
gies to cope with digital circuits. For example, hierarchical verification using automatic

5.4 VERIFICATION OF RELATIVE TIMING ASSUMPTIONS 127

abstractions of sets of gates into complex ones (see e.g. [RCP95]) could have improved
the results significantly.

For comparison, say that the same set of benchmarks was used in [BIJIMYO02] to ex-
periment with the tool OPENKRONOS, which extends the tool KRONOS [BDM98] with
BDD support for efficient state representation. The results, although promising, show that
OPENKRONOS was not able to cope with the bigger circuits such as mr1, mr0, trimos-send
and mmu. As a matter of example, the biggest circuit OPENKRONOS could verify was the
ram-read-sbuf controller, requiring 826 seconds of CPU time on a SUN Ultrasparc 10
with 2GB of memory.

Despite of the above verification results, this section has also illustrated the way an
STG and a digital circuit can be modeled in TRANSYT. Also, a discussion is provided
on how to model certain crucial properties for verification. That is, the input-output
conformance of a system with respect to a specification; and signal persistency, which
captures the presence of hazards in a circuit, for example. The boolean equations needed
to model such properties in TRANSYT can be computed automatically by the tool itself.

We want also to remark that TRANSYT supports both timed STGs (astg format) and
digital circuit descriptions (blif format) as input formalisms. The tool is able to auto-
matically map them into binary-encoded TTSs using similar procedures to those presented
in Sections 5.3.4 and 5.3.5.

5.4 Verification of relative timing assumptions

Speed-independent circuits typically require a lot of circuitry to properly implement
the event-detection mechanisms that make possible their correct operation regardless of
the delays of the gates. Moreover, the delay model they rely on is sometimes too con-
servative about the temporal behavior of the environment of the circuit, and also about
the physical details of the implementation of the gates. On the other hand, it has been
shown [CKK™98] that by taking delay information into account, certain behaviors covered
by the speed-independent implementation cannot actually exist. As a consequence, the
size of the circuits can be reduced (see Example 4.1) at the cost of considering a set of
timing assumptions. However, the property of speed-independence may be lost due to the
optimizations. That is, the circuit may not operate correctly for any possible delay of the
gates, and it is crucial to know under which assumptions the circuit will behave properly.

This section illustrates how the methodology presented in Chapter 4 can be used for
the verification of relative timing assumptions in timed asynchronous circuits. That is, to
check whether the assumptions derived by the synthesis process are actually met in the
circuits when the delay information is taken into account. Moreover, it is shown how the
set of sufficient timing constraints used by TRANSYT along the proofs, are actually very
close to those imposed by the synthesis. Notice that this verification is not sufficient in

128 CHAPTER 5 : EXPERIMENTAL RESULTS

order to guarantee the correct operation of the circuit according to the specification. For
that, input-output conformance with the specification should be verified as in the previous

section.

5.4.1 Synthesis of asynchronous circuits with relative timing
assumptions

PETRIFY allows the synthesis of hazard-free asynchronous circuits from STGs under
certain relative timing assumptions. The assumptions refer to the specific ordering of
events with respect to other events in the timed domain. In contrast, absolute timing
assumptions rely on the specification of time intervals about the occurrence or enabling
of the events.

Three types of relative timing assumptions are allowed: difference assumptions, simul-
taneity assumptions and early enabling assumptions. All of them rely on the differenti-
ation between the concept of enabling region an that of firing region (see the concept of
LzTS in Chapter 2). Whereas in speed-independent circuits both concepts are the same
(an event can fire as soon as it is enabled), they become different when timing information
is considered. For an excellent coverage on the topic, refer to [CKKT02].

The example in Figure 5.14 will illustrate the following discussion on the types of timing
assumptions that can be considered for synthesis. Figure 5.14 shows a portion of a simple
STG (a) and its corresponding untimed state space (b), where the enabling region coincides
with the firing region for all the events.

Difference assumptions

Given two concurrent (i.e. simultaneously enabled and not in conflict) events a and b,
a difference assumption denoted by a < b indicates that a will always fire before b. In
terms of separation times between events, a < b is given when Sep;,q;(a,b) < 0, i.e. the
upper bound on the difference between the firing times of a and b is negative.

In a LzTS, a < b is represented by a concurrency reduction of b with respect to a,
such that b is only firable in those states where a has already fired. As a consequence,
those states where a and b are simultaneously enabled can be removed from the enabling
region of b.

In the example of Figure 5.14, a difference assumption such as a < d causes the removal
of the arc s; i> s5. As a consequence state s; is unreachable and event d becomes lazy
since FR(d) = {s2,s3,54} and EnR(d) = FR(d) U{s1} (see Figure 5.14 (c)). During the
synthesis process, PETRIFY can consider state s; as a “don’t care” for the enabledness of

event d, which provides a source for logic optimization.

5.4 VERIFICATION OF RELATIVE TIMING ASSUMPTIONS 129

~ T

O «-— T - Q

o
o

Figure 5.1/ An example of relative timing assumptions. (a) A portion of a simple STG and (b) its

corresponding untimed state space. LzTSs where: (c) a <d, (d) a=d@b and (e) c>b.

Although difference assumptions are the mainly used timing assumptions (see [MM93]
for example), they do not fully express the lazy behavior of signals. Hence the following
types of relative timing assumptions.

Simultaneity assumptions

Under the burst-mode of operation [Now93], the transitions at the outputs of a circuit
appear as simultaneous from the point of view of the (slow) environment of the circuit.
Under the more restrictive fundamental mode of operation [Huf54], the input signals must

130 CHAPTER 5 : EXPERIMENTAL RESULTS

also change simultaneously. In contrast, simultaneity assumptions propose a sort of local
fundamental mode with respect to particular groups of transitions.

The simultaneity assumption is a relative notion, defined on a set of events FE; =
{e1,...,ex} with respect to a reference event a, which is triggered by some of the events
in Es. Under the assumption for a, the skew on the firing times of the events in FE; is not
distinguishable. In terms of separation times: Ve;, e; € Eg,|Sepmaz(ei,e;)| < 6'(a). The
practical consequence of this assumption, denoted by e; = ey... = e;@a, in a LzTS is
that event a will not fire in any of the states where some e; € E; is still enabled, until
all the events in E have fired. Moreover, the system would produce the same observable
behavior if a was triggered by its original trigger, or by all the events in Fj.

In the example of Figure 5.14, a simultaneity assumption such as a = d@b affects the
LzTS in two ways (see Figure 5.14 (d)):

m States s3 and sq4 become unreachable since although b is already enabled by
the firing of a, d has not fired yet. Clearly, if |Sepmaz(d,a) < 6'(b)| (from
the simultaneity assumption) and |Seppaz(a,b) < 0| (from the causality between
a and b), implies that |Sepmqz(d,b) < 0|, i.e. d must fire before b.

= Additionally, EnR(b) can be safely extended to include state s; indicating that
b could have been also triggered by d. The observable behavior of the system will

remain unchanged thanks to its timing properties.

Figure 5.14 (d) depicts the resulting LzTS where the enabling and firing regions of
b are highlighted. Notice that the possibility of extending the enabling region of the
reference event allows further logic optimizations, which are not possible if only difference

assumptions are considered.

Early enabling assumptions

Simultaneity exploits the laziness between concurrent events. FEarly enabling assumptions
generalize this idea to ordered events. Assume event a triggers event b and the
implementation of b is slow compared to that of a, i.e. §%(a) < 6'(b). Therefore, the
enabling of b could be simultaneous to that of a and the proper ordering of a before
b will be ensured by the timing properties of the logic implementing both events. The
practical consequence of this assumption, denoted by b > a, in the LzTS is that the
enabling region of b can be safely expanded to cover also the enabling region of a.

In the example of Figure 5.14, an early enabling assumption such as ¢ > b results in
the possibility of expanding EnR(c) to include sy and sg. Thus, c¢ could have been
triggered by a but the timing relation between b and c¢ guarantee that ¢ will not
fire until b has fired. Figure 5.14 (e) depicts this effect, where EnR(c) and FR(c) are
highlighted.

5.4 VERIFICATION OF RELATIVE TIMING ASSUMPTIONS 131

The above relative timing assumptions are key to perform timing optimizations in the
synthesis process implemented by PETRIFY. Whereas difference assumptions are mainly
used to remove unreachable states in the timed domain, simultaneity and early enabling
assumptions provide a source for optimizations of the logic by choosing appropriate lazy
behaviors between sets of signals.

Notice that the above assumptions rely on certain properties on the delays of the logic
implementing each signal of the circuit. However, accurate delays may not be known until
the synthesis process has completed. As a consequence, verification to ensure the validity
of the assumptions is required. Moreover, when the timing assumptions do not hold, either
the circuit is resynthesized without the invalid assumptions, or the delays of the circuit
components are adapted to satisfy them.

5.4.2 The VME bus controller

This section introduces the example we will use to illustrate the verification of relative

timing assumptions in the following sections.

Figure 5.15 (a) shows the I/O interface of a VME bus controller that controls the
communication of a device with the bus through a data transceiver (signal D). At the side
of the device there is a pair of handshake signals that follow a four-phase protocol (LDS and
LDTACK). At the side of the bus there are two input signals (DSr and DSw) that follow a
four-phase protocol with the output signal DTACK. DSr and DSw indicate the beginning
of a READ and WRITE cycle, respectively. The timing diagram corresponding to a READ
cycle is depicted in Figure 5.15 (b).

An STG describing the complete behavior of the controller is shown in Figure 5.15 (c).
The choice places model the non-determinism of the environment, which can choose to
initiate a READ or a WRITE cycle after the completion of the previous cycle. Notice
also that some signal transitions, e.g. LDS+, have multiple instances in the STG. The
indexes 1 and 2 have been used to distinguish events in the READ and WRITE cycles,
respectively.

The timing assumptions used by PETRIFY for the synthesis of the controller come from
three different sources: the assumption of a slow environment, the assumption of a slow
bus control logic, and the intervention of the designer.

The assumption of a slow environment considers that the response time of the envi-
ronment is long enough to allow the circuit to complete its internal activity, i.e. firing of
enabled non-input signals. Thus, the inputs of the circuit are assumed to have a delay in
the range [k, 00), where k is large enough to allow the circuit to stabilize after a change
at its inputs. This general assumption gives a lot of margin for PETRIFY to automatically

derive other timing assumptions.

132 CHAPTER 5 : EXPERIMENTAL RESULTS

Data

Bus Transceiver

-~ —|

Device

DSr ———= LDS
VME Bus

Controller| prack
DTACK=—" LDS+/1

DSw

(a) '

LDTACK+/1 LDTACK- LDS+/2

ot/ /X i,
oo N
o] W
S e~

(b)

Figure 5.15 VME bus controller: (a) input-output interface, (b) waveform for the READ cycle and (c)
STG specifying the full behavior of the controller.

4

On the other hand, looking at the specification of the controller in Figure 5.15, it can be
seen that the return-to-zero of the protocols at both sides of the controller (bus and device)
is done concurrently. However, it could be realistic to assume that the circuitry at the side
of the bus is slow enough, such that any new request for a read or write cycle (DSr+ or
DSw+) will never arrive at the controller before the handshake with the device has been
completed. This corresponds to two difference assumptions, LDTACK- < DSr+ and
LDTACK- < DSw+, which can be enforced to PETRIFY.

Finally, the analysis of some preliminary implementations of the circuit shows that
events LDS— and DTACK-, which are concurrent in the specification, will always occur
ordered in the timed domain since the logic driving LDS is simpler than that for DTACK.
Thus, the designer may force an evident concurrency reduction such that LDS— will always
fire before DTACK-.

The resulting set of timing assumptions, including those derived automatically by PET-
RIFY, are summarized in Figure 5.16. Figure 5.17 depicts the resulting circuit implemen-

5.4 VERIFICATION OF RELATIVE TIMING ASSUMPTIONS 133

—mm— B Concurrency reductions

LDS- ==> DTACK-
LDTACK- ==> D+/2

Difference assumptions

I

LDTACK+/1 | LDTACK- LDS+/2

pou b

\
D+/1 : LDTACK+/2

LDTACK- < DSw+
LDTACK- < DSr+

Early enabling assumptions
LDS+/2 > D+/2

DTACK+/2 > D-/2

LDS- > D-/1

DTACK+/1 > D+/1

LDS-
A

DTACK+/2

i :

p-/1—()= DSw-

Figure 5.16 Timing assumptions for the synthesis of the VME bus controller.

tation. The concurrency reductions indicate additional causality relations enforced by the
resulting logic, but do not correspond to actual timing assumptions. The two difference
assumptions denote the assumed firing ordering of concurrent events of the environment
due to the slow response time of the bus control logic. Hence, they can be considered
as satisfied. On the other hand, the early enabling assumptions must be verified for the
circuit to be correct. The validity of all the assumptions relies on the fact that the delay
of D is smaller than that of LDS and DTACK. However, the gate driving D is
much more complex than the gates driving the other two signals (see Figure 5.17), and
the delay of D is expected to be bigger. As a consequence, two delay elements are added
to the circuit in order to solve the above unrealistic timing assumptions. d1 should en-
sure that LDS+/2 > D+/2 and LDS- > D-/1 hold, whereas d2 should ensure that
DTACK+/1 > D+/1 and DTACK+/2 > D-/2 hold.

With respect to an equivalent speed-independent implementation optimized to minimize
the delay, the circuit of Figure 5.17 represents almost a 50% area reduction. Also, if
compared to an speed-independent implementation optimized for area, the circuit with
timing assumptions still requires about a 20% less area, and has a reduction in the response
time of about another 30% [CKK™02].

134 CHAPTER 5 : EXPERIMENTAL RESULTS

LDTACK

DSr

DSw

Figure 5.17 Implementation of the VME bus controller with timing assumptions. Generalized C-
elements are used for signals DTACK and D.

5.4.3 Models and properties

In order to verify the correct behavior of the circuit implementation shown in the
previous section, models for the specification and the circuit must be built including the
appropriate delays. The (mirrored) specification will serve as the environment of the
circuit using the same verification scheme than that depicted in Figure 5.8.

Specification and circuit models

The procedures presented in Sections 5.3.4 and 5.3.5 are used here for building the corre-
sponding TRANSYT models for the STG of Figure 5.15 (c) and the circuit implementation
of Figure 5.17, respectively. Figure 5.18 shows the resulting input files. The model for the
circuit deserves a few comments.

Two internal signals have been added to the model, B_.LDS and A_LDTACK, in order
to represent the two internal nodes before the delay element d; and after the delay
element d2, respectively. Thus, both B_LDS and A_LDTACK are fed to the gate driving
DTACK according to the discussion in the previous section.

Fixed delays have been specified for each event in the model. For signals B_LDS,
DTACK and D, the delay values have been taken directly from the estimations provided
by PETRIFY after the synthesis process. Conversely, the delay values for LDS and
A_LDTACK come from a simple manual timing analysis of the possible values for the
delay elements d; and d, according to the discussion in the previous section. Recall
that these delay elements are required to satisfy the timing assumptions where signal
D must be faster than LDS and DTACK, respectively. In this sense, observe that the

5.4 VERIFICATION OF RELATIVE TIMING ASSUMPTIONS

#VME bus controller: specification
TS vme INTERLEAVED

INPUT VARS dsr dsw ldtack;

OUTPUT VARS dtack 1lds d;

INTERNAL VARS pO pl p2 p3 p4 p5 p2 p3 p6 p7 p8 p9 pl0;
INTERNAL VARS pll p12 pi3 pil4;

INPUT LABELS dsr dsw ldtack;
OUTPUT LABELS dtack 1lds d;

Read cycle
EVENT dsr+ dsr
EQN TR p13 NS(p13)’ pO’ NS(pO) dsr’ NS(dsr); END

EVENT 1ds+/1 1lds
EQN TR p14 NS(p14)’ pO NS(p0)’ pl’ NS(pl) lds’ NS(1lds); END

EVENT ldtack+/1 ldtack
EQN TR p1 NS(p1)’ p2’ NS(p2) 1ldtack’ NS(ldtack); END

EVENT d+/1 d
EQN TR p2 NS(p2)’ p3’ NS(p3) d’ NS(d); END

EVENT dtack+/1 dtack
EQN TR p3 NS(p3)’ p4’ NS(p4) dtack’ NS(dtack); END

EVENT dsr- dsr
EQN TR p4 NS(p4)’ p5’ NS(p5) dsr NS(dsr)’; END

EVENT d-/1 d
EQN TR p5 NS(p5)’ p2’ NS(p2) p3’ NS(p3) d NS(d)’; END

Write cycle
EVENT dsw+ dsw
EQN TR p13 NS(p13)’ p6’ NS(p6) dsw’ NS(dsw); END

EVENT d+/2 d
EQN TR p6 NS(p6)’ p7’ NS(p7) d’ NS(d); END

EVENT 1ds+/2 1lds
EQN TR p14 NS(p14)’ p7 NS(p7)’ p8’ NS(p8) lds’ NS(lds); END

EVENT ldtack+/2 ldtack
EQN TR p8 NS(p8)’ p9’ NS(p9) ldtack’ NS(ldtack); END

EVENT d-/2 d
EQN TR p9 NS(p9)’ pl0’ NS(p10) d NS(d)’; END

EVENT dtack+/2 dtack
EQN TR p10 NS(p10)’ pi1’ NS(pi1) dtack’ NS(dtack); END

EVENT dsw- dsw
EQN TR p2’ NS(p2) p3’ NS(p3) pll NS(p11)’ dsw NS(dsw)’; END

Return to zero
EVENT 1lds- 1ds
EQN TR p2 NS(p2)’ p12’ NS(p12) 1lds NS(1lds)’; END

EVENT dtack- dtack
EQN TR p13’ NS(p13) p3 NS(p3)’ dtack NS(dtack)’; END

EVENT ldtack- ldtack
EQN TR p14’ NS(p14) p12 NS(p12)’ ldtack NS(ldtack)’; END

#Initial state

EQN ISTATE CONJUNCTIVE

p0’ pl’ p2’ p3’ p4’ p5’ p2’ p3’ p6’ p7’ p8’ p9’ pl0’;
pll’ pl12’ pl13 pl4 dsr’ dsw’ ldtack’ dtack’ 1lds’ d’;
END

Figure 5.18

#VME bus controller: implementation with
#relative timing assumptions
TS vme_net INTERLEAVED

INPUT VARS dsr dsw ldtack;
OUTPUT VARS dtack lds d;
INTERNAL VARS B_lds A_ldtack;

INPUT LABELS dsr dsw ldtack;
OUTPUT LABELS dtack 1lds d;
INTERNAL LABELS B_lds A_ldtack;

#0utput signals

EVENT dtack- dtack

EQN TR B_lds’ dtack NS(dtack)’;
{DELAY: [TYP= 16.0;]} END

EVENT dtack+ dtack
EQN TR B_lds A_ldtack dtack’ NS(dtack);
{DELAY: [TYP= 23.96; 1} END

EVENT B_lds- B_lds
EQN TR dsr’ dsw’ B_lds NS(B_lds)’;
{DELAY: [TYP= 24.96; 1} END

EVENT B_lds+ B_lds
EQN TR (dsr + dsw) B_lds’ NS(B_lds);
{DELAY: [TYP= 19.58; 1} END

EVENT 1ds- 1ds
EQN TR B_lds’ 1ds NS(1lds)’;
{DELAY: [TYP= 5.0; 1} END

EVENT 1lds+ 1ds
EQN TR B_lds 1lds’ NS(1lds);
{DELAY: [TYP= 12.0; 1} END

EVENT d- d
EQN TR ldtack dsr’ d NS(d)’;
{DELAY: [TYP= 29.08; 1} END

EVENT d+ d

EQN TR (ldtack’ dsw + ldtack dsr) d’ NS(d);

{DELAY: [TYP= 31.33;]} END

#Input signals change freely
EVENT dsr- dsr

EQN TR dsr NS(dsr)’;

{DELAY: [TYP= 64.0; 1} END

EVENT dsr+ dsr
EQN TR dsr’ NS(dsr);
{DELAY: [TYP= 64.0;]} END

EVENT dsw- dsw
EQN TR dsw NS(dsw)’;
{DELAY: [TYP= 64.0; 1} END

EVENT dsw+ dsw
EQN TR dsw’ NS(dsw);
{DELAY: [TYP= 64.0;]} END

EVENT ldtack- ldtack
EQN TR ldtack NS(ldtack)’;
{DELAY: [TYP= 64.0; 1} END

EVENT ldtack+ ldtack
EQN TR ldtack’ NS(ldtack);
{DELAY: [TYP= 64.0;]} END

EVENT A_ldtack- A_ldtack
EQN TR ldtack’ A_ldtack NS(A_ldtack)’;
{DELAY: [TYP= 0.0; 1} END

EVENT A_ldtack+ A_ldtack
EQN TR ldtack A_ldtack’ NS(A_ldtack);
{DELAY: [TYP= 8.0; 1} END

#Initial state
EQN ISTATE

dsr’ dsw’ ldtack’ dtack’ lds’ d’ B_lds’ A_ldtack’;

END

TRANSYT input files for the specification (left) and circuit (right) of the VME bus controller.

136 CHAPTER 5 : EXPERIMENTAL RESULTS

falling transition of A_LDTACK is not delayed at all (fixed delay of 0 time units), since
nothing in the above timing analysis required that. Finally, input events have a delay
which is twice the delay of the slowest gate of the circuit. This corresponds to a slow
environment assumption made by PETRIFY during the synthesis.

Properties

Despite of the above two models for the circuit and the specification, properties must be
incorporated into the circuit model such that failure situations are raised when some of
the relative timing assumptions are violated. Recall that we are not interested in checking
the correct operation of the circuit according to the specification, but if the assumptions
derived by the synthesis process are actually met in the circuit when the delay information
is taken into account. Thus, let us analyze the three types of assumptions in order to derive
appropriate failure conditions.

A difference timing assumption a < b for two concurrent events a and b, denoted
by a < b, indicates that a will always fire before b. As a consequence, any transition of
b from a state where a is also enabled would violate the assumption. This situation can
be characterized by the following condition, which should be incorporated into the model:

Fail(a < b) = EF(a) - FF(b)

This condition, associated to event b, will identify as a failure any potential firing of b in
those states where a is also enabled.

In case of a simultaneity timing assumption, say a = bQc, despite of the possibility of
extending the enabling region of ¢ to include states from the enabling region of a (b) if
b (a) is the actual trigger of c, ¢ is also assumed to fire always later than both a and b.
Therefore, a failure condition similar to that for a difference timing assumption must be
specified. However, in this case, ¢ should not fire, not only in those states where a and
b are simultaneously enabled, but also in those states where a (b) has already fired but
b (a) is still enabled. The following failure condition captures this idea:

Fail(a = b@c) = [EF(a)- EF(b) + EF(a)-SF(b) + SF(a)- EF(b)] - FF(c)

where SF(a) characterizes the set of states where a has already fired and it is not
enabled. More precisely, SF(a) = Iy g(,,)TR *(a) for all current-state variables v;. The
condition covers all the states of the concurrency diamond for a and b.

Notice that if a (b) is the actual trigger of c, the condition of c firing after a (b)
is automatically satisfied. However, the condition must be checked for both events since
during the synthesis process the enabling region of ¢ could have been extended to cover

states where only b (a) has fired, but not a (b).

5.4 VERIFICATION OF RELATIVE TIMING ASSUMPTIONS 137

In case of a more general assumption involving groups of simultaneous events and groups
of reference events, the corresponding failure condition can be still computed easily, al-
though its formulation becomes a bit more complicated.

Finally, in an early enabling timing assumption such as a > b, despite of the possibility
of extending the enabling region of b, the logic must ensure that a is slower than b,
and hence it cannot fire until b has already fired. Again, this fact is captured by the
following failure condition:

Fail(a > b) = EF(b) - FF(a)

which invalidates all transitions of a from states where b is also enabled.
In general, given an early enabling timing assumption such as a > by > --- > b, the

failure condition would be such as:
n

Fail(a>by >--->b,) = (| JEF(b;)) - FF(a)
i=1

Apart from the previous failure conditions regarding the timing assumptions, input-
output conformance of the circuit with respect to the environment must be checked too.
Finally, we will enforce persistency conditions to all the non-input signals of the circuit.
Although persistency is not mandatory in order to ensure a correct observable behavior
of the circuit, it is always a desirable property in asynchronous circuits, where each signal
transition (e.g. an undesired glitch) can be eventually propagated. Both failure conditions
are automatically computed by TRANSYT when the closed system for verification is built
(see Section 5.3.7).

5.4.4 Verification

Once the models for the specification STG and the circuit implementation are built,
and the correctness properties are characterized using boolean equations, TRANSYT can
be used to carry out the verification process in a similar way to that shown for the previous
experiments.

The specification model (vme) is read first followed by the circuit implementation model
(vme_net). The corresponding input files vme.g.ts and vme.blif.delays.ts are shown
in Figure 5.18.

Then, the closed system for verification is built using the uverif command. The result-
ing system is called C[M[vme]] [vme net], as the (C)losing of the (M)irrored specification
vme and the circuit implementation vme net. The failure conditions for persistency and
input-output conformance are automatically computed by default. The closed system is
traversed producing a total of 45 untimed states where 16 of them correspond to failure
situations. What follows is an excerpt of the textual output produced by TRANSYT at the
beginning of the verification session.

138 CHAPTER 5 : EXPERIMENTAL RESULTS

ts > read_ts vme.g.ts

ts > read_ts vme.blif.delays.ts

ts > uverif -HTML -Vclose -Vnotdestroy vme vme_net

ts > traverse

ts:: Traversing system ’C[M[vme]] [vme_net]’ using atom-partitioned TR.
ts:: End of Traversal with depth : 17

ts:: Final reached states: 45 Fail states: 16

ts:: Number of TR applications: 180 of which 68 useful

ts:: Time = 0.00 sec for the fix-point computation.

ts:: Time = 0.00 sec for the traverse.

ts > flatten -prj vme_flat C[M[vmel] [vme_net]
ts:: Flattening system ’C[M[vme]] [vme_net]’
ts:: Order computed visiting 25 states

ts:: Time = 0.00 sec for the order computation.
ts:: Done
ts:: Time = 0.05 sec for the flattening process.

ts > add_fail EFAIL (dsw+,dsw) EQN EF(ldtack-,ldtack)*FF (dsw+,dsw);
ts:: Adding fail condition for event ’dsw’ of label ’dsw+’

ts > add_fail EFAIL (dsr+,dsr) EQN EF(ldtack-,ldtack)*FF(dsr+,dsr);
ts:: Adding fail condition for event ’dsr’ of label ’dsr+’

ts > add_fail EFAIL (1lds+,1lds) EQN EF(d+,d)*FF(lds+,1ds);
ts:: Adding fail condition for event ’lds’ of label ’lds+’

ts > add_fail EFAIL (dtack+,dtack) EQN EF(d-,d)*FF(dtack+,dtack);
ts:: Adding fail condition for event ’dtack’ of label ’dtack+’

ts > add_fail EFAIL (1ds-,lds) EQN EF(d-,d)*FF(lds-,1ds);
ts:: Adding fail condition for event ’lds’ of label ’lds-’

ts > add_fail EFAIL (dtack+,dtack) EQN EF(d+,d)*FF(dtack+,dtack);
ts:: Adding fail condition for event ’dtack’ of label ’dtack+’

ts > traverse

Next, the closed system is flattened to produce a new single monolithic system called
vme_flat. In vme_flat each pair of synchronized labels of the interface of the circuit
and the environment, is replaced by a single internal label with the same name. The
transition relation for the events of the new label is formed by the product of the transition
relations corresponding to the two synchronized events of the circuit and the specification.
Regarding the delays, only one of the two original events can have delay information
specified, which becomes the delay information of the new event. The result is a simpler
system, without hierarchy, that keeps all the information required for verification. For
detailed information on the flatten command refer to [PPb].

Then, failure conditions for the two difference timing assumptions and the four early
enabling timing assumptions summarized in Figure 5.16 are added to the flat system for
verification using the add_fail command. The failure conditions are derived as discussed

5.4 VERIFICATION OF RELATIVE TIMING ASSUMPTIONS 139

Signal Failure type Initial | It.1 It.2 I8 It4 It.5 It.6 It7 I8
DSw LDTACK- < DSw+ 1 1 1 1 1 1 - - -
DSr LDTACK- < DSr+ 1 1 1 1 - - - - -
LDS LDS+/2 > D+/2 3 2 2 2 2 2 - - -
DTACK DTACK+/2 > D-/2 1 1 1 1 1 1 1 - -
LDS LDS- > D-/1 1 1 1 1 1 - - - -
DTACK DTACK+/1 > D+/1 4 5 5 5 3 3 2 1 -
B_LDS Ind. non-persistency to DTACK 2 2 2 2 - - - -
A_LDTACK | Ind. non-persistency to DTACK 5 7 7 7 7 7 5 2 -
LDTACK Ind. non-persistency to D 4 4 4 4 2 2 2 1 -
DTACK Non-conformance 12 14 14 14 10 10 7 3 -
LDS Non-conformance 5 4 4 4 3 - -
D Non-conformance 4 2 2 2 - - - - -

Table 5.3 Failure situations in the VME bus controller along the verification.

in Section 5.4.3. The system is traversed and the failure conditions are checked. The third
column in Table 5.3 summarizes the failure situations detected in the untimed state space
of the system.

The same options for the tverif command as those used in previous sections have
been used for verification. The verification process needs eight refinements of the original
untimed state space in order to prove the input-output conformance of the circuit with
respect to the original specification, the absence of hazards in the circuit, and that all the
relative timing assumptions are met. As we expected the delay information guarantees the
correct operation of the circuit in the timed domain. Table 5.3 summarizes the evolution
of the number of failure situations along the eight iterations. What follows is the textual
output produced by TRANSYT for the first and the last iterations. The eight failure traces
and the corresponding LzCESs are shown in Figure 5.19 and Figure 5.20.
ts > tverif -HTML -VwriteTracel -VwriteTES1 -AfilterTedges -AfailGuided -VfailTrace2

ts:: Starting verification iteration 1.
ts:: Searching a failure trace

ts:: Try to build timed ES from trace by "escape fail" criterion ... Succeeded
ts:: Time-compliance: escape fail.
ts:: Reachability analysis of the ES ... 4 markings visited

ts:: Composing GRC with the TS. 0+1 encoding vars required...
ts:: Timing constraints successfully applied.

ts:: Traversing the system....

ts:: Number of untimed states reached: 51

ts:: Checking fail conditioms....

ts:: Number of fail states detected: 19

ts:: End of iteration 1.

140 CHAPTER 5 : EXPERIMENTAL RESULTS

ts:: Starting verification iteration 8.
ts:: Searching a failure trace

ts:: Try to build timed ES from trace by "escape fail" criterion ... Failed

ts:: Try to build timed ES from trace by "guided trace contradiction" criterion ... Succeeded
ts:: Time-compliance: contradict trace.

ts:: Reachability analysis of the ES ... 5 markings visited

ts:: Composing GRC with the TS. 0+1 encoding vars required...
ts:: Timing constraints successfully applied.

ts:: Traversing the system....

ts:: Number of untimed states reached: 29

ts:: Checking fail conditioms....

ts:: No fail states detected.

ts:: All properties are satisfied.

ts:: Verification SUCCEEDED after 8 iteratioms.

ts:: End of iteration 8.

In the first iteration of the verification process, the failure trace of Figure 5.19 (al) is
generated. In the trace, LDS+ occurs after DSw+ but before D+, which causes a violation
of the early enabling timing assumption LDS+/2 > D+/2. Moreover, this situation also
corresponds to a violation of the input-output conformance according to the specification
of the WRITE cycle. The failure would not exist in the timed domain if D+ is proved
to be faster than LDS+ after DSw+ has fired. This is exactly what is discovered by the
timing analysis on the events of the trace, and is captured by the LzCES of Figure 5.19
(bl). Actually, the LzCES expresses a more general fact, that no matter who triggers
simultaneously D+ and B_LDS+, B_LDS+ will always occur before D+, and D+ will
occur before LDS+. The refinement of the state space (see It. 1 in Table 5.3) removes
one state related to the violation of the timing assumption and one state related to the
non-conformance of LDS+. As a side effect of the refinement, two failure states where
D+ would cause a conformance violation are also removed. Moreover, certain splitting is
produced in the states around failure conditions induced by DTACK and A_LDTACK,
due to the need of distinguishing those traces which conform to the timing analysis and
those which do not conform. Hence some of the failure situations are replicated, causing
the total number of failure situations to keep constant or even to increase (see Table 5.3).

In the second iteration, the failure trace of Figure 5.19 (a2) is generated. It reflects a vio-
lation of the early enabling timing assumption DTACK+/1 > D+/1 since DTACK+ occurs
before D+ in the trace. Moreover, this ordering of the events violates the input-output
conformance with respect to the specification of the READ cycle. The timing analysis
demonstrates that D+ actually fires before DTACK+, such that the failure behavior
cannot occur in the timed domain. See the corresponding LzCES in Figure 5.19 (b2).

The third iteration resembles the previous one, but due to a violation of the timing
assumption DTACK+/2 > D-/2, which also corresponds to a violation of the input-
output conformance with respect to the specification of the WRITE cycle. See the failure
trace in Figure 5.19 (a3) and the resulting LzCES in Figure 5.19 (b3), which proves that the
failure trace does not exist in the timed domain, since D- actually fires before DTACK+.

5.4 VERIFICATION OF RELATIVE TIMING ASSUMPTIONS

141

{ DSw+, Dsr+} { DSw+, Dsr+}
DSw+ DSr+
{B_LDS+, D+} {B_LDS+}
B_LDS+ B_LDS+
{LDS+, D+} {LDS+}
LDS+ LDS+
{D+} {LDTACK+ }
LDTACK+
(al)
{ A_LDTACK+, D+}
A_LDTACK+
{DTACK+, D+}
DTACK+
{D+}
(a2)

*

N
~ B_LDS+ [1958]

[31.33] D+ [3L33] D+~

N DS+ [12]

(b1)

*
N [5] LDS-

A_LDTACK+ [8]
[29.08] D-

A DTACK+ [23.96]

(b3)

{ DSw+, Dsr+}

DSw+

{B_LDS+, D+}
B_LDS+

{ D+, LDS+}

D+

{LDS+}
LDS+

{LDTACK+}
LDTACK+

{A_LDTACK+, D-}

A_LDTACK+

{ DTACK+, D-}

DTACK+

A_LDTACK+ [§]

"\ DTACK+ [23.96]

.
DTACK- [16]
[64] LDTACK- <4~

N Dsr+ [64]

{ DSw+, Dsr+}

DSw+

{B_LDS+, D+}
B_LDS+

{D+, LDS+}

D+

{LDS+}
LDS+

{ LDTACK+}
LDTACK+

{A_LDTACK+, D-}
A_LDTACK+

{ D-, DTACK+}
D_
{ DTACK+}

DTACK+

{DSw-}
DSw-

{B_LDS-}
B_LDS-

{ DTACK-, LDS-}

DTACK-

{LDS-, DSr+, DSw+ }

LDS-

{ DSr+, DSw+, LDTACK-}
DSr+

{ LDTACK-}

(a4)

Figure 5.19 First four refinements for the verification of the VME bus controller: failure traces and

corresponding LzCESs.

In the fourth and sixth iterations, the violations of the difference timing assumptions
LDTACK- < DSr+ (see Figure 5.19 (a4)) and LDTACK- < DSw+ (see Figure 5.20 (a6))
are tackled, respectively. Both situations are proved non-existent in the timed domain,

142 CHAPTER 5 : EXPERIMENTAL RESULTS

thanks to the assumption of a slow environment with respect to the gates of the circuit.
In this sense, notice the 64 delay units of the input signals LDTACK, DSr and DSw,
against the smaller delay of the circuit gates in the LzCESs of Figures 5.19 (b4) and 5.20
(b6).

The fifth iteration deals with a situation similar to that of the first iteration, but related
to the READ cycle. In the failure trace (see Figure 5.20 (a5)), LDS— fires before D—, thus
violating the timing assumption LDS— > D-/1 and also the input-output conformance
in the return-to-zero phase of the READ cycle. The LzCES obtained after the timing
analysis (see Figure 5.20 (b5)) reflects the same causality relations than those of the first
refinement, but for the negative transitions of the signals.

The last two iterations of the verification process, tackle the non-persistency of the rising
transitions of signal DTACK induced by the fall of signal A_LDTACK. In particular, the
seventh iteration deals with the potential hazard due to the disabling of DTACK+/2 in
the WRITE cycle, whereas the last iteration deals with the disabling of DTACK+/1 in the
READ cycle. See the corresponding failure traces in Figure 5.20 (a7) and Figure 5.20 (a8),
respectively. The failures appear because B_LDS+ excites DTACK to rise too early. That
is, before the falling transition of A_LDTACK occurs, which prevents DTACK from rising.
Such rising transition of DTACK would cause an input-output conformance violation at
the beginning of the operation (READ or WRITE) cycle. The timing analysis proves
that A_LDTACK falls faster than B_LDS can rise and trigger DTACK (see the resulting
LzCESs in Figure 5.20 (b7) and Figure 5.20 (b8)). Therefore, both failure situations are
proved not to exist in the timed domain.

The overall verification process, which proves the absence of hazards, the input-output
conformance with respect to the specification, and that all the relative timing assumptions
hold, takes less than two seconds of CPU time in a 866 M H z Pentium-III computer running

Linux.

5.4.5 Discussion

This section has illustrated how the verification methodology presented in Chapter 4 can
be used for the verification of relative timing assumptions in timed asynchronous circuits.

An overview of the different types of timing assumptions is provided and illustrated
through the synthesis of the VME bus controller using the logic synthesis tool PETRIFY.
The timing assumptions are modeled by means of boolean equations so that they can be
checked using TRANSYT. In fact, the tool has been used to prove the correctness of all the
timing assumptions used during the synthesis of the controller.

Currently, the boolean equations needed to model the relative timing assumptions must
be specified by hand, either in some of the input files or through the command line of the
tool. However, it would be desirable that the equations could be automatically derived by

5.4 VERIFICATION OF RELATIVE TIMING ASSUMPTIONS

143

{ DSw-, Dsr+} { DSw+, Dsr+}

{ DSw+, Dsr+}

{ DSw+, Dsr+}

DSr+ DSr+ DSr+ DSr+
{B_LDS+}
B_LDS+
{LDS+} B_LDS- B_LDS- B_LDS-
LDS+ {D-, LDS-, DTACK-} {D-, LDS-, DTACK-} {D-, LDS-, DTACK-}
{LDTACK+} D- b- D-
LDTACK+ (LDS~, DTACK-) {LDS-, DTACK-} {LDS-, DTACK-}
LDS- —
{A_LDTACK+, D+} LDS- LDS
A_LDTACK+ { DTACK-, LDTACK-} { DTACK-, LDTACK-} { DTACK-, LDTACK-}
DTACK- —
{ D+, DTACK+} DTACK- DTACK
o { DSw+, LDTACK-, DSr+} (pTAcKe, Dowr, Ber) {LDTACK=, DSrr, DSw }
{ DTACK+} | DSW+‘ LoTACK LDTACK~
DTACK+ (LDTACK-] { DSw+, DSr+, A_LDTACK- } {DSr+, DSw+, A_LDTACK-}
DSw+ DSr+
{DSr-} 6
a -
DSr— () {B_LDS+, A_LDTACK-, D+} (B_LDS+, A_LDTACK-}
B_LDS+ B LDS+
{B_LDS-, D-} -
B LDS- {A_LDTACK-, D+, DTACK+, LDS+ } {A_LDTACK-, DTACK#, LDS+}
A_LDTACK= A_LDTACK-
{LDS-, D-, DTACK-} -
{ D+, DTACK+, LDS+}
LDS- { DTACK+, LDS+}
{D-, DTACK-} (a7) (a8)
(a5)
*
N (5] LDS- [0] A LDTACK- DSw+[064] [0] A LDTACK- DSr+ [0,64]
B_LDS- [24.96] e l l
[29.08] D- l l ~ DTACK- [16] N N
[64] LDTACK- " B_LDS+ [19.58] B_LDS+ [19.58]
A LDs- [5] .
N Dsw [64] (b7) (b8)
(b5) (b6)

Figure 5.20 Last four refinements for the verification of the VME bus controller: failure traces and

corresponding LzCESs. The four traces start with the same common prefix up to the firing of B_LLDS- .

the tool, so that the user just needed to specify the actual timing assumptions, which is
generally simpler and more intuitive. We hope this feature can be easily incorporated to
TRANSYT in the near future.

144 CHAPTER 5 : EXPERIMENTAL RESULTS

5.5 Conclusions

In this chapter several features of the TRANSYT tool have been reviewed through the
analysis of a number of experiments. The applicability of the verification methodology
and its implementation in the tool has been proved by verifying two types of timed asyn-
chronous circuits.

Some fundamentals on the symbolic representation of transition systems with boolean
algebras have been provided first. Boolean functions are represented in TRANSYT using
BDDs [Bry86]. It is well known that some intermediate computations along the reach-
ability analysis, for example, can cause an exponential blow-up in the size of the data
structures that handle the BDDs. Nevertheless, BDDs generally provide a compact and
efficient representation.

The representation based on BDDs is only suitable for untimed state spaces or timed
state spaces under the relative timing paradigm. If the exact timed state space of a system
needed to be analyzed, other types of representations should be used (e.g. difference bound
matrices). The computation of the exact timed state space could be a desirable feature of
the tool. Although only for moderate-size systems, it would allow the direct comparison
of verification methods for timed systems, for example.

A short introduction to the tsif format used by TRANSYT is also provided, covering
the basics needed to understand the examples in the chapter. tsif is a simple text-based
low-level format to describe binary-encoded untimed, lazy and timed transition systems. A
system is modeled by specifying the boolean functions and relations that characterize the
behavior of its events. The format also provides constructs for the modeling of hierarchy
and communication mechanisms in modular concurrent systems. The expressiveness of
the format has been illustrated along the chapter, by modeling timed PNs and STGs as
well as digital circuits.

The iterative refinement of the verification methodology performs an unfolding of the
state space in order to separate those traces which are enabling-compatible with the timing
analysis and those traces which are not. Moreover, in some cases, in order to perform
an accurate-enough timing analysis, the critical cycles of the system behavior must be
unrolled. This yields to the necessity of a forward unfolding of certain regions of the
state space. The number of such unfoldings depends basically in the delays associated
to the events involved in the timing analysis. Hence, pathological cases which require an
unmanageable number of unfoldings could be easily built. Our experience shows that such
extreme cases do not arise often in practice, since none of the systems analyzed exhibit
such undesired behavior.

Complex-gate decompositions are often required to build speed-independent circuits
with conventional libraries of logic gates. Although the decomposition breaks the speed-
independence property, the behavior of the resulting circuits can still be correct if appro-

5.5 CONCLUSIONS 145

priate delays are chosen for the gates. A general experimental set-up for the verification
has been provided in which the required properties (input-output conformance and per-
sistency) have been modeled in terms of boolean functions. A number of quasi-speed-
independent asynchronous circuits have been verified showing that the amount of failure
situations induced by the complex-gate decomposition is very high. Although this fact
makes the verification process very hard, circuits with more than 10° untimed states have
been verified in reasonable CPU times and with small memory requirements.

The use of timing assumptions in the synthesis of circuits often yields to significant
reductions of the area requirements and improvements in the response time of the circuits.
However, the timing assumptions must be proved correct in order to guarantee the proper
behavior of the circuit. Relative timing assumptions are commonly used in the synthesis
of asynchronous circuits, due to its conceptual simplicity but expressiveness power. The
chapter reviews several types of relative timing assumptions and shows how they can be
modeled in terms of boolean equations. The resulting properties can then be verified by
TRANSYT. Currently, the equations must be specified by hand. We expect the tool could
compute them automatically, thus allowing the designer to just deal with the actual timing

assumptions, which are generally simpler and more intuitive.

All the above experiments have been performed without any specific of optimization
for the different systems handled: timed PNs, timed STGs, digital circuits, etc. On the
contrary, just a direct translation from the corresponding models into TTSs has been
performed, and the generic algorithms of Chapter 4 have been used. For example, a pos-
sible source of optimization for circuits could have been the use of hierarchical verification
techniques, based on the automatic abstraction of sets of gates in a circuit into complex

ones.

On the other hand, an explosion in the size of the BDDs used to represent the tran-
sition relations is produced as the number of refinements increases (see Appendix B for
details). The main reason for the explosion is the fact that each transition relation is split
into several pieces for each condition of the enabling-compatible product. Each piece is
manipulated and then the new transition relation is built by joining the different pieces.
Although the enabling-compatible product provides a simple mechanism for the iterative
refinement, it complicates the transition relations at each iteration. As a result, some large
systems with complex causality relations cannot be verified due to memory requirements.
To alleviate this problem, partitioned transition relations could be used. Partitions would
correspond to the different pieces in which a transition relation is split for the composition.
We plan to incorporate this improvement in the near future, which hopefully would allow
us to handle larger and more complex systems for verification.

146 CHAPTER 5 : EXPERIMENTAL RESULTS

Despite of the aforementioned improvements, and considering the experimental nature
of the TRANSYT tool, we want to remark that the results obtained look promising when
compared to similar approaches for the verification of timed systems.

COMPOSITIONAL VERIFICATION

Composition is notation of distortion of what composers think they have heard
before. Masterpieces are marvelous misquotations.
—Ned Rorem - The Paris Diary of Ned Rorem Braziller, 1966

Summary

This chapter presents a case study for the verification of a complex timed system. Most
of the contents was already published in [PCSP02].

The system consists of an n-stage pulse-driven IPCMOS pipeline and the verification
is carried out for any value of n greater than 0. Each stage is described by a circuit at
transistor level and delay information is provided for each transistor. The correctness of
the circuit strongly depends on the timed behavior of its components and the environment
in which the circuit operates. The combination of the level of detail at which the circuit
is described, together with its dependency on timing parameters, makes it attractive for
verification.

To verify the system, three techniques have been combined: (1) the relative timing-
based verification approach described in Chapter 4, (2) assume-guarantee reasoning to
verify untimed abstractions of timed components, and (3) mathematical induction to verify
pipelines of any length.

In first place, the IPCMOS architecture is described at high level for better compre-
hension of its overall behavior. Also, the different modules that form the architecture are
described at low level in order to identify critical parts of the circuitry. High-level tech-
niques for verification are introduced which are required in order to tackle the complexity
of the verification. Then, the overall strategy for the verification of IPCMOS pipelines
is developed. Finally, details on the verification of the circuitry that implements a single
stage are provided.

147

148 CHAPTER 6 : COMPOSITIONAL VERIFICATION

6.1 Introduction

Chip performance, power consumption, noise reduction and clock synchronization are
becoming critical challenges as microprocessor performance moves into GH z regimes. In-
terlocked pipelined CMOS (IPCMOS) circuits [SRCT00], provide an asynchronous clocking
technique that can help to tackle these challenges. Measured results on an experimental
chip that implemented a 64-bit floating point multiplier using this architecture, demon-
strated robust operation at 3.3G'H z under typical conditions and 4.5G H z under best-case
conditions in a 0.18um 1.5V CMOS technology. The circuit showed also robust operation
with large variations in power supply voltage, operating temperature, threshold voltage,
and transistor channel length.

The general concepts of interlocking, pipelining and asynchronous self-timing are not
new and have been proposed in a variety of forms since [Sei80] and [Sut89]. However,
the techniques used in those approaches are too slow, specially for blocks which receive
data from many separate sources. In contrast, the performance achieved by IPCMOS
circuits is due to their pulse-based communication mechanism. The protocol decouples
the communication of a block with its predecessors and its successors, thus achieving a
high degree of concurrency.

Although a single IPCMOS block that operates in a pipeline can be implemented using
only 32 transistors, the concurrency achieved in the overall system leads to the state
explosion problem even for a few interlocked blocks.

The correct operation of the system highly depends on its timing parameters, hence
the complexity of the analysis is drastically affected by the time dimension. High-level
techniques for verification have been typically used to handle the complexity of a system.
For example, abstractions [Mel88] tackle the complexity by hiding those implementation
details that are irrelevant for the verification of a given property.

In this chapter, the verification a complex timed system such as an IPCMOS pipelines

is carried out by combining three techniques:

1. The relative timing-based iterative verification approach presented in Chapter 4 is

used as the basic verification engine to perform all the required correctness proofs.

2. The assume-guarantee paradigm [Pnu84]| is used to perform a hierarchical verifica-

tion on large systems by means of abstractions.

3. Finally, mathematical induction is used to prove the correctness of infinite-state
systems, such as an n-stage IPCMOS pipeline for n > 0.

The rest of the chapter is organized as follows. Section 6.2 presents the details of the
TPCMOS architecture. Transistor-level descriptions of the circuits that implement the
interlocked modules are provided. Section 6.3 introduces some background on techniques

6.2 THE IPCMOS ARCHITECTURE 149

DATA (A)
Block | VALID (A)
DATA (D
A ACK (D) ©
VALID (D) Block
DATA (B) ACK (E) E
Block | VALID (B) Block
3
B ACK (D) D DATA (D)
VALID (D) Block
DATA (C) =
ACK (F)
Block | VALID (C)
c ACK (D)

Figure 6.1 General block-level interlocking scheme.

used for compositional verification, such as abstraction, assume-guarantee and induction.
The correctness of IPCMOS pipelines regardless of their length is demonstrated in Sec-
tion 6.4. The proof includes the verification of the circuitry that implements a single stage.
Details of this step are provided in Section 6.5.

6.2 The IPCMOS architecture

Figure 6.1 depicts the general block-level interlocking scheme of the IPCMOS architec-
ture. In the figure, block D is interlocked with blocks A, B, C, E and F. In the forward
direction, dedicated VALID signals emulate the worst-case performance path through each
driving block (A, B and C), and thus determine when data can be latched within block
D. In the reverse direction, ACK signals indicate when the data has been received by the
subsequent blocks (E and F) and that new data may be processed within block D. In
this interlocked approach, local clocks are generated only when there is an operation to

perform.

6.2.1 IPCMOS pipelines

A single IPCMOS control block is relatively small and can be used to build meshes,
pipelines and other scalable architectures. A linear version of the IPCMOS architecture is
depicted in Figure 6.2. The system implements a pipeline composed of IPCMOS control
blocks and latches that isolate the logic between stages. When input data for a stage is
signaled to be available (VALID signal), the IPCMOS control block generates a local clock
signal to latch the data (CLKE signal). Data receipt is confirmed to the sender and as soon
as the data is processed (ACK signal). This eliminates the need of global clock distribution

150 CHAPTER 6 : COMPOSITIONAL VERIFICATION

VALID VALID VALID VALID
Control Control Control
IN block block block out
ACK ACK ACK ACK
CLKE CLKE CLKE
Y A A

< = =

[&) [&] O

® | ™ ®| ™

| | -

Figure 6.2 Linear IPCMOS architecture. Each stage is composed of a control block, a logic to handle
data and a latch that isolates the stage.

and at the same time contributes to the power consumption reduction by clocking data
only when it is available at the inputs.

The TPCMOS block communicates with other blocks via request signals (VALID), ac-
knowledgment signals (ACK) and produces a local data clock signal (CLKE). VALID indi-
cates data availability to the receiver(s), while ACK acknowledges to the sender(s) that data
has been received. Generally IPCMOS blocks can be fed multiple ACK and VALID signals
to enable safely processing data from multiple sources and feeding the result to multiple
destinations. In a pipeline, only one VALID signal and only one ACK signal is sent /received
by each stage.

IPCMOS circuits are pulse-driven or edge sensitive. Their operation is illustrated by
means of the 2-stage pipeline in Figure 6.3 (a), where the structure of the control blocks is
detailed. The figure also shows a waveform that illustrates how two data items propagate
through the pipeline. Initially the pipeline is empty: all VALID and CLKE signals are high,
whereas all CLKR and ACK signals are low. As soon as negative pulses are received at the
VALID input of a stage, a positive pulse is generated at the ACK to acknowledge the data
receipt. Input data is clocked by a negative pulse on the CLKE signal, produced by the
strobe module. After some delay designed to match the worst case computation time of
the logic attached to the stage, a negative pulse is generated by the valid module at the
VALID output line indicating the data availability to the receiver. From this point on, the
block waits for positive pulses to be received from the data consumer at the ACK input.
The pulses are recorded by the reset module. When the acknowledgment is received, a
positive pulse at CLKR is produced. This indicates the strobe and wvalid modules that
the stage is ready to acknowledge new incoming data and to pass new processed data
to the receiver, respectively. Meanwhile VALID input pulses indicating the new input
data availability are also recorded. Hence, new data receipt at every stage is interlocked

6.2 THE IPCMOS ARCHITECTURE 151

Strobe Reset <—‘} 3 Strobe Reset <-v—‘ ouT
| ACK2 ACK3

4

Valid Valid

CLKE2

VALID 0

ACK 1

CLKE 1 :
VALID 1 LA Nl
CLKR 1 > ==\ (oy a—

ACK 2 \\5% ﬂ
CLKE 2 ﬁ f<
VALID 2 % SO

Acks Sl by

Figure 6.3 Detailed 2-stage IPCMOS pipeline (a) and waveform of its behavior (b). Communication at
the extremes of the pipeline is pulse-based (thick lines) but the stages communicate through handshakes.

with the acknowledgment of the data by the following stages. For correct operation, the
only restriction the IPCMOS modules pose on the environment is the pulse length of the
incoming VALID and ACK signals.

Even though a pulse-driven environment is accepted by each pipeline stage, the internal
communication between adjacent stages is performed in a partially handshaked protocol
between the positive edges of the pulses (see Figure 6.4). These additional causality
relations enable to abstract the behavior of such components when interacting among
them, in such a way that internal timing information can be neglected. As we will see
later on, this phenomenon considerably simplifies the verification of the pipeline.

152 CHAPTER 6 : COMPOSITIONAL VERIFICATION

Figure 6.4 Two-phase handshake mechanism.

The dashed boxes in the waveform of Figure 6.3 (b) show the signal edges affected by
the handshaking mechanism. The dashed arrows show the restricting causal dependencies
that must not exist in the environment (IN, OUT) but take place in the IPCMOS stages.
In the diagram we also show that all stages in a sequence cannot be filled with data at the
same time, but ”bubbles” (empty stages) are needed to propagate data in one direction
and the acknowledgment in the other. The causal dependencies demonstrating this fact
are highlighted in the diagram by means of dotted arrows.

The following sections provide details on the circuit implementations of each IPCMOS
block, and the behavior of the environment modules IN and OUT.

6.2.2 Strobe circuit

The general structure of the strobe circuit is depicted in Figure 6.5 (a). The strobe
switch circuit is shown in detail in the left of the figure. Figures 6.5 (b) and (c) illustrate
the behavior of the switch and the strobe circuits by means of waveforms. Notice that
when building an IPCMOS pipeline, the strobe circuit contains only one switch block.
Thus, the waveform in Figure 6.5 (c) shows a single Vint signal.

The strobe circuit is responsible for accumulating the negative pulses from the VALID in-
put lines. It is also responsible for generating the clock strobe CLKE that latches the input
data as soon as it is available from all sources (all VALID input pulses are received). The
clock strobe cannot be issued unless all the data receivers have acknowledged the previous
processed data as indicated by CLKR.

Every strobe switch module is responsible for storing a single negative pulse from the
corresponding VALID input line and for lowering the Vint signal afterwards.

The strobe circuit weak transistor pulls up the X signal as soon as all Vint signals are low
(all VALID pulses are received), and the CLKR positive pulse has discharged Rint indicating
the acknowledgment receipt from all the receivers. Finally, the switches are reset by the
positive pulse sent through the ACK output line.

The p-type transistor that charges X is weak with respect to the n-type transistors that
discharge it. Thus, in case Vint,, is the last signal to arrive, charging X does not produce
a short-circuit. Signal Rint in also important since is prevents X to be discharged in case
the acknowledge from the previous cycle has not been received yet.

6.2 THE IPCMOS ARCHITECTURE 153

[2,3]
(weak) ACK

CLKE [5.6] rise
- [2,3] fall (12 (2.4
X K CLKE
VALID _ Vint
I

)

Rint[1, 2]

[1,2] z

Y [1,2]

CLKR
(from ACK)

VALID n

“ -
=] a
2 2
> >

Figure 6.5 (a) The strobe circuit in detail with the strobe switch highlighted in the left. Waveforms
describing the behavior of (b) the switch and (c) the strobe circuits.

No specific technology library is used, hence the delay bounds for each stack of tran-
sistors is set to be in the range of [1,2] delay units. Other appropriate delay ranges are
used in case of weak transistors or fan-out considerations (see Figure 6.5 (a)). Thus, the
delay of charging node X in the strobe circuit is set to be in the range [5,6], whereas the
discharge delay is set to be in the range [2,3]. Also, signals ACK and CLKE have delays

in the range [2,3] and [3,4] respectively, due to fan-out considerations.

6.2.3 Reset circuit

The general structure of the reset circuit is depicted in Figure 6.6 (a). The reset switch
circuit is shown in detail in the left of the figure. Figures 6.6 (b) and (c) illustrate the
behavior of the switch and the reset circuits by means of waveforms. Notice that when

154 CHAPTER 6 : COMPOSITIONAL VERIFICATION

[5,6] rise

[2,3] fall
CLKR

[3,6]

: : : CLKRN

Aint

[1,2] rise
ACK [2,4] fall

CLKRN

Switch 1

ACK n

“
4
Q
<

ACK i \ Aint i\ 4

CLKRN 4_\/7 KRN w
(b) (©

Figure 6.6 (a) The reset circuit in detail with the reset switch highlighted in the left. Waveforms
describing the behavior of (b) the switch and (c) the reset circuits.

building an IPCMOS pipeline, the reset circuit contains only one switch block. Thus, the
waveform in Figure 6.6 (c) shows a single Aint signal.

The switch circuit is aimed at detecting positive pulses of the input ACK lines coming
from the successor blocks. Having received pulses from all the ACK lines it produces a
positive pulse on CLKR for resetting the valid and the strobe circuits.

The detailed behavior of the reset circuit is as follows. Upon the receipt of a pulse
from all ACK lines, all the Aint signals will be low, what allows for CLKR to be charged.
Similarly to the strobe circuit, the p-type transistor that charges CLKR is weak with respect
to the n-type transistors that discharge it. Thus, in case Aintn is the last signal to arrive,
charging CLKR does not produce a short-circuit. Finally, after rising CLKR, CLKRN resets
the Aint signals, which in turn discharge CLKR.

Similarly to the strobe circuit, the delay ranges of the reset circuit are set taking into
account the weakness of the transistors (for signal CLKR) and fan-out considerations (for
signal CLKRN). Signal Aint in the switch has a double fall delay corresponding to the two
stacked n-type transistors. The delay intervals are annotated in Figure 6.6 (a).

6.2 THE IPCMOS ARCHITECTURE 155

CLKE CLKE \ =/

w VALID
T2 b DAY
Delay w \/ S\
CLKR " { }

(a) (b)

Figure 6.7 (a) The valid circuit and (b) waveform describing its behavior.

VALID VALID

T —> VALID-

ACK Sl S‘ ACK
+— T 4— | vau-

CLKEi CLKEi

IN ouT

Figure 6.8 STGs modeling the pulse-based behavior of the IN and OUT modules.

6.2.4 Valid circuit

The details of the valid circuit are depicted in Figure 6.7.

The walid circuit incorporates a delay element matching the worst-case delay of the
logic associated with the stage, so that it lowers the VALID output signal only after that
delay is elapsed since latching the new data by the CLKE low pulse. On the other hand,
the CLKR signal is fed to the walid circuit to ensure that the VALID output signal is raised
again only after the data transfer has been acknowledged by the successor stage. Until
that happens the VALID output signal is kept low. On the other hand, the delay associated
to the changes in signal W is in the range [1,2].

6.2.5 The environment modules

Figure 6.8 depicts the communication protocol implemented by the IN (left) and the
OUT (right) parts of the environment, in the form of Signal Transition Graphs. The
underlined transitions represent the behavior of the circuit stage signals. The IN and
OUT modules operate in a pulse-based manner. This fact is highlighted by the thick lines
that connect the environment modules with the pipeline.

156 CHAPTER 6 : COMPOSITIONAL VERIFICATION

The OUT module acknowledges the data available at the output of the pipeline by
rising the ACK line. Once this happens, both the last stage of the pipeline and the OUT
module reset the respective VALID and ACK lines independently. A restriction must be
imposed to OUT to avoid early resetting of ACK. That is, if ACK— arrives too fast after
ACK+, the falling edge of ACK may not be properly recorded by the reset switch circuit
of the last stage of the pipeline. Therefore a minimum width is required to the positive
pulse of ACK.

The IN module notifies new data availability at the input of the first stage of the
pipeline by lowering the VALID line. The stage acknowledges the incoming data by rising
the ACK line. The reset of both lines is carried out independently and no new data can
be issued by IN until the first stage has acknowledged the previous data portion. Also a
restriction must be imposed to IN to avoid early resetting of VALID. That is, if VALID+
arrives too fast after VALID—, the falling edge of VALID may not be properly recorded by
the strobe switch circuit of the first stage of the pipeline. Therefore a minimum width is
required to the negative pulse of VALID.

The aforementioned conditions on the width of the pulses produced by the environment
modules, will be checked later on during the verification process.

6.2.6 About complexity

The complexity of an IPCMOS control block depends on the number of data suppliers
and data receivers attached to it. Looking at the different circuits that implement the
control block, the number of transistors that form it can be computed as: Ny-ansistors =
21 + 7 * Nipputs + 4 * Noutputs - Thus, a single stage of a linear pipeline contains 32
transistors. Notice that data keepers are not taken into account because they do not
introduce additional complexity to our model.

Although the number of transistors of a single stage is small, when a stage is composed
to build a pipeline that interacts with the IN and OUT modules, the state explosion
problem appears rather soon. Thus, for example, a simple 1-stage pipeline has 212040
untimed states, a 2-stage pipeline has about 2.5F + 9 untimed states, a 3-stage pipeline
has about 3.0F + 13 untimed states, etc. In fact the state space of a 4-stage pipeline could
not be computed in a 866 M Hz Pentium-III computer with 1GB of RAM running Linux,
due to memory overflow. To our knowledge, no verification approach for timed systems
can handle such amount of untimed states unless higher-level techniques for verification
are used.

6.3 Compositional verification

In order to overcome the complexity of the verification, symbolic representations of
the state space of the systems are commonly used. However, such representations do not

6.3 COMPOSITIONAL VERIFICATION 157

] - (b) (©

(a) X’ Y X Y’

(d) (€)

Figure 6.9 Assume-guarantee verification using abstractions.

suffice when complex realistic systems are analyzed. Several techniques have been proposed
which, combined with symbolic representations, allow the analysis of larger systems. Those
of interest to our purposes are: abstraction, assume-guarantee reasoning and induction.

Abstraction

The abstraction mechanism [Mel88, CGL92, TAKB96, DGG97] allows to reduce the size of
the state space by removing details irrelevant for proving a given property. When perform-
ing abstraction, information about the exact behavior of the system is lost, therefore the
truth of some properties cannot be determined by looking only at the abstracted system.

It is important that the verification methodology does not lead to false positive results.
That is, if a given property holds in the abstraction a mechanism is required to show that
the property actually holds in the non-abstracted system. A verification methodology with
this property is said to be conservative. Notice that, in general, nothing can be concluded
about what happens in the actual system if the property does not hold in the abstraction.
This, will depend on the level of detail hidden by the abstraction procedure.

Assume-guarantee

The assume-guarantee paradigm [Pnu84, CLM89, Lon93, GL94, HRS98] exploits the mod-
ular structure of systems. It reasons about the correctness of the overall system by checking
only the local properties of the components. Unfortunately, a component is designed to
operate only in the environment of that system, thus it is unlikely to satisfy any interesting
property unless analyzed together with such environment. However, such analysis would
lead again to the state explosion problem.

The assume-guarantee technique tackles this intimate relation among the components
of a system. In the example of Figure 6.9 (a), since the behavior of X depends on the
behavior of Y, the correctness of X can be proved only if certain assumptions are satisfied

158 CHAPTER 6 : COMPOSITIONAL VERIFICATION

by Y. Then, one must guarantee that Y actually meets such assumptions. A similar
reasoning can be done in the side of Y. By combining appropriately the assumed and
guaranteed properties, it is possible to establish the correctness of the entire system, with-
out building the global state space. Moreover, once a guarantee is proved it can be used
as an assumption for a later stage in the verification process. To prevent from erroneous
conclusions circularity must be avoided in the reasoning chain. Finally, the assumptions
often come in the form of abstractions such that both techniques are combined.

Figure 6.9 depicts the verification scheme for the X ||Y system, using assume-guarantee
reasoning with abstractions: in (b) the local properties of X are verified assuming Y’ is a
valid abstraction of Y’; in (c) the local properties of Y are verified assuming X' is a valid
abstraction of X; in (d) Y is checked to be a valid abstraction of Y in order to guarantee
(b); and in (e) X' is checked to be a valid abstraction of X in order to guarantee (c). Each
guarantee verification checks for language containment of the implementation X (V) with
respect to the abstraction X’ (Y'). In our framework, these proofs can be performed by
checking that any output produced by the implementation can also be produced by the
abstraction under the same input stimuli.

Induction

Induction is used to prove properties on systems composed of a number of similar com-
ponents, organized in some inductively definable structure like a pipeline, a matrix, etc.
These techniques rely on the concept of invariant [BSV94, ES96] or the so-called behav-
ioral fized point [VK98], to reason about the behavior of systems with any number of
components.

Another possibility is to use mathematical induction over the size of the system, by
successively increasing the number of components that form it. This process can be
carried out manually, or can be automated using automatic theorem provers [LG95].

6.3.1 Framework
Several formal frameworks have been presented in literature [GL94, McM97, HRS98]

that support correct assume-guarantee reasoning with abstractions. These frameworks
often rely on a preorder relation < between processes, a composition operator || for
processes and a logic to specify properties. The preorder relation X < X' denotes
that the abstraction X’ captures more behaviors than X, i.e. X refines or implements
X'. The composition operator must be monotonic with respect to the preorder, i.e.
X<X' AY <Y = (X|Y) < (X']]Y'"). And the properties must be preserved through
the preorder, i.e. X < X' A X' satisfies property P = X satisfies property P.

Since we verify safety properties, the only condition we have to enforce for an abstraction
to be appropriate, is that its state space is a superset of that of the original system. That

6.4 VERIFICATION OF IPCMOS PIPELINES 159

is, each state of the original system corresponds to a state in the abstraction. Therefore,
the observable properties are preserved through the abstractions and false positive results
cannot be produced. This, together with the relative timing-based verification approach
presented in Chapter 4, provides a sound framework for performing assume-guarantee
verification with abstractions.

6.4 Verification of IPCMOS pipelines

This section shows how abstraction, assume-guarantee and induction can be combined
with our strategy for verification with relative timing, in order to proof the correctness of
an IPCMOS pipeline regardless of its length.

6.4.1 Verification strategy
The correct operation of an IPCMOS pipeline initially empty, is given by the following
informal specification (.5):
“Fvery data item entered to the pipeline is acknowledged once and only once

at every stage”.

We verify the correctness of the IPCMOS control circuit, i.e. the data path is assumed to
be correct. Even though the previous property involves a liveness and a safeness condition,
both can be modeled as safety conditions during the calculation of the state space. They
can be modeled by means of a deadlock-freeness invariant in the control circuitry of the
pipeline, such that the control deadlocks when either some data is not acknowledged or
some data cannot move to the next stage.

Additionally, specific conditions about the correct behavior of CMOS circuits must be
also ensured. These conditions are described in Section 6.5.1.

In particular, all properties required in this case study have been modeled with very
simple temporal expressions that require at most the analysis of 1-step transitions. There-
fore, it is not necessary a powerful engine to verify branching time or linear time logic for
such task.

Due to the pulse-driven nature of the architecture, its correctness strongly depends on
the delay margins associated to the components of the control stage.

The goal of the verification is to check whether an IPCMOS pipeline with any number
of stages behaves correctly according to S. That is to check:

IN| L - | I || OUT < S (6.1)

for any value of n > 0, where I; are identical instances of the circuit implementation
I of a stage. The environment is formed by the data sender IN and the data receiver
OUT described in Section 6.2.5. IN and OUT are indeed part of the specification in the
sense that S also specifies the interface behavior of the pipeline, and IN and OUT can be
obtained by simply mirroring such behavior.

160 CHAPTER 6 : COMPOSITIONAL VERIFICATION

|

! VALID VALID VALID | VALID ! VALID w

[g I R] T ‘

| | | :
| |

IN ok I, I 5 I h-1 | A - x| OUT]

| ACK ACK | ACK'! !

- - -] - !

| B] |

T . e

Ain Aout

Figure 6.10 Pipeline verification using abstractions A;, and Agys.

The verification of (6.1) becomes exponentially more costly as n increases, specially
because the communication protocol in both ends of a stage is highly decoupled. Thus, if
the verification is carried out using the level of detail provided by I, in practice n cannot
go beyond 2 stages. That is, although the number of untimed states can be computed
for pipelines with several stages (see Section 6.2.6), when the time dimension is added for
verification, the complexity is drastically affected. As a consequence, in order to overcome
such complexity, the verification of longer pipelines must be carried out using abstractions.

IN and OUT operate according to the pulse-based protocol and so does the left side of
a stage, whereas the right side of a stage operates according to a two-phase handshake pro-
tocol (see Section 6.2). Therefore, the communications between stages Iy and I,, 1 inside
the pipeline use the handshake scheme (thin arrows in Figure 6.10), whereas the pulse-
based behavior only appears at the extremes of the pipeline (thick arrows in Figure 6.10).
We propose abstractions that hide the pulse-based behavior in a way that all the timing
restrictions related to the correctness of such protocol are also encapsulated inside the ab-
stractions (see A;;, and A,y in Figure 6.10). Therefore, since A;, and A,,; communicate
through the handshake protocol, the abstractions can be untimed and assume-guarantee
reasoning can be used. Hence, we pose the verification of (6.1) in terms of:

Ain | Aout < S (6.2)

We proceed as follows:

m Build abstractions A;, and A,y for the components shown in Figure 6.10. IN and
OUT communicate by pulses respectively with I; and I, inside the abstractions.
On the other hand, the rest of the stages communicate by handshakes.

= Prove (6.2) assuming that A;, and A,,; are correct abstractions of the respective
parts of the pipeline.

m Guarantee the soundness of the abstractions. Discharge the assumptions by proving
that A;, and A,y are indeed correct abstractions of IN || I and I || OUT, respec-

6.4 VERIFICATION OF IPCMOS PIPELINES 161

VALID- VALID-
ACK+ ACK+

VALID+ VALID+
ACK- ACK-

() (b)

Figure 6.11 STGs modeling the abstractions A;, (a) and Asu: (b).

tively. Moreover, prove that A;, is also a good abstraction of A;, || I, i.e. Ay, is a
behavioral fixed point that abstracts the sender IN and a chain of n stages.

m Finally, prove the correctness of a pipeline formed by a single fully detailed imple-
mentation (/) of a stage. The verification checks if I is a correct CMOS circuit and
satisfies S in the given environment, that is IN || I || OUT < S.

The first three items are covered by the remaining of this section, whereas Section 6.5
shows in detail the use of the relative timing-based approach described in Chapter 4 to
perform the proof in the last item.

6.4.2 Abstractions

The models A;, and A, must describe the observable behavior of the abstracted parts
of the pipeline at a higher level (see Figure 6.10). That is, A;, and A,y hide the internal
communications inside the abstracted blocks. The two-phase handshake protocol in the
communication interface of the abstractions is modeled by the fact that the rising edge
of ACK to acknowledge a data portion is always interlocked within the falling edge and
the next rising edge of VALID. The models for the environment (IN and OUT) used for
the verification were already shown in Figure 6.8. Figure 6.11 depicts the models for
the abstractions A;, and A,,;, represented by Signal Transition Graphs. The underlined

transitions represent inputs in their respective models.

A;,: abstraction of IN-I{ —---—1I,,_;.

A hides the pulse-based communication between IN and the first stage of the pipeline.
A;p signals the data availability at the input of the next stage of the pipeline by lowering the
output VALID line. VALID is not raised again until the pipeline acknowledges the receipt
of the data by rising the ACK line. The two-phase handshake protocol is completed by
resetting the VALID line independently of the resetting of the ACK line by the pipeline.

Agyu: abstraction of I-OUT.
Agyut hides the pulse-based communication between the last stage of the pipeline and the
OUT module. A, samples the data available at the end of the pipeline signaled by the

162 CHAPTER 6 : COMPOSITIONAL VERIFICATION

low value of VALID, and acknowledges it by producing a positive ACK pulse. The resetting
of the ACK and VALID lines to their initial state is done independently by the abstraction
and the pipeline, respectively.

6.4.3 Assume-guarantee verification

The verification methodology described in Chapter 4 is used in this section to perform
the experiments of the assume-guarantee strategy.

We want to prove that the abstract system built from A;, and A,,; is a good abstraction
of an IPCMOS pipeline, i.e. :

INH L H || I, H OUT < A || Aout

We use assume-guarantee reasoning in five steps in order to carry out the proof using the
abstract models described above. Steps 3 and 4 are the ones that use induction to prove
the correctness of an n-stage pipeline, for n > 2.

The second, third and forth verification steps are graphically depicted in Figure 6.12.
The symbol ¢ models a component that checks that any event produced by the refinement
is also produced by the abstraction (i.e. the language produced by the refinement is
included in the language produced by the abstraction).

1. Assume: We must prove that the system formed by the abstractions meets the
specification of the IPCMOS pipeline, that is: A, || Ao < S . Provided the models
in Figure 6.11 this verification step is straightforward and completes successfully in less
than a second of CPU time.

2. Guarantee correctness of A,,;: We prove the correctness of A,,; with respect
to the system formed by the implementation of a stage of the pipeline I and the OUT
module, when I communicates with the rest of the pipeline using the handshake protocol.
That is: Aip || I || OUT < Aipn || Aour - For this, the system shown in Figure 6.12 (a)
is built. The verification consists in checking the language containment of I || OUT with
respect to Ay, which is reduced to checking that any output produced by I || OUT can
also be produced by A,,; at the same time instant. In this case, the only relevant output
is signal ACK.

3. Guarantee correctness of A;, with one stage: We prove the correctness of A4;,
with respect to the system formed by the pulse-based IN module and the implementation
of a stage of the pipeline I, when I communicates with the next stage in the pipeline
using the handshake protocol. That is: IN || I || Aowr < Ain || Aour - For this
analysis, the system shown in Figure 6.12 (b) is built. The verification consists in checking
that whenever I is ready to change the value of VALID, A;, is also ready for that, thus

guaranteeing language containment of IN || I with respect to Agy,.

6.4 VERIFICATION OF IPCMOS PIPELINES 163

VALID VALID[—]
. i VALID
Ain Aout Ain Aout
ACK ACK ACK
T VALID I VALID I VALID|
| ouT IN |
ACK . ACK . ACK

VALID
Mamrd
i VALID
Ain Aout
ACK
VALID VALID|

(c)

Figure 6.12 Scheme of the guarantee part of the verification to prove the correctness of the various
abstractions: (a) A, || I || OUT < A || Aour , (b) IN || I'|| Aot < Ain || Aour and (c)
Ain ” I || Aout S Ain || Aout .

Ain

4. Guarantee A;, is a behavioral fized point: The previous proof only guarantees the
correctness of A;, as an abstraction of IN and a single stage. However, that result serves as
the induction hypothesis to prove that A;, is a correct abstraction of IN || I || --- || Ip—1,
for any n > 2, as shown in Figure 6.10. Namely, A;, || I || Aour < Ain || Aour - For
this, the system shown in Figure 6.12 (c) is built and the verification is done similarly to
the previous proofs, but now checking signal VALID.

A;p is an abstraction of the IN module and a chain of IPCMOS stages. Thus, A;, is
said to be a behavioral fixed point [VK98], since no matter how large n is, A;, can be
used as a correct abstraction. This, together with the previous proofs, demonstrate the

correctness of an n-stage pipeline for n > 2.

5. Guarantee correctness of a 1-stage pipeline: The previous proofs demonstrate
the correctness of IPCMOS pipelines with 2 or more stages. It is still needed to prove
the correctness of a pipeline with a single stage, that is IN || I || OUT < S. This
step is necessary to consider the case in which a stage is interacting with a pulse-driven
environment at both sides. This is the step in which more timing constraints are required
to guarantee a correct behavior of the components. Despite of its complexity, since this
step also requires the refinement of the model at the level of transistors, we describe it in
detail in Section 6.5.

164 CHAPTER 6 : COMPOSITIONAL VERIFICATION

Proof System CPU time || Refinements

1. Ap || Aour < S — < 1 sec. -
Aout .

2. A || 1| OUT < Aip || Agur | | Ain |[— -2 28 min. 7
| == OUT

Ain .
3. IN|| T Aout < Ain || Aot | - 1 Aout 9 min. 3
IN - —
4 Ay | T A < Aiy || A Ain 10 min 3
- A t < A t | peo------- —|Aou .
m ou m ou Aln_l
5. IN|I|OoUT < S _m_ 35 min. 40

Table 6.1 Summary of the results for the 5 steps of the verification.

Table 6.1 summarizes the results of the five verification steps, using the TRANSYT tool
implementing the relative timing-based verification approach described in Chapter 4. The
first column shows the formula of the proof corresponding to each step of the verification
strategy. The second columns depicts graphically the system built for each proof. The
CPU times, indicated in the third column, have been rounded to minutes and correspond
to executions in a 866M Hz Pentium-III computer with 1GB of RAM running Linux.
The number of refinements, indicated in the last column, correspond to the number of
iterations needed by TRANSYT to successively incorporate the timing constraints that help
pruning the failure traces from the state space of the corresponding models.

In the first experiment, no refinement is required since the verification only consists
in computing the untimed state space of the abstractions involved and realizing that no
violation of the specification arises. Notice also, that although experiments 2, 3 and 4
require a few refinements the CPU times are comparatively high with respect to that of
experiment 5. This is due to the complexity of the required models (see Figure 6.12) and
the resulting BDD explosion when doing reachability analysis. Finally, the last experiment
requires a lot of refinements that correspond to all the constraints related to the timing-
dependent pulse-based communication at both sides of the stage.

6.5 VERIFICATION OF A STAGE 165

6.5 Verification of a stage

This section addresses the verification of the circuit implementation of an IPCMOS
pipeline stage (I), in an environment formed by a data sender IN and a data receiver
OUT. We will show the modeling mechanisms to describe the transistor-level circuits.

6.5.1 Modeling CMOS circuits

The behavior of the circuit is modeled by a TTS with a set of events that update the
value of variables and therefore modify the state of the system. In particular we use
a boolean variable to model each circuit node and several events that model the rising
and falling transitions of the node value. For every event a transition relation is defined,
including an enabling condition and a delay interval [§!,0%] specifying the delay bounds
of the signal switch once it becomes enabled.

A node in the circuit may be driven by stacks of pull-up and pull-down transistors, and
possibly pass-transistors. Each stack is modeled by an event that sets the proper value to
the variable (one for pull-up, zero for pull-down and copies the value of another variable
for a pass-transistor). Delay intervals can be computed using the technology parameters
(if they are available) and the fan-out conditions for each signal. The broader the delay
intervals for which the circuit is proved to be correct, the more general is the verification,
i.e. the more robust is the circuit.

As an example, consider the transition relations for signal Y in the strobe switch circuit
(see Figure 6.5). Y+, takes place if Y is low and it is pulled up by the p-type transistor
controlled by Z. Thus, the enabling condition is given by En(Y+) = =Y A =Z. Similarly,
the enabling condition for Y— is given by En(Y—) =Y AACK because Y can only be
pulled down by the n-type transistor controlled by the ACK signal.

We have carried out the verification process with no specific technology library in mind.
Hence the delay bounds for each stack of transistors is assumed to be in the range of [1,2]
abstract delay units. Other appropriate delay ranges are used in case of weak transistors
or fan-out considerations. We want to remark that since our verification approach uses
relative timing, the particular values of the delay bounds are only relevant to compute
the relative differences between the accumulated delays of the critical paths related to a
failure situations.

Tables 6.2, 6.3, 6.4, 6.5 and 6.6 summarize the models of each of the sub-circuits that
compose a general IPCMOS control block. Thus, for example, the models of the strobe
and the reset circuits consider multiple Vint and Aint input signals, respectively. Notice
also that more than one event can be specified for the same signal switch if it is produced
from different sources (e.g. the Vint+ event in Table 6.3). This allows potentially for a
very detailed model in which an event can have different delays depending on what caused
it. This is in direct correspondence with what happens in an actual circuit.

166 CHAPTER 6 : COMPOSITIONAL VERIFICATION

Enabling condition Event ‘ Delay ‘ Comment

=X A=Rint A A, =Vint; | X+ [5,6] | weak p-type transistor

XA (Rint vV \/; Vinti) X— [2,3] | n-type transistor

KA =X K+ [1,2] | inverter

KAX K— [1,2] | inverter

-ACK A =K ACK+ [2,3] | inverter

ACK A K ACK— [2,3] | inverter

-CLKE A =ACK CLKE+ | [3,4] | inverter

CLKE A ACK CLKE—- | [3,4] | inverter

=Rint A =CLKE Rint+ [1,2] | p-type transistor

Rint A CLKR Rint— [1,2] | n-type transistor
‘ Failure condition ‘ Comment ‘ ‘ Initial state ‘
| -CLKE A CLKR | Short-circuit at Rint | | =X A K A =ACK A CLKE A —Rint |

Table 6.2 Model of the strobe circuit.

Enabling condition ‘ Event ‘ Delay ‘ Comment

—Rint A =VALID 7+ [1,2] | inverter

Z ANVALID Z— [1,2] | inverter

=Y A-Z Y+ [1,2] | p-type transistor
Y AACK Y- [1,2] | n-type transistor
=Vint AY AVALID | Vint+ | [1,2] | n-type transistor
=Vint A =CLKE Vint+ | [1,2] | p-type transistor
Vint AY A =VALID | Vint— | [1,2] | n-type transistor

Failure condition Comment ‘

-Z A ACK Short-circuit at Y
-VALID AY A =CLKE | Short-circuit at Vint

‘ Initial state ‘
| -ZAY AVint |

Table 6.3 Model of the strobe switch circuit.

6.5 VERIFICATION OF A STAGE

Enabling condition ‘ Event ‘ Delay ‘ Comment

-CLKR A A; —Ainti | CLKR+ [5,6] | weak p-type transistor
CLKR A (V, Aint:) CLKR— [2,3] | n-type transistor
-CLKRN A =CLKR CLKRN+ | [3,6]1 | 3 inverters

CLKRN A CLKR CLKRN- | [3,6]1 | 3 inverters

‘ Initial state

| “CLKR A CLKRN |

Table 6.4 Model of the reset circuit.

Enabling condition ‘ Event ‘ Delay ‘ Comment

=Aint A =CLKRN Aint+ [1,2] | p-type transistor
Aint A CLKRN A ACK Aint— [2,4] | 2 n-type transistors
—failctl A CLKRN A ACK A —Aint | failctl+ | [0,0]
failctl A =ACK failctl— | [0,0]
‘ Failure condition ‘ Comment ‘ ‘ Initial state ‘

| failctl A ~CLKRN A NS(CLKRN) | Slow resetting of ACK | | Aint A failctl |

Table 6.5 Model of the reset switch circuit.

Enabling condition | Event Delay ‘ Comment ‘
=W A =-CLKE W+ [1,2] p-type transistor

W A CLKR W-— [1,2] n-type transistor

-VALID A =W VALID+ | [Delay] | delay(logic) - delay(strobe)
VALID AW VALID— | [Delay] | delay(logic) - delay(strobe)

‘ Failure condition ‘ Comment ‘

| ~CLKE A CLKR | Short-circuit at W |

‘ Initial state ‘
| -W A VALID |

Table 6.6 Model of the valid circuit.

168 CHAPTER 6 : COMPOSITIONAL VERIFICATION

Provided this modeling mechanism, correctness of CMOS circuits can be posed in terms
of the following properties:

Persistency. The temporal behavior of a gate is described by the inertial delay model.
In this model, input pulses shorter than the lower delay bound 4 are not propagated
to the output. Pulses longer than the upper delay bound §“ are always propagated.
However, propagation of pulses with duration between §' and " is uncertain and may
produce glitches, hence signal persistency conditions are imposed. Persistency implies that
every transition must fire once it is enabled and cannot be disabled by the firing of another
transition.

Consider for example a given event e for which a persistency condition must be ensured.
The following invariant condition must be satisfied:

EF(e) - EF'(e) - TR\ TR(e)

That is, it must never happen that if event e is enabled in some state, the firing of
another event of the system leads to a state where e is no longer enabled. In the
expression, TR corresponds to the transition relation of the system, T'R(e) corresponds
to the transition relation of event e, and FF and FEF’' are enabling functions expressed
using current and next-state variables, respectively.

Notice that this condition for persistency is different to that presented in Section 5.3.6.
There, the condition expressed the fact that the firing of an event x could induce non-
presistency to any other event y in the system, i.e. x disables y. Conversely, the
invariant presented here states the dual condition.

Short-circuits. Custom designs exploit the flexibility of CMOS technology, relaxing the
complementarity between the pull-up and pull-down stacks. This introduces a potential
source of short-circuits during circuit operation. Although short-circuits can be exploited
by considering the pull-up/pull-down relative impedance, generally they are undesirable
because they may leave the driven signals undefined, increase the power dissipation, or
even cause a circuit damage. Therefore, the complementarity of the pull-up and pull-down
conditions for each circuit node must be ensured.

Several potential short-circuits can happen in the strobe (signal Rint), the strobe switch
(signals Y and Vint) and the valid (signal W) circuits. See Figures 6.5 and 6.7. Consider for
example the potential short-circuits in the strobe circuit of Figure 6.5. They are identified
by the following invariants:

1. =Z A ACK : The Y node is pulled down by the n-type transistor controlled by
ACK and pulled up by the p-type transistor controlled by Z. The short-circuit occurs
if both transistors conduct.

6.5 VERIFICATION OF A STAGE 169

2. =VALID AY A =CLKE : The VALID line is pulled down by the input and pulled up
by the p-type transistor controlled by CLKE. The short-circuit occurs if the n-type
transistor controlled by Y conducts.

Thus, the invariant conditions that must be satisfied during the verification are the negated
of the short-circuit conditions. That is, (1) ZV -ACK and (2) VALID Vv =Y Vv CLKE.

Failure conditions due to short-circuits in the different modules of an IPCMOS stage
are summarized in Tables 6.2, 6.3 and 6.6.

6.5.2 Modeling IPCMOS circuits

Despite of the above conditions regarding the correctness of CMOS circuits in general,
each circuit of the IPCMOS control block may exhibit its particular set of failure situations.

For example, in the reset switch circuit, a failure condition has been defined that models
the situation in which signal ACK is slow to fall once the falling of Aint is produced. If
ACK does not reset before CLKRN rises again, the circuit might produce a second falling
edge in Aint, in response to a single rising edge in ACK. This situation cannot be captured
with a boolean expression in terms of the current and next state signals of the circuit,
since it involves a sequence of firings. Therefore, we have introduced an extra internal
boolean variable failctl in the model. This variable is set to one when the falling edge in
Aint is produced, and falls when ACK falls. In such a way the failure condition can be
stated as that situation in which failctl is high (Aint fell) and CLKRN tries to rise. See
Table 6.5.

Of special importance in the modeling are the bounds associated to the delay element
in the wvalid circuit. Recall that such delay element mimics the operation time of the logic
attached to the stage. The delay range should be general enough to allow correct operation
with whatever logic attached to the stage, however the IPCMOS implementation imposes
certain limitations on such possible delay.

Suppose a new data portion is already available at the stage inputs and so is notified by
the low value of the incoming VALID line. On the other hand, the previous data portion
is yet processed by the stage but the receiver has still not acknowledged it (outgoing
VALID and incoming ACK are low). As soon as the acknowledgment arrives, a race is
produced between to paths inside the stage. Namely, the sequence CLKR4+ — W— —
VALID+ that resets the outgoing VALID signal to its initial high value, and the sequence
CLKR+ — Rint— - W+ — K— — ACK+ — CLKE— — W+ — VALID— that notifies the
availability of the new data portion to the receiver by lowering the outgoing VALID signal.
In this situation, if the delay element behaves according to the inertial delay model, and
the separation time of both sequences to complete is too small for the positive pulse of
VALID to propagate, an undesirable data lost will occur. That is, VALID might be kept
low such that no notification falling edge will be seen by the receiver. This situation would

170 CHAPTER 6 : COMPOSITIONAL VERIFICATION

{VALID-} | | |

lVALID VALID- A CLKE-[3.4] Y-[12] CLKE- [3,4]

- \ ;

{vint-, Z+} / \ Y-11,2] Vint- [1.2] VALID+ [15+¢ ,Inf) Vint+ [1.2]

l _ Z+[1,2] Vint-[1,2] | e o

Vint- U
e ACK-[8,11] VALID+ [15+¢€ ,Inf) ACK- [5,10]

{Z+, ACK+} kY CLKE- [3/4]

lACK+ ACK+ [8,11] z-[1.2] VALID- [5,Inf) <+ CLKE- [3,4]
Failure

(a) (b) (c) (d) (e)

Figure 6.13 LzCES used to prove correctness of the strobe switch circuit: (a) Failure trace and (b)
corresponding LzCES. (c¢)-(e) LzCESs showing other relative timing constraints (dotted arcs) for correctness.

be detected by the verification during the persistency check on the VALID signal. To avoid
this faulty behavior the upper bound of the delay element in the valid circuit must be set
in accordance to the difference between the accumulated upper delay bounds of the reset
sequence, and the accumulated lower delay bounds of the notification sequence.

6.5.3 Verification results

Provided the models above, the verification succeeds proving that the invariants charac-
terizing the circuit correctness conditions always hold. That is, the circuit implementing
the TIPCMOS stage operates correctly in the given IN-OUT environment and shows no
short-circuits, no persistency violations and no deadlocks. The verification process finishes
in about 35 minutes of CPU time in a 866 M H z Pentium-III computer with 1GB of RAM
running Linux.

The verification succeeds and also provides back-annotation indicating a set of sufficient
timing relations between events that guarantee the correctness of the implementation.
These relations are provided as the timed event structures obtained at every iteration
of the verification process. This information permits to guess about the delay margins
allowable to keep the correctness.

Figure 6.13 shows some of the timing relations obtained during the verification, that
guarantee the correctness of the strobe switch module (see left side of Figure 6.5). Recall
that signals ACK and CLKE are inputs coming from the strobe circuit, whereas VALID is
an input signal coming from the environment.

For simplicity the chain of events Vint— — X+ — K— — ACK+ produced by the strobe
circuit has been collapsed in figures (a), (b) and (d). Thus yielding an accumulated delay
for ACK+ in the range [8,11]. Similarly, the chain of events Vint+ — X— — K+ —
ACK— has been collapsed in figure (e), which yields an accumulated delay for ACK— in
the range [5,10].

6.5 VERIFICATION OF A STAGE 171

Figure 6.13 (a) shows a trace leading to a failure situation in which the early firing of
ACK+ causes a short-circuit at node Y. Event structure (b) shows the actual ordering of
Z+ and ACK+ in the timed domain proving that trace (a) is not timing consistent. This
situation corresponds to the case where a falling edge of VALID occurs, followed by the fall
of signal Vint and the rise of ACK to indicate the data receipt. Z+4 must be faster than
ACK+ to avoid the short-circuit at Y corresponding to invariant (1) of Section 6.5.1.

Event structure in Figure 6.13 (c) corresponds to a situation where after rising signal
ACK, the transition Y— turns off the n-type transistor that isolates Vint from VALID.
Thus Y falls before the VALID line is pulled up by CLKE—. This ordering is required to
guarantee invariant (2) of Section 6.5.1.

Event structure in Figure 6.13 (d) shows a situation where event ACK— is ordered
with Z— ensuring invariant (1). Indeed it shows that signal ACK always falls before
Z thus avoiding the short-circuit. The delay of VALID+ is set so that the appropriate
ordering of the events is guaranteed.

Event structure in Figure 6.13 (e) shows the ordering relation between CLKE+ and
VALID—. The delay of VALID— is set to reset CLKE before the falling edge of VALID.
This ordering contributes to guaranteeing invariant (2).

Similar event structures containing the timing constraints required to prove the correct-
ness of the different parts of the circuit are generated during the verification. Instead of
showing all of them, what would require a lot of space, we summarize some of the relevant
conditions required for the circuit correct operation as follows.

Correctness of the strobe switch circuit

m Short-circuit at Y by early ACK+ in response to VALID— from the previous stage.
Z+ must happen before ACK+, such that the p-type transistor driving Y opens,
and prevents the short-circuit when ACK+ arrives. This requirement is met since
it involves the delay of the inverter driving Z against a long chain of gates in both
the strobe switch and the strobe circuits.

m Short-circuit at VALID once ACK+ is produced. In this case Y must discharge
faster that CLKE coming from the strobe circuit. This requirement is met since it
involves the delay of the transistor responsible of discharging Y, against the delay
of the inverter driving CLKE, which is also a slow one due to fan-out considerations.

m Short-circuit at Y by slow ACK—. It must be guaranteed that ACK— is faster
than Z—, i.e. the strobe circuit resets itself before the VALID line coming from
the previous stage resets and charges Y again. This requirement is met by properly
setting the lower delay bound of VALID+ in the walid circuit and the IN module.

172 CHAPTER 6 : COMPOSITIONAL VERIFICATION

m Short-circuit at VALID if a new VALID— from the previous stage is produced
without allowing the proper resetting in CLKE of the previous cycle of operation.
This requirement is met by properly the lower delay bound of VALID— in the wvalid
circuit and the IN module.

Correctness of the strobe circuit

s Short-circuit at Rint due to an early CLKR+ in response to the rise of ACK. This
is a problem if the self-resetting fall of ACK and the corresponding rise in CLKE are
slower than CLKR. This requirement is met since CLKR+ is at the end of a long
chain of events involving the walid circuit of the current stage, and also the strobe

circuit of the next stage.

m Short-circuit at Rint due to a late CLKR— of the previous cycle of operation, against
a new falling edge in CLKE. Solving this problem guarantees the complete resetting
of the strobe circuit. This requirement is met since the new CLKE— comes from a
long chain of events involving a new data VALID coming from the previous stage.

Correctness of the reset circuit

m Slow self-resetting of ACK in the strobe circuit against a complete cycle of operation
in the reset circuit, right after ACK+ is produced. This requirement is met by
balancing properly the delays in both paths, since the path leading to ACK— is
just the self-resetting part of the cycle of operation of the strobe circuit, whereas
the path in the reset circuit corresponds to a complete set and reset cycle of the

involved signals.

Correctness of the valid circuit

m Persistency violation of VALID+ caused by an early firing of W+ after CLKR+ has
fired. To meet this requirement the upper delay bound of VALID+ must be set be-
low the minimum accumulated delay of the chain of events leading from CLKR+ to
W+, minus the maximum delay of W—, who triggers VALID+ after CLKR+.

Despite of these list of conditions for circuit correctness, recall that the pulse-based
environment modules must also satisfy certain conditions. In particular, a restriction is
imposed to OUT to avoid early resetting of the ACK line. That is, if ACK— arrives too
fast after ACK+, the falling edge of ACK may not be properly recorded by the reset switch
circuit of the last stage of the pipeline. Therefore a minimum width is required to the
positive pulse of ACK. Similarly, a restriction is imposed to IN to avoid early resetting of
the VALID line. That is, if VALID+ arrives too fast after VALID—, the falling edge of
VALID may not be properly recorded by the strobe switch circuit of the first stage of the
pipeline. Therefore a minimum width is required to the negative pulse of VALID.

6.6 CONCLUSIONS 173

Finally, we want to remark the difficulty of our verification approach to check some of
the invariants required for correctness. Namely, the condition corresponding to the short-
circuit at W inside the wvalid circuit (see Table 6.6), needed more than ten refinements,
each covering different excitation sequences. Similarly happens with the failure condition
about the short-circuit at node Y inside the strobe switch circuit. Further analysis is
required to clarify the reasons for such computational effort. We believe this effort can
be significantly reduced by constructing better event structures which abstract away the

complexity due to concurrency-causality combinations.

6.6 Conclusions

The verification of a complex timed system, the IPCMOS architecture, has been tackled
in this chapter. The correctness of the system highly depends on the delays of the internal
gates of the circuit, and also of the environment.

The verification has been carried out by combining the core verification algorithm pre-
sented in Chapter 4, together with the use of assume-guarantee reasoning to perform a
hierarchical verification by means of abstractions, and the use of mathematical induction
to prove the correctness of infinite-state systems. As a result, it has been proved the
correctness of an IPCMOS pipeline regardless of the number of stages that conform it.

The use of the relative timing-based verification approach has been crucial to prove the
correctness of such a complex system. Although some other parametrized systems have
been verified in the past (see e.g. [LG95]), this is the first case in which delay information
and refinements down to transistor level have been provided.

The abstractions of different components of the system have still been derived manually.
Also, the chain of assume-guarantee proofs and the required systems for verification have
been built manually. Automatic extraction of timed abstractions and automatic derivation
of the subsequent chain of reasoning are important topics for future research in this area.

CONCLUSIONS

That was Ender’s gift to us, to free us from the illusion that any one ezxpla-
nation will ever contain the final answer for all time, for all hearers. There

is always, always more to learn.
—Orson Scott Card - Children of the Mind, 1996

Now this is not the end. It is not event the beginning of the end. But it is,

perhaps, the end of the beginning.
—Winston Churchill - The End of the Beginning, 1943

Summary

This chapter presents the conclusions of the thesis. In first place, an overview of the
generalities of the work is provided by reviewing the material included in each chapter
of this document. Next, the contributions of the work to different aspects of the formal
verification of complex timed systems are analyzed. The last section describes a number

of open issues for future developments and research.

175

176 CHAPTER 7 : CONCLUSIONS

7.1 Introduction

This thesis presents a new approach for the formal verification of safety properties in
timed systems. The correct operation of such systems not only depends on functional
properties but also on assumptions about the delays of the components of the system
and the response times of the environment in which the system operates. The approach
presented is theoretically sound and has been automated into a software CAD/CAV tool.

Formal verification uses deductive methods in order to prove if a system satisfies a
given set of well-defined properties. Formal techniques have received increasing attention
in recent years, mainly due to two factors: the high complexity of nowadays systems, and
the high cost of correcting errors at the end of the design cycle or even once a system is
yet in the market. These aspects were reviewed in Chapter 1 as an important motivation
for this work.

In order to formally verify a system, a precise and unambiguous model of the system
is required. Such model must capture the subset of relevant aspects of the system which
are of interest for the verification. Several models have been proposed for timed systems,
yielding also to different verification approaches. In this work, transition systems are the
model of choice (see Chapter 2). On the other hand, Chapter 3 reviews some of the most
relevant approaches in the area of verification of timed systems.

The verification of timed systems poses serious complexity problems. Although effi-
cient techniques have been devised to overcome the complexity issue, well-known sym-
bolic methods cannot be easily applied. Since most methods for verification rely on the
computation of the complete state space, the combinatorial state explosion problem be-
comes exacerbated by the time dimension. As a consequence, the practical applicability of
the resulting verification methods is often restricted to small systems, or to systems with
particular characteristics that fit well with a given verification method.

The theory that supports the verification approach proposed in this thesis was intro-
duced in Chapter 4. The approach extends the conventional symbolic model checking
methods to the verification of timed systems. Timed transition systems are used as the
underlying formalism for timed systems under the continuous-time paradigm. Instead of
computing the exact timed state space, the relative timing paradigm is used to abstract
exact time information from the representation. Hence, lazy transition systems are used,
which represent the ordering relations between events in the timed domain by explicitly
distinguishing between their enabling and their actual firing conditions. This simple yet
powerful model allows the representation of the timed domain of a system using efficient
symbolic methods.

The verification approach has been fully implemented in an experimental tool called
TRANSYT. The tool can handle hierarchical and distributed modular systems which can
inter-operate by a variety of communication mechanisms. TRANSYT proved its function-

7.2 CONTRIBUTIONS 177

ality as well as the validity of the overall verification approach in Chapters 5 and 6. In
Chapter 5, a number of timed asynchronous circuits with up to several millions of untimed
states were verified with reasonable CPU and memory resources. The experiments covered
the verification of complex-gate decompositions in quasi-speed-independent asynchronous
circuits, and the verification of circuits optimized for area and/or speed using relative
timing assumptions. Additionally, in Chapter 6, compositional verification methods were
combined with the basic verification approach in order to tackle the size/complexity is-
sues involved in the verification of complex timed systems. Thus, abstractions, assume-

guarantee reasoning and mathematical induction were used to prove the correctness the
IPCMOS architecture.

7.2 Contributions

This thesis proposes a novel approach for the formal verification of timed systems.
The thesis contributes to this field of research both by providing an original theoretical
framework as well as a software tool that implements it. The verification approach is
based on two fundamental facts that we want to remark:

m The observation that the set of traces of a transition system can be covered by a set
of partial orders. This fact allows to reduce the verification problem to that of: the
timing analysis over small sets of events from which timing constraints that prove
the correctness or incorrectness of a system can be derived; and the incorporation

of such constraints into the system along an incremental refinement process.

m The fact that relative timing allows to represent the timed domain of a system in
an efficient way using symbolic methods. When considering precise delay bounds
in timed systems, the complexity blow-up often causes verification to become an
intractable problem, even for small systems. Instead, relative timing considers the
effect of delays in a system in terms of relative ordering of events.

The verification approach can be briefly summarized as follows. Rather than computing
the exact timed state space of the system, the approach starts with a simple approxima-
tion in which time is not taken into account. If the property under verification is satisfied
in the untimed approximation, it will be also satisfied in the timed domain of the system,
and the verification concludes. Otherwise, a counterexample trace is built which repro-
duces a violation of the property. Timing information is then used to try to refuse the
counterexample. Thus, an efficient off-line timing analysis is performed on an event struc-
ture that covers the counterexample trace. If the counterexample persists, the verification
concludes. On the contrary, the system is refined with the relative timing information
derived from the timing analysis. This process repeats until an actual counterexample
is found or the property is proved correct. Therefore, the proposed approach relies on a

178 CHAPTER 7 : CONCLUSIONS

series of incremental refinements of the state space of the system, so that the complexity
due to the timing information is incorporated only when it is needed.

The idea of using event structures for timing analysis was already proposed in [KBS02].
However, no algorithm was presented that can handle a general class of transition sys-
tems for verification. On the contrary, the approach proposed in this thesis is applicable
to systems modeled by timed transition systems without restrictions. For example, no
requirement is imposed about the causality relations between events or about the types
of choice allowed.

We want also to remark that the use of the proposed approach for the verification of
untimed systems does not involve any additional overhead with respect to the conventional
symbolic methods for such type of systems.

The key features of the presented work on the verification of timed systems can be
summarized by the following topics:

Relative timing. The use of relative timing allows to avoid the computation of the
exact timed state space of the system, which is a common practice of model checking
methods for timed systems. Instead, in the proposed approach the timed behavior of
events is captured by means of partial orders that represent simple facts as if an event
happens before another, i.e. relative temporal relations.

Symbolic representation. As a consequence of the previous topic, the state space of
the system can be represented and managed using symbolic methods with proved efficiency
such as BDDs. This allows a natural extension of traditional symbolic model checking
techniques for untimed systems into the timed systems domain of application.

Local timing analysis. No global timing analysis is done for the whole system.
Instead, the timing analysis is performed locally for a set of failure traces that are covered
by a partial order. Therefore, only a subset of the events of the system is involved and
the timing analysis can be carried out very efficiently.

Incremental timing information. Although timed systems provide delays for all
the events in the system, often many of the constraints imposed by such delays are not
required for the correctness of the system. Because of the iterative nature of the proposed
verification approach, timing information is only considered in an on-demand basis, as
long as it is required to prove the infeasibility in the timed domain of a set of failure
traces.

Iterative refinement. As a result of the previous topic, the untimed state space of the
system is refined incrementally as long as new timing information is taken into account.
This incremental nature of the approach provides a good way to obtain at least partial
results even on systems for which complete solutions could be too complex to compute. As
a consequence, the approach can be potentially applied to bigger systems or to systems

7.3 FUTURE RESEARCH 179

with more level of detail, than those that can be handled by similar methods for the
verification of timed systems.

Back-annotation. A key feature of the proposed verification approach is that it not
only proves or disproves the correctness of a timed system with respect to a set of prop-
erties. If the system is correct the set of relative timing relations used for the proof are
provided. Such relations constitute a set of sufficient timing constraints that guarantee
the correctness of the system. On the other hand, if the system is incorrect, a counterex-
ample failure trace is provided. The most important aspect of all this feedback is that
it can be used as valuable back-annotation information along the design process. Hence,
bridging the gap between design and verification. This feature constitutes another differ-
ential aspect of our verification approach when compared to other equivalent verification
methods.

Automated. The verification approach has been fully implemented into the experi-
mental tool TRANSYT. The tool has proved its functionality as well as the validity of the
overall verification approach, by verifying a set of different types of timed asynchronous
circuits with millions of untimed states. TRANSYT is available for public download from
http://research.ac.upc.es/VLSI/transyt/transyt.html.

Compositional methods. Compositional verification provides promising techniques
to tackle the complexity in the verification of large and complex systems. In this the-
sis, compositional methods has been combined with the relative timing-based verification
approach in order to tackle the size/complexity issues involved in the verification of com-
plex timed systems. Thus, abstractions, assume-guarantee reasoning and mathematical
induction have been used to prove the correctness of a scalable pipelined architecture
(IPCMOS). The use of the relative timing-based verification approach has been crucial
to prove the correctness of such a complex system. Although some other parametrized
systems have been verified in the past, this is the first case in which delay information and
refinements down to transistor level of an actual industrial system have been provided.

Finally say that the size/complexity of the systems that can be formally verified is still
far from the industry-desired goals. Nevertheless, this thesis has shown that with the
proposed methods, relevant systems can be successfully verified.

7.3 Future research

Several issues remain open for future developments of the proposed verification ap-
proach. Some of them are related to improvements of the current implementation as well
as possible developments to enrich the features of the approach. Whereas other relate to
new theoretical challenges.

BDD blow-up. Although BDDs are a good data structure for the representation of
symbolic boolean information, they often suffer from a memory blow-up during the inter-

180 CHAPTER 7 : CONCLUSIONS

mediate computations, thus limiting the applicability of certain algorithms. Therefore, it
would be desirable to experiment with other data structures which provide similar benefits
than BDDs and allow better manipulation of bigger sets of states.

On the other hand, an explosion in the size of the BDDs used to represent the transition
relations is produced as the number of refinements increases. The main reason for the ex-
plosion is the fact that each transition relation is split into several pieces for each condition
of the enabling-compatible product. Each piece is manipulated and then the new tran-
sition relation is built by joining the different pieces. Although the enabling-compatible
product provides a simple mechanism for the iterative refinement, it complicates the BDD
representation of the transition relations at each iteration. As a result, some large sys-
tems with complex causality relations cannot be verified due to memory requirements.
To alleviate this problem, partitioned transition relations could be used. Partitions would
correspond to the different pieces in which a transition relation is split for the composition.
We plan to incorporate this improvement in the near future, which hopefully would allow
us to handle larger and more complex systems for verification.

Partial orders. In a similar vein than the previous topic, in order to reduce the memory
requirements during the verification of big systems, partial order techniques could be
combined with symbolic methods for state space representation and exploration. Partial
orders have proved their efficiency for that purpose in several contexts [GW91, Pel96,
VdJL96, ABHT97, BJLY98].

Symbolic timing analysis. It would be interesting to incorporate symbolic algorithms
for timing analysis (e.g. [AH99]), such that actual delay values are not required for
verification. Instead, the verification can be tuned to discover the appropriate delays that
make a system correct for a given property. This would open the proposed verification
approach to new fields of application close to the design tasks.

Disjunctive causality relations. Currently, CESs can model only conjunctive causal-
ity relations. However, the causality relations in a TS can be more general, involving
disjunctive causality or combinations of both. As a consequence, our approach may need
several refinements in order to cover with various CESs the different causality relations
among a set of events. Therefore, it would be desirable to allow the CESs to incorporate
other types of causality relations, so that less iterations of the main verification algorithm
would be required. The inclusion of disjunctive causality relations in CESs would require
to review the notions of enabling-compatibility, the way timing analysis is carried out in
a CES, the enabling-compatible product, etc. Moreover, the resulting CESs might result
complicated for back-annotation purposes, and trade-offs might be required about the
amount of information allowed in a single CES.

Enabling-compatible product. Another interesting feature to enrich the verification
approach would be the possibility to quantify the effectiveness of an enabling-compatible

7.3 FUTURE RESEARCH 181

product before actually performing it. This would allow to choose the best LzCESs at each
iteration, so that the biggest number of failure traces are pruned, the least possible state
splitting is produced, etc.

Back-annotation. The back-annotation information currently produced by the tool
consists of a set of LzCESs that contain the relative timing constraints used along the
verification process. Some of those constraints may appear several times in different it-
erations, thus being redundant. Therefore, it would be desirable to have a mechanism to
summarize the set of timing constraints and provide them in a more readable form to the
user of the tool.

Convergence. No formal study has been carried out about the convergence of the
proposed verification approach in the absence of nodal states. Our intuition indicates
that the method should generally converge after a bounded number of iterations that
guarantee a precise-enough timing analysis. Similar results have been already obtained in
the context of marked graphs, where a bounded number of unfoldings suffice to compute
the cycle times of a system (see [NK94]). Such detailed study on the topic is left for future

work.

Hierarchical verification. All the presented experiments have been performed with-
out any specific of optimization for the different types of systems handled: timed PNs,
timed STGs, digital circuits, etc. On the contrary, just a direct translation from the corre-
sponding models into TTSs has been performed, and the generic algorithms of Chapter 4
have been used. For example, a possible source of optimization for circuits could have
been the use of hierarchical verification techniques, based on the automatic abstraction of
sets of gates in a circuit into complex ones [RCP95].

Automatic abstractions. The abstractions of different components of a system in
the compositional approach of Chapter 6 have been derived manually. Also, the chain of
assume-guarantee proofs and the required systems for verification have been built manu-
ally. Automatic extraction of timed abstractions and automatic derivation of the subse-
quent chain of reasoning constitute important topics for future research in this area.

Applications. Thanks to the rather theoretical nature of the proposed verification
approach, its potential applicability covers a wider range of systems than those presented
in the thesis, such as: custom transistor-level circuits that exploit the technology limits
for performance, complex digital structures where synchronization is a crucial issue (e.g.
dynamic MOS), asynchronous and GALS-type systems, real-time systems, etc. Therefore,
it would be rather challenging to expose the proposed methods to such complex systems.

Beyond control-dominated systems. In the field of digital circuits, data-path cir-
cuitry is fairly easy to design correctly and become reusable once it is designed. On the
contrary, the correct design of custom control circuitry can be a very difficult task. Since

182 CHAPTER 7 : CONCLUSIONS

verification of the former type of systems can be carried out much more efficiently with
theorem provers such a HOL [GM93], for example, our approach for verification concen-
trates in the latter type of systems. An interesting approach might be to combine both
approaches for the verification of systems composed of control and data-path units, apply-
ing each approach to solve problems in their respective area of expertise. Some examples
in this direction have recently appeared (e.g. [KN02]).

TIMING ANALYSIS

Time is such a simple, almost primitive idea. It is just a means of material
differentiation, a way of uniting us all; for in our external, material lives we
value the synchronized efforts of individual people.

—Andrei Tarkovsky - Time Within Time: The Diaries, 1989

Summary

This appendix analyzes the problem of timing analysis as the computation of the time
separation between events of a system. The previous work on the topic is reviewed. Finally,
an algorithm for timing analysis on acyclic graphs is described in detail.

184 APPENDIX A: TIMING ANALYSIS

O—@
S
—(5) Concurreng

/

@O——0

no
yes
/ /I;elay ranges
no

-
no yes
Conditional behavior

Figure A.1 Classes of timing analysis problems [Hul95].

Al Introduction

Determining the time separation between events is a fundamental problem in the anal-
ysis, synthesis and optimization of timed concurrent systems. For example, if the bounds
on the separation in time of two events can be computed, such information can be used in
a number of ways: to simplify combinational and sequential logic by extracting temporal
don’t care information (see Example 4.1); to verify that a system meets specified timing

constraints; to identify an remove hazards from asynchronous circuits; etc.

The mazimal separation time of two events e; and ey is computed as the maximum dif-
ference between their firing times, provided any possible assignment of delays to the events
of the system. That is, Sepmaz(e1,e2) = maz{ft(e1)— ft(ea) | for any delay assignment},
where ft denotes the firing time of an event.

In order to compute the maximal separation time between two events it is required,
among other things, to determine how the synchronizations between concurrent executions
affect the temporal behavior of the system. Thus, the efficiency of the timing analysis
depends on the expressiveness power of the model. The simplest model (vertex 0) in the
classification of Figure A.1 has neither concurrency nor conditional behavior. Computing
the maximal separation time between two events only requires the sum of the delays on the
path between both events. If the delays are expressed as ranges (vertex 1) the computation
must consider the upper delay bounds. Similarly, the timing analysis is straightforward
for models with only conditional behavior but no concurrency (vertices 1 and 3). On
the contrary, the analysis for models that only include concurrency (vertices 4 and 6) is
non-trivial even for the case where all delays are given as fixed values. The most general

A.1 INTRODUCTION 185

models considered in Figure A.1 combine concurrency and conditional behavior (vertices
5 and 7). For these models, computing the maximal separation time between events is a
PSPACE-hard problem, even in the case with fixed delays.

According the previous discussion, timing analysis techniques often tend to restrict the
classes of models that can be analyzed, in favor of developing efficient algorithms. This
follows the opposite direction than in timing verification, where most approaches try to
cover the widest possible class of systems.

Verification of interfaces is a difficult area of system design because of the interactions
of components that must meet specific timing requirements. Among others, the works by
McMillan and Dill [MD92], Vanbekbergen [VGM92] and Walkup [Wal95] have addressed
this topic by considering systems whose ranges of delays are determined from the imple-
mentation. Then, the timing analysis problem consists in computing the separation in
time of specific events and ensure that they fall within the given bounds. On the other
hand, Amon [AH99] has taken a different approach where the delays are manipulated
symbolically leading to a set of inequalities that must be satisfied for any valid system
implementation. In all these cases, however, the model of the system is restricted to par-
ticularly simple classes. That is, [MD92, VGM92] can only handle acyclic graphs, whereas
[Wal95] only supports a limited form of interprocess communication.

When a system event depends on several incoming events, there are several possible
timing semantics that can be defined. For example, that the event occurs as soon as one
of the incoming events occurs (i.e. a minimum constraint). Or that the event waits for
the last of the incoming events to occur (i.e. a mazimum constraint). In [MD92] it was
showed that the maximum separation problem in an acyclic graph with both minimum
and maximum constraints is NPcomplete. The work in [Wal95] develops an algorithm
for analyzing systems of maximum constraints and upper bound constraints, but only for
acyclic graphs. Also, in [Gun93] it is shown that cyclic systems of minimum and maximum
constraints exhibit periodic behavior, and methods for determining the cycle period are
developed.

Regarding more sophisticated systems, in [MM93] a polynomial algorithm is presented
that estimates the minimum and maximum time differences between events in a cyclic
free-choice net. The algorithm unfolds the net into an infinite acyclic graph and examines
two finite acyclic sub-graphs to determine the time-separation bounds. The limitation to
free-choice nets is partially overcome by the work in [HB94, Hul95]. It provides a way
to compute a single exact time separation between two events in a cyclic PN with more
general types of choice.

186 APPENDIX A: TIMING ANALYSIS

A.2 Timing analysis on acyclic graphs

In [MD92] several algorithms for the computation of the minimum and maximum sepa-
ration time between events on acyclic graphs where presented. Those algorithms included:
a polynomial algorithm for the timing analysis with maz constraints only; an exponen-
tial, but feasible in practice, algorithm for the case with maxz and linear constraints; and
a branch and bound approach for the general case including min/maz and linear con-
straints. The information obtained from these algorithms can be used to analyze whether
two concurrent events are actually ordered in the timed domain. That is, e; precedes
eo in the timed domain if Seppqq(e1,e2) <0 .

The verification approach presented in this thesis uses the algorithms of [MD92] to
perform timing analysis on CES derived from traces. In this section we describe the maz-
only algorithm, which is the precursor of most later algorithms for timing analysis. Recall,
however that this basic algorithm is only suitable for CES without disabling relations (see
Section 4.4.1). In order to cope with disablings, linear constraints must be also taken
into consideration for the analysis. The explanation of this latter algorithm is beyond the
scope of this document.

The system under analysis is represented as a directed acyclic graph, where the vertices
represent events and the edges are annotated with min-max delay intervals. The intervals
are of the form [d, D] or of the form [d,o0), being d and D the minimum and the
maximum delay bounds, respectively. Then, the timing analysis problem is as follows:
given two events e; and e; determine the strongest bound A such that:

ft(ei) — ft(ej) <A

where ft denotes the firing time of events. Thus, A is the maximum difference between
the firing times, provided any possible assignment of delays to the events of the system.
That is, Sepmaz(ei,e;) = A.

We describe the algorithm developed in [MD92] using a simplified version of the formu-
lation presented in [AHBB93]. The algorithm consists of two simple steps.

First, we compute the so-called m-values backwards from e; for the rest of events
e of the graph in the following way:

m(ex) = max { d(h) | all paths ey & ej }

where d(h) is the sum of the minimum delay bounds (d) of the edges on the path h.
The m-values can be computed in linear time by a reverse topological traversal from e;.
If there is no path from e; to ej;, denoted by ey » e;, an arbitrary constant value is
assigned to m(e;). We set m(e;) =0 in these cases.

The next step consists in computing the so-called M-values. First, the M-value of the
events without predecessors is set to 0. Then, in normal topological order for the rest of

A.2 TIMING ANALYSIS ON ACYCLIC GRAPHS 187

X 3.5
il fy \ﬁf] % t it fy \ﬁjl
a 25 b 0 -15b

[0.5,0.5 [2.5,3] [0.5,0.5 [2.5,3] [0.5,0. 5,3]
[0,0) [0,@) / \ [0,@)
[o,wx [0, co [O,m\\
Y
d

d 0 0d

(a) (b) (c)

Figure A.2 An example of timing analysis on an acyclic graph: computation of Sepmaz(g,d) in the
graph (a). Computation of the corresponding m-values (b) and M-values (c).

events e of the graph:

[d,D]

M(ex) = max { min(M(e;) + D —m(e;) + m(e),0) | e — e }

If e, 4 e; the minimization with 0 is omitted.
Finally the maximum separation between events e; and e; is obtained as the following
difference:
Sepmaz(eiej) = A = M(e;) —m(ej)

EXAMPLE A.1 Figure A.2 illustrates the described algorithm by means of a simple
example. Given the acyclic directed graph of Figure A.2 (a), Sepmaz(g,d) is computed.
Figure A.2 (b) depicts the computation of the m-values by means of a backwards traversal
of the graph. The resulting m-values are annotated at the right of each corresponding event.
Figure A.2 (c) depicts the computation of the M-values by means of a forward topo-
logical traversal of the graph. The resulting M -values are annotated at the left of each
corresponding event.
Thus we have that Seppar(g,d) = M(g) —m(d) = —2—0 = —2. This means that event

g will always happen, at most, two time units before event d. m AL

B

ON THE ENABLING-COMPATIBLE PRODUCT

A creative artist works on his next composition because he was not satisfied
with his previous one.
—Dimitri Shostakovich - New York Times, 1959

Summary

This appendix provides some implementation details of one of the key parts of the
verification approach for timed systems presented in this thesis. That is, the enabling-
compatible product, which allows the refinement of the untimed state space of a system
by incorporating a set of relative timing constraints in the form of a lazy causal event
structure.

In order to be self-contained, the appendix starts with a brief summary of the important
notions around the enabling-compatible product. In particular, the rules that precisely
define the product are included.

Then, details on the representation of a LzTS and the state space of a LzCES with
boolean algebras are provided. Part of this material was already presented in Section 5.1.1
but is included here for completeness.

Finally, the different rules that define the enabling-compatible product are implemented
by means of symbolic manipulations of the transitions relations of the events involved in
the product.

190 APPENDIX B: ON THE ENABLING-COMPATIBLE PRODUCT

B.1 Enabling-compatible product

This section describes how to refine the set of traces produced by a LzTS by considering
the timing constraints coming from event delay bounds. The timing constraints are derived
by a timing analysis on a CES corresponding to an eligible trace of a LzTS in the untimed
domain. The refinement is performed through the parallel composition of a LzTS and a
LzCES. Defining such composition requires both descriptions to be represented in a uniform
way. To satisfy this requirement we first introduce a state-based representation for CESs.

B.1.1 State-based representation of a CES

An underlying transition system can be obtained from a CES. This process relies on the
notion of configuration, which plays the role of global state of the CES.

DEFINITION B.1 (CONFIGURATION)
Let CS =(X,<,>) be a CES.CCX isa configuration iff:

m C s left-closed, i.e. Ve; € C all predecessors of e; by < are in C, and

» disabled events do not belong to C, ie. &, €C = Je; €X : e;d>,e;.

Notice that both () and the set of not disabled events X\D are trivial configurations.

Event e € ¥ is enabled in configuration C iff ~{e} CC and Ve; € ¥ | ;b

e; : e C. We denote by E(C) the set of all enabled events in configuration C.
HB.1

Configuration C precisely identifies a state of a CES, as the set of events occurred so
far, such that if e € C all its causal predecessors must be also in C.

Every prefix w; of a word (a topological order of the events) w in a CES is left-closed
and disabled events do not fire along it. Thus every prefix w; defines a configuration which
is reached by firing the events from w;. Consideration of all possible words of a CES and
their prefixes gives the set of reachable configurations, C', where the initial configuration
due to the empty prefix wp is denoted by T. The set of reachable configurations together
with the partial order induced by the strict set inclusion C, defines the graph of reachable
configurations.

DEFINITION B.2 (GRAPH OF REACHABLE CONFIGURATIONS)
Let CS = (X,<,») be a CES, and C be the set of reachable configurations of
CS. The graph of reachable configurations (GRC) of CS is a Hasse diagram over
C and the partial order C interpreted in set-theoretical sense. S
For the general case of a LzCES, LC'S = (X, <,), the graph of reachable configurations
can be modeled by a LzTS G = (C,%,T, T,EnR) where: there is one state per config-

B.1 ENABLING-COMPATIBLE PRODUCT 191

uration; Ci——Co € T iff Cy is reached by firing e € £ from C;; the initial state
corresponds to the initial configuration T; and EnR(e) ={C € C | e € £(C)}.

B.1.2 Refining the reachability space by timing constraints

In order to refine the state space of the system with a set of relative timing constraints,
we have two objects at hand: a lazy TS A, and another lazy TS G obtained from an
event structure CSy. CSy is derived from a particular trace 6 of A (actually by an
appropriate suffix), thus giving only a partial specification of the behavior of A. CSy is
refined through timing analysis yielding the lazy TS G.

Refining the behavior of A by the timing constraints incorporated in G can be done
by calculating the enabling-compatible product of G and A, which is a particular case of
transition system product under the restrictions of making synchronization by the same
transitions and the same enabling conditions.

For sake of simplicity, and before introducing the rules of the enabling-compatible prod-
uct below, we will add the special configuration | to G. 1 denotes the fact that the
product is not synchronizing, i.e. there is no enabling-compatibility with the state space
of the CES and therefore, timing analysis does not apply for the involved traces.

Given the system A = (S, % 4,T4,s0, EnR4) and the state space of the LzCES containing
the relative timing constraints G = (CU L1, ¥qg,Tq, T,EnRg), with g C X4, the
enabling-compatible product of A and G is a new LzTS (S, 34,T",s), EnR’) where:

m CSx(CUL),
m s{ = (sp, T) if E(T) C&(sp), and s, = (sp, L) otherwise, and

m Ve € X4, EnR'(e) = {(s,C) € S" | s € EnR4(e)} .

Remark: The alphabet X is not properly a subset of 4. In fact g might
contain several instances of any event in Y 4. That is, provided an event e € Y4, a set
{e/1,e/2,...} of instances of e might be present in Y. This is the case for example
when the corresponding LzCES is generated from a trace of A where several occurrences
of event e appear along the trace. Thus we define ¥ | X4 as the projection of the event
occurrences in Y over the actual events in ¥ 4. For example if ¥4 = {a, b, ¢} and
Yo =1a/l, a/2, c/1} , ¥g | X4 ={a, c}.

The transition relation 7" is defined by the rules below. The rules are implied by
the conditions on the enabling-compatibility of traces. The fact that (s,C) € S’ denotes
that s and C have been reached by prefixes that are enabling-compatible, and that
map(€(s)) = £(C). Given a state of the product (s,C) with C # L, we will say that the
state is in the timed domain, indicating that the timing analysis performed on CSy can
be applied to s.

192 APPENDIX B: ON THE ENABLING-COMPATIBLE PRODUCT

The rules that define the enabling-compatible product are as follows:

Transitions entering the timed domain

Transition Conditions
(sl,J_)i>(52,T) enter = s;—3s9 € T4 A E(M)LXBACE(sy)NEg | X4

These transitions are fired when the events enabled in T are also enabled in sy. Thus,
timing analysis can start being applied from (s, T).

Staying inside the timed domain

Transition Conditions

(s1,C1)——(s2,C1) | insidel = s;—sp €Ta A E(s1)NBg L Za=E(2) NS L T
(51,01);(52,(}2) inside2 = s;—sg €Ty A Ci—Cy € T A

5(52) NXglXa= E(Cg) $2a

Insidel corresponds to the condition in which e does not synchronize with G. Here
the enablings of configuration C; must be preserved, i.e. the firing of e cannot disable
or enable events in Y.

For inside2, both A and G make a synchronized move which might affect the events
from Y in exactly the same way: if a € % becomes enabled in A due to this move,
it should also become enabled in G, and vice versa.

Exiting or staying outside the timed domain

Transition Conditions

(sl,Cl)i>(52,J_) exit = sj—ssy € Ty A —(enter V insidel V inside2)

It can be shown that, in the enabling-compatible product, only the traces of the original
LzTS which are enabling-compatible with the event structure are refined. This refinement
excludes the traces which are not timing-consistent with respect to the timing constraints
coming from the timing analysis on the event structure. All other traces are not changed,
thus guaranteeing the conservativeness of the approach.

B.2 Symbolic representation

In order to provide an efficient symbolic representation of LzTSs, we map them onto
boolean algebras. Each state of the system is described by a unique vertex in the algebra.
Thus, the sets of states of the system, the functions and transition relations that define the
system behavior, and the properties for verification, are all modeled as boolean functions.
Such functions can be represented using BDDs for efficiency.

B.2 SYMBOLIC REPRESENTATION 193

B.2.1 Encoding of a LzTS

Given a LzTS A = (S, %, T, s, EnR) the system (2°,U,N,#,S) is the boolean algebra
of sets of states of A. As a consequence, each state s € S can be represented by means
of an encoding function Q : S — B", with n > [loga(| S |)]. That is, given the
set of boolean variables V = {wy,...,v,}, each state s € S is encoded into a vertex
(v1,...,v,) € B". Provided such encoding, any set of states P € S can be represented
by a characteristic (boolean) function XI? :B* — B that evaluates to 1 for those
vertexes of B"” that correspond to states in the set P, encoded using Q. Whenever the
encoding is understood, we simply write Xp.

Characteristic functions can also be used to represent binary relations between sets of
states. Given two sets of states P; and P, to represent the binary relation R C Py x Py it
is necessary to use two different sets of variables to identify the elements of each set.
Current-state variables wvi,...,v, for P, and next-state variables v},..., v for P;.
Thus, the cartesian product of a relation between P; and P, can be simply expressed
as the product of the respective characteristic functions.

Let V ={vy,...,v,} and V' = {v],...,v,} be respectively, the set of current and
next-state boolean variables used to encode the states and transitions of the LzTS A =
(S,2,T,s9,EnR) . In such a way that o] is the next-state variable corresponding to
the current-state variable wv; , and vice versa. Thus, the usual definition of LzTS can be
extended to contain V and V', ie. A=V, V' S X T, sy, EnR). Now, given an event
e € ¥ we can represent its enabling region, its firing region and its transitions relation,

by means of the following characteristic functions:

m FF(e) : B - B such that EF(e) = 1 for all the states (encoded using V)
belonging to the enabling region of e , i.e. EnR(e).

m FF(e) : B — B such that FF(e) = 1 for all the states (encoded using V)
belonging to the firing region of e , i.e. FR(e).

m TR(e): B> — B such that TR(e) =1 for all the relations (s,s2) such that there
is a transition of event e , s; — sy € T. The part of the relation corresponding to
state s; is encoded using the current-state variables in V), whereas the part of the
relation corresponding to state sy is encoded using the next-state variables in V' .

When characteristic functions of the enabling and firing regions are expressed using the
set of next-state variables V', we will write FEF’'(e) and FF'(e), respectively. Also,
when the sets of variables in a transition relation are interchanged we will write TR(e)~!.

B.2.2 Encoding the state space of a LzCES

The space of configurations of a LzCES (X, <) derived from a given encoded LzTS A =
(V, V', 54,54, Ta,504, EnR4), form a LzTS G = (CU{L},Xq, T, T,EnRg). The config-

194 APPENDIX B: ON THE ENABLING-COMPATIBLE PRODUCT

urations in C can be identified in terms of the set of enabled events. Then for each
configuration C a characteristic function ~(C) : B — B (encoded using V) that
identifies it can be built using such enabling information as follows:

© H EF(e) if eeXs AN e/i€&(C)

v(C) = I
e/i € B EF(e) if eecXs N e/ig&(C)

Notice that the enabling information corresponds to that coming from the LzTS of reference
form which the LzCES was derived. If « is expressed using the set of next-state variables
V' we will write +/(C).

In some cases configurations in a CES cannot be distinguished by looking only at the
enabling information, either because it is incomplete or because it is ambiguous itself. If
that happens some extra encoding variables are required that help to disambiguate. For
that purpose, let U = {u1,...,un} and U = {u),...,ul,} be respectively, the set of
current and next-state extra boolean variables used to encode the configurations of the
CES. Hence, in general, for each configuration C a characteristic function &(C) : B™ —
B (encoded using) will exist. Again, if ¢ is expressed using the set of next state
variables U’ we will write &'(C).

Finally one more boolean variable called IN will be used to indicate whether the
enabling-compatibility is preserved during the composition process. That isif IN =1 in
the characteristic function of a state it means that the enabling compatibility is being
satisfied in it, while IN = 0 will indicate the opposite. A corresponding next state
variable TN’ will also be used to properly define the new transition relations.

With all the above considerations, the LzTS corresponding to the space of configurations
of a LzCES used in the enabling-compatible product will have the following form: G =
(VUUU{IN},V UU'U{IN'},CU{L}, 36, T, T,EnRg).

B.3 Computation of the new transition relations

For each event of the system being refined by the enabling-compatible product with
a CES, its new transition relation is computed as a set of different parts. Fach part
corresponds to the different situations of the enabling-compatible product outlined above.
The new transition relation is therefore computed as the addition of the parts.

B.3.1 Transitions entering the timed domain

Transition Conditions
(s1,L)—(s0, T) | enter = s;—sp €Ty A E(T) L B4 CE(s2)NBg L Xa

The enter condition for event e is computed as follows:

enter(e) = IN - cond - TR(e) - ¥'(T)

B.3 COMPUTATION OF THE NEW TRANSITION RELATIONS 195

Then, the corresponding part of the new transition relation is computed as follows:
TRenter(e) = IN -cond - TR(e) -¥'(T) - &(T) - IN’

In the previous equations, cond depends on the way the CES was built and its relation
with the original trace, if any. Thus:

1 if not nodal point or no reference trace

cond = H EF(e) if nodal point
e € &E(T)Xa

B.3.2 Staying inside the timed domain: no synchronization

Transition Conditions

(Sl,Cl)é(SQ,Cl) insidel = Sli>52 €Ty A 5(51) NYXglXa= 5(52) N¥glXa

The insidel condition for event e is computed as follows:

insidel(e) =IN - Y 7(C1)-£(C1)- TR(e) -7 (Cy)
C; € C

Then, the corresponding part of the new transition relation is computed as follows:

TRjnside1(e) = > y(C1)-£(Ch) - TR(e) - v(C1) - £'(C1) | - IN - IN'
Ci ecC

Notice that if e € £(C) | ¥4 and e is self-disabling, the product v(C) - TR(e) - v'(C) will
be 0.

B.3.3 Staying inside the timed domain: synchronization

Transition Conditions
(51,61);(52,62) inside2 = 51;52 eETy N Cli)CQ ETa N
NE(S2)NEg L Xa=E(Co)lEa

The inside2 condition for event e is computed as follows:

inside2(e) = IN - > v(C1) - £(Cy) - TR(e) - ' (C)

C1 Lﬁ)CQGTG

Then, the corresponding part of the new transition relation is computed as follows:

T Ripsiden(e) = Y HCh)-€(Cr)-TR(e) -/ (Ca) - €'(Ca) | - IN - IN'

c ey ety

196 APPENDIX B: ON THE ENABLING-COMPATIBLE PRODUCT

B.3.4 Transitions re-entering the timed domain

Transition Conditions
(s1,C1)——(s2, T) | enter = s;——sy € Ty A —(insidel V inside2) A
NEM)LEACE(s2)NEg L Ea

This case corresponds to re-entering the enabling-compatibility, i.e. being willing to
exit but in fact entering again. The reenter condition for event e is computed as follows:

reenter(e) = IN - cond - (insidel(e) + inside2(e)) - TR(e)-+'(T)
Then, the corresponding part of the new transition relation is computed as follows:
T Rreenter(e) = reenter(e) - £'(T) - IN'

Where cond is the same equation used to specify the enter condition.

B.3.5 Exiting or staying outside the timed domain

Transition Conditions
(slacl)i)(s27J—)
(s1, L)—=(so, L) other = s;—3sy, € T4 A —(enter V insidel V inside2)

The other condition for event e is computed as follows:

other(e) = (' enter(e) + insidel(e) + inside2(e) + reenter(e)) - TR(e)
Then, the corresponding part of the new transition relation is computed as follows:

T Rother(e) = other(e) - £'(L) - IN'

B.3.6 New transition relation

Finally, the new transition relation for event e is computed as the addition of the

different parts computed above:

TR(e) = TRenter(e) + TRinside]_(e) + TRinsideQ(e) + TRreenter(e) + TRother(e)

B.3.7 Lazy events

Due to the refinement of the state space imposed by the enabling-compatible product,
some events become lazy. That is, the firing region becomes a strict subset of the enabling
region. As a consequence their firing function must be also updated. Thus, for each
e € X4 which becomes lazy inside the composition area due to some relative timing
constraint, that is FRg(e/i) # EnRg(e/i), we have that:

FF(e)=1IN - > Y(C)-£(C) | - FF(e) + TN - FF(e)
¢ € FRg(e/i) A eexa

B.3 COMPUTATION OF THE NEW TRANSITION RELATIONS 197

B.3.8 Initial state

Finally, the initial state of the resulting LzTS must be also updated. Its encoding
must distinguish the fact that the initial state of the system belongs to the enabling-
compatibility area determined by the product or not. Thus we have that:

Xog = Xsy, - (V(T)-&(T)-IN + ~(T)-&(L) - IN)

VERIFICATION-RELATED COMMANDS

The man of science has learned to believe in justification, not by faith, but

by verification.
—Thomas H. Huxley - Aphorisms and Reflections, 1907

Summary

TRANSYT provides a number of commands for the analysis of properties in transition
systems, and in particular for the formal verification of timed systems. This appendix
introduces the commands and their different options, which are related with the work
presented in this thesis. For more information about other commands of the TRANSYT

tool, refer to [PPb] or the on-screen help of the tool.

200 APPENDIX C: VERIFICATION-RELATED COMMANDS

C.1 Failure analysis

Several commands are provided by TRANSYT in order to specify and analyze failure
conditions for verification. A brief introduction to these commands is given in the following

sections.

C.1.1 The add fail command

Prior to the verification process, a number of properties must be associated to the
system under verification. This can be done inside the tsif files that describe the corre-
sponding models for verification. Moreover, the add_fail command allows to specify the
failure conditions externally to the tsif files, such that different properties for the same
system can be analyzed without actually modifying the system specification itself. This
command allows to assign a boolean failure condition to either a label, an event or the
entire transition system. Predefined failure conditions can be also assigned. Examples of
the use of this command appeared in Chapter 5.

What follows is the on-screen help provided by TRANSYT for the add fail command:

ts > help add_fail
ts:: add_fail [-dbxN][-i] [-p][-m][-d] <fail type> ({<namel>}{,<name2>}) {EQN <equation>}

Adds selected failure conditions to the default system.
Fails can be added to three types of objects <fail type>:
TFAIL: to a transition system specified by <namel>

LFAIL: to a label specified by <namel>

EFAIL: to the event <namel> of label <name2>

The equation of the fail condition is specified by <equation>.

Options:

-dbxN Temporal setting of the verbose level to N.
-p Adds a persistency fail condition.

-i Adds properties to internal labels.

-m Adds a conformance fail condition.

-d Adds a deadlock fail condition.

C.1.2 The check fails command

The failure conditions can be evaluated in a variety of ways during the reachability
analysis of the system under verification with the traverse command. Such evaluation,
however, often makes the traversal process quite costly since, for example, each time an
event is fired the failure conditions need to be evaluated. Despite of this mechanism,
TRANSYT also allows the evaluation of failure conditions once the reachability analysis has
been completed. Thus, the system can be first traversed with no failure analysis (traverse
command with the -nF flag), and afterwards the check fails command can be used to

evaluate the failure conditions over the whole reachability space.

C.2 ANALYSIS OF DELAY RELATIONS 201

What follows is the on-screen help provided by TRANSYT for this command. Currently,
no particular options exist for the check_fails command.

ts > help check_fails
ts:: check_fails [-dbxN]

Checks the fail conditions of the default system after it has been traversed.

Options:
-dbxN Temporal setting of the verbose level to N.

C.1.3 The print_fails command

The command print_fails allows to show information about what failure conditions
are associated to the different objects of a system. Moreover, if the failure conditions have
been analyzed either during the traversal or with the check_fails command, the resulting
failure states can be also shown in the form of boolean characteristic functions. Examples
of the use of this command appeared in Chapter 5.

What follows is the on-screen help provided by TRANSYT for the print_fails command.

ts > help print_fails
ts:: print_fails [-dbxN][-e] [-1][-t][-al[-s] <model_name>

Shows the fail information stored for the specified TS.

Options:

-dbxN Temporal setting of the verbose level to N.

-e Prints information only for the events.

-1 Prints information only for the labels.

-t Prints information only for the TSs.

-a Prints information for all fail conditions (by default
only those with failure states are shown).

-s Prints the failing states.

C.2 Analysis of delay relations

The command prune_dr intends to refine the untimed state space of a system by us-
ing easy-to-find timing relations between events. Such relations can have nothing to see
with the specified failure conditions, but its application can help to refine fake untimed
concurrency situations, for example, so that a later verification process can be less costly.

Three options allow to explore different types of timing relations:

-npp If this option is set, the global nodal states of the system are identified and
the delays of the events than become enabled in them are analyzed. Thus, given
two events e; and e; newly enabled in a nodal point, if the upper delay bound
of e; is smaller than the lower delay bound of e;, then event e; will always
fire before e; in the timed domain. That is, an obvious relative timing relation
is found between both events. As a consequence, the firing function of e; can

202 ApPENDIX C: VERIFICATION-RELATED COMMANDS

be updated accordingly, so that both events become sequential, and the number of
untimed states of the system is reduced. The reachability set of the system is not

needed at any time.

-pwp Consider every pair of event in a system such that: they are simultaneously
enabled in some set of states; they are simultaneously not enabled in some other
set of states; and the first situation is reachable from the second one in a forward
traversal step. Under these conditions, a local nodal point for such pair of events
exists in the system. Therefore, if the upper delay bound of one of them is smaller
than the lower delay bound of the other, an obvious relative timing relation is found,
that can be used to prune the state space of the system.

If this flag is set, a CES containing both events is built, a trivial timing analysis
is performed over it, and the resulting LzCES is finally composed with the original
system. Since the process only modifies the transition relations of the affected
events, the reachability set of the system is not needed.

Notice that is options also covers the previous one. However, in this case LzCESs

are used, hence increasing the CPU cost and possibly causing state splitting.

-gwp This option extends the type of analysis provided by the previous option but
for groups of events, not just pairs.
Finally, what follows is the on-screen output of running the help prune_dr command.

ts > help prune_dr
ts:: prune_dr [options] <ts name>

Pruning of untimed concurrency which is actually fake if delays are
considered in <ts name>.

Options:

-dbxN Temporal setting of the verbose level to N.

-npp Perform pairwise pruning without using ESs, only with the
events around nodal points, if any.

-pwp Perform events pairwise pruning based on their delays. This also
covers the previous case, but here timed event structures are
used anyway, therefore increasing CPU cost and splitting.

-gwp Perform events group-wise pruning based on their delays.

C.3 The uverif command

In Chapter 5, a verification framework was presented for the verification of a system
which must satisfy input-output conformance with respect to a given specification (see
Figure 5.8). The (mirrored) specification acts as the environment of the system under
verification, thus exercising the inputs of the system and reacting to the resulting outputs.
The framework is typical of the verification of untimed systems such as speed-independent

C.4 THE TVERIF COMMAND 203

asynchronous circuits. In such case, the verification consists in building the (untimed)
reachability space of the resulting closed system and then checking for violations of the
given failure conditions. TRANSYT implements this functionality through the uverif com-
mand. The command automatically mirrors the specification to build the environment of
the system under verification, and builds the final closed system. Automatic failure con-
ditions for input-output conformance, persistency and dead-lock can be also computed if
appropriate options are specified (see below).

This command is particularly interesting for our purposes, due to the possibility of
just building the closed system and the failure conditions for verification, and leaving the
resulting system available for later manipulation. In particular for the verification of the
timed behavior with the tverif command.

What follows is the on-screen output of running the help uverif command. A brief
description is provided for the different options.

ts > help uverif
ts:: uverif [options] <ts name spec.> <ts name impl.>

Untimed verification of a system <ts name impl.> versus its specification
<ts name spec.> .

Options:

-dbxN Temporal setting of the verbose level to N.

-VnotConformance Do not check conformance of the implementation with respect
to the given specification.

-VnotPersistency Do not check persistency in the implementation.

-Vdeadlock Check also the presence of dead-locks in the closed system.

-Vclose Build the closed system and create fails omnly.

-Vnotdestroy Do not destroy intermediate TSs after verification.

C4 The tverif command

The tverif command of the TRANSYT tool implements the relative timing-based veri-
fication approach for timed systems presented in Chapter 4.

This command has two possible forms. The first one is similar to that of the uverif
command. That is, two systems (the system under verification and its specification system)
are given at the command line, together with flags to set the automatic construction of
failure conditions (input-output conformance, persistency and dead-lock). This form of
the tverif command can be superseded by the combination of the uverif command to
build the closed system for verification, and then the second form of the tverif command
to verify the closed system. Actually, the second form of the command for the verification
of properties on a system is the most commonly used. See Chapter 5 for examples.

A number of options to control the execution and the output produced by this command
are available. We describe them in the following sections.

204 ApPENDIX C: VERIFICATION-RELATED COMMANDS

C.4.1 Output

In Chapter 5 the on-screen textual output of the tverif command was shown in several
examples. This output is very concise since it intends just to provide a sort of progress
indicator of the verification process.

Despite of the brief on-screen output the execution provides much more detailed infor-
mation in a sort of log file. Namely, a file with the name of the system being verified
and the .out extension is generated. The amount of information in the file depends on
the verbosity level specified with the -dbxN option, where N is a decimal digit. Bigger
values of N imply more verbosity. A detailed description of the contents of the log file
would require a lot of space, hence it is not given here. Simply say that, among other
debugging information, details about the state where the failure trace stops, which is the
event causing the failure, which strategies are used to build the event structure, etc. are
provided for each iteration of the verification process.

Regarding the log file, finally say that of the ~-HTML option is specified, the log informa-
tion is generated in the form of a browsable HTML file. The file has the name of the system
under verification plus the extension .html. The file contains hyperlinks to a number of
other files for the different objects (traces, CES, etc.) generated at each iteration of the
verification process (see below).

The execution of the tverif command also creates a directory named with the name of
the system under verification plus the extension .files. The directory contains, upon de-
mand, a number of files with specific information for each iteration. Namely, the following
different types of information can be provided at each iteration:

m The failure trace leading from the initial state of the system up to the state where

the failure being verified was detected.

m A CES capturing the causality relations of all the events in the failure trace. Since
the failure trace can be very long in some cases, the construction of this CES can also
take a significant amount of time. This object is not necessary for the verification
process, but can be useful for debugging purposes, for example.

m The suffix of the failure trace necessary to build a CES that provides enough timing

information as to prove the non-existence of the failure in the timed domain.

m The resulting LzCES that captures the relative timing constraints that disprove the
failure being verified.

m The complete lazy state space of the system. Producing this output may take a
considerably amount of time unless the system is really small, say less than a few
hundred states. In any case, the later manual analysis of more than a hundred states

C.4 THE TVERIF COMMAND 205

s0(0)

aa (1)

s1(0)

b{b] (1) did] (1) "\ fIf] ()
]

e (@ \ fIf1 (D)

fif] (1) | dd (2 ~\ blb] ()

v A}

Figure C.1 DOT file corresponding to the failure trace in Figure 5.6 (a3).

might result in a very tedious task. Therefore, the usefulness of this information is
often reduced to debugging purposes.

The generation of the files for the different objects can be controlled respectively with
the following options: -VwriteTraceN, -VwriteESN, -VwriteSuffixN, -VwriteTESN and
-VwriteSTD. Where N is a decimal digit which specifies the format of the output for each
object. More precisely, N may take the following values: 0 (default) to produce no output
for the object; 1 to produce a DOT (.dot) file for graphical visualization or printing
of the object; 2 to produce a text (.txt) file for manual manipulation or interchange
of the object with other users; or 3 to produce an XML (.xml) file for inter-operability
between applications. The same option can be specified with different values for N, thus
producing output files with different formats for the same object. Notice that in case of
the -VwriteSTD option, no value for N can be given. If the option is specified, a DOT
file is generated for the lazy state space of the system at the given iteration. Thus, the
evolution of the incremental refinements can be graphically analyzed, for example.

Failure trace and suffix

A failure trace starts from the initial state of the system under verification. The trace
reflects the sequence states and firings of events that lead to the failure state, as well as
information about the enabled and firable events at each visited state. The trace ends in
a state where the firing of an event either violates a transition failure condition, or lead to
a state where an state failure condition is violated. The following explanations correspond

206 APPENDIX C: VERIFICATION-RELATED COMMANDS

to the visual aspect of the DOT file for a failure trace (-VwriteTracel option) or suffix
(-VwriteSuffix1 option).

States are depicted by means of either ovals or boxes. States inside a boxes correspond
to nodal states. If the initial state of the system belongs to the trace or the suffix being
depicted, the corresponding box or oval is filled in yellow. States are named following an
increasing sequence of numbers. Since the same state can be visited more than once along
a trace, between parentheses the occurrence number of the state inside the trace is shown.

Transitions between states are labeled with the name of the event producing the transi-
tion, followed by the name of the label the event belongs to, and the occurrence number of
the event along the trace in parentheses. Other events enabled at each state are depicted
as hanging arcs. If an enabled event is not firable in the state, a hanging line is just drawn.
Different colors and types of lines are used to depict special events:

m Dotted arcs correspond to events that are disabled by the event firing in the given
state.

m Blue arcs correspond to events which are in conflict with the event that fires in the
given state. That is, is the event with the arc in blue fired, it will disable the event
that fires currently in the trace.

m Red arcs correspond to events that cause a failure situation in the given state.

m Finally, green arcs correspond to events firable concurrently with some failure event,
and could scape from the failure situation.

Figure C.1 depicts the visualization of the DOT file generated for the failure trace in
the third iteration of the verification of the example in Section 5.2. In the figure: states
sp and s; are nodal; event f is not firable in states s; and ss; event d is disabled by
the firing of event b in state s;, and the firing of event d in state s; would disable b;
finally, the firing of f in state s3 causes a failure situation, which could be escaped if a
second occurrence of d or b fired first.

Similar text-based or XML-based descriptions are produced by TRANSYT for a given
failure trace (-VwriteTrace2 and -VwriteTrace3 options, respectively) or a suffix of the
failure trace (-VwriteSuffix2 and -VwriteSuffix3 options, respectively). Details on the
formats of the resulting files can be found in [PPb].

CES and LzCES

For each failure trace, a CES can be generated which captures the causal information
between all the events appearing in the trace. Also the portion of the CES corresponding
to the chosen suffix of the failure trace, can be generated in the form of a LzCES including
the relative timing relations. The following explanations correspond to the visual aspect
of the DOT file for a CES (-VwriteES1 option) or a LzCES (-VwriteTES1 option).

C.4 THE TVERIF COMMAND 207

Figure C.2 DOT file corresponding to the LzCES in Figure 5.6 (b3).

Events are depicted as ovals and are labeled with the name of the event, followed by
the name of the label the event belongs to, and the occurrence number of the event in the
failure trace in parentheses. Events corresponding to failure situations in the trace used to
derive the CES are colored red. The root events (i.e. with no predecessor) of the CES are
those events enabled at the initial state of the failure trace or suffix used to derive it.

Arcs representing causality relations between events are drawn as black arrows. Such
arcs are annotated with the delay ranges of the destination event. The delays are used
for timing analysis in the corresponding iteration of the verification process. Disabling
relations between events are depicted as dashed blue arcs, from the disabler to the disabled
event, according to the information extracted from the trace. Finally, the relative timing
relations are drawn as dotted black arcs, indicating that the source event fires before the
destination event.

If the initial state of the failure trace or suffix used to derive the CES or the LzCES was a
nodal state, then the causal arcs leading to the root events start in an imaginary common
event which enabled all the root events simultaneously. And the arcs are annotated with
the corresponding [min, mazx] delay intervals. Conversely, the arcs leading to the root
events are parallel and are annotated with [0, max] delay intervals, if the initial state of
the failure trace or suffix was not nodal.

Figure C.2 depicts the visualization of the DOT file generated for the LzCES in the third
iteration of the verification of the example in Section 5.2. The LzCES was built using the
suffix starting from state s; in the failure trace of Figure C.1. In the figure: the arcs
leading to the root events start from a common point since the initial state of the failure

208 APPENDIX C: VERIFICATION-RELATED COMMANDS

ala

Figure C.8 DOT file corresponding to the LzTS in Figure 5.6 (d3).

trace was nodal; event b(1) disables event d(1); and two relative timing relations from
events b(2) and d(2) to event f are depicted.

Similar text-based and XML-based descriptions are produced by TRANSYT for a given
CES (-VwriteES2 and -VwriteES3 options, respectively) or a LzCES (-VwriteTES2 and
-VwriteTES3 options, respectively). Details on the formats of the resulting files can be
found in [PPD].

Lazy state space

With option -VwriteSTD a DOT file for the lazy state space of the system under verification
can be generated at each iteration of the process. A circle is drawn for each state, which
are numbered. The initial state is indicated by a double circle. Also, those states covered
by the last refinement are colored green, whereas the remaining failure states are colored
yellow. Arcs between states indicate the transitions of the system. The lazy transitions
are not depicted.

C.4 THE TVERIF COMMAND 209

Figure C.2 shows the visualization of the DOT file generated for the lazy state space
after the third refinement of the verification of the example in Section 5.2.

C.4.2 Construction of the failure trace

At the time of writing, only two options allow to control the way the failure traces are
built at each iteration of the verification process.

-VfailTraceN This option indicates the way a failure situation from which the trace
will be built is searched. If the value of N is set to 1 or 2, it specifies respectively
that a BFS or a chained partial traversal must be executed until a failure state
is reached. If N is set to 3, a fast symbolic simulation search for failure states is
used. Although the BFS-based method (default) is the slowest, it guarantees the
construction of the shortest possible failure traces. Conversely, the simulation-based
approach is the fastest, but at the cost of often building much longer failure traces.
The approach based on a partial traversal with chaining represents an intermediate

alternative.

-VextendTraceN This option indicates whether once the failure trace is built, it must
be extended to beyond the failure state found, in order to capture other states that
also present failure situations. If N is set to 0 (default), no extension is performed.
Whereas if N is set to 1 or 2, the trace is extended visiting states (if any) where the
same failure situation is given, or visiting any subsequent failure state, respectively.
Notice that covering several failure situation may often yield to more complex CESs
and LzCESs. Although this may reduce the number of iterations of the verification
process, it also complicates the timing analysis, the enabling-compatible product,
and the readability of the timing constraints for back-annotation.

C.4.3 Construction of the LzCES

In order to build the LzCES at each iteration of the verification process, by default,
the smallest possible suffix of the failure trace is taken such that it contains at least one
failure situation. Then, the suffix is extended backwards until the timing analysis on the
CES resulting from the suffix proves the non-existence of the failure, or contradicts the
firing order of the events in the trace. That is, the shortest suffix is taken that yields a
CES from which it can be proved that the trace is not timing-consistent.

Several options allow to control the way the LzCES is derived from an appropriate suffix
of the failure trace.

-Acapf This option indicates that the shortest suffix of the failure trace that can
be used to build the LzCES must contain all the failure situations present in the

trace. Since more failure situations are covered by a single CES, less iterations of

210 ApPENDIX C: VERIFICATION-RELATED COMMANDS

the verification process are potentially required, at the expense of increasing the
size of the LzCES at each iteration, and thus compromising its readability for later
back-annotation.

-Apreconc Similarly to the previous option, if the option -Apreconc is specified, all
the events which are concurrent with the root events of the LzCES according to the
failure trace, must be included also in the LzCES. In such a way, the later enabling-
compatible product will cover an area of the state space with less entry-points, hence
producing less state splitting.

-AtaComplete This option forces to take the whole failure trace as the suffix used
to build the LzCES. This results interesting in some cases, since a complete view of
the causality and timing relations between the events in the trace is captured under
a single, although often big, structure. Moreover, the enabling-compatible product
with the resulting LzCES often results in a very localized refinement of the state
space, since many conditions on the enabledness of events must be satisfied.

-AfailGuided This option forces the use of heuristics which try to reduce the size
of the resulting LzCES for refinement. The heuristics focus the analysis on the
particular failure situation being analyzed in a given iteration of the verification

process, and discard timing relations unrelated to the failure.

-AfilterTedges In a similar vein, is this option is specified the size of the LzCES is
tried to be reduced. In this case, the timing relations that do not help to prove
the non-existence of the failure situation in all the failure states of the trace, are
ignored. The result is that all the events in the final LzCES are related to the failure
situation being analyzed. This and the previous option are recommended in order
to improve the readability of the resulting LzCESs for later back-annotation.

Despite of the above options, two additional options control the use of nodal points
information in order to build the LzCES. If a nodal point is reached during the extension
of the suffix of the trace, the delays of the root events in the LzCES can be set to the
corresponding [min, mazx] ranges. Otherwise, the conservative [0, max] delay range must
be used. Although it is generally desirable to consider nodal points for that purpose,
sometimes the conservative timing analysis yields LzCESs that produce a better refinement
of the state space during the enabling-compatible product. By default, only global nodal
points are taken into account. In order to consider also the local nodal points, the ~Elnp
option must be specified. The -Enotgnp option disables the use of global nodal points

information.

C.4 THE TVERIF COMMAND 211

C.4.4 Timing analysis

Two algorithms for timing analysis on the CES are implemented in TRANSYT: an exact
algorithm due to [MD92] and a faster approximate algorithm due to [CDY99]. Since
the latter algorithm is conservative, it often provides timing relations which produce less
aggressive state space refinements during the enabling-compatible product. Due to this
fact, some failure situations which do not exist in the timed domain of the system under
verification, cannot be properly refined from the state space. That is, the verification
process can result in conservative false negatives. The exact timing analysis algorithm
is used by default. In order to select the approximate timing analysis algorithm, the
-EapproxTA option must be specified to the tverif command.

Finally, if option -EcheckConc is specified, only timing relations between concurrently
firable events in the CES are taken into account. In such a way, the resulting LzCES is
simplified so that less redundant back-annotation information is provided. However, the
simplification of the LzCES can result in more iterations of the verification process, to
include the discarded timing relations in the analysis of other failure situations.

C.4.5 Miscellaneous

Several options allow to control other miscellaneous aspects of the verification process.
Namely:

-VtraverseFreqN Although a complete traversal of the state space of the system
is not required along the iterations of the verification process, it can be enforced
every N iteration with the -VtraverseFreql option, where N is a decimal digit. The
complete traversal allows, among other things, a precise tracking of the remaining
failure situations in the refined state space. Also, the -VwriteSTD option only
applies to iterations where the complete state space has been computed. By default,
no complete traversal is performed until the last iteration of a succeeding verification
process, i.e. N equals 0.

-VreorderFreqN The boolean variables used to represent the system symbolically
can be reordered every certain number of iterations in order to improve the size of the
BDDs. Despite of the immediate memory savings, the subsequent iterations of the
verification process often complete faster thanks to the improvement in the boolean
operations. Nevertheless, it must be taken into account that variable reordering is
a very costly operation and should not be invoked too often. The value of N in
the option -VreorderFreqN fixes the frequency of the variable reordering process,
where N is a decimal digit. By default no variable reordering is performed, i.e. N
equals 0.

212 ApPENDIX C: VERIFICATION-RELATED COMMANDS

-VminimizeFreqN As it has been shown in Appendix B the implementation of the
enabling-compatible product using BDDs requires the incorporation of several boolean
variables to encode the configurations of the GRC and to distinguish the states where
the timing analysis applies and those states where it does not apply. As a result,
the size of the BDDs that encode the transition relations of the events of the sys-
tem, sometimes grow exaggeratedly. However, as the number of iterations increases,
some of those variables may become redundant, since later refinements may have
pruned the part of the state space where those variables made sense. For this reason,
TRANSYT can try to remove some of the redundant variables and recompute the sim-
plified equations periodically. The option ~VminimizeFreqgN indicates the frequency
of such variable removal, where N is a decimal digit (N equals 0 by default).

Remark that at the time of writing, this option is still in experimental use. However,
the preliminary experiments show promising reductions in the sizes of the BDDs and
also in the CPU times.

-VnitersN This option allows to specify the number of iterations of the verification
approach that must be performed. As usual, N is a decimal digit. This allows an
incremental verification process controlled by the user. If this option is not give, the
verification process proceeds with as many iterations as required in order to prove
the correctness of the system according to the properties under verification, or a
counterexample failure trace that proves its incorrectness is found.

-Vpwp This option is equivalent to pruning from the state space, the delays relation
between simultaneously enabled pairs of events, before the actual verification process
starts. That is, this option is equivalent to the prune_dr -pwp command.

C.4.6 Summary of the tverif command

What follows is the on-screen output of running the help tverif command. A brief
description is provided for all the aforementioned options.

ts > help tverif
ts:: tverif [options] <ts name spec.> <ts name impl.>

Timed verification of a system <ts name impl.> versus its specification
<ts name spec.> .

Specific options:

-VnotConformance Do not check conformance of the implementation with respect
to the given specification.

-VnotPersistency Do not check persistency in the implementation.

-Vdeadlock Check the presence of dead-locks in the system.

C.4 THE TVERIF COMMAND

ts::

tverif [options]

213

<ts name>

Timed verification of a system <ts name>.

Specific options:

-VnitersN

Common options:
—-dbxN

Perform only N iterations. If N=0 (default) iterate normally.

Temporal setting of the verbose level to N.

-Vnotdestroy Do not destroy intermediate TSs after verificatiom.
-Vpwp Perform atom’s pairwise pruning before starting verification, based
on their delays.
-VfailTrace Indicates the way the failure trace is searched: (1) to perform a
partial traversal; (2) perform a partial traversal using chaining;
(3) to perform a fast simulation (bughunt).
-VextendTracelN Extend traces following fails. N may take the values: 0 for
no extension, 1 for extensions following a single fail, or 2
for multiple fails extensions (default N=0).
-VtraverseFreqN Force reachability analysis every N iterations (default N=1).
-VreorderFregN Force reorder of BBD variables every N iterations (default
N=0, i.e. no variable reorder).
-VminimizeFreqN Force minimization of redundant BBD variables every N
iterations (default N=0). N must be multiple of that specified
with -VtraverseFreq option.
-VwriteTracelN Write the failure trace up to the initial state at each iteration.
N indicates the output format: O for no output, 1 .dot, 2 for .txt,
and 3 for .xml
The different options are cumulative so that several outputs
can be produced. Default value is O.
-VwriteSuffixN Write the portion of the failure trace used at each iteration.
N indicates the output format: O for no output and 1 for .dot
outputs can be produced. Default value is 0.
-VwriteESN Write the complete ES for the full failure trace, at each iteration.
-VwriteTESN Write the timed ES portion at each iteratiomn.
N indicates the output format: O for no output, 1 .dot, 2 for
.txt and 3 for .xml.
The different options are cumulative so that several outputs
can be produced. Default value is O.
-VwriteSTD Write the resulting STD after each iteration.

Options applicable when building timed Event Structures from a Trace:

-Acapf Capture all fail states in the trace when building the ES.

-Apreconc Capture ES preconcurrency following the trace.

-AtaComplete Builds an ES for the complete trace, then perform timing analysis, etc.
This may result interesting is some cases, however the fail removal is
very local and thus it is not suitable for hard verification processes.

-AfailGuided Uses the failure transitions as a source for heuristics which try to
reduce the size of the ESs and focus more locally around the
particular failure being analyzed.

-AfilterTedges Tries to filter (remove) those timing edges which do not actually

remove the fail from all the failure states of the trace. This is
intended to reduce the size of the resulting timed ESs such that
all the atoms that appear in it, are related to the fail being

analyzed.

214 ApPENDIX C: VERIFICATION-RELATED COMMANDS

Options applicable when building Event Structures:

-Elnp Use local nodal points when possible.

-Enotgnp Do not use global nodal points information. If this option is
selected, -Elnp is selected automatically, otherwise the entry
condition of the enabling compatible composition would not work
in some cases.

-EenablingsN Sets the level of detail to take into account in order to put
non-enabling information to the GRC created from an ES. N=1 means
to use the minimum of information, i.e. a fast algorithm but
with the need of more extra encoding variables. N=2 means to use
information from the trace used to build the ES (if any), i.e.

a more complex algorithm but with almost no extra encoding.
Default value is N=2.

Timing analysis options:
—-EapproxTA Use the approximate algorithm for timing analysis.
—-EcheckConc Indicates whether not to consider only timing arcs between concurrently
firable vertexes (if set), but just consider any possible timing arc
(if not set). By default all possible timing arcs are considered.

REFERENCES

[ABCT94]

[ABH"97]

[ACD0]

[ACD'92]

[ACD93]

[AD90]

[ADY4]

[AD96]

[AFHO1]

[AHS9]

[AH0]

A. Aziz, F. Balarin, S.T. Cheng, R. Hojati, T. Kam, S.C. Krishnan, R.K. Ranjan,
T.R. Shiple, V. Singhal, S. Tasgiran, H.Y. Wang, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli. HSIS: A BDD-based environment for formal verification. In Proceedings
ACM/IEEE Design Automation Conference, pages 4564459, 1994.

R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S. Rajamani. Partial-order
reduction in symbolic state space exploration. In Proceedings International Workshop
on Computer Aided Verification, volume 1254 of LNCS, pages 340-351. Springer-Verlag,
1997.

R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking for real-time systems. In
Proceedings of the 5th annual IEEE Symposium on Logic in Computer Science, pages
414-425. TEEE Computer Society Press, 1990.

R. Alur, C. Courcoubetis, D.L. Dill, N. Halbwachs, and H. Wong-Toi. An implemen-
tation of three algorithms for timing verification based on automata emptiness. In
Real-Time Systems Symposioum, pages 157-166, 1992.

R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in dense real-time. Information
and Computation, 104(1):2-34, 1993.

R. Alur and D.L. Dill. Automata for modeling real-time systems. In Automata, Lan-
guages and Programming: Proceedings of the 17th ICALP, volume 443 of LNCS, pages
322-335. Springer-Verlag, 1990.

R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126:183-235, 1994.

R. Alur and D.L. Dill. Automata-theoretic verification of real-time systems. In Formal
Methods for Real-Time Computing, Trends in Software Series, pages 55-82. John Wiley
& Sons, 1996.

R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality. In Sym-
posium on Principles of Distributed Computing, pages 139-152, 1991.

R. Alur and T.A. Henzinger. A really temporal logic. In IEEE Symposium on Founda-
tions of Computer Science, pages 164—169, 1989.

R. Alur and T.A. Henzinger. Real-Time Logics: Complexity and Expressiveness. In
Fifth Annual IEEE Symposium on Logic in Computer Science, pages 390-401. IEEE
Computer Society Press, 1990.

215

216 REFERENCES

[AH97] R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In Interna-
tional Conference on Concurrency Theory, volume 1243 of LNCS, pages 74—88. Springer-
Verlag, 1997.

[AH99] T. Amon and H. Hulgaard. Symbolic time separation of events. In Proceedings Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
83-93, April 1999.

[AHBB93] T. Amon, H. Hulgaard, S.M. Burns, and G. Borriello. An algorithm for exact bounds
on the time separation of events in concurrent systems. In Proceedings of the IEEE
International Conference on Computer Design, pages 166—173, 1993.

[AHM*98] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran.
MOCHA: Modularity in model checking. In Proceedings International Workshop on
Computer Aided Verification, LNCS, pages 521-525. Springer-Verlag, 1998.

[AIKY92] R. Alur, A. Ttai, R.P. Kurshan, and M. Yannakakis. Timing verification by successive
approximations. In Proceedings International Workshop on Computer Aided Verifica-
tion, volume 663 of LNCS, pages 137-150. Springer-Verlag, 1992.

[AK83] S. Aggarwal and R.P. Kurshan. Modeling elapsed time in protocol specification. In
H. Rudin and C.H. West, editors, Protocol Specification, Testing, and Verification, vol-
ume III, pages 51-62. North-Holland, 1983.

[AK95] R. Alur and R.P. Kurshan. Timing Analysis in COSPAN. In Hybrid Systems III:
Verification and Control, volume 1066, pages 220-231. Springer-Verlag, October 1995.

[AK96] R. Alur and R.P. Kurshan. Timing analysis in COSPAN. In Hybrid Systems III: Control
an Verification, number 1066 in LNCS, pages 220-231. Springer-Verlag, 1996.

[Alu9g] R. Alur. Timed automata, 1998. In NATO ASI Summer School on Verification of Digital
and Hybrid Systems. Available at http://www.cis.upenn.edu/~alur/Nato97.ps.gz.

[Arn94] A. Arnold. Finite Transition Systems. Prentice-Hall, 1994.

[BAPMS1] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. In Fighth
Annual Symposium on Principles of Programming Languages, pages 164-176. ACM
Press, 1981.

[BBF101] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, Ph. Schnoebelen,
and P. McKenzie. Systems and Software Verification: Model-Checking Techniques and
Tools. Springer-Verlag, 2001.

.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic mode
BCM™*92 J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. H Symboli del
checking: 10%° states and beyond. Information and Computation, 98(2):142-170, 1992.

[BD91] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using
time Petri nets. IEEE Transactions on Software Engineering, 17(3):259-273, 1991.

[BDM*98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a model-
checking tool for real-time systems. In Proceedings International Workshop on Computer
Aided Verification, volume 1427 of LNCS, pages 546-550. Springer-Verlag, 1998.

[BJLY98] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed
systems. In International Conference on Concurrency Theory, pages 485—-500, 1998.

REFERENCES 217

[BIMYO02] M. Bozga, H. Jianmin, O. Maler, and S. Yovine. Verification of asynchronous circuits
using timed automata. In Workshop on Theory and Practice of Timed Systems, 2002.

[BLL'95) J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPAAL - a tool suite
for automatic verification of real-time systems. In Proccedings of the 4th DIMACS
Workshop on Verification and Control of Hybrid Systems, LNCS. Springer-Verlag, 1995.

[BM92] P. Beerel and T.H.-Y. Meng. Automatic gate-level synthesis of speed-independent cir-
cuits. In Proceedings of the IEEE/ACM International Conference on Computer Aided
Design, pages 581-587. IEEE Computer Society Press, November 1992.

[BMO7] W. Belluomini and C.J. Myers. Timed event-level structures. In Proc. International
Workshop on Timing Issues in the Specification and Synthesis of Digital Systems (TAU),
1997.

[BMOO] O. Bournez and O. Maler. On the representation of timed polyhedra. In Proceedings

International Conference on Automata, Languages and Programming (ICALP), volume
1853 of LNCS, pages 793-807. Springer-Verlag, 2000.

[BMH99] W. Belluomini, C.J. Myers, and H.P. Hofstee. Verification of delayed-reset domino
circuits using ATACS. In Proceedings International Symposium on Advanced Research
in Asynchronous Clircuits and Systems, pages 3-12, 1999.

[BMHO1] W. Belluomini, C.J. Myers, and H.P. Hofstee. Timed circuit verification using tel struc-
tures. IEEE Transactions on Computer-Aided Design of Integrated Clircuits and Sys-
tems, 20(1):129-146, January 2001.

[BMPY97] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the symbolic verification
of timed automata. In O. Grumberg, editor, Proceedings International Workshop on
Computer Aided Verification, volume 1254 of LNCS, pages 179-190. Springer-Verlag,
1997.

[Bro90] F.M. Brown. Boolean Reasoning: The Logic of Boolean Equations. Kluwer Academic
Publishers, 1990.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677-691, August 1986.

[BS91] J. Brzozowski and C. Seger. Advances in asynchronous circuit theory part ii: Bounded
inertial delay models, mos circuits, design techniques. Bulletin of the European Associ-
ation for Computer Science, 43(3):199-263, 1991.

[BSVY4] F. Balarin and A.L. Sangiovanni-Vincentelli. On the automatic computation of network
invariants. In Proceedings International Workshop on Computer Aided Verification,
volume 818 of LNCS, pages 234-246. Springer-Verlag, 1994.

[BSV95] F. Balarin and A.L. Sangiovanni-Vincentelli. An iterative approach to verification of
real-time systems. Formal Methods in System Design, 6:67-95, January 1995.

[Bur89] J.R. Burch. Combining CTL, trace theory and timing models. In Proceedings of the
First Workshop on Automatic Verication Methods for Finite State Systems, volume 407,
pages 197-212. LNCS, 1989.

218 REFERENCES

[Bur92] J.R. Burch. Delay models for verifying speed-dependent asynchronous circuits. In
International Workshop on Timing Issues in the Specification and Synthesis of Digital
Systems, March 1992.

[Bur96] S.M. Burns. General condition for the decomposition of state holding elements. In
Proceedings International Symposium on Advanced Research in Asynchronous Circuits
and Systems, March 1996.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge University Press, 1990.

[CDS93] B. COates, A. Davis, and K. Stevens. The post office experience: Designing a large
asynchronous chip. Integration, the VLSI journal, 15(3):341-366, October 1993.

[CDY99] S. Chakraborty, D.L. Dill, and K.Y. Yun. Min-max timing analysis and an application
to asynchronous circuits. Proceedings of the IEEE, 87(2):332-346, February 1999.

[CES81] E.M. Clarke and E.A. Emerson. Synthesis of Synchronization Skeletons for Branching
Time Temporal Logic. In Logics of Programs: Workshop, volume 131 of LNCS. Springer-
Verlag, 1981.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, 1986.

[CGL92] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages, 16(5):1512-1542, 1992.

[CGP00] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, 2000.

[Chu87] T.-A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifications.

PhD thesis, MIT, June 1987.

[CTJEF96] E.M. Clarke, S. Jha, R. Enders, and T. Filkorn. Exploiting symmetry in temporal logic
model checking. Formal Methods in System Design, 9(1/2):77-104, 1996.

[CKK*97] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify:
a tool for manipulating concurrent specifications and synthesis of asynchronous con-
trollers. IEICE Transactions on Information and Systems, E80-D(3):315-325, 1997.

[CKK 98] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Lazy
transition systems: application to timing optimization of asynchronous circuits. In
Proceedings of the IEEE/ACM International Conference on Computer Aided Design,
November 1998.

. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, an . Yakovlev. Logic
CKK*02 J. C della, M. Kishi ky, A. Kond L. L d A. Yakovl Logi
Synthesis for Asynchronous Controllers and Interfaces. Springer-Verlag, 2002.

[CKLY98] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri nets from
finite transition systems. IEEE Transactions on Computers, 47(8):859-882, 1998.

[CLM89] E. Clarke, D.E. Long, and K.L. McMillan. Compositional model checking. In Proceedings
of the Fourth Annual IEEE Symposium on Logic in Computer Science, June 1989.

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics-
Based Tool for the Verification of Concurrent Systems. ACM Transactions on Program-
ming Languages and Systems, 15(1):36-72, January 1993.

REFERENCES 219

[CW96] E.M. Clarke and J.M. Wing. Formal Methods: State of the Art and Future Directions.
ACM Computing Surveys, 28(4):626-643, December 1996.

[CY91] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-
time systems. In Proceedings International Workshop on Computer Aided Verification,
volume 575 of LNCS, pages 399-409. Springer-Verlag, 1991.

[DGGI7] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM
Transactions on Programming Languages and Systems, 19(2):253-291, March 1997.

[DHWTI1] D.L. Dill, A.J. Hu, and H. Wong-Toi. Checking for language inclusion using simula-
tion relations. In Proceedings International Workshop on Computer Aided Verification,
volume 575 of LNCS, pages 255-265. Springer-Verlag, 1991.

[Dil89a] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[Dil89b)] D.L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite State Systems, volume 407 of LNCS, pages
197-212. Springer-Verlag, 1989.

[DKMW92] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Verification of asynchronous interface
circuits with bounded wire delays. In Proceedings of the IEEE/ACM International
Conference on Computer Aided Design, pages 188-195, November 1992.

[EC82] E.A. Emerson and E.M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241-266, 1982.

[EH86] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” revisited: On branching
versus linear time temporal logic. Journal of the ACM, 33(1):151-178, 1986.

[Eme90] E.A. Emerson. Temporal and modal logic. In J. van Leuven, editor, Handbook of
Theoretical Computer Science, volume B, pages 995-1072. Elsevier Science Publishers,
1990.

[EMSS90] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative temporal reason-

ing. In Proceedings International Workshop on Computer Aided Verification, volume
531 of LNCS, pages 136—145. Springer-Verlag, 1990.

[EN94] J. Esparza and M. Nielsen. Decidability issues for petri nets - a survey. Bulletin of the
European Association for Theoretical Computer Science, 52:245-262, 1994.

[ES96] E.A. Emerson and A.P. Sistla. Symmetry and model checking. Formal Methods in
System Design (Special Issue on Symmetry in Automatic Verification), 9, 1996.

[GA98] M.K. Ganai and A. Aziz. Efficient coverage directed state space search. In Proceedings
International Workshop on Logic Synthesis, 1998.

[GL94] O. Grumberg and D.E. Long. Model checking and modular verification. ACM Trans-
actions on Programming Languages, 16:843-872, 1994.

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving Environ-
ment for Higher-Order Logic. Cambridge University Press, 1993.

[GMW79] M.J.C. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: o mechanised logic
of computation, volume 78. Springer-Verlag, New York, NY, USA, 1979.

220 REFERENCES

[Gor89] M.J.C. Gordon. Lectures on the Specification and Verification of Hardware. Course
Notes, University of Cambridge, 1989.

[Gun93] J. Gunawardena. Timing analysis of digital circuits and the theory of min-max functions.
In Int. Workshop on Timing Issues in the Specification and Synthesis of Digital Systems,
1993.

[Gup92] A. Gupta. Formal Hardware Verification Methods: A Survey. Formal Methods in System

Design, 1:151-238, 1992.

[GWI1] P. Godefroid and P. Wolper. A partial approach to model checking. In Sizth Annual
Symposium on Logic in Computer Science, pages 406-415. IEEE Computer Society
Press, 1991.

[HB94] H. Hulgaard and S.M. Burns. Bounded delay timing analysis of a class of CSP pro-

grams with choice. In Proceedings International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 2-11, November 1994.

[Hen90] T.A. Henzinger. Half-Order Modal Logic: How to Prove Real-Time Properties. In
Proceedings of the 9th Annual Symposium on Principles of Distributed Computing, pages
281-296. ACM Press, 1990.

[Hen98] T.A. Henzinger. It’s about time: Real-time logics reviewed. In International Conference
on Concurrency Theory, volume 1466 of LNCS, pages 439-454. Springer-Verlag, 1998.

[HHWT97] T.A. Henzinger, P. H. Ho, and H. Wong-Toi. HYTECH: A Model Checker for Hybrid
Systems. International Journal on Software Tools for Technology Transfer, 1(1-2):110—
122, 1997.

[HLP90] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit Clock Temporal Logic. In Proceedings
of the Fifth Annual IEEE Symposium on Logic in Computer Science, pages 402-413.
IEEE Computer Society Press, 1990.

[HMP91] T.A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-time
systems. In Proceedings of the 18th ACM Symposium on Principles of Programming
Languages, pages 353-366, 1991.

[HMP92a] T.A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In REX Workshop.
Real-Time: Theory in Practice, volume 600 of LNCS, pages 226-251. Springer-Verlag,
1992.

[HMP92b)] T.A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Proceedings
International Conference on Automata, Languages and Programming (ICALP), volume
623 of LNCS, pages 545—558. Springer-Verlag, 1992.

[HNSY92] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for
Real-Time Systems. In 7th. Symposium of Logics in Computer Science, pages 394-406.
IEEE Computer Scienty Press, 1992.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hol97] G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23:279-295, 1997.

REFERENCES 221

[HPRI7] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time systems using
linear relation analysis. Formal Methods in System Design, 11(2):157-185, 1997.

[HRS98] T.A. Henzinger, J.F Raskin, and P.Y. Schobbens. The regular real-time languages. In
Automata, Languages and Programming, pages 580-591, 1998.

[Huf54] D.A. Huffman. The synthesis of sequential switching circuits. J.Franklin Institute,
257:161-190,275-303, March 1954.

[Hul95] H. Hulgaard. Timing Analysis and Verification of Timed Asynchronous Circuits. PhD
thesis, Department of Computer Science, University of Washington, 1995.

[ISO89] ISO. ISO/IEC: Information Processing Systems — Open Systems Interconnection —
LOTOS, A formal description technique based on the temporal ordering of observational
behaviour, ISO 8807, February 1989.

[Jen92] K. Jensen. Coloured Petri Nets 1: Basic Concepts, Analysis Methods and Practical Use.
Springer-Verlag, 1992.

[JM86] F. Jahanian and A.K. Mok. Safety analysis of timing properties in real-time systems.
IEEE Transaction on Software Engineering, 12(9):890-904, 1986.

[JRI1] K. Jensen and G. Rozenberg, editors. High-Level Petri Nets — Theory and Application.
Springer-Verlag, 1991.

[KBS02] H. Kim, P.A. Beerel, and K. Stevens. Relative timing based verification of timed cir-
cuits and systems. In Proceedings International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 115-124, April 2002.

[KCKL99] A. Kondratyev, J. Cortadella, M. Kishinevsky, and L. Lavagno. Logic decomposition of
speed-independent circuits. Proceedings of the IEEE, 87(2):347-362, February 1999.

[KE96] A. Kovalyov and J. Esparza. A polynomial algorithm to compute the concurrency rela-
tion of free-choice signal transition graphs. In Proceedings of the International Workshop
on Discrete Event Systems, pages 1-6, August 1996.

[KN02] R. Kaivola and N. Narasimhan. Formal verification of the Pentium 4 Floating-Point
Multiplier. In Proceedings Design, Automation and Test in Europe, pages 20-27, Paris,
France, March 2002.

[Koy90] R. Koymans. Specifying real-time properties with metric temporal logic. In LNCS,
volume 443, pages 255—299. Springer-Verlag, 1990.

[KP88] S. Katz and D.A. Peled. An Efficient Verification Method for Parallel and Distributed
Programs. In Workshop on Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, volume 354 of LNCS, pages 489-507. Springer-Verlag,

1988.
[Kro99] T. Kropf. Introduction to Formal Hardware Verification. Springer-Verlag, 1999.
[KT94] A. Kondratyev and A. Taubin. Verification of speed-independent circuits by STG unfold-

ings. In Proceedings International Symposium on Advanced Research in Asynchronous
Clircuits and Systems, pages 64-75, November 1994.

[Kur94] R.P. Kurshan. Computer—Aided Verification of Coordinated Processes — An Automata
Theoretic Approach. Princeton University Press, 1994.

222 REFERENCES

[LGI5] C. Leung and M. Greenstreet. A simple proof checker for timing verification. In ACM
International Workshop on Timing Issues in the Specification and Synthesis of Digital
Systems, pages 294-305, November 1995.

[Li096] J.L. Lions. Ariane 5: Flight 501 failure. ESA: Report by the Inquiry Board, July 1996.
Available at http://www.esa.int/export/esaCP/Pr_33.1996_p_EN.html.

[Lon93] D.E. Long. Model Checking, Abstraction and Compositional Verification. PhD thesis,
Carnegie Mellon University, July 1993.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In 12th annual Symposium on Principles of Programming
Languages, pages 97-107. ACM Press, 1985.

[LPY95] K.G. Larsen, P. Pettersson, and W. Yi. Compositional and symbolic model-checking of
real-time systems. In IEEE Real-Time Systems Symposium, pages 76-89, 1995.

[Maz88] A. Mazurkiewicz. Basic notions of trace theory. In J. W. Baker, W. P. de Roever, and
G. Rozenberg, editors, Linear Time, Branching Time, and Partial Order in Logics and
Models for Concurrency, volume 354 of LNCS, pages 285-363. Springer-Verlag, 1988.

[MB59] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceedings
of an International Symposium on the Theory of Switching, pages 204-243. Harvard
University Press, April 1959.

[McM92] K. McMillan. Using unfoldings to avoid the state explosion problem in the verification
of asynchronous circuits. In Proceedings International Workshop on Computer Aided
Verification, volume 663 of LNCS, pages 164-177. Springer-Verlag, 1992.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[McM97] K.L. McMillan. A compositional rule for hardware design refinement. In Proceedings
International Workshop on Computer Aided Verification, volume 1254 of LNCS, pages
24-35. Springer-Verlag, 1997.

[MD92] K.L. McMillan and D.L. Dill. Algorithms for interface verification. In Proceedings of
the IEEE International Conference on Computer Design, October 1992.

[Mel88] T.F. Melham. Abstraction mechanisms for hardware verification. In VLSI Specification,
Verification and Synthesis, pages 129-157. Kluwer Academic Publishers, 1988.

[MF76] P. Merlin and D.J. Faber. Recoverability of communication protocols. IEEE Transac-
tions on Communications, 24(9):1036-1043, September 1976.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MM93] C.J. Myers and T.H.-Y. Meng. Synthesis of timed asynchronous circuits. IEEE Trans-
action on VLSI Systems, 1(2):106-119, June 1993.

[MP95] O. Maler and A. Pnueli. Timing analysis of asynchronous circuits using timed automata.
In P.E. Camurati and H. Eveking, editors, Proceedings of CHARME’95, volume 987 of
LNCS, pages 189-205. Springer-Verlag, 1995.

[MP96] Z. Manna and A. Pnueli. Clocked transition systems. Technical Report STAN-CS-TR-
96-1566, Computer Science Department, Stanford University, April 1996.

REFERENCES 223

[MRM99] C.J. Myers, T.G. Rokicki, and T.H.-Y. Meng. POSET timing and its application to the
synthesis and verification of gate-level timed circuits. IEEE Transactions on Computer-
Aided Design, 18(6):769-786, 1999.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541-574, April 1989.

[Mye01] C.J. Myers. Asynchronous Circuit Design. John Wiley & Sons, July 2001.

[Neu] P.G. Neumann. The Risks Digest. Forum on Risks to the Public in Computers
and Related Systems. ACM Commitee on Computers and Public Policy. Available at
http://www.infowar.com /iwftp/risks/all_risks_index.shtml.

[NK94] C.D. Nielsen and M. Kishinevsky. Performance analysis based on timing simulation. In
Proceedings ACM/IEEE Design Automation Conference, pages 70-76, June 1994.

[Now93] S.M. Nowick. Automatic synthesis of burst-mode asynchronous controllers. PhD thesis,
Stanford University, 1993.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains.
Theoretical Computer Science, 13:85—108, 1981.

[NRT92] M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Elementary transition systems. The-
oretical Computer Science, 96(1):3-33, 1992.

[OL82] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM
Transactions on Programming Languages and Systems, 4(3):455-495, 1982.

[ORSS94] S. Owre, J.M. Rushby, N. Shankar, and M.K. Srivas. A Tutorial on Using PVS for
Hardware Verification. In T. Kropf and R. Kumar, editors, Proceedings of the 2nd
International Conference on Theorem Provers in Circuit Design (TPCD94), volume
901 of LNCS, pages 258-279, Bad Herrenalb, Germany, 1994. Springer-Verlag.

[Ost90] J.S. Ostroff. Temporal Logic for Real-Time Systems. Research Studies Press / Wiley,
1990.

[PCKP00] M.A. Pena, J. Cortadella, A. Kondratyev, and E. Pastor. Formal verification of safety
properties in timed circuits. In Proceedings International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages 2-11, Eilat, Israel, April 2000.

[PCP99] E. Pastor, J. Cortadella, and M.A. Pefia. Structural methods to improve the symbolic
analysis of petri nets. In International Conference on Application and Theory of Petri
Nets, volume 1639 of LNCS, pages 26-45. Springer-Verlag, June 1999.

[PCSP02] M.A. Pena, J. Cortadella, A. Smirnov, and E. Pastor. A case study for the verification
of complex timed circuits: IPCMOS. In Proceedings Design, Automation and Test in
Europe, pages 44-51, Paris, France, March 2002.

[Pel96] D.A. Peled. Combining Partial Order Reductions with on-the-fly Model-Checking. For-
mal Methods in System Design, 8(1):39-64, 1996.

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn, Institut fiir Instru-
mentelle Mathematik, Schriften des IIM Nr. 3, 1962. English translation, " Communi-
cation with Automata”, Griffiss Air Force Base, Technical Report RADC-TR-65-377,
vol. 1, Suppl. 1, 1966.

224 REFERENCES

[Pet81] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

[Pet97] I. Peterson. Pentium bug revisited. The Mathematical Association of America: MAA
Online, May 1997. Available at http://www.maa.org/mathland/mathland_5_12.html.

[PHS8S] A. Pnueli and E. Harel. Applications of Temporal Logic to the Specification of Real
Time Systems. In M. Joseph, editor, Formal Techniques in Real Time and Fault Tolerant
Systems, volume 331 of LNCS, pages 84-98. Springer-Verlag, 1988.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Sympo-
stum on the Foundations of Computer Science, pages 46-57. IEEE Computer Society
Press, 1977.

[Pnu8l] A. Pnueli. The temporal logic of concurrent programs. Theoretical Computer Science,

13:45-60, 1981.

[Pnu84] A. Pnueli. In transition for global to modular temporal reasoning about programs. In
Logics and Models of Concurrent Systems, volume 13 of NATO ASI Series. Springer-
Verlag, 1984.

[PPa] E. Pastor and M.A. Pena. Transition System Interchange Format, TSIF. Soon available
at http://research.ac.upc.es/VLSI/transyt/transyt.html.

[PPb] E. Pastor and M.A. Pena. TRANSYT user’s manual. Soon available at
http://research.ac.upc.es/VLSI/transyt/transyt.html.

[PP03] E. Pastor and M.A. Pefa. Efficient hybrid reachability analysis for asynchronous con-
current systems. Technical Report UPC-DAC-2003-6, Department of Computer Archi-
tecture, Technical University of Catalonia, January 2003.

[PRCB94] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri net analysis using boolean
manipulation. In 15th International Conference on Application and Theory of Petri
Nets, volume 815 of LNCS, pages 416-435. Springer-Verlag, June 1994.

[QS81] J. Queille and J. Sifakis. Specification and Verification of Concurrent Systems in
CESAR. In In Proceedings of the 5th International Symposium on Programming, vol-
ume 137 of LNCS, pages 337-351. Springer-Verlag, 1981.

[Ram74] C. Ramchandani. Analysis of Asynchronous Concurrent Systems by Timed Petri Nets.
PhD thesis, MIT, February 1974.

[RCP95] O. Roig, J. Cortadella, and E. Pastor. Hierarchical gate-level verification of speed-
independent circuits. In Asynchronous Design Methodologies, pages 129-137. IEEE
Computer Society Press, May 1995.

[RESS] G. Rozenberg and J. Engelfriet. Elementary net systems. In W. Reisig and G. Rozen-
berg, editors, Lectures on Petri Nets I: Basic Models. Advances in Petri Nets 1988,
volume 1491 of LNCS, pages 12-121, 1988.

[Rei85] W. Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.

[RM94] T.G. Rokicki and C.J. Myers. Automatic verification of timed circuits. In David L. Dill,
editor, Proceedings International Workshop on Computer Aided Verification, volume 818
of LNCS, pages 468—480. Springer-Verlag, 1994.

REFERENCES 225

[Rok93] T. Rokicki. Representing and Modeling Digital Circuits. PhD thesis, Stanford University,
December 1993.

[Ros94] A.W. Roscoe. Model-Checking CSP. In A.W. Roscoe, editor, A Classical Mind: Essays
in Honour of C.A.R. Hoare, pages 353-378. Prentice-Hall, 1994.

[RSGT99] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol, C. Dike, M. Ron-
cken, and B. Agapiev. RAPPID: An asynchronous instruction length decoder. In Pro-
ceedings International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 60-70, April 1999.

[Rus93] J. Rushby. Formal Methods and Digital Systems Validation for Airborne Systems. Tech-
nical Report SRI-CSL-93-7, Computer Science Laboratory, SRI International, December
1993. Also available as NASA Contractor Report 4551.

[RY85] L. Rosenblum and A. Yakovlev. Signal graphs: From self-timed to timed ones. In
International Workshop on Timed Petri Nets, pages 199-206, July 1985.

[SB97] R.H. Sloan and U. Buy. Stubborn sets for real-time Petri nets. Formal Methods in
System Design, 11(1):23-40, July 1997.

[Sei80] C.L. Seitz. System timing. In Introduction to VLSI Systems, chapter 7. Mead & Conway,
Addison-Wesley, 1980.

[SFO01] J Sparsg and S. Furber, editors. Principles of Asynchronous Circuit Design. A Sys-
tems Perspective. European Low-Power Initiative for Electronic System Design. Kluwer
Academic Publishers, 2001.

[SGR99] K. Stevens, R. Ginosar, and S. Rotem. Relative timing. In Proceedings International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 208—
218, April 1999.

[Spi88] J. Spivey. Understanding Z: A Specification Language and its Formal Semantics. Cam-
bridge University Press, 1988.

[SRCT00] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, and K. Jenkins. Asyn-
chronous Interlocked Pipelined CMOS Circuits Operating at 3.3 — 4.5GHz. In IEEE
International Solid-State Circuits Conference (ISSCC), pages 292-293, February 2000.

[SSL*t92] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P.R. Stephan, R.K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A System for Se-
quential Circuits Synthesis. Technical Report M92/41, UCB/ERL, May 1992.

[Ste02] K. Stevens. Private communication, December 2002.

[Sut89] LE. Sutherland. Micropipelines. Communications of the ACM, June 1989. Turing
Award Lecture.

[SY96] A. Semenov and A. Yakovlev. Verification of asynchronous circuits using time Petri-net
unfolding. In Proceedings ACM/IEEE Design Automation Conference, 1996.

[TAKBY96] S. Tagiran, R. Alur, R.P. Kurshan, and R.K. Brayton. Verifying abstractions of timed
systems. In International Conference on Concurrency Theory, volume 1119 of LNCS,
pages 546-562. Springer-Verlag, 1996.

226 REFERENCES

[Tho81] W. Thomas. A combinatorial approach to the theory of w-automata. Information and
Computation, 48:261-283, 1981.

[TKY™98] S. Tagiran, S. Khatri, S. Yovine, R.K. Brayton, and A. Sangiovanni-Vincentelli. A timed-
automaton-based method for accurate computation of circuit delay in the presence
of cross-talk. In Proceedings of Formal Methods in Computer-Aided Design, LNCS.
Springer-Verlag, 1998.

[VAJIL96] E. Verlind, G. de Jong, and B. Lin. Efficient partial enumeration for timing analysis
of asynchronous systems. In Proceedings ACM/IEEE Design Automation Conference,
1996.

[VGM92] P. Vanbekbergen, G. Goossens, and H. De Man. Specification and analysis of timing

constraints in signal transition graphs. In Proceedings Design, Automation and Test in
Europe, pages 302-306, March 1992.

[VK98] A. Valmari and I. Kokkarinen. Unbounded verification results by finite-state compo-
sitional techniques: 10*™ states and beyond. In IEEE International Conference on
Application of Concurrency to System Design (CSD), pages 75-85, March 1998.

[Wal95] E.A. Walkup. Optimization of Linear Maz-Plus Systems with Application to Timing
Analysis. PhD thesis, Department of Computer Science and Engineering, University of
Washington, 1995.

[YD98] C. Han Yang and D.L. Dill. Validation with guided search of the state space. In
Proceedings ACM/IEEE Design Automation Conference, pages 599-604, 1998.

[Yov97] S. Yovine. KRONOS: A verification tool for real-time systems. International Journal
on Software Tools for Technology Transfer, 1(1-2):123-133, 1997.

[YSSC93] T. Yoneda, A. Shibayama, B. Schlingloff, and E.M. Clarke. Efficient verification of
parallel real-time systems. In Proceedings International Workshop on Computer Aided
Verification, LNCS, pages 321-332. Springer-Verlag, 1993.

GLOSSARY OF SYMBOLS

Transition systems

Symbol Definition Description Page
(S,%,T,s0) 2.1 Transition system (TS) 18
A 2.1 Transition system 18
S 2.1 Set of states 18
by 2.1 Alphabet of events 18
T 2.1 Transition relation 18
s 2.1 State 18
So 2.1 Initial state 18
e 2.1 Event 18
s —» ¢ 2.1 Transition 18
(s,e,s) 2.1 Transition 18
E(s) 2.1 Events enabled at s 18
FR(e) 2.1 Firing region of e 18
p 2.2 Run 19
el €2
St —>»S9 —> - 2.2 Run 19
Si€Ep Notation State of a run 19
S; i) Sit1 €p Notation Transition of a run 19
FirstEnabled(p,s;,e) 2.4 Enabling interval of e in p 20
T* Notation = Reachability relation, transitive closure of T’ 20
sy Notation s’ is reachable by p from s 20
s—s' Notation s’ is reachable from s 20
Reach(s', T") 2.5 Reachable states from s 20
(A=, 0%, 6%) 2.6 Timed transition system (TTS) 22
A~ 2.6 Underlying transition system 22
d(e) 2.6 Delay of e 22
l(e) 2.6 Minimum delay bound of e 22
d"(e) 2.6 Maximum delay bound of e 22
[d, D] 2.6 Min-max delay interval 22

227

228

GLOSSARY OF SYMBOLS

Symbol Definition Description Page
(s,7) 2.7 Timed state 22
T 2.7 Time stamp 22
(S,%,T, s, EnR) 2.8 Lazy transition system (LzTS) 26
EnR(e) 2.8 Enabling region of e 26
Petri nets
Symbol Definition Description Page
(P, T, F, M,) 2.10 Petri net (PN) 28
N 2.10 Petri net 28
P 2.10 Set of places 28
T 2.10 Set of transitions 28
F 2.10 Flow function 28
M 2.10 Marking 28
M, 2.10 Initial marking 28
p 2.10 Place 28
t 2.10 Transition 28
(p,t) Notation Flow relation 28
(t,p) Notation Flow relation 28
‘z Notation Pre-set of a node 28
z* Notation Post-set of a node 28
M(p) 2.11 Number of tokens in p at M 29
M[t) 2.11 t is enabled at M 29
[t) 2.11 Set of markings where ¢ is enabled 29
Mt)M’ 2.11 M’ is reachable by firing ¢ from M 29
o 2.12 Firing sequence 30
tita ... 2.12 Firing sequence 30
MloyM’ 2.12 M’ is reachable by o from M 30
[M,) 2.12 Set of markings reachable from M, 30
([M,), E) 2.12 Reachability graph (RG) 30
E 2.12 Set of arcs 30
(M,t, M) 2.12 Arc 30
RG(N) Notation = Reachability graph of N 30
(N,%,A) 2.13 Labeled Petri net 32
by 2.13 Alphabet of symbols 32
A 2.13 Labeling function 32
€ 2.13 “Silent” symbol 32
¥,Y0,XH 2.14 Alphabet of (input, output, internal) signals 32

GLOSSARY OF SYMBOLS

Timed automata and clock regions

229

Symbol Definition Description Page
X Notation Set of clocks 39
T Notation Clock 39
d(X) Notation Set of clock constraints 39
© Notation Clock constraints 39
(3,8,8,,X,I,T) 3.1 Timed automata 40
A 3.1 Timed automata 40
by 3.1 Alphabet 40
S 3.1 Set of locations 40
S, 3.1 Set of initial locations 40
I 3.1 Location invariant 40
T 3.1 Set of transitions 40
s 3.1 Location 40
a 3.1 Symbol 40
A 3.1 Set of clocks reset by a transition 40
(s,a,p, A\, s) 3.1 Transition from s to s’ 40
T(A) Notation Transition system associated to A 41
v(z) Notation Valuation of a clock 41
(s,v) Notation Configuration 41
0 Notation = Time increment 41
(s, U)L(s, v') Notation Delay transition 41
(s,0)—=(s,v) Notation Action transition 41
Cy Notation =~ Maximal constant a clock is compared to 46
lv(z)] Notation Integral part of a clock valuation 46
fr(v(z)) Notation Fractional part of a clock valuation 46
~ Notation Equivalence of clock valuations 46
R(A) Notation Region automaton of A 48
« Notation Clock region 48
(s,) Notation State 48
Z(A) Notation Zone automaton of A 48
D Notation Difference-bound matrix 49
D;; Notation = Upper bound on the difference of two clocks 49
D Notation = Bounds domain 49

230 GLOSSARY OF SYMBOLS

Trace semantics

Symbol Definition Description Page
0 4.1 Trace 62
BE-LE,-%... 41 Trace 62
Ei—-5 B 4.1 Transition by firing e; 62
E; 4.1 Set of events enabled when e; fires 62
D; 4.4 Set of events disabled when e; fires 66
d 4.4 Disabled event 66
e; dis d 4.4 d is disabled by the firing of e; 66
D(6) 4.4 Set of events disabled along 6 66
0, 4.2 Trace defined by a run 62
L(A) 4.3 Language of a transition system 63
0, 4.5 Fragment of a trace 68
map 4.5 Enabling-compatible mapping 68

Event structures

Symbol Definition Description Page
(2, <,0) 4.6 Causal event structure 71
cs 4.6 Causal event structure 71
by 4.6 Set of events 71
< 4.6 Causality relation 71
> 4.6 Conflict relation 71
Dy Notation Disabling relation 71
X Notation Subset of events 72
(7X)< Notation Events before X 72
(X7)< Notation Events after X 72
(°X)< Notation Root events of X 72
(X°)< Notation Sink events of X 72
{4 X)< Notation Left-closure of X 72
w 4.7 Word 72
er---ep, 4.7 Word 72
w;j 4.7 1 — th prefix of a word 72
wo 4.7 Empty prefix 72
E(wi) 4.8 Events enabled by a prefix 72
D(w;) 4.8 Events disabled by a prefix 72
D(w;) Notation Events disabled by a word 73
0. 4.9 Trace generated by word w 73

CSy 4.10 Causal event structure generated from trace 0 73

GLOSSARY OF SYMBOLS 231

Symbol Definition Description Page
(3, <',>) 4.11 Lazy causal event structure 76
</ 4.11 Set of lazy relations 76
C 4.12 Configuration 7
£(C) 4.12 Set of events enabled in a configuration 7
C Notation Set of reachable configurations 7
T Notation Initial configuration 77
L Notation Final configuration 79
(3, <,>) 4.13 Graph of reachable configurations 78
EnR(e) Notation = Enabling region of e 78
FR(e) Notation Firing region of e 78
C1 i>Cg Notation Transition between configurations 78
(C1,e,C9) Notation Transition between configurations 78

Timing analysis

Symbol Definition Description Page
Sepmaz (€1, €2) Notation = Maximal separation time of two events 184
ft(er) Notation Firing time of an event 184
A Notation Strongest bound for Sep,q.(e1,e2) 186
[d, D] Notation Delay interval 186
m(eg) Notation m-value of e 186
M (ex) Notation = M-value of e 187
h Notation Path 186
d(h) Notation Sum of minimum delay bounds along a path 186
e & e Notation A path h exists between two events 186
e, 7~ € Notation = No path exists between two events 186
e [d’—DQ e Notation = Edge between two events 187

Conventional symbols regarding sets, boolean functions, temporal logics, etc. is also used
along the document. However, it is not included here since it corresponds to well-known
notation.

