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Preface

The correct transfer of data between concurrent processes is of crucial
importance in the exploitation of parallel architectures within distributed
real-time systems. Techniques for solving this problem generally rely on
mutual exclusion principles [61] to control access to shared communication
resources. The traditional solution for mutual exclusion involves the use
of semaphores, which can be easily con�gured to protect write and read
operations on a shared memory in order to preserve the data being passed
from one process to another.

The problem with this approach is that a minimum locking between the
asynchronous communicating processes is not guaranteed. This is mainly
because the semaphore protects the data access operations. Since these op-
erations may be performed in a register of arbitrary size, this may take a
long time to conclude. One way of solving this problem is to design the
communication scheme in such a way that the atomic actions of each process
only occurs at a very small granularity level, when accessing binary control
variables.

An Asynchronous Communication Mechanism is a scheme which manages
the transfer of data between two processes not necessarily synchronized for
the purpose of data transfer. The general scheme of ACMs includes a shared
memory for the data being transferred, and a set of unidirectional control
variables. Each control variable is set by one process side and only read by
the other. With this schema it is possible to design communication protocols
in which the processes can be fully asynchronous. On the other hand, the
use of binary control variables turns the design of ACMs a slow and prone
to errors task.

This work describes an automated technique for the synthesis of ACMs.
The construction of ACMs is known to be a hard task, and until now it was
typically made on an ad-hoc basis, using a construct-and-verify approach.
The main motivation of this thesis is the development of a systematic and au-
tomatic method for the construction of asynchronous communication mech-
anisms having as a starting point only its functional speci�cation. At the
end of the process, an implementation of the ACM will be available to be
used to communicate between two asynchronous processes. Most important,
the implementation obtained should have some guarantee of satisfying ACM
properties such as coherence and freshness.

Firstly we will introduce ACMs, their classi�cation, the properties they
should satisfy, and their requirements. Two properties have special rele-
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vance: coherence and freshness. Coherence is related to the mutual exclu-
sion between the communicating processes when accessing the communica-
tion bu�er. Freshness is related to the fact that a written data must be
made available for the reader process. The requirements are that any control
variable used must be single-bit and unidirectional, and the processes cannot
share any action. The ACMs addressed here where introduced previously
by Alex Yakovlev and Fei Xia. Unlike their work, which was focused on the
design of ACMs, the main focus of ours was the development of methods to
allow the rapid prototyping of ACM source code. In this sense, the work
presented is an evolution of the original work by Yakovlev and Xia.

Two approaches, both having as input only a functional speci�cation, for
the automatic synthesis of ACMs will be described. The �rst one is based
on the generation of a state graph speci�cation for the ACM. The state
graph model captures the properties of an ACM at the level of interleaving
semantics. Then a Petri net model is synthesized from the state graph. The
method for the synthesis of Petri nets is based on a more general procedure
of synthesizing Petri nets, which uses the theory of regions. Finally, the
implementation is derived from the Petri net model.

In this approach, the Petri net model synthesized preserves the coherence
and freshness properties. This is guaranteed by construction. On the other
hand, besides the fact that it is possible to generate state graph speci�cations
of considerable size, the synthesis of Petri net models is only possible for
ACMs of very small size, which makes the state graph based approach of
limited practical use. From the analysis of the state graphs and the few Petri
net models obtained, it was observed that both show a very regular structure.
This suggested that it should be possible to explore this regularity to directly
generate the Petri net model. Then, as before, the Petri net model can be
used to obtain the ACM implementation.

Using this new approach, it is possible to generate ACMs of much larger
size than before. The payback comes in the need to model check the Petri
net model before synthesizing the implementation. In the �rst approach, the
correctness of the PN was guaranteed by construction, which does not occur
in the new one. For this reason, the formal veri�cation of the ACMs models
obtained with the second approach is addressed. Coherence and freshness
are formally described as a set of CTL formulae. Then, model checking is
applied to the Petri net model. If the result is positive, the ACM synthesis
can process with some formal guarantee that the resulting artifact preserves
coherence and freshness. On the other hand, since the state space of the
ACMs may grow very fast, this new approach su�ers from the state space
explosion problem. It is not possible in practice to model check large ACMs.
When it happens, it is still possible to synthesize the ACM implementation.
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However, in this case it cannot be argued that coherence and freshness hold.
The synthesis of implementations of ACM from the Petri net models is

discussed for both software and hardware. The software is synthesized as
C++ source code. However, the technique presented is generic enough to
be used to obtain source code for any programming language and OS which
provides IPC and shared memory mechanisms. The synthesis procedure will
be detailed later, and in short terms it is based on the simulation of the Petri
net behavior by the source code.

Finally, the hardware implementation is given as a set of block diagrams
and some Verilog code. The block diagrams implements the basic structure of
the ACM, with some gaps that should be ful�lled. Those gaps are the behav-
ior given by the writer and reader processes. The processes are implemented
in Verilog code that is used to ful�ll the gaps.

A number of applications can bene�t from the synthesis of ACMs. In
particular we can mention those in which a number of subsystems asyn-
chronously communicate in order to achieve a common goal. For instance,
let us consider an automotive embedded system in which many sub-modules
monitor and/or control di�erent parts of a vehicle. To control the speed
of the vehicle a module can monitor the actual speed, another module may
control the amount of gas injected into the engine, and yet another module
may control the breaks. The interaction of all modules can be simpli�ed if
all sub-systems are asynchronous. If this happens, a proper communication
scheme is needed. The scenario may become more complex when we add an-
other sensor to check if there is some other vehicle on the way. In this case,
the breaks should be activated and a new speed limit must be set. If the
other vehicle starts running faster or changes the lane, then more gas may
be injected into the engine to achieve the previous speed limit. The speed
limiter system may also consider information about the legal speed limit on
the road, which implies communication with some positioning system.
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Chapter 1

Introduction

The accurate and timely transfer of data between concurrent processes is of
crucial importance in the exploitation of parallel architectures within dis-
tributed real-time data processing systems. Techniques for solving this prob-
lem generally rely on mutual exclusion principles [61] to control access to
shared communication resources. The allocation of such resources is a clas-
sical example of the need for mutual exclusion in real systems.

Mutual exclusion is one of the most important mechanisms used for the
synchronization of concurrent processes, and apart from its practical moti-
vation, it is also a problem of great theoretical signi�cance [44]. The mutual
exclusion concept is strictly related to the way programmers think about con-
current programming. Therefore, a number of formal models of concurrency
and the proposed interprocess communication mechanisms are based on the
notion of mutual exclusion [35, 52].

The traditional solution for mutual exclusion involves the use of
semaphores. A semaphore is a protected variable and constitutes the classic
method for restricting access to shared resources in a multiprogramming en-
vironment [18]. The operations over a semaphore must be indivisible, which
means that each of the operations may not be executed multiple times con-
currently. A process wishing to execute an operation that is already being
executed by another process must wait for it to complete �rst. This can
be achieved by a special instruction, if the architecture's instruction set sup-
ports it, or by ignoring interruptions in order to prevent other processes from
becoming active.

The use of semaphores provides solutions to most concurrent program-
ming problems. However since the correct use of semaphores depends on all
programmers involved in the construction of a system, it is di�cult to con-
struct a large system using them. If only one programmer makes a mistake
when using the primitives, it will be very di�cult to identify in which part
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2 CHAPTER 1. INTRODUCTION

of the code the problem is [5].
To solve this problem, Hoare [34] and Hansen [30] proposed the use of

monitors as a synchronization primitive that could be used in a more struc-
tured way. A monitor encapsulates all the procedures used to access a shared
resource and all variables/data structures that describe its status. And the
only way to access a resource is through the use of the monitor. Moreover,
only one process can use a monitor at a time, this makes the monitors at-
tractive to solve mutual exclusion problems.

Due to the fact that monitors can be embedded in programming lan-
guages, it is possible for the compiler to handle the mutual exclusion problem.
This makes the use of monitors easier and safer than the use of semaphores,
since mutual exclusion is guaranteed by the compiler and not by develop-
ers [71, 75].

1.1 Asynchronous communication mechanisms

Interprocess Asynchrony is inevitable for computation networks in the future.
Firstly, this is because di�erent and diverse functional elements, especially
those connecting to analogue domains, tend to have di�erent timing require-
ments [41, 69]. Secondly, concurrent and distributed system implementations
lead to greater asynchrony between components as semiconductor technol-
ogy advances and the degree of integration increases (the ITRS-2007 �Design�
document [1] emphasizes multiple clock domains and source-synchronous sig-
naling and predicts networks of self-timed blocks). The size of the compu-
tation networks is becoming larger, and the tra�c between the processing
elements is increasing. Therefore, handling the data communications which
make up the tra�c may determine much of the performance and character-
istics of such systems.

One of the most important issues when designing communication schemes
between asynchronous processes is to ensure that such schemes allow as much
concurrency as possible after satisfying design requirements on data. When
the size of computation networks becomes large, and the tra�c between the
processing elements increases, this task becomes more di�cult to be achieved.

Classical semaphores can be easily con�gured to protect write and read
operations on a shared memory in order to preserve the data being passed
from one process to another. The communication model provided by
semaphores is illustrated in Figure 1.1.

In this system a semaphore called mutex, that is properly initialized with
value one before the initialization of the processes, is used to control the
access to the shared memory. The sender produces the data that will be
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Figure 1.1: Communication via shared memory

consumed by the receiver. Before writing or reading the memory, each
process should perform a Down in the semaphore to guarantee that only
one of them is executing the critical section.

1: process sender()
2: loop
3: produce data;
4: Down(mutex);
5: write on memory;
6: Up(mutex);
7: end loop
8: end process

1: process receiver()
2: loop
3: Down(mutex);
4: read from memory;
5: Up(mutex);
6: process data;
7: end loop
8: end process

However, this solution does not provide a minimum locking between the
communicating processes, which is not satisfactory when it is desirable to in-
crease the concurrency between them. This happens because the semaphore
is directly protecting the data access operations, which may take a long time
to conclude due to the fact that these operations may be performed on a
register of arbitrary size.

One way to reduce the locking time between the processes is to design the
communication scheme in such a way that the atomic actions of each process
only occur at a very small granularity level, when accessing control variables.
In other words, it is necessary to move the atomicity of actions from data
accesses to few bits control variable accesses [69, 82]. Putting in a more
simple way, what we want is that instead of entering into a critical section
to perform an I/O operation, which may be long, the process only enters
in the critical section to set the value of few and small control variables.
And the value of these control variables will determine if the process has
access guaranteed to some shared memory without the risk of other process
accessing it at the same time.

The desire of reducing the locking time is exempli�ed by the original work
of Lamport on �atomic registers� [45, 46] and it is present in all subsequent re-
search on asynchronous communication, which includes the Lamport atomic
register, in the literature. In Lamport's atomic registers, the communicating
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processes are assumed to operate in fully temporal independence. However,
the classi�cation for asynchronous communication mechanisms proposed by
Simpson [67, 70] introduced protocols that do not necessarily allow full asyn-
chrony between the communicating processes. One of the processes, or both,
may be required to wait for the other. In Simpson's work, the communication
protocols are classi�ed according to whether the reading and writing oper-
ations can be regarded as destructive or not. For instance, in a destructive
writing scheme, the writer process cannot be blocked.

The ACM model

An Asynchronous Communication Mechanism (ACM) is a scheme which
manages the transfer of data between two processes, a producer and a con-
sumer, not necessarily synchronized for the purpose of data transfer. In the
context of ACMs, the producer and consumer of data are usually known
as the writer and reader processes, respectively. Therefore, the ACM is a
data connector linking two processes, the writer and the reader. The gen-
eral scheme of these kinds of data communication mechanisms is shown in
Figure 1.2. Most ACM implementations tend to include a shared memory,
which is accessible to both processes, for the data being transferred, and a
set of unidirectional control variables, each of which is set by one side and
read by the other. In this work we assume that the data being transferred
consists of a stream of items of the same type, and that the writer and reader
processes consist of single-thread loops. During each cycle a single item of
data is transferred to or from the ACM.

Figure 1.2: ACM with shared memory and control variables

ACMs may be of arbitrary size. The shared memory is organized as a ring
of memory cells, as illustrated in Figure 1.3, each one being able to hold one
data item. In some implementations that require overwriting it is necessary
to have an extra space to store another data item in a cell, in this case we say
that the cell has two slots. Each process attempting to access a certain cell
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has the access to it granted or denied according to the values of the control
variables and the requirements the ACM should satisfy.

Figure 1.3: Multi-cell ACM scheme

Multi-cells ACMs are particularly important to give the designer more
�exibility. In general, there is a trade o� of data freshness for data sequencing.
An ACM with more cells attempts to provide the reader process with better
continuity of data. For instance, the user of a multimedia stream system
cares more about receiving all frames of a video in the correct order than
always getting the last rendered frame, even if few frames are lost. On
the other hand ACMs with few cells attempt to serve the reader with fresh
data. In a system that controls the temperature of a room, probably the
last data received from the sensors are more important than any previous
data. Depending on the requirements of the system under development, the
designer determines the optimum size of the ACM.

ACMs are classi�ed according to whether overwriting and re-reading are
permitted [86].

• Overwriting: occurs when the ACM is full of data that has not been
read yet, in this case the writer can discard the oldest data item and
overwrite it;

• Re-reading: occurs when all the data in the ACM has been already
read, and in this case the reader is allowed to read the last accessed
item again.

Table 1.1 shows such a classi�cation. BB stands for a bounded bu�er and
it does not allow overwriting or re-reading. Depending on the circumstances,
it may be necessary for one of the processes to wait for the other. The
RRBB ACM speci�es a communication scheme that permits re-reading, but
the writer is required to wait if the bu�er is full of data that has not been
read. On the other hand the OWBB scheme allows overwriting items but
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requires the reader to wait for new data if the bu�er is empty. Finally, the
OWRRBB scheme does not require either process to wait at any time. This
simple and elegant classi�cation is used on the work presented here.

No re-reading Re-reading

No overwriting BB RRBB

Overwriting OWBB OWRRBB

Table 1.1: ACMs classi�cation.

For re-reading, it is much more natural to re-read the item from the
previous cycle rather than re-reading an item from several cycles before. On
the other hand, overwriting might happen anywhere in the bu�er. However,
the strongest practical cases that have been proposed consist of overwriting
either the newest or the oldest item in the bu�er [22, 69, 84]. Overwriting
the newest item in the bu�er, which is a relatively straightforward task to
approximate [84], attempts to provide the reader with the best continuity
of data items for its next read. Continuity is one of the primary reasons
for having a bu�er of signi�cant size. Overwriting the oldest item is based
on the assumption that newer data is always more relevant than older. Note
that in this case, only the oldest data item is lost, the others remain available
for reading. In this work, we tackle the much more interesting problem of
overwriting the oldest item in the bu�er.

An introductory example

To illustrate how an ACM works, let us consider a re-reading (RRBB) ACM
with three data cells. The control variables r and w are used to indicate
which cell the reader and the writer should access, respectively. In the initial
state of the graph in Figure 1.4(a), the reader is pointing at cell 1, which is
also initialized with some data, and the writer to cell 2 (r = w - 1).

The behavior of the writer is as follows. It �rst writes the data on the wth

cell, then it advances to the next cell by increasing (in a modulo operation)
the value of w. Finally, it checks if the reader is also pointing at the new
cell, i.e. if w is equal to r. In the positive case, since overwriting data is not
allowed, the writer waits until it is no longer true. Otherwise it can access
the ACM again, as illustrated by Figures 1.4(c) and 1.4(b) respectively.

The reader �rst checks if the writer is pointing at the next cell, i.e. if
(r + 1) mod 3 6= w. In the positive case, the reader prepares to re-read the
data on the current cell and the value of r does not change, as in Figure 1.4(d).
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(a) Initial state (b) Writer advances to
next cell

(c) Writer advances to
next cell and blocks

(d) Reader prepared to re-
read

(e) Reader prepared to ad-
vance to next cell

Figure 1.4: Execution of RRBB ACM with 3 cells.

Otherwise it advances to the next cell by incrementing r and prepares to read
a new data item, as in Figure 1.4(e).

By behaving like this, both processes will avoid accessing the same data
cell at the same time, the writer will not be allowed to overwrite unread data,
and the reader will have the possibility of re-reading the most recent data in
case there is no unread data in the ACM.

Algorithm 1.1 Re-reading ACM with 3 cells

1: process writer()
2: w := 2;
3: loop
4: write cell w;
5: w := (w+1) mod 3;
6: wait until w 6= r;
7: end loop
8: end process

1: process reader()
2: r := 1;
3: loop
4: if (r+1) mod 3 6= w then
5: r := (r+1) mod 3;
6: end if
7: read cell r;
8: end loop
9: end process

The behavior of the reader and the writer is captured by Algorithm 1.1.
Observe that each control variable is updated by only one of the process.
By doing so, unidirectional control variables as introduced in the previous
section are used.

In Algorithm 1.1 it is necessary two bits to represent each control variable.
If one variable is about to be modi�ed and referenced about the same time,
it is not possible to guarantee the consistence of the recovered value. This
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means that it is necessary to encode each r and w as a set of three binary
variables, wi and ri, with i = 0, 1, 2. wi will have value 1 if the writer is
pointing to the ith cell, and the values of the wi changes according to the cell
that the writer is pointing to. The same reasoning applies to the reader. It
is not di�cult to see that when the size of the ACM grows, it becomes more
and more di�cult for a human developer to deal correctly with all control
variables. This becomes even more evident for the overwriting ACM policies.

Besides that, when designing ACMs it is necessary to consider that the
ACM should satisfy some data coherence and freshness requirements. The
data coherence requirement is related to the fact that the reader and the
writer processes cannot access the same data record at the same time to avoid
the reader obtaining a data that is not valid, and the freshness requirement
is related to the fact that the last data record produced by the writer process
must be made available to the reader.

1.2 Automatic synthesis of ACMs

The main motivation of this thesis is the proposal of a formal and automatic
method for the construction of asynchronous communication mechanisms
having as a starting point only its functional speci�cation. At the end of
the process, an implementation of the ACM will be available to be used for
communication between two asynchronous processes. Two types of imple-
mentations will be addressed, software and hardware implementations. Each
type of implementation has its own technicalities that will be addressed at
the proper time. For now it is enough to know that in the end of the process,
a C++ or a Verilog implementation will be made available for use.

The main characteristic of the artifacts we want to synthesize is that
they must provide communication using the model described in the previous
sections, which is illustrated in Figure 1.2. The access to the shared memory
must be controlled through the use of a set of binary and unidirectional
control variables.

In order to achieve the goal declared above, two methods are proposed.
The �rst method is based on the generation of a state graph speci�cation from
the ACM functional speci�cation [16, 26]. The state graph model captures
the properties of an ACM at the level of interleaving semantics. Then a Petri
net [55, 57] model is synthesized from the state graph. The method for the
synthesis of Petri nets is based on a more general procedure of synthesizing
Petri nets, which uses the theory of regions [56]. Finally, the implementation
is derived from the Petri net model. This method is illustrated in Figures 1.5.

This was our �rst e�ort in order to automate the task of generating ACMs.
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Figure 1.5: Design �ow for ACMs.

This technique was developed under the assumption that it is more natural
to generate code from the Petri net model if this model can be decomposed
into two sub-models, sharing some few places, which model the behavior of
two sequential processes that are truly concurrent. Considering this, a Petri
net model is closer to the implementation than state graphs.

This approach has the advantage that it is guaranteed by construction
that the Petri net model synthesized preserves all properties a correctly de-
signed ACM should satisfy. On the other hand, as nothing comes for free,
this advantage comes at a high price. Besides the fact that it is possible to
generate state graph speci�cations of considerable size, the synthesis of Petri
net models is only possible for ACMs of very small size. This makes the state
graph based approach of limited practical use. It is clear that an alternative
method for the automatic synthesis of ACMs is needed in practice.

From the analysis of the state graphs and the few Petri net models ob-
tained with the application of the state graph approach, it was observed that
both show a very regular structure. This suggests that it should be possible
to explore this structured nature and de�ne a new method that directly gen-
erates the Petri net model, avoiding the need of synthesizing it from a state
graph speci�cation [25]. Then, as before, the Petri net model can be used
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to obtain the ACM implementation. This new method for the automatic
generation of ACMs is illustrated in Figure 1.6.

Figure 1.6: Design �ow for ACMs. Optimized approach.

Using this new approach, it was possible to generate ACMs of much bigger
size than before. The payback comes in the need to model check the Petri
net model before synthesizing the implementation. In the �rst approach,
the correctness of the PN was guaranteed by construction, which does not
occur in the new one. For this reason, it is necessary to provide some formal
guarantee of such correctness. In order to address this problem, coherence
and freshness, have been formally described as a set of CTL formulae [12].
Then, models checking can be applied over the Petri net model. If the result
is positive, the ACM synthesis can process with some formal guarantee that
the resulting artifact preserves coherence and freshness.

On the other hand, since the state space of the ACMs may grow very fast,
this new approach su�ers from the state space explosion problem. It is not
possible to model check large ACMs. When it happens, it is still possible to
synthesize the ACM implementation. However, in this case the correctness
of coherence and freshness cannot be guaranteed.

It is interesting to observe that in Figure 1.6 it is not speci�ed what
happens if Model Checking fails. There is no feedback to previous steps
if something goes wrong. This is because the Model Checking is used to
validate our synthesis methodology. It is not intended to be used by the
user. This was necessary due to the fact that we do not have any formal
proof of its correctness.

The Petri net model can be used to synthesized both software [25] and
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hardware [24] implementations. The synthesis procedure will be detailed
later, and it is based on the simulation of the Petri net behavior by the
source code.

1.3 Organization of the document

The rest of this document is organized as follows. In Chapter 2 some basic
de�nitions and the state of the art in the speci�cation of asynchronous com-
munication mechanisms are given. Once the background is introduced, the
main topics will be addressed.

In Chapter 3 the �rst method for the automatic synthesis of ACMs is
introduced. The generation of state graph speci�cation for re-reading and
overwriting ACMs is detailed as is the generation of Petri nets from those
speci�cations. The Petri net approach, which does not depend on the state
graph speci�cation, is detailed in Chapter 4. This second approach is based
on the de�nitions of modules that are used as building blocks to generate the
PN models. Also, the generation of PN models for re-reading and overwriting
policies is presented in details. Besides that, the CTL formulae for coherence
and freshness properties are introduced.

Then the automatic formal veri�cation of the PN models is discussed in
Chapter 5. The de�nitions presented in Chapter 4 are used in order to de�ne
a veri�cation methodology that uses an abstraction of the ACMs for checking
coherence and freshness. Then, re�nement veri�cation is applied to ensure
that the PN model correctly implements the ACMs abstraction with respect
to those properties.

In Chapters 6 and 7 the realization of the PN models as real implemen-
tations is discussed. Firstly, in Chapter 6, the generation of software im-
plementations is presented. The ACM is implemented as C++ source code
design to run in a speci�c environment. The same technique can also be used
to obtain implementation in other programming languages and/or operating
systems, provided that the needed inter-process communication primitives
are provided. Secondly, in Chapter 7, the generation of hardware implemen-
tations for the re-reading ACM is presented. The implementation is given in
the form of Verilog code and as a set of block diagrams, which can be easily
mapped to Verilog code.
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Chapter 2

Preliminaries

The basic concepts and de�nitions required to the development of this work is
introduced here. In Section 2.1 the Petri nets, which will be used to specify
the ACM model, are formally described. Then, in Section 2.2, the model
checking veri�cation technique is discussed. Also, the CTL temporal logic is
introduced. The CTL model checking will be used later to formally verify
coherence and freshness over the obtained ACM models. Section 2.3 brings
a discussion about Lamport's atomic registers, which have inspired all work
on ACMs. In Section 2.4 Simpson's four-slots, which addresses policies not
considered by Lamport, are introduced. Finally, in Section 2.5 the systematic
approach for the generation of ACMs given by Xia and Yakovlev is discussed.
Besides that, the ACMs requirements proposed by them are detailed. These
requirements are important to us due to the fact they have been considered
in the design of the automatic ACM generation methods described later.

2.1 Petri nets

Petri nets (PN) are a mathematical tool that can be used in the modeling
and analysis of systems, especially concurrent, asynchronous, distributed and
non-deterministic ones [55]. They have a graphical representation that is
equivalent to its mathematical notation. This graphical representation turns
the comprehension of the system being modeled easier.

A Petri net is composed of a net structure and an initial marking associ-
ated to this structure. The Petri net structure is given by a bipartite graph
in which the nodes are of two types: places and transitions. Places usually
represents states or resources of the system, while transitions usually model
events or actions. A Petri net is formally described in De�nition 2.1

13
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De�nition 2.1 (Petri net) A Petri net is a tuple N = 〈P, T, F,W,M0〉 in
which:

• P is a �nite set of places;

• T is a �nite set of transition;

• P
⋂
T = ∅ ∧ P

⋃
T 6= ∅;

• F ⊆ (P × T )
⋃

(T × P ) is a set of arcs (�ow relation);

• W : F → N− 0 is a weight function;

• M0 : P → N is the initial marking.

According to the relation �ow F , the arcs in the Petri net always con-
nect nodes of di�erent types. i.e. a place to a transition, or a transition to a
place. In the graphical notation, places are represented by circles, transitions
by rectangles and the relation �ow by directed arcs. This graphical repre-
sentation is illustrated in Figure 2.1. This Petri net, models the chemical
reaction to obtain one molecule of water, H2O.

(a) Before the reaction (b) After the reaction

Figure 2.1: PN introductory example, a chemical reaction

The state of a Petri net is given by its marking. A marking corresponds
to the number of tokens associated to each place at a given moment. For
instance, a token on place H2 indicates the presence of one molecule of hy-
drogen in the system. Speci�cally, on Figure 2.1(a) there are two molecules
of hydrogen and two of oxygen to perform the chemical reaction to obtain
water. This reaction is modeled by transition t. When the reaction hap-
pens, two molecules of hydrogen and one of oxygen are used to generate two
molecules of water, and the state of the Petri net changes to the one shown
in Figure 2.1(b).

The semantics of a Petri net is de�ned by the �ring rule, which establishes
the conditions that should be satis�ed to enable the occurrence of a transition
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and what are the consequences of executing that transition. For instance, in
the Petri net of Figure 2.1, the condition to enable t is the existence of two
token on place H2 and one token on place O2. The �ring rule states that:

1. A transition t is enabled if each of its input places has at least the
amount of tokens speci�ed in the arc from the respective input place;

2. An enabled transition may or may not be �red;

3. When a transition is �red, the number of tokens speci�ed on the input
arcs are removed from the respective places and tokens are added to
all output places according to the weight of the respective arcs.

In the system above, when the transition t is �red two tokens are removed
from H2 and one token is removed from O2, then two tokens are added to
H2O. The notation •t and t• is used to denote the pre-set and the post-set
of t, i.e. the set of input places and the set of output places of t, respectively.
The same notation is used to denote the pre-set (•p) and post-set (p•) of a
given place p.

Let us consider a transition ti that �res on marking Mi and results in
markingMj, which is denoted byMi[ti > Mj. Lets also consider a transition
tj that �res on Mj and results in Mk, which is denoted by Mj[tj > Mk.
Mi[σ > Mk, where σ = titj, can be used to say that Mk can be reached
from Mi by the �ring sequence σ. In particular, a marking M is said to be
reachable from the initial marking M0 of a given Petri net if there exists a
�ring sequence σ such that M0[σ > M .

The Petri net can be used to analyze two types of properties: behavioral
and structural. The behavioral properties are those that depend on the ini-
tial marking of the Petri net, while the structural properties do not. Typical
properties that can be analyzed include reachability, boundness, liveness, re-
versibility, coverability and persistence. Boundness property is of particular
interest in this work. A Petri net is said to be k-bounded if the number of
tokens in each place does not exceed a �nite number k for any reachable
marking of the Petri net for a given M0. In particular, the Petri net is said
to be one-safe if k = 1. A marking M is said to be reachable from M0 if
there is a �ring sequence that changes marking from M0 to M .

2.2 Model checking

Formal veri�cation is a systematic approach that helps designers to reason
about the behavior of computational systems. Models and properties (also
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called speci�cation) are described using languages with mathematical seman-
tics, and they can be used to identify design errors and to prove that a given
model satis�es, or implements, its speci�cation [15].

Model checking is a veri�cation technique in which the system to be
veri�ed is described as a state transition system with �nite behavior and the
properties of the system are described as temporal logic formulae [13]. The
goal is to determine if a temporal logic formula f is true in a given transition
system. In short terms, the veri�cation is based upon an exhaustive search
of the state space of the system.

Formally, the model checking problem is de�ned in terms of a Kripke
structure. A Kripke structure is a non-deterministic �nite state machine
whose states are labeled with Boolean variables, which are the evaluations
of expressions in that state [14, 36]. The model checking problem can be
stated as follows: Let K be a Kripke structure, and let ϕ be a temporal logic
formula. Find all states s of K such that K, s |= ϕ [8].

Temporal logic is a modal logic that consists of a formal framework that
could be used to describe how the events of a given system occur in the
time [21]. Typically, the operators of the logic allow describing safety, live-
ness or precedence properties. In this way, temporal logic provides a useful
framework to specify software systems, especially concurrent systems, as pro-
posed by Pnueli in [58].

CTL

Among others, the Computation Tree Logic (CTL) and Linear Temporal
Logic (LTL) are two of the most useful temporal logics [9, 10]. They di�er
in how they handle branching in the underlying computation tree. The CTL
operators permit to quantify over the paths departing from a given state. In
LTL, operators are intended to describe properties of all possible computation
paths. It is an agreement that the temporal logic provides a good framework
to describe and to reason about the behavior of concurrent systems. However,
it is not the case when the question is which one is more appropriate, linear
or branching time logic, to do it. In this work the Cadence SMV [50] model
checker will be used for the veri�cation of ACM models, for this reason we
will concentrate on the description of the CTL temporal logic only.

CTL combines path quanti�ers with linear time temporal logic operators.
The path quanti�ers A (�for all paths�) and E (�for some paths�) should be
used as a pre�x of one of the operators G (�always�), F (�sometimes�), X
(�nexttime�) and U (�until�).

Given that AP is the set of atomic propositions, the syntax of CTL is
given by the following rules:
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1. If φ ∈ AP , then φ is a CTL formula;

2. If φ and ϕ are formulae, then ¬φ, φ ∧ ϕ and φ ∨ ϕ are also formulae;

3. If φ and ϕ are formulae, then EX(φ), AX(φ), φ EU ϕ and φ AU ϕ
are also formulae.

The others CTL operators are de�ned as abbreviations as follows:

EF φ ≡ true EU φ

AG φ ≡ ¬EF(¬φ)

AF φ ≡ true AU φ

EG φ ≡ ¬AF(¬φ)

A CTL formula is interpreted with respect to a Kripke structure. If φ is
a CTL formula, K, s0 |= φ is used to denote that φ holds in the state s0 of
K.

The four most used CTL operators are EF, AF, EG, and AG. The
intuitive interpretation of such operators is illustrated in Figure 2.2. AF(φ)
means that for all paths starting from s0, φ holds at some state along the
path, φ is said to be inevitable. EF(φ) means that exists a path starting
from s0 in which φ holds at some state along this path. AG(φ) means that
for all paths starting from s0, φ holds at every state along those paths, i.e.
φ holds globally. Finally, EG(φ) means that exists a path starting from s0

in which φ holds at every state along this path.

2.3 Lamport's �Atomic Registers�

In [46] Lamport showed that the problem of asynchronous interprocess com-
munication can be solved through the use of shared registers. He also in-
troduced a set of algorithms to do this. In his work, Lamport de�ned three
classes of registers: safe, regular, and Atomic.

The safe register is the weakest one. It is necessary to assume only
that reads and writes cannot be concurrent. If this requirement is satis�ed,
then the reader will obtain the most recently written value. Otherwise, no
assumption is made and the reader can obtain any of the possible values of
the register.

The regular register is a safe register in which a read may overlap a write.
If it happens, then the reader will receive either the new value of the register
or its previous value. Note that if the read overlaps a series of writes, the
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(a) M, s0 |= EFφ (b) M, s0 |= AFφ

(c) M, s0 |= EGφ (d) M, s0 |= AGφ

Figure 2.2: Basic CTL operators

value obtained by the reader will be either the value in the register before
the read started or any of the values written during some of the overlapping
writes.

The atomic register is the strongest possibility. It is a safe register in
which for any execution of the system there is some sequential execution
order of the reads and writes such that the values obtained by the reads are
the same as if the operations had been executed in such order.

To better understand these registers, let us consider a system composed
of two concurrent process (one writer and one reader) that access one shared
register that can have values X, Y or Z. In Figure 2.3 a possible execution
of the system is presented. Each operation, is represented by a horizontal
temporal line, wr stands for �write� and rd stands for �read�.

Figure 2.3: Two writes and three reads execution
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If the register of the system is safe then the operation rd1 will obtain X
as the result. On the other hand, rd2 and rd3 may obtain X, Y or Z (all the
possible values of the register) as the result.

In the case of a regular register rd1 also obtains a X, but now rd2 and
rd3 cannot obtain Z as a result since it was neither the previous value of the
register nor the new value. In particular, it is important to note, rd2 can
obtain Y while rd3 obtains X.

Finally, in the case of an atomic register rd1 obtains X while rd2 and
rd3 should obtain respectively: X and X; or X and Y; or Y and Y. Note
that now rd3 cannot obtain X if rd2 obtained Y before. It happens because
for any possible sequential execution of this system, rd2 must necessarily
occurs before rd3, and if the value obtained by rd2 is Y, it means that in the
sequential execution wr Y has �nished and since the register is also safe the
only possible value rd3 can obtain is Y.

According to Lamport, the implementation of a reader-writer register
should consider three main dimensions:

1. safe / regular / atomic;

2. Boolean / multivalued ;

3. one-reader / multireader.

The �rst dimension is de�ned according to the assumptions that the reg-
ister must satisfy, i.e. if the register is safe, regular or atomic. The second
dimension is related to the values that a register may assume, i.e. if the
register can assume only Boolean values or if it can assume any value of a
speci�ed set. Finally, the third dimension classi�es the register according to
the number of reader processes allowed to access the registers.

Together, these three dimensions generate twelve di�erent classes of im-
plementations that can be partially ordered by its strength. For example,
an atomic, multivalued, multireader register is stronger than a safe, Boolean,
one-reader register (which is the weakest possibility). Lamport de�ned meth-
ods to construct a register of each class using only registers of a weaker class.
For instance, a multireader, Boolean, safe register is constructed from one-
reader registers. The method consists in replicating the one-reader register
in such a way that each register will be accessed by only one reader and one
writer will provide data to all of them.

Although Lamport claims the weakest register is the safe, Boolean and
one-reader, it is necessary to observe that the read of a persistent register
that overlaps with a write cannot guarantee to return a valid value (if the
ACM is physically able to store more values than it is speci�ed by the data
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type) [33]. For example, to implement a 3-valued register we need at least
two bits, and thus the register is able to store four di�erent values.

2.4 Simpson's Four-slot ACM

Simpson de�ned a fully asynchronous communication mechanism that makes
use of a shared memory to communicate data between two processes [65].
Mutual exclusion is replaced by a control scheme that avoids any concurrent
read and write to the same data slot (a slot is an area in the shared memory
that is used to store one data record). Simpson's ACM requires the use
of four slots and four binary control variables to guarantee that the reader
and writer processes will not access the same data slot at the same time to
preserve data coherence.

The four slots are organized into two pairs, and there is an initialization
procedure that puts one data record in one of the slots. The four binary
control variables are used to indicate which slot each process is accessing. So
we have the following variables:

1. reading : indicates the pair of slots the reader is accessing, or last ac-
cessed;

2. latest : indicates the pair of slots the writer is accessing, or last accessed;

3. slots : it is a two-element array of binary variables that are used to
indicate the slot number (zero or one) each process should access in
the pair it is currently pointing to.

Essentially, the writer and reader processes behave as described in Algo-
rithm 2.1.

The writer algorithm always avoids selecting the pair the reader is cur-
rently pointing to, and avoids selecting the slot in the pair which was last
written. With this correct choice, the process can proceed writing to the
memory and then indicating the pair and slot that contains the latest writ-
ten data element.

The reader algorithm always chooses the pair and slot that contains the
latest written data, and then indicating that it is pointing to this memory
area. Then the reader can access the new data element.

The design of this four-slot mechanism intends that the reader and writer
never access the same slot at the same time. This guarantees that data
coherence is preserved even when reads and writes overlap. In the same
way, since the reader always accesses the most recently written item, it also
preserves data freshness. More speci�cally the reader:
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Algorithm 2.1 Simpson's four-slot ACM

1: process writer()
2: var pair, index: boolean;
3: loop
4: pair = ¬ reading;
5: index = ¬ slots[pair];
6: write new data record to slot

(pair,index);
7: slots[pair] = index;
8: latest = pair;
9: end loop
10: end process

1: process reader()
2: var pair, index: boolean;
3: loop
4: pair = latest;
5: reading = pair
6: index = slots[pair];
7: read data record from slot

(pair,index);
8: end loop
9: end process

1. Obtains the last data record written before the start of the read, when
the read does not overlap with a write;

2. Obtains the last data record written before the start of the read or one
of the data records written by an overlapping write;

3. Never obtains a data record that is older than the previously obtained
one.

Observe that these relate directly to the safe, regular and atomic registers
de�ned by Lamport [46].

Later Simpson presented an analysis method [66, 68] and used this
method to demonstrate that data coherence and freshness are guaranteed
by the four-slot ACM.

2.5 A systematic approach to synthesis of

ACMs

The construction of algorithmic descriptions that can be mapped into hard-
ware or software implementations is a challenging task. A number of solutions
have been proposed. However, most of them have been obtained through an
ad hoc process. Xia and Yakovlev [78, 81, 85] introduced a systematic method
to synthesis of algorithmic descriptions of ACMs. Their method consists in
four steps:

1. Construction of the state graph speci�cation of the ACM;
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2. Re�ning the state graph through the addition of silent actions that are
interpreted as an update in the value of a set of control variables;

3. Synthesizing a Petri net model that is composed by two sequential
processes from the re�ned state graph;

4. Mapping the obtained Petri net model into an algorithmic description.

The two main assumptions of that work are that: i) the communicating
processes do not share any action in order to transmit data; and ii) all control
variables used are unidirectional. In what follows, these two assumptions are
detailed.

2.5.1 Communication without process sharing

Interprocess data transmission is traditionally implemented through synchro-
nization for the purpose of data transfer (e.g. Occam [40]). However, this
kind of synchronization, especially when including actions which may be re-
garded as simultaneously belonging to both communicating processes (�pro-
cess sharing�), is undesirable for ACM solutions unless demanded by the
functional speci�cation. In [79, 80, 82, 83, 85, 86] much e�ort has been spent
on making ACMs as concurrent as possible, given a particular speci�cation.
This work continues in that direction.

Functional speci�cations of ACMs may require synchronization between
the processes at some point. For instance, let us consider a simple ACM,
called �rendezvous� in [69]. This ACM has two processes with one private
action each, a and b, respectively. Every time pr1 executes a it must wait
until pr2 has executed b before repeating its action a, and vice versa, as
the system is symmetric. This informal functional speci�cation can be rep-
resented by the state graph shown in Figure 2.4. The state graph contains
a special shared action τ , where the synchronization of the two processes
happens.

This basic form of synchronization can be modeled by the Petri net in
Figure 2.5, which can be implemented with a C-element in hardware [54].
This involves an action, the synchronization transition named τ , which be-
longs to both processes. When one process is ready to execute τ , it must
wait for the other to reach the same point before both execute the action
together.

The output of a C-element re�ects its inputs when the states of all inputs
match. The output remains in this state until all inputs change to the oppo-
site value. In other words, if all inputs are 0, then the output is 0. When all



2.5. A SYSTEMATIC APPROACH TO SYNTHESIS OF ACMS 23

Figure 2.4: Interleaving model for a rendezvous ACM

Figure 2.5: Implementing synchronization with a C-element

inputs change to 1, then the output also does. When all inputs change back
to 0, the output also does.

Figure 2.6: Re�ned model for a rendezvous ACM

Regardless of the functional speci�cation of the ACM, it is possible to
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reduce the need for this kind of synchronization to the most basic actions in
digital systems [69, 80], i.e. those that can be regarded as atomic. Further-
more, it can be argued that even this type of apparent �hard� synchronization
can be implemented without the sharing of an action, atomic or not, by the
two processes. For instance, the state graph in Figure 2.4 can be re�ned
into the one in Figure 2.6, where the two processes do not share any action,
and the required functional aspect of the synchronization is not lost. Process
sharing is removed by replacing τ with actions α, ϕ for pr1 and β, ρ for pr2.
This behavior can be implemented by the Petri net model in Figure 2.7.

(a) Petri net model (b) State graph

Figure 2.7: Implementing synchronization with unidirectional control vari-
ables

Observe that the state graph generated by this Petri net, shown in Fig-
ure 2.7(b), is not isomorphic to the one on Figure 2.6. In order to execute
α and β concurrently it is necessary to add control actions to serialize the
entry and exit of the paths that leads to the execution of α and β. Since
there is no extra actions serializing the entry paths, α always gets enabled
before β, and for this reason, these actions are asymmetric in the state graph
of Figure 2.7(b). Observe that ϕ and ρ serialize the exit paths, and they may
be executed only after both actions, α and β, have been executed. However,
a projection on events a, b and ϕ give us a state graph isomorphic to the one
on Figure 2.4. Here, the two processes, by sharing places with read or �lis-
tening� arcs (i.e. arcs with dual arrows), avoid the sharing of transitions and
yet achieve the same functionality of the synchronization point in Figure 2.5.
Algorithm 2.2 can be derived [47, 63] for possible software implementation
from the Petri net model in Figure 2.7. The two pairs of complementary
places can be encoded with variables x in pr1 and y in pr2.
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Algorithm 2.2 Rendezvous algorithm

1: process pr1()
2: loop
3: wait until y = 0;
4: x := 0;
5: exec a;
6: wait until y = 1;
7: x := 1;
8: end loop
9: end process

1: process pr2()
2: loop
3: wait until x = 0;
4: y := 1;
5: exec b;
6: wait until x = 1;
7: y := 0;
8: end loop
9: end process

This simple example also illustrates the steps of one of the ACM synthesis
method presented in this work. An appropriate interleaving state graph
model is derived from a functional speci�cation, and an algorithm-like Petri
net model is then derived from the interleaving state graph model.

2.5.2 Unidirectional control variables

The Petri net model in Figure 2.7(a) e�ectively speci�es �unidirectional con-
trol variables�, i.e. the value of each of them may be modi�ed (written) by
only one of the communicating processes, but can be referenced (read) by
both. The binary variables x and y in Figure 2.7(a), modeled as two pairs
of complementary places, are such variables.

Synchronization can be requested by the functional speci�cation or may
be required due to an implementation issue. By using unidirectional control
variables, it is possible to transfer the synchronization from non-atomic ac-
tions, such as the reading and writing of multi-bit data, to actions that can
be regarded as atomic or as close to atomic as possible, such as the reading
and writing of single-bit control variables. As shown in Figure 2.7(a), all non-
atomic actions, represented by transitions a and b, are fully asynchronous
between the two processes. This provides maximum asynchrony for any func-
tional speci�cation. Speci�cally, if the setting, resetting and referencing of
control variables can be regarded as atomic events, the correctness of ACMs
becomes easy to prove.

The only possible hazard in a unidirectional control variable of small size
(i.e. binary) is associated with metastability [42, 48]. This may happen
when a control variable is modi�ed and referenced at about the same time
by two asynchronous processes. A metastable binary variable may stay at
an analogue value approximately midway between logic 1 and logic 0 for
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an inde�nite period of time and eventually �resolve� to either 0 or 1 non-
deterministically, as shown in Figure 2.8(a).

(a) Sketch of metastability in a variable (b) Typical solution

Figure 2.8: Metastability

In practice, the e�ects of such metastability, which in modern semiconduc-
tor technologies (e.g. CMOS) does not include any oscillatory behavior [62],
can be minimized. The typical solution consists of adding a chain of �ip-�ops
to the design in order to reduce the probability of metastability, as shown in
Figure 2.8(b). ACM algorithms truthfully implementing appropriate inter-
leaving speci�cations operate correctly if their control variables are resolved
before use. The non-determinism in resolving to either 0 or 1 does not a�ect
the correctness of the ACMs because of the commutative diamonds in the
speci�cation. Such techniques, as copying a control variable value through
software instructions, drastically reduce the probability of a metastable state
persisting until its use. In self-timed solutions, �metastability �lters� may be
used so that a process may wait until any metastability has been resolved.

In the software world, metastability problems are avoided by test-and-set
lock (TSL) instructions which makes the access to a given memory segment
atomic. Besides that, the access to memory is controlled by electronic devices
that prevent two processes accessing a memory segment at the same time.
These devices are called Arbiters. These solutions are usually provided by
the hardware and for this reason metastability does not appears on software
implementations of unidirectional control variables.

2.6 Discussion

Although Xia and Yakovlev were the �rst to propose a systematic way for the
synthesis of multi-cell asynchronous communication mechanisms, they only
suggested that it is possible to construct an automatic procedure for their
method. In Chapter 3 and 4 we will discuss two automatic procedures for the
generation of ACMs. The �rst approach is based on the generation of state
graph speci�cations that satisfy their interleaving speci�cation requirements.
This interleaving speci�cation is introduced in Section 3.1.
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The second approach, which is more e�ective, is based on the generation
of the Petri net models without �rst obtaining the state graph speci�cations.
This second method takes advantage of the very regular structure of the
ACMs, and it is based on the de�nition of building blocks that are used to
synthesize the Petri net models.

In both cases, the ACMs synthesized in this work are built upon the same
assumptions used by Xia and Yakovlev, i.e. any synchronization between the
reader and writer processes are restricted to unidirectional control variables.
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Chapter 3

State space based approach to

ACM synthesis

The main motivation of the present work is to introduce a systematic and
automatic method for the construction of ACMs having as starting point only
a functional speci�cation. The objective is that, in the end of the process,
the designer of an asynchronous system will obtain an artifact that provides
communication between two asynchronous processes. Such communication
scheme will make use of a shared memory, whose access is constrained by a
set of binary control variables, to communicate data.

On the attempt achieving that objective, two methods have been ob-
tained. The �rst one is based on the automatic generation of a graph that
represents the state space of the ACM [16, 26]. Such state space is built tak-
ing into account a proper interleaving speci�cation and the resulting behavior
implements correctly the properties expected from the ACM. The state space
is used to synthesize its corresponding Petri net [55, 57] model using an adap-
tation of the theory of regions [56] for ACMs. The second method is based on
the direct generation of the Petri net model without the need of generating
its state space. In this chapter, the �rst method is described.

As stated above, in this method a state graph model is obtained from a
functional speci�cation and then its Petri net is synthesized. It di�ers from
the usual way of synthesizing asynchronous circuits, in which a Petri net
speci�cation is �rst obtained, and then its state graph is constructed. This
approach is used because the implementation we want to generate, especially
in hardware, is something where actions are distributed between components
and can be made truly concurrent. Considering this, a Petri net model is
closer to the �nal implementation than its state space. Hence, the generation
of the implementation from a Petri net model is more natural.

Figure 3.1 illustrates this technique, which is summarized by the following

29



30
CHAPTER 3. STATE SPACE BASED APPROACH TO ACM

SYNTHESIS

Figure 3.1: Automatic synthesis of ACMs using state space generation

steps:

1. Generate the state graph speci�cation according to a given functional
speci�cation;

2. Generate the Petri net model from the state graph using the theory of
regions for ACMs;

3. Generate an algorithmic description from the Petri net model;

4. Synthesize software or hardware code implementing that algorithmic
description.

In what follows, the generation procedure for the state space of an ACM
for the given policy and size as well as the theory of regions for ACMs are
detailed. Then the generation of source code from a Petri net model is
addressed. Finally, some of the problems with the approach described in this
chapter are discussed.
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3.1 Re�ned speci�cation with control actions

In order to introduce the type of interleaving speci�cation needed to generate
an ACM state graph and the method of obtaining it, a small example will
be used. This is the re-reading bounded bu�er ACM with three data cells
introduced on Section 1.1. The basic interleaving state graph of that ACM
is shown in Figure 3.2 and was introduced by Xia and Yakovlev [81]. This
state graph includes only the data reading and writing actions.

In Figure 3.2, rdi, i = 0, 1, 2, indicates a reading access on the ith cell,
and wrj, j = 0, 1, 2, indicates a writing access on the jth cell. The states
s0 and s1 appear twice in the �gure to depict a more readable layout. The
entire graph is therefore cyclic. It can be seen that the reader is never forced
to wait, and can re-read an item when necessary, while the writer sometimes
waits while the reader is accessing a certain cell.

Figure 3.2: Basic state graph speci�cation of an RRBB ACM with 3 cells

This type of state graph is not suitable for synthesizing ACM algo-
rithms [80, 85]. Both the writer and the reader need to make decisions
about whether to wait, if the process is required to, or access the ACM. Such
decision implies �hidden actions�, similar to α and β in Figure 2.6, which are
not shown in the state graph of Figure 3.2.

Extending the state graph in Figure 3.2 to include the necessary hidden
actions produced the re�ned speci�cation in Figure 3.3. In this �gure, λij
indicates the hidden writer action which advances from cell i to cell j, and µkl
indicates the hidden reader action which either advances from cell k to cell l
when k 6= l or prepares for the re-reading of cell k in the case of k = l. Note
that the λ actions correspond to lines 5 and 6 of the writer in Algorithm 1.1,
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while the µ actions correspond to lines 4 to 6 of the reader.

Figure 3.3: State graph including hidden actions of an RRBB ACM with 3
cells

All read and write access actions, denoted by wri and rdj, form commu-
tative diamonds with actions of the other partner. This means that these
actions are fully concurrent with actions of the other part, maximizing in-
terprocess concurrency. The hidden actions, however, do not have this prop-
erty. Therefore all the critical synchronization points in the communication
are concentrated on them. In order for the resulting ACM to be as concur-
rent as possible, it is important that the hidden actions take a very small
amount of time and be atomic, ideally. It is assumed here that this is ac-
complished by making such actions the setting and reading of unidirectional
control variables of small size.

In [79] it has been shown that when these actions are regarded as non-
atomic, not all ACM implementations work according to their speci�cations.
However, some ultra-safe solutions have been found that work correctly even
when atomicity is assumed at a lower level, such as the beginning and end of
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a control variable set or read operation. As a �rst e�ort, we choose to regard
control variable actions as atomic.

In Figure 3.3 it is indicated that the silent actions of the writer and reader
depend on each other. For instance, whether the next reader silent action
is µ11 or µ12 depends on whether λ20 has completed. And whether λ20 may
start (or the writer must wait) depends on if µ01 has completed. This means
that, if using unidirectional control variables, these silent actions set control
variables for the other side's silent actions to read.

Figure 3.4: Partial state graph of 2x2-cell OWRRBB ACM including hidden
actions

Allowing overwriting brings further problems. In the context of ACM,
the speed of execution of one process is not related to the other, i.e. no
assumption is made about the rates of producing and consuming the data
items being transferred. Also, no synchronization between the processes
is allowed outside the ACM. Pointing the writer towards the cell to which
the reader will next be pointing runs the risk of creating data coherence
problems. This problem can be solved by using multiple data slots for the
data memory of a single cell. The idea of the multi-slot solution is that each
cell is capable to hold more than one data item at the same time and only
one of them contains valid data that in the case considered in this work is
the slot containing the newest data. If both processes are about to point at
the same cell, then they will choose di�erent slots.

The simplest multi-slot cell consists of two data slots. Figure 3.4 shows
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part of the state graph, including the silent actions, of a 2-cell OWRRBB
ACM using two data slots per cell. The entire graph has 80 states and 160
arcs and is too large to include here. In De�nitions 3.4 and 3.5 of Section 3.2
it is explained how this graph is generated.

In Figure 3.4 the notation λijkl is used to denote the writer moving from
the pair [cell,slot] [i, j] to [k, l]. And the notation µijkl is used to denote the
reader moving from the pair [cell,slot] [i, j] to [k, l]. Arcs labeled µijij indicate
the reader preparing to re-read when the ACM does not contain any newer
item, and the cycles w00 → λ0011 → w11 → λ1100 mean the writer looping
without the reader moving. Observe that due to the multi-slot mechanism,
both can be pointing at the same cell at a given time, cell 0 in this speci�c
case, however they will be accessing di�erent slots. Depending on where the
writer is, the reader may advance to the next cell or continue advancing until
it reaches the correct cell. µ0111 and µ0100 branch o� to di�erent parts of the
state graph. µ0100 appears to be the reader staying in the same cell (cell 0),
but it is not, in fact, the case. The reader tries to advance to the next cell
(cell 1), �nds the writer accessing it, and then advances to the next cell of
cell 1, which happens to be cell 0 again in this con�guration. In an ACM
with more than two cells this action will have a di�erent result.

Obviously, as the size of the ACM increases, or more complex policies are
required, it becomes more complicated for a human to draw the state graph
describing the behavior of the system.

3.2 Deriving the state graph speci�cation

The automatic generation of state graph speci�cations for ACMs is a funda-
mental step in the direction towards the synthesis of ACM implementations
when the design �ow illustrated on Figure 3.1 is used. Such a state graph
must satisfy the interleaving properties presented in Section 3.1. It is gener-
ated from a functional speci�cation, i.e. it is necessary to provide the type
(BB, RRBB, OWBB or OWRRBB) of the ACM and the maximum amount
of data items it can hold at the same time. The designer does not need to
manage the complexity of specifying how blocking of data access, read or
write operation, is avoided and how data coherence is guaranteed during the
execution of the system.

This section de�nes the graph-based model of an ACM corresponding to
its functional speci�cation. This speci�cation is de�ned by two parameters:

1. The re-reading/overwriting policy (e.g. RRBB or OWRRBB);

2. The number of data cells of the ACM.
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When designing a synthesis procedure for ACMs state graph models it
is important to determine how to calculate the set of possible states of the
ACM and how to calculate the successors of a given state. Depending on
the function implemented by the ACM, a di�erent number of variables is
necessary to distinguish between the states of the generated graph. For
instance, in the RRBB ACM there is no need to know the slot number that
a process will access since there is only one slot per cell. On the other hand,
in ACMs that allow overwriting it is necessary to have this information.

First it will be detailed how to derive the state graph for the RRBB type.
A similar same scheme is used in the OWBB and OWRRBB policies, the only
di�erence is the amount of variables needed. The schema for the overwriting
policies will be presented afterwards. In De�nition 3.1 the notion of an ACM
state graph is introduced.

De�nition 3.1 (ACM State Graph Speci�cation) A state graph speci-
�cation for an ACM is a transition system [S, T, s0] such that:

1. S is the set of states;

2. T ⊆ (S × S) is the transition relation. We will use s −→ s′ to denote
that (s, s′) ∈ T ;

3. s0 is the initial state.

A state sn is said to be reachable from s0 if sn = s0 or there exists a
sequence of actions (s0, s1)(s1, s2) · · · (sn−1, sn) such that for all 0 < m ≤
n, (sm−1, sm) ∈ T and n > 0.

Re-reading ACMs

For an ACM that permits only re-reading, each state of the ACM is de�ned
in terms of the values of the variables that control which cell each process will
access, or is accessing. Considering that a process may be ready to access
or actually accessing data in ith cell, it is necessary to distinguish between
these two internal states of the process. So, a state in the RRBB ACM is
determined by four variables, two that denote the cells that the processes are
pointing at, and two that specify if a process is accessing the bu�er or ready
to access it. In De�nition 3.2 this concept is formally presented.

De�nition 3.2 (RRBB State) A state s of an RRBB ACM is a vector
[i, j, w, r], with 0 ≤ [i, j] < n− 1 and w, r ∈ 0, 1, where:

1. i determines the cell number the writer is pointing at;
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2. j determines the cell number the reader is pointing at;

3. w determines if the writer is ready to access (w = 0) or is accessing
(w = 1) the ACM;

4. r determines if the reader is ready to access (r = 0) or is accessing
(r = 1) the ACM.

sijwr will be used as a label to state s when it is necessary to show the status
of the variables of s explicitly. For example, if a state has the label s0101

it means that the writer process is ready to access cell number 0, the next
action of the writer is to write data in the cell, the reader is accessing data
in cell number 1 and will next carry out a hidden action.

The transition relation is determined by a set of rules that determine
the behavior of the ACM. De�nition 3.3 captures the formal concepts of the
transition rules for RRBB ACMs. For simplicity, a⊕ 1 is used to denote
(a+ 1) mod n , where n is the number of cells in the ACM.

De�nition 3.3 (Transition rules for RRBB ACMs) A transition t is a
valid RRBB ACM transition if one of the following applies:

1. If sijwr −→ si′jw′r then:

(a) (w = 0)⇒ (i′ = i ∧ w′ = 1)

(b) (w = 1 ∧ j 6= i⊕ 1)⇒ (i′ = i⊕ 1 ∧ w′ = 0)

Condition 1a speci�es that if the writer process is ready to access (w =
0) the memory cell i, then the next action will be to write data into the
cell. On the other hand, condition 1b says that if the next action of the
writer is a hidden action λ (i.e. the process is writing data in the bu�er,
or has �nished doing it) and the reader is not pointing at the next cell,
then the writer will point at it. Note that the case (w = 1 ∧ j = i⊕ 1)
does not de�ne a valid transition. It corresponds to the case in which
the writer waits until the reader advances to another cell, i.e. until
(j 6= i⊕ 1).

2. If sijwr −→ sij′wr′ then:

(a) (r = 0)⇒ (j′ = j ∧ r′ = 1)

(b) (r = 1 ∧ i 6= j ⊕ 1)⇒ (j′ = j ⊕ 1 ∧ r′ = 0)

(c) (r = 1 ∧ i = j ⊕ 1)⇒ (j′ = j ∧ r′ = 0)
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Condition 2a tells that if the reader is ready to perform data access
(r = 0) on cell j, then the next action is to read the cell. Condition 2b
tells that if the reader is going to carry out its hidden action µ and the
writer is not pointing at the next memory cell, then the reader will next
point at it. And �nally, condition 2c says that if the reader is going to
update its control variable and the writer is pointing at the next memory
cell, then the reader will prepare to re-read the data in cell j.

3. No other transitions are valid.

Observe that by not allowing the writer to advance to the next cell when
(w = 1 ∧ j = i ⊕ 1) and by setting the reader to re-read the same cell it
has just accessed, the situation in which both processes access the same cell
simultaneously is avoided, thus preserving data coherence. Also, note that
once the writer �nishes sending new data, it makes the data available for
the reader by advancing to the next cell as soon as possible (i.e. when the
reader is not pointing at it). Hence, the last written data item will not be
immediately available to the reader only if the bu�er is full of non-read data.
Since the reader always attempts to access the oldest data not yet read, and
the writer is just waiting for the reader to advance to next cell to do it also,
freshness is also preserved.

In Figure 3.5 the state graph generated for a 3-cell RRBB ACM using
the algorithmic method described above is shown. The entire state graph is
isomorphic to the one in Figure 3.3. The initial state is labeled with 2001,
meaning the writer is ready to access the data cell 2, and the reader is ready
to perform a silent action.

The generation of the successors of the initial state is done by applying
the rules 1a generating the state 2011 and 2b generating the state 2100.
The next step is to generate the successors of such states. Since, in the
state 2011, the execution of the writer satis�es neither 1a nor 1b, the writer
cannot be executed, and the execution of the reader reaches the state 2110
by applying rule 2b. The application of rules 1a and 2a in the state 2100
leads to the states 2110 and 2101, respectively. The execution of the steps
above for all states generates the entire state graph of the ACM.

For ACMs that allow overwriting it is necessary to have four extra vari-
ables to identify the states: two to identify the data slot and two to specify
the index (cell,slot) of the last slot in the pair accessed by the writer. The
rules are more complicated, but the principles behind them are the same.
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Figure 3.5: Generated state graph of 3-cell RRBB

Overwriting ACMs

De�nitions 3.4 and 3.5 introduce the notion of OWRRBB state and the
transition rules for OWRRBB ACMs. These will not be discussed in detail,
and are presented here only for completeness. Again, for simplicity, (Y • y)
is used to denote that the element y will be appended to the end of a vector
Y if |Y | < n, where n is the size of the ACM. In the case that |Y | = n,
(Y • y) indicates that the �rst element of Y is removed and y is inserted.
Also Y 	 is used to denote the removal of the �rst element of vector Y .

De�nition 3.4 (OWRRBB State) A state s of an OWRRBB ACM is a
vector [i, j, w, r, si, sj, o], with 0 ≤ [i, j, li] < n − 1 and w, r, si, sj, o ∈ 0, 1,
where:

1. i determines the cell number the writer is pointing at;

2. j determines the cell number the reader is pointing at;
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3. w determines if the writer is ready to access (w = 0) or is accessing
(w = 1) the ACM;

4. r determines if the reader is ready to access (r = 0) or is accessing
(r = 1) the ACM;

5. si determines the slot the writer in pointing at;

6. sj determines the slot the reader in pointing at;

7. o determines if the writer is in an overwriting loop.

To build the state graphs of ACMs that allow overwriting it is necessary
to save the history of the last n pairs (cell,slot) accessed by the writer that
contains non-read data. Here, we de�ne a vector of pairs called LAST to do
so.

De�nition 3.5 (Transition rules for OWRRBB ACMs) A transition
t is a valid OWRRBB ACM transition if one of the following applies:

1. If sijwrsisjo −→ si′jw′rs′isjo′ then:

(a) (w = 0)⇒ (i′ = i ∧ w′ = 1 ∧ s′i = si ∧ o′ = o)

(b) (w = 1 ∧ j 6= i ⊕ 1) ⇒ (i′ = i ⊕ 1 ∧ w′ = 0 ∧ s′i = 1 ∧ o′ =
o ∧ LAST = LAST • [i, si])

(c) (w = 1 ∧ j = i ⊕ 1) ⇒ (i′ = i ⊕ 1 ∧ w′ = 0 ∧ s′i = ¬sj ∧ o′ =
1 ∧ LAST = LAST • [i, si])

Condition 1a captures the writer ready to start writing to cell i. The
values of the control variables do not change, and also the overwrit-
ing bit, i.e. if the writer is in an overwriting loop, it will not leave
the loop by starting writing to the ACM. And the same is true in the
case when the writer is not in the loop. In condition 1b we have the
writer advancing to the next cell, by default to slot 1, in a situation in
which the reader is not pointing at such a cell. Note that in this case,
the condition of being in an overwriting loop does not change either.
Also observe that a new pair [cell,slot] is added to the LAST vector.
Finally, condition 1c captures the writer entering an overwriting loop.
The reader is pointing at the next cell, which indicates that the ACM is
full of data, then the writer advances to such a cell, but to the opposite
slot to the one the reader is pointing.

2. If sijwrsisjo −→ sij′wr′sis′jo
′ then:
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(a) (r = 0)⇒ (j′ = j ∧ r′ = 1 ∧ s′j = sj ∧ o′ = o)

(b) (r = 1 ∧ |LAST | > 0) ⇒ (j′ = LAST [0][0] ∧ r′ = 0 ∧ s′j =
LAST [0][1] ∧ o′ = 0 ∧ LAST = LAST	)

(c) (r = 1 ∧ |LAST | = 0)⇒ (j′ = j ∧ r′ = 0 ∧ s′j = sj ∧ o′ = 0)

Condition 2a captures the reader starting accessing the ACM, and the
control information is not modi�ed. Condition 2b captures the reader
advancing to the cell that contains the oldest non-read data. Condi-
tion 2c captures the reader preparing to re-read the data in the current
cell. Observe that when the reader advances to a new cell, it indicates
that the system is not in an overwriting loop. It also indicates that
there is a new empty cell, by removing an element from LAST , in the
ACM.

Conditions 1c and 2c together guarantee the preservation of data coher-
ence by avoiding both processes accessing the same slot at the same time.
Also, the writer makes the recently written data available for the reader by
advancing to the next cell just after it �nishes accessing the bu�er. If the
bu�er is full then it invalidates the oldest non-read data. The reader always
advances to the pair of cell and slot with the oldest valid data available.
So, freshness is also guaranteed. Observe that for an ACM with n cells we
understand freshness as related to the last n non-read data items, and not
to the last written data item only.

Using the guidelines above a tool that can generate a state graph speci�ca-
tion for RRBB, OWBB and OWRRBB ACMs that satis�es the interleaving
speci�cation de�ned in Section 3.1 was implemented. Note that to gener-
ate an OWBB ACM, the rules in De�nition 3.5 can be applied. It is only
necessary to remove rule 2c.

3.3 Petri nets synthesis methodology

The problem of synthesis of asynchronous communication algorithms as a
problem of synthesizing a Petri net of a certain class is discussed in this sec-
tion. This class represents the nets that are built as a composition of process
nets communicating via specially designated places, called communication
places, according to the requirements of unidirectional control variables out-
lined in Section 2.5.2. The method for the synthesis of communications in
Petri nets is based on a more general procedure of synthesizing Petri nets,
which uses the theory of regions [56].
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The objective of Petri net synthesis is to obtain a Petri net in which
transitions are named by the labels of the arcs in the state graph speci�cation,
and whose reachability graph is equivalent to the state graph. Di�erent forms
of equivalence, such as isomorphism and bisimilarity, have been studied, e.g.,
in [17].

Informally, such synthesis relates the global states of the state graph with
the local states of the system that can be associated with places in the Petri
net. More formally, synthesis is based on the concept of regions in transition
systems [56], and regions have one-to-one correspondence to places in the
synthesized net.

3.3.1 Regions

A region is a subset of states in which all arcs labeled with the same event e
have exactly the same exit/entry relationship. We say that a subset of states
r is entered by event e if for every arc labeled with e the source state does
not belong to r while the destination state is in r.

Similarly, r is exited by e if for every e-labeled arc the source state is in
r but the destination state is outside. In the remaining cases, e is said to
be non-crossing, by being either external or internal event for r. Thus to
become a region a subset r must satisfy exactly one of three cases for every
event:

1. enter;

2. exit;

3. non-cross.

In relation to a particular event e a region r is called a pre-region (post-
region, co-region) of e if r is exited by (entered by, internal for) e.

For example, the set of states r = {s1, s2} in Figure 3.6(a) is a region,
with event a entering r, c exiting r and {b, d, e} not crossing r. However,
the set of states r′ = {s0, s1} is not a region, since events b and c have arcs
exiting r′ and arcs not crossing r′.

It is known from [17] that, in order to generate a safe Petri net whose
reachability graph is isomorphic to a given state graph, the state graph must
satisfy the important properties of state and state-event separation.

Informally, the state separation property requires that for any two dif-
ferent states there exists a region which contains one of the states and does
not contain the other. The state-event separation property requires that, for
every state s and every event e, if the sets of pre-regions and co-regions of e
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(a) State graph (b) Petri net

Figure 3.6: State graph and generated Petri net.

are included in the set of regions such that each of them contains s, then e
must be enabled in s, i.e. there must be an arc leading from s labeled with
e.

The basic procedure to produce a safe Petri net from a state graph sat-
isfying the above properties is as follows:

1. For each event e in the state graph, a transition named e is created in
the Petri net;

2. For each region r, a place named r is generated;

3. Place r is connected with a transition e by an arc going from the place
(transition) to the transition (place) if region r is pre-region (post-
region) for e. Place r is connected to e by a bi-directional arc (self-loop)
if region r is a co-region for e;

4. Place r contains a token in the initial marking i� the corresponding
region r contains the initial state of the state graph.

This procedure, if applied, would generate the so-called saturated net [17],
since all regions are mapped into corresponding places. A saturated net may
have a lot of redundancy, in the sense that some of its places may be removed
without disturbing the isomorphism between original state graph and the
reachability graph of the synthesized net. Di�erent criteria can be applied
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when building a minimal Petri net (in terms of the net size). For example,
the criterion to guarantee the state and state-event separation properties,
and use only the minimum number of regions is implemented in the Petrify
tool [17]. The resulting Petri net re�ects the notion of concurrent operation
between events forming commutative diamonds in the interleaving (i.e. state
graph) form.

Figure 3.6(b) depicts a Petri net obtained from the synthesis of the state
graph in Figure 3.6(a). The sub-indices of the places denote the states in-
cluded in the region represented by the place (e.g. p13 = {s1, s3}). Note that
not all regions are used for synthesis. The set of states p1234 = {s1, s2, s3, s4}
is also a region, but it would be redundant if added to the Petri net.

3.3.2 Synthesis of ACMs

Nets obtained by the aforementioned synthesis method do not necessarily
satisfy the intuitive requirement of the system composed of processes inter-
acting via unidirectional variables, or in other words interacting by reading
some of each other's local states.

For the example of the RRBB ACM, the goal is to obtain a Petri net that
consists of two sub-nets, one containing events that are labeled with wr and
λij and the other with events labeled with rd and µkl.

The problem for ACM synthesis can be stated as follows: given a state
graph in which each event is associated to a process, derive a Petri net that
is the composition of a set of subnets, each one representing a process, in
such a way that the marking of each place is only modi�ed by one of the
processes.

This formulation requires the association of each place to a process. Other
processes can only interact with the place via read arcs.

Figure 3.7: State graph for ACM regions

The constraints imposed by ACMs can be illustrated by the example
depicted in Figure 3.7 and 3.8. Figure 3.8(a) shows the Petri net obtained
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from the synthesis of the state graph in Figure 3.7. The state graph has
events from two processes, x (events x1 and x2) and y (events y1 and y2).
Note that each place corresponds to one state.

(a) Petri net (b) Petri net with ACM-regions

Figure 3.8: State graph and generated Petri net with ACM-regions

Unfortunately, the net in Figure 3.8(a) does not ful�ll the requirements
for an ACM, since place p0 cannot be associated to any process (it can be
modi�ed by both processes x and y). By using a di�erent set of regions, the
net in Figure 3.8(b) can be obtained. In this net, places p1 and p02 belong
to process x, whereas places p2 and p01 belong to process y. Note that the
communication is produced via the read arcs p01 ↔ x1 and p02 ↔ y1.

Therefore, the synthesis of ACMs can be performed by using a restricted
version of regions called ACM-regions. A set of states r is an ACM-region if:

1. r is a region, and;

2. if e1 and e2 are two events that cross r, then e1 and e2 must belong to
the same process.

Thus, the synthesis method for ACMs can be implemented as a slight
variation of the method presented in [17], using ACM-regions instead of re-
gions. Petrify was modi�ed to include this technique.

3.4 Case studies

This section shows two examples of application of the methodology described
in this chapter, from the initial speci�cation to the generation of the Petri
net modeling the behavior of each process. Additionally, we will also give
some hints on how to derive an algorithmic description from the Petri net
model. This last step will be detailed later.
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The designer of the system is responsible for providing a functional spec-
i�cation of the ACM. In the tool we developed this is done by passing as
parameters a string specifying the ACM policy, i.e. RRBB, OWBB or OWR-
RBB, and an integer specifying its number of cells.

With these two pieces of information the state graph speci�cation of the
desired ACM is automatically generated. The output of the tool is a tex-
tual description which can be used as input to Petrify, which implements
the technique described in Section 3.3. Petrify then generates a Petri net
model that represents two concurrent processes that communicate through
unidirectional variables. Finally the net is transformed into an algorithmic
description that can be easily mapped into some hardware description lan-
guage like Verilog, VHDL or SystemC or into some software language like C,
C++ or Java.

3.4.1 3-cell RRBB

The �rst example is the 3-cell RRBB introduced previously. The generated
state graph given in Figure 3.3, and the Petri net obtained from it is presented
in Figure 3.9.

(a) Writer process (b) Reader process

Figure 3.9: Petri net model for a 3-cell RRBB
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Figures 3.3 and 3.9 indicate that the silent actions of the writer and reader
depend on each other. For instance, whether the next reader silent action will
be µ11 or µ12 depends on whether λ20 has completed, and whether λ20 may
start (or the writer must wait) depends on whether µ11 has completed. This
means that these silent actions set unidirectional control variables for the
other side silent actions to read. The simplest set of unidirectional control
variables included in the µ and λ actions consists of one writer index variable
w and one reader index variable r.

Figures 3.9(a) and 3.9(b) show the Petri nets for the writer and reader
processes, respectively. The places with the same label are the same, and
they are presented separately only because of aesthetic reasons. A token
in p5 means w = 2, and a token in p6 means r = 1. Those Petri nets
where obtained by Petrify using the ACM-regions procedure described in
Section 3.3.

In the initial state the writer is ready to access cell 2, with transition wr2
enabled, and the reader is ready to update the value of its control variable
from 0 to 1.

The writer presents a sequential behavior, i.e. it enters into a loop writing
data into the cells (alternating this with a silent action) 2, 0 and 1 succes-
sively. If the writer is pointing at ith cell and the reader is pointing at (i⊕1)th

cell, then the writer will wait until it can perform the silent action without
running the risk of compromising data coherence.

The reader will also enter a loop and read data from cells 1, 2 and 0.
But instead of waiting to preserve data coherence, it will execute one of
the transitions µ00, µ11 or µ22, depending on the cell it read before, thus
preparing to re-read.

Both choices, between two possible µ actions and between a λ action and
writer waiting, are determined by how the current values of w and r compare
with each other. For instance, if the reader is pointing at the next cell of
the writer, i.e. r = w ⊕ 1 , then the writer must wait until the reader has
changed r before proceeding. Note that here we are assuming the ACM is
initialized with some data.

By mapping each place into a Boolean variable, an algorithmic description
can be obtained from the Petri net model. For example, transition λ20 on
the writer process is enabled if there is a token in places p10, p5 and p6. If
these places are interpreted as Boolean variables, then λ20 can be mapped
into a piece of code like:

1: if p10 ∧ p5 ∧ p6 then
2: p5 := false;
3: p9 := true;
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4: end if

The if statement represents the pre-conditions of the transition, i.e. the
condition is true if there is a token in places p10, p5 and p6. The state-
ments inside the condition represent the transition removing a token from
place p5 (p5 := false) and putting a new token in place p9 (p9 := true).
With this approach, an algorithmic description for a hardware or software
implementation for each process can be easily obtained.

The �rst step consists of de�ning the input, output and internal signals
of each process. The input signals of a process are the control variables of
its partner that needs to be read by the process, i.e. its test places. For
instance, the input signals for the writer and reader are given by the set of
places {p0, p6, p11} and {p1, p5, p9}, respectively. The output signals of a
process are the control variables that need to be tested by its partner. So,
the output of the writer is the input of the reader and vice-versa. Finally,
the internal signals are represented by the rest of the places of the process.
The initialization of the signals is done according to the initial marking of
the place that models the signal.

Each process consists of a single threaded loop in the form of a case
construct. Each condition in the case is given by the pre-conditions of one
transition of the Petri net model as explained above. If the transition repre-
sented by the case statement models an access action, an additional state-
ment is added to the case body to perform the data access. Algorithm 3.1
introduces a general schema that can be used to obtain a possible implemen-
tation for both processes of the ACM. Each condition is given in terms of
the pre-set of a certain transition of the process model and its body re�ects
the modi�cations on the markings of the places in the pre-set and post-set of
the transition, just as explained before. In other words, it mimics the Petri
net model behavior. By repeating the general structure for all transitions,
an algorithmic description of the RRBB ACM with 3 cells is obtained.

In an implementation as in Algorithm 3.1, the access to the control vari-
ables does not need to be protected. Due to the fact that the variables
are binary, metastability problems are resolved in few cycles and the value
obtained from reading such variable will be valid, even in the presence of
metastability.

It is also possible to obtain an algorithmic description that is more ade-
quate to implement as a software artifact. The sum of the tokens on places
p1, p5 and p9 (the writer's output signals) is always equal to 1 for any reach-
able marking of the Petri net. More than this, p1 is marked before p5 and
after p9 are marked. p5 is marked before p9 and after p1. And p9 is marked
before p5 and after p1. We can interpret these places as a 3-value control
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Algorithm 3.1 Algorithmic descriptions for the writer and reader processes

1: module write()
2: inputw : {p | • p = p•};
3: outputw : {p | p ∈ inputr};
4: internal : {p | p /∈ inputw ∧

p /∈ outputw};
5: case
6:

∧p
p∈•wr2: /* wr2 */

7: write on cell 2;
8: ∀p ∈ •t0 p := false;
9: ∀p ∈ t0• p := true;
10:

∧p
p∈•λ20: /* λ20 */

11: · · ·
12: end case
13: end module

1: module read()
2: inputr : {p | • p = p•};
3: outputr : {p | p ∈ inputw};
4: internal : {p | p /∈ inputr∧p /∈

outputr};
5: case
6:

∧p
p∈•rd0: /* rd0 */

7: read from cell 0;
8: ∀p ∈ •t0 p := false;
9: ∀p ∈ t0• p := true;
10:

∧p
p∈•µ01: /* µ01 */

11: · · ·
12: end case
13: end module

variable. Also, we can infer some sort of sequence between the values that
are assigned to the control variable. The same reasoning is valid for places
p0, p6 and p11.

Following this line of reasoning, we can map the transitions wr2 and λ20
into the following sequence of code:

1: write on cell 2;
2: wait until r = 1;
3: w := 0;

By applying the same idea to the other transitions, it is possible to obtain
the code that implements the access to each cell in the ACM. A description
following this style is clearer than the previous one, however it is not opti-
mized for the implementation of software artifacts. Observe that it presents
some redundancy that can be removed by incrementing the value of the con-
trol variables instead of using constant values. So, Algorithm 3.2 can be
obtained. This is the same as in Algorithm 1.1, and it is reproduced here
only to facilitate a comparison with the previous version.

Note that Algorithm 3.2 is independent of the size of the ACM. It is
only necessary to set the value of n correctly during the initialization of the
system. Also, w and r should be initialized properly, say, with n − 1 and
n− 2, respectively.

However, such implementation is appropriate only for software artifacts.
In the hardware domain, it is more di�cult to implement and protect n-
valued variables, and algorithms in the form of Algorithm 3.1 are more ade-
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Algorithm 3.2 3-cells RRBB ACM, software implementation

1: module write()
2: wait until (w + 1) mod n 6= r;
3: w := (w + 1) mod n;
4: write on cell w;
5: end module

1: module read()
2: if (r + 1) mod n 6= w then
3: r := (r + 1) mod n;
4: end if
5: read from cell r;
6: end module

quate, although more di�cult to obtain.

3.4.2 4-cell OWBB

The advantage of our method is clearer when trying to specify an ACM
of larger size and a more complex function type. For example, specifying
manually a state graph of a 4-cell OWBB ACM, in which only overwriting
is allowed and both processes always access the memory cell containing the
oldest item in the ACM, is di�cult due to its size.

Figure 3.10 presents a part of the generated state graph for a 4-cell OWBB
ACM, with the initial state in node 0. The entire graph has 1120 states and
2208 arcs, and it is too big to be shown here.

Figure 3.10: Fragment of an OWBB ACM with 4 cells state graph
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Again, the resulting state graph can be used to synthesize two Petri nets
that specify the behavior of the reader and writer processes. Unfortunately,
these are also too large to be included here.

In Table 3.1 it is possible to see how the number of states and arcs of the
RRBB, OWBB and OWRRBB ACMs grows with respect to the size of the
ACM. Observe that for the OWBB and OWRRBB the number of states is
equal. In fact, both ACMs have exactly the same set of reachable states, and
di�er only in the number of arcs. It is very easy to note that even for very
small ACMs it is impractical to produce state graphs by hand.

ACM size RRBB OWBB OWRRBB

(#states / #arcs) (#states / #arcs) (#states / #arcs)

2 12 / 20 80 / 144 80 / 160

3 24 / 42 360 / 696 360 / 720

4 48 / 88 1120 / 2208 1120 / 2240

5 80 / 150 3000 / 5960 3000 / 6000

6 120 / 228 7440 / 14832 7440 / 14880

7 168 / 322 17640 / 35224 17640 / 35280

8 224 / 432 40640 / 81216 40640 / 81280

9 288 / 558 91800 / 183528 91800 / 183600

Table 3.1: Number of states for RRBB and OWRRBB ACMs

Observe that the solutions generated by Petrify can be used to design
parametrizable algorithms. However, at the moment we are not able to do
this automatically, and human intervention is required to perform this task.
It is our intention to study the generation of closed-form solutions in the
future.

3.5 Conclusions

In this chapter the generation ACMs through a state graph speci�cation ap-
proach is detailed. Firstly the derivation of state graph speci�cation given a
functional speci�cation is detailed. Then, the generation of an ACM Petri net
model in the form of independent state machines using unidirectional shared
variables is described. This last contribution is not a direct contribution of
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this thesis. However they are detailed here for the sake of completeness of
the synthesis method.

Previously, the steps above were performed manually, which is error-prone
due to the size of the state graphs involved. We have automated this process.
The method presented here has the great advantage of generating correct by
construction Petri net models. On the other hand, for overwriting ACMs with
many cells it is not possible to obtain the Petri net model using the presented
technique, as the state graphs become too large. In the next chapter an
alternative approach avoiding this problem will be discussed.
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Chapter 4

The modular approach to ACMs

In previous work [26, 16, 81, 85], a step-by-step method based on the theory
of regions for the synthesis of ACMs was presented. The method required the
generation of the complete state space of the ACM by exploring all possible
interleaving between the reader and the writer actions. The state space of
the ACM was generated from its functional speci�cation. Next, a Petri net
model was obtained using the concept of ACM regions, a re�ned version of
the conventional regions.

In this chapter the generation of the Petri net model using a modular
approach that does not require the explicit enumeration of the state space is
introduced. The Petri net model is build by abutting a set of Petri net mod-
ules. The correctness of the model can then be formally veri�ed using model
checking. The relevant properties of the ACM, coherence and freshness, can
be speci�ed using CTL formulae. Figure 4.1 shows the design �ow for the
automatic generation of ACMs.

Compared to the approach introduced in Chapter 3, the modular ap-
proach has the advantage of not dealing with the entire state space of the
ACM in order to generate the Petri net model. It is obtained in linear
time. On the other hand, it requires verifying the model generated to pro-
vide enough evidence of its correctness. Observe that it is possible to obtain
the ACM implementation without doing veri�cation. In practice, the new
approach allows to obtain the Petri net model when the size of the ACM
grows.

4.1 Models for veri�cation and implementation

The two basic paradigms on the approach presented in this chapter are au-
tomation and correctness. For that reason, from the functional speci�cation

53
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Figure 4.1: The design �ow

of an ACM, two formal models can be generated:

• An abstract model, that describes the possible traces of the system
and that is suitable for model checking of the main properties of the
ACM: coherence and freshness. These properties can be modeled using
temporal logic formulae;

• An implementation model, that is suitable for generating a hardware or
software implementation of the ACM. This model is generated by the
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composition of basic Petri net modules and contains more details about
the system. This model is required to narrow the distance between the
behavior and the implementation.

For a complete veri�cation of the system, a bridge is required to check
that the implementation model is a re�nement of the abstract model. For
such purpose, the Cadence SMV Model Checker [49, 50] has been used.

The Cadence SMV extends the CMU SMV model checker by providing
a more expressive description language and by supporting a variety of tech-
niques for compositional veri�cation. In particular, it supports re�nement
veri�cation by allowing the designer to specify many abstract de�nitions for
the same signal. It can then check if the signal in a more abstract level is
correctly implemented by another abstraction of lower level. For simplicity,
we will refer to the Cadence SMV as just SMV.

Thus, the correctness of the generated ACMs is veri�ed as follows:

1. The abstract and implementation models of the ACM are generated.

2. The properties of the ACM are speci�ed in CTL and model checked on
the abstract model.

3. The implementation model is veri�ed to be a re�nement of the abstract
model.

In the forthcoming sections, the abstract and implementation models for
the class of re-reading and overwriting ACMs are presented.

4.2 Abstract models

The abstract model for an ACM is speci�ed as a transition system. The
state of the ACM is de�ned by the data items available for reading. For each
state, σ de�nes the queue of data stored in the ACM. More speci�cally, σ
is a sequence: σ = a0a1 · · · aj−1aj, with j < n, where n is size of the ACM.
aj is the last written data, and a0 is the next data to be retrieved by the
reader. The size of the ACM is given by its number of cells, i.e. the maximum
number of data items the ACM can store at a certain time.

σ must also express if the processes are accessing the ACM or not. This
is done by adding �ags to the a0 and aj items. awj indicates that the writer is
producing data aj, and this data is not yet available for reading. Similarly,
ar0 is used to indicate that the reader is consuming data a0.

Observe that σ can be interpreted as a stream of data that is passed from
the writer (on the left) to the reader (on the right). There are four events
that change the state of the ACM:
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• rdb(a): reading data item a begins;

• rde(a): reading data item a ends;

• wrb(a): writing data item a begins;

• wre(a): writing data item a ends.

The notation 〈σi〉 e−→ 〈σj〉 denotes the occurrence of event e from state
〈σi〉 to state 〈σj〉, whereas 〈σ〉 e−→ ⊥ is used to denote that e is not enabled in
〈σ〉.

4.2.1 Re-reading ACMs

In RRBB ACMs, the reader is required not to wait when starting an access
to the ACM. In the case there is no new data in the ACM, the reader will
re-read some data that was read before.

The writer can add data in the ACM until it is full. In such a case, the
writer is required to wait until the reader retrieves some data from the ACM.
The reader always tries to retrieve the oldest non-read data and, if all the
data in the ACM has been read before, then it re-reads the last retrieved
data item.

De�nition 4.1 formally captures the behavior of RRBB ACMs. Rules 1-3
model the behavior of the writer. Rules 4-7 model the behavior of the reader.

De�nition 4.1 (RRBB transition rules) The behavior of an RRBB
ACM is de�ned by the following set of transitions (n is the number of cells
of the ACM, and the cells are numbered from 0 to n− 1):

1. 〈σ〉 wrb(a)−−−−→ 〈σaw〉 if |σ| < n

2. 〈σ〉 wrb(a)−−−−→ ⊥ if |σ| = n

3. 〈σaw〉 wre(a)−−−−→ 〈σa〉

4. 〈aσ〉 rdb(a)−−−−→ 〈arσ〉

5. 〈arσ〉 rde(a)
−−−−→ 〈σ〉 if |σ| > 0 ∧ σ 6= bw

6. 〈ar〉 rde(a)
−−−−→ 〈a〉

7. 〈arbw〉 rde(a)
−−−−→ 〈abw〉
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Rule 1 models the start of a write action for a new data item a and sig-
naling that it is not available for reading (aw). Rule 3 models the completion
of the write action and making the new data available for reading. Finally,
rule 2 represents the blocking of the writer when the ACM is full (|σ| = n).

Rule 4 models the beginning of a read action retrieving data item a and
indicating that it is being read (ar). Rule 5 models the completion of the
read operation. In this rule, a is removed from the bu�er when other data is
available. On the other hand, rules 6 and 7 model the completion of the read
action when no more data is available for reading. In this case, the data is
not removed from the bu�er and is available for re-reading. This is necessary
due to the fact that the reader is required not to be blocked even if there is
no new data in the ACM.

It is important to observe that in the state 〈arbw〉 the next element to
be retrieved by the reader will depend on the order that events wre(b) and
rde(a) occur. If the writer delivers b before the reader �nishes retrieving a,
then b will be the next data to be read. Otherwise, the reader will prepare
to re-read a.

De�nition 4.1 was modeled using the Cadence SMV model checker and
freshness and coherence properties were veri�ed. Each process was modeled
as an SMV module. In the SMV language, a module is a set of de�nitions,
such as type declarations and assignments, which can be reused. Speci�cally,
each process consists of a case statement in which each condition corresponds
to a rule in De�nition 4.1. The SMV model obtained from De�nition 4.1 will
be used in Section 5.3 to verify a lower level speci�cation of the ACM. Next,
the speci�cation of the coherence and freshness properties is discussed.

Coherence

To verify the coherence property it is necessary to prove that there is no
reachable state in the system in which both processes are addressing the
same cell of the shared memory.

In the ACM model described by De�nition 4.1, the reader always ad-
dresses the data stored in the �rst position of the ACM, represented by σ.
On the other hand, the writer always addresses the tail of the ACM. To
prove coherence in this model it is only necessary to prove that every time
the reader is accessing the ACM:

• it is addressing the �rst data item, and

• if the writer is also accessing the ACM, then it is not writing into the
�rst cell.
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In other words, if at a certain time the shared memory contains a sequence
of data σ = a0a1 · · · aj−1aj, with j < n, where n is the size of the ACM, then:

AG (ar ∈ σ → (ar = a0 ∧ (aw ∈ σ → aw = aj ∧ j > 0))) (4.1)

The formula above speci�es that for any reachable state of the system
(AG), if the reader is accessing the ACM, then:

1. It is reading a data from the beginning of the bu�er (ar = a0);

2. If the writer is also accessing the ACM, then it is not pointing at the
beginning of the queue ((aw ∈ σ → aw = aj ∧ j > 0)).

Freshness

As discussed before, freshness is related to sequencing of data. Now, let us
assume that at a certain time the shared memory contains a sequence of data
σ = a0a1 · · · aj−1aj, with j < n, aj is the last written data, and a0 is the next
data to be retrieved by the reader. Then, at the next cycle the ACM will
contain a sequence of data σ′ such that one of the following is true:

1. σ′ = σ: in this case neither the reader has removed any data item from
the head of σ nor the writer has stored a new item at its tail;

2. σ′ = a0a1 · · · aj−1ajaj+1: in this case the reader has not removed any
item from the head of σ, but the writer has added a new item at the
tail;

3. σ′ = a1 · · · aj−1aj: in this case the reader has removed a data item from
the head of σ.

The above can be speci�ed by the following CTL formula:

AG(|σ| = x→ AX((σ′ = σ+) ∨ (|σ′| = x− 1 ∧ σ′ = σ−))) (4.2)

where σ+ is used to denote a0a1 · · · aj−1aj or a0a1 · · · aj−1ajaj+1 and σ− is
used to denote a1 · · · aj−1aj. Observe that properties 1 and 2 are captured
by the same CTL sub-formula, which is given in the left-hand side of the ∨
inside the AX operator.

The guidelines introduced above can be used to generate an SMV model
for any RRBB ACM with three or more data cells. After that, the model can
be veri�ed against the CTL formulas for coherence and freshness. Observe
that the number of CTL formulas needed to specify freshness grows linearly
with the size of the ACM. This is because, for each possible size of σ, it is
necessary to generate another CTL formula.
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4.2.2 Overwriting ACMs

In what follows the expected behavior of an overwriting ACM is described
as a transition system. The notation used in Section 4.2.1 will also be used
here to denote the states and transitions rules of overwriting ACMs.

In overwriting ACMs the writer can add data in the ACM until it is full.
In such a case, the oldest data item is replaced and the writer proceeds its
normal operation. The reader always tries to retrieve the oldest non-read
data, and if all data in the ACM has been read before and re-reading is
also allowed, then it attempts to re-read the last retrieved data item. In
this section we consider the more complex case in which both processes are
required not to wait when accessing to the ACM.

The above behavior is formally introduced in De�nition 4.2. Rules 1-4
model the behavior of the writer. Rules 5-8 model the behavior of the reader.

De�nition 4.2 (OWRRBB transition rules) The behavior set of an
OWRRBB ACM is de�ned by the following set of transitions (n is the number
of cells in the ACM, and the cells are numbered from 0 to n− 1):

1. 〈σ〉 wrb(a)−−−−→ 〈σaw〉 if |σ| < n

2. 〈aσ〉 wrb(b)−−−−→ 〈σbw〉 if |aσ| = n

3. 〈arbσ〉 wrb(c)−−−−→ 〈arσcw〉 if |abσ| = n

4. 〈σaw〉 wre(a)−−−−→ 〈σa〉

5. 〈aσ〉 rdb(a)−−−−→ 〈arσ〉

6. 〈arσ〉 rde(a)
−−−−→ 〈σ〉 if |σ| > 0 ∧ σ 6= bw

7. 〈ar〉 rde(a)
−−−−→ 〈a〉

8. 〈arbw〉 rde(a)
−−−−→ 〈abw〉

Observe that in state 〈arbw〉 the next element to be retrieved depends
on the order that events wre(b) and rde(a) occur. If the writer delivers b
before the reader �nishes retrieving a, then b will be the next data to be
read. Otherwise, the reader will prepare to re-read a. It is also important to
note that when the ACM is full of data and the writer is starting a new access
action, some data is lost. If the reader is accessing the ACM, with 〈ardbσ〉
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in the data queue, then the second item in queue is overwritten. Otherwise,
if the reader is idle, the queue contains 〈aσ〉 and �rst item is replaced.

De�nition 4.2 was modeled using the Cadence SMV model checker and
freshness and coherence properties were veri�ed. Each process was modeled
as an SMV module. In the SMV language, a module is a set of de�nitions,
such as type declarations and assignments, which can be reused. Speci�cally,
each process consists of a case statement in which each condition corresponds
to a rule in De�nition 4.2. The SMV model obtained from De�nition 4.2 will
be used in Section 5.2.2 to verify a lower level speci�cation of the ACM.
Next, the speci�cation of the coherence and freshness properties is discussed.
In [25] the RRBB policy was modeled in SMV and veri�ed.

Coherence

Verifying coherence requires showing that there is no reachable state in the
system in which both processes are addressing the same cell of the shared
memory. According to De�nition 4.2, the reader always addresses the data
stored in the head of σ, while the writer always addresses the end of the tail
of σ. Verifying coherence in this model only requires proving that every time
the reader is accessing the ACM:

1. It is addressing the �rst data item, and

2. If the writer is also accessing the ACM, then it is not writing into the
�rst location.

In other words, if at a certain time the shared memory contains a sequence
of data σ = a0a1 · · · aj−1aj, with j < n, where n is the size of the ACM, then
the following CTL formula should be satis�ed:

AG (ar ∈ σ → (ar = a0 ∧ (aw ∈ σ → aw = aj|j > 0))) (4.3)

Freshness

As discussed before, freshness is related to sequencing of data. Let us assume
that at a certain time the shared memory contains σ = a0a1 · · · aj−1aj. At
the next cycle the ACM will contain a sequence of data σ′ such that one of
the following is true:

1. σ′ = σ: neither the reader has removed or the writer has stored any
data item in σ;
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2. σ′ = a0a1 · · · aj−1ajaj+1: the reader has not removed any item from σ,
but the writer has added a new item;

3. σ′ = a1 · · · aj−1aj: the reader or the writer has removed a data item
from the head of σ.

4. σ′ = a0a2 · · · aj−1aj: the writer has removed a data item from the head
of σ.

The above can be speci�ed by the following CTL formula:

AG(|σ| = x→ AX((σ′ = σ+)∨
(|σ′| = x− 1 ∧ σ′ = σ−)))

(4.4)

where σ+ is used to denote a0 · · · aj or a0 · · · ajaj+1 and σ− is used to denote
a1 · · · aj−1aj or a0a2 · · · aj−1aj. Observe that properties 1 and 2 are captured
by the same CTL sub-formula, which is given by the left side of the ∨ inside
the AX operator.

4.3 Generating the models for re-reading

ACMs

A Petri net model for a 3-cell RRBB ACM will be generated and mapped
into a C++ implementation. As stated before, this modular approach is
based on the de�nition of a set of elementary building blocks that can be
easily assembled to construct the entire system.

The repetitive behavior of the writer consists of writing data into ith cell,
checking if the reader process is addressing the next cell and, in the negative
case advancing to it, otherwise waiting until the reader advances. In a similar
way, the reader is expected to retrieve data from the ith cell, check if the writer
is accessing the next cell and, in the negative case advancing to it, otherwise
preparing to re-read the contents of the ith cell.

Two modules to control the access of each process to the ith cell are
de�ned. One corresponds to the behavior of the writer and the other to the
behavior of the reader. The modules are shown in Figure 4.2.

In Figure 4.2(a), a token in place wi enables transition wri, that represents
the action of the writer accessing the ith cell. The places with label 〈w = i〉,
〈w = j〉, 〈w 6= i〉 and 〈w 6= j〉 indicate if the writer is pointing at ith or
at jth cell. 〈r 6= j〉 indicates when the reader is not pointing at jth cell. If
transition λij is enabled, then the reader is not pointing at cell j, the writer
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(a) writer module (b) reader module

Figure 4.2: Basic modules for the writer and the reader

has just �nished accessing the ith cell and it can advance to the next one.
The places 〈w = i〉, 〈w = j〉, 〈w 6= i〉 and 〈w 6= j〉 model the writer's control
variables, and they are also used by the reader to control its own behavior.
Note that j = (i+ 1) mod n.

The same reasoning used to describe the writer's module also applies to
the reader's which is shown in Figure 4.2(b). The di�erence is that the reader
should decide to advance to the next cell or to re-read the current cell. This
is captured by the two transitions in con�ict, µii and µij. Here the decision is
based on the current status of the writer, i.e. whether the writer is on the jth

cell or not, is captured by a token on places 〈w = j〉 or 〈w 6= j〉, respectively.
It is easy to realize that there is a place invariant involving those places,
since the sum of tokens on them is always equal to one. Thus only one of the
transitions µii and µij can be enabled at a time, i.e. they are not in dynamic
con�ict.

In order to create a process, it is only necessary to instantiate a number
of modules, one for each cell, and connect them. Instantiating modules only
requires replacing i and j by the correct cell numbers. For example, to
instantiate the writer's module to control the access to the 0th cell, i is
replaced by 0 and j by 1. Connecting the modules requires fusing all the
places with the same label. Figure 4.3 depicts the resulting Petri net models
for the writer and reader of a 3-cell RRBB ACM.

After creating the processes, they can be connected by also fusing places
with same label on both sides. In this case, the shadowed places in each
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(a) writer process (b) reader process

Figure 4.3: The write and read processes for a 3-cell RRBB ACM

module will be fused with some place of the other module.
De�nition 4.3 formally introduces the concept of a module. In this def-

inition, it is possible to see that a module is an ordinary Petri net model
that has some �special� places called ports. A port is a place that models a
control variable. The local ports model the control variables that are updated
by the process to which it belongs, while the external ports model the control
variables updated by the other process. Ports are used to identify control
variables when synthesizing the source code for an ACM.

De�nition 4.3 (Petri net RRBB module) A Petri net module is a tuple
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MODULE = (PN,LOC,EXT, Ta, Tc,Ma,Mc) such that:

1. PN is a Petri net structure (P, T, F ) with:

(a) P being �nite set of places;

(b) T being �nite set of transitions;

(c) F ⊆ (P × T )
⋃

(T × P ) being a set of arcs (�ow relation).

2. LOC ⊂ P is a �nite set of local ports;

3. EXT ⊂ P is a �nite set of external ports such that p ∈ EXT ⇐⇒
p• = •p. Places in EXT are said to be read-only;

4. LOC
⋂
EXT = ∅;

5. Ta ⊂ T is a �nite set of transitions such that t ∈ Ta ⇐⇒ t models a
media access action;

6. Tc ⊂ T is a �nite set of transitions such that t ∈ Tc ⇐⇒ t models a
control action;

7. Ta
⋃
Tc = T and Ta

⋂
Tc = ∅;

8. Ma ⊂ (Ta × N) is a relation that maps each access transition t ∈ Ta
into an integer that is the number of the cell addressed by t;

9. Mc ⊂ (Tc×N×N) is a relation that maps each control transition t ∈ Tc
into a pair of integers that are the numbers of the current and the next
cells pointed by the module.

De�nitions 4.4 and 4.5 formally introduce the writer and reader basic
modules for RRBB ACMs, respectively.

De�nition 4.4 (RRBB writer module) The RRBB writer module is a
tuple WRITER = (PNw, LOCw, EXTw, Taw , Tcw ,Maw ,Mcw) where:

1. PNw is as de�ned by Figure 4.2(a);

2. LOCw = {〈w = i〉, 〈w = j〉, 〈w 6= i〉, 〈w 6= j〉};

3. EXTw = {〈r 6= j〉};

4. Taw = {wri};

5. Tcw = {λij};
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6. Maw = {(wri, i)};

7. Mcw = {(λij, i, j)}.

De�nition 4.5 (RRBB reader module) The RRBB reader module is a
tuple READER = (PNr, LOCr, EXTr, Tar , Tcr ,Mar ,Mcr) where:

1. PNr is as de�ned by Figure 4.2(b);

2. LOCr = {〈r = i〉, 〈r = j〉, 〈r 6= i〉, 〈r 6= j〉};

3. EXTr = {〈w = j〉, 〈w 6= j〉};

4. Tar = {rdi};

5. Tcr = {µii, µij};

6. Mar = {(rdi, i)};

7. Mcr = {(µii, i, i), (µij, i, j)}.

The connection of two modules,MOD1 andMOD2, is de�ned as another
Petri net module that is constructed by the union of them. De�nition 4.6
captures this.

De�nition 4.6 (Connection for RRBB Petri net modules) Given
two Petri net modules MOD1 and MOD2, where:

• MOD1 = (PN1, LOC1, EXT1, Ta1 , Tc1 ,Ma1 ,Mc1), and

• MOD2 = (PN2, LOC2, EXT2, Ta2 , Tc2 ,Ma2 ,Mc2),

the union of them is a Petri net module
m = (PN,LOC,EXT, Ta, Tc,Ma,Mc) such that:

1. PN = PN1

⋃
PN2 where P = P1

⋃
P2 (if two places have the same

label them they are the same), T = T1

⋃
T2 and F = F1

⋃
F2

2. LOC = LOC1

⋃
LOC2;

3. EXT = EXT1

⋃
EXT2;

4. Ta = Ta1

⋃
Ta2;

5. Tc = Tc1
⋃
Tc2;
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6. Ma = Ma1

⋃
Ma2;

7. Mc = Mc1

⋃
Mc2.

The complete ACM model can also be generated by the union of the
Petri net models of each resulting process. The procedure is as introduced
by De�nition 4.6 except that rules 2 and 3 do not apply.

The last required step is to set an appropriated initial marking for the
Petri net model. This can be done using De�nition 4.7.

De�nition 4.7 (Initial marking for RRBB ACMs) For any Petri net
model of an RRBB ACM, its initial marking is de�ned as follows

1. M0(w1) = 1;

2. M0(〈w = 1〉) = 1;

3. M0(〈w 6= i〉) = 1, if i 6= 1;

4. M0(r0) = 1;

5. M0(〈r = 0〉) = 1;

6. M0(〈r 6= i〉) = 1, if i 6= 0.

All the other places are not marked.

Observe that according to De�nition 4.7, the writer is pointing at the
1st cell of the ACM and reader is pointing at the 0th cell, i.e. the ACM is
assumed to be initialized with some data in its 0th cell.

4.4 Generating the models for overwriting

ACMs

Asynchronous communication mechanisms allowing overwriting are consid-
erable more complex than non-overwriting policies, requiring more control
variables and a more complex control logic in order to behave properly. As
in the case of re-reading ACMs, a set of basic modules which are used to
synthesize the writer and reader processes is de�ned. The creation of each
process consists in instantiating a number of these modules, one for each cell,
and connecting them. Again, instantiating a module only requires replacing
i and j by the correct cell numbers, and connecting the modules requires to
fuse all the places with the same label.
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The con�guration of overwriting ACMs di�ers from the re-reading ACMs
substantially. In RRBB ACMs the shared memory used to provide commu-
nication between the processes consists of a simple circular bu�er. This was
enough to preserve coherence and freshness properties. On OWRRBB and
OWBB ACMs, this is not enough. The shared memory also consists of a
circular bu�er, but in this case each cell in the bu�er is composed of two
slots. Each cell can hold two data items at a time and only one of them is
considered as valid. This is necessary to avoid data coherence problems when
both processes are about to access the same cell in the bu�er. In this case,
the processes will address di�erent slots of the cell.

In an OWRRBB ACM, allowing overwriting and re-reading implies the
following behavior:

• The writer �rst accesses the shared memory and then advances to the
next cell. If the reader is not accessing that cell, then the writer will
address the slot opposite to the one the writer addressed the last time
it accessed the cell. On the other hand, if the reader is accessing that
cell, the writer addresses the slot opposite to the slot the reader is
addressing. In the latter case, the writer indicates that it engaged in
overwriting.

• The reader �rst advances to the next cell and then performs the data
transfer. If the writer is not engaged in overwriting, the reader always
addresses the last slot addressed by the writer in the reader's next cell.
On the other hand, the reader advances to the writer's next cell and
addresses the last slot pointed by the writer, and indicates that the
overwriting cycle has �nished.

In order to support the behavior above, it is necessary to modify De�ni-
tion 4.3 to introduce multiple slots support in the Petri net modules. Def-
inition 4.8 formally describes a Petri net module that can be used to build
models of overwriting ACMs.

De�nition 4.8 (Petri net OWRRBB module) A Petri net module is a
tuple MODULE = (PN,LOC,EXT, Ta, Tc,Ma,Mc) such that:

1. PN is a Petri net structure (P, T, F ) with:

(a) P being �nite set of places;

(b) T being �nite set of transitions;

(c) F ⊆ (P × T )
⋃

(T × P ) being a set of arcs (�ow relation).
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2. LOC ⊂ P is a �nite set of local ports;

3. EXT ⊂ P is a �nite set of external ports such that p ∈ EXT ⇐⇒
p• = •p. Places in EXT are said to be read-only;

4. LOC
⋂
EXT = ∅;

5. Ta ⊂ T is a �nite set of transitions such that t ∈ Ta ⇐⇒ t models a
media access action;

6. Tc ⊂ T is a �nite set of transitions such that t ∈ Tc ⇐⇒ t models a
control action;

7. Ta
⋃
Tc = T and Ta

⋂
Tc = ∅;

8. Ma ⊂ (Ta × (N × N)) is a relation that maps each access transition
t ∈ Ta into a pair of integers that represent the number of the cell and
the slot addressed by t;

9. Mc ⊂ (Tc × (N × N) × (N × N)) is a relation that maps each control
transition t ∈ Tc into two pair of integers. The �rst models the current
cell and slot pair pointed by the module, while the second models the
values of the next cell and slot pair to be pointed.

Observe that De�nition 4.8 di�ers from 4.3 only on items Ma and Mc.
This is necessary due to the fact that in overwriting ACMs it is not enough
to indicate the current and next cells a process is pointing to. It is necessary
to indicate the current and next pairs of (cell, slot) the process is pointing
to.

In what follows, the modules used to build the writer and reader processes
will be de�ned. Also, the procedure to instantiate and connect the modules
is introduced.

4.4.1 The writer module

As stated before, in an overwriting ACM the writer �rst accesses the shared
memory, storing a new data item in it, and then it advances to the next cell.
Which cell is the next one depends on which cell the reader is addressing.
Suppose that the writer is addressing the pair of cell and slot (i, s), with
i = 0..n−1 and s = 0, 1 at a certain time. If the reader is not addressing the
jth cell, where j = i+ 1 mod n, the writer will address the cell (j, s′) at the
next time, where s′ is the slot opposite to the slot addressed by the writer
the last time the jth cell was accessed. On the other hand, if the reader is
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addressing the cell (j, s′), then the writer should next address the pair (j, s′).
In this case, the writer indicates that it has engaged in overwriting.

Due to the need of extra control variables to correctly indicate which slot
in the cell the writer is addressing and if it has engaged into an overwriting
cycle, the basic modules used to build a Petri net model of an overwriting
ACM writer process is considerable more complex than the basic module for
re-reading only ACMs. However, the basic behavior is the same: write a new
data item, and then advance to another cell.

Figure 4.4: The writer module with compressed control actions

In Figure 4.4 this basic behavior is captured as a Petri net. The data
access actions are modeled by the transitions wri0 and wri1, which model the
action of writing a new data into the pairs of cell and slot (i, 0) and (i, 1),
respectively. The control actions are abstracted by the transition λi. The
places wi0, wi1, pwi0, pwi1, wj0 and Wj1 are internal to the writer process,
and they function as a program counter indicating the next action to be
performed by the process. The places w = 1, w = j, li0, li1, lj0 and lj0 model
the control variables of the writer process. While w = 1 and w = j indicate
which cell the process is addressing at a given time, the others are used to
indicate the last slot addressed by the process when it was pointing to ith or
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to jth cell. Finally, the places r = j0, r! = j0, r = j1 and r! = j1 model the
control variables of the reader process, indicating its status.

Note that in Figure 4.4 the transition λi represents the set of all λ transi-
tions in the module. Figures 4.11 � 4.14 detail the possible behavior of each
λ transition.

(a) λi0j0 (b) λi0j0′

Figure 4.5: Control actions for the writer � part 1

In Figure 4.5(a) the transition λi0j0 models the writer moving from the
pair (i, 0) to the pair (j, 0) when the reader is not addressing it and the last
pair addressed in the jth cell was (j, 1). In Figure 4.5(b) λi0j0′ does basically
the same, but in this case the reader is addressing (j, 1) and the writer has
accessed (j, 0) on the previous cycle. Then it is necessary to overwrite the
contents of (j, 0) again. Observe that λi0j0′ does not indicate the beginning
of an overwriting cycle, this is also done by λi0j0 in the case of the existence
of tokens in λj1 and r = j1, which is not explicitly tested by λi0j0. Also note
that the indication of the writer engaging in overwriting is not explicit in
the model: this is only indicated to the reader by the existence of a token in
place lis when the reader is pointing to (i, s). This is enough to determine
the occurrence of overwriting.

In Figures 4.6(a) and 4.6(b) the transitions λi0j1 and λi0j1′ are introduced.
They both model the writer moving from (i, 0) to (j, 1). As before, λi0j1′ is
�red when the writer has already engaged in an overwriting cycle and λi0j1 is
�red when there is no overwriting yet, or when the overwriting cycle is about
to start.

Finally, in Figures 4.7 and 4.8 the transitions λi1j0, λi1j0′ , λi1j1 and λi1j1′

are introduced. They model the writer moving from (i, 1) to (j, 0) and from
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(a) λi0j1 (b) λi0j1′

Figure 4.6: Control actions for the writer � part 2

(a) λi1j0 (b) λi1j0′

Figure 4.7: Control actions for the writer � part 3

(i, 1) to (j, 1). The reasoning used before also applies here. However, in these
cases the writer is releasing a data item in (i, 1) instead of (i, 0) as is in the
two �rst cases.

Figures 4.5 � 4.8 together model all the behavior allowed for the writer
when it is executing a control action. Replacing the transition λi in Figure 4.4
by the combination of all of them results is the Petri net module in Figure 4.9.
It is not di�cult to see that when the size of the ACM grows, it becomes
more and more complex to understand the behavior of its Petri net model
and, which is more important, to build it manually. Up to now, only the
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(a) λi1j1 (b) λi1j1′

Figure 4.8: Control actions for the writer � part 4

model for the writer has been considered.

Figure 4.9: The complete writer module

The Petri net module for the writer process of an OWRRBB ACM is
formally introduced in De�nition 4.9.



4.4. GENERATING THE MODELS FOR OVERWRITING ACMS 73

De�nition 4.9 (OWRRBB writer module) The OWRRBB writer
module is a tuple WRITER = (PNw, LOCw, EXTw, Taw , Tcw ,Maw ,Mcw)
where:

1. PNw is as de�ned by Figure 4.9;

2. LOCw = {〈w = i〉, 〈w = j〉, 〈li0〉, 〈li1〉, 〈lj0〉, 〈lj1〉};

3. EXTw = {〈r = j0〉, 〈r = j1〉, 〈r! = j0〉, 〈r! = j1〉};

4. Taw = {wri0, wri1};

5. Tcw = {λi0j0, λi0j0′ , λi1j0, λi1j0′ , λi0j1, λi0j1′ , λi1j1, λi1j1′};

6. Maw = {(wri0, (i, 0)), (wri1, (i, 1))};

7. Mcw = {(λi0j0, (i, 0), (j, 0)), (λi0j0′ , (i, 0), (j, 0)), (λi1j0, (i, 1), (j, 0)),
(λi1j0′ , (i, 1), (j, 0)), (λi0j1, (i, 0), (j, 1)), (λi0j1′ , (i, 0), (j, 1)),
(λi1j1, (i, 1), (j, 1)), (λi1j1′ , (i, 1), (j, 1))}.

4.4.2 The reader module

In an overwriting ACM the reader �rst advances to the next cell and then
performs the data access. Again, the next cell depends on the state of the
writer. Suppose that the reader is addressing the pair of cell and slot (i, s),
with i = 0..n−1 and s = 0, 1 at a certain time. If the writer has not engaged
into an overwriting cycle and is addressing the jth cell, where j = i + 1
mod n, then the reader will next address (j, s′), where s′ is the last slot
addressed by the writer when it was accessing jth cell. In other words, it
depends on the tokens in places lj0 and lj1 of the writer. Note that if the
writer is pointing to the jth cell and no overwrite has been done, then the
reader prepares to re-read.

The question now is how the reader detects if the writer has started an
overwriting cycle or not. This can be easily achieved testing the place lis,
supposing the reader is accessing (i, s). When the reader advanced to (i, s),
it was because the slot s of cell i was holding the oldest non-read data item,
which is indicated by the writer with a token on place lis. Then, if a token
appears on lis while the reader is pointing at (i, s), it is a sign that overwrite
has occurred. Note that above we used the notation s to denote the opposite
of s.

Once the reader has detected that the writer is engaged in overwriting,
it advances to the next cell until it �nds the cell j that the writer is pointing
to. Finally, the reader points to the proper slot of the cell j + 1 mod n.
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Observe that with this strategy of alternating the slot accessed in each
cell, both processes always attempt to address di�erent slots when they are
about to access the same cell, which is enough to guarantee data coherence.

Despite of this complexity, the basic behavior of each module used in
building the reader process for RRBB ACMs is same as it is for RRBB
ACMs: choose the next cell, and then read its content. In Figure 4.10 this
basic behavior is captured as a Petri net model in which the data access
action are modeled by the transitions rdi0 and rdi1, and all control actions
are abstracted by the transition µi.

Figure 4.10: The reader module with compressed control actions

The places ri0, ri1, pri0, pri1, rj0 and rj1 are internal to the reader process,
and they function as a program counter indicating the next action to be
performed by the process. rai and raj are also internal to the reader; they
also work as program counters, but they are used only when overwriting is
detected and the reader advances until the proper cell. Places r = i0, r! = i0,
r = i1, r! = i1, r = j0, r! = j0, r = j1, r! = j1 model the reader's control
variables. They are shared with the writer process in order to communicate
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the status of the reader. Finally, the places w = 1, w = j, li0, li1, lj0 and
lj1 model the control variables of the writer; they can only be tested by the
reader.

In Figures 4.11(a) and 4.11(b) the µ transitions modeling the reader
preparing to re-read are shown. In both cases, the writer is pointing to
the next cell, i.e. to the jth = i+1 mod n cell, and it has not engaged in an
overwriting cycle, which is detected by the existence of a token on place li0
when the reader has just accessed (i, 0) or by a token in li1 when the reader
has just accessed (i, 1).

(a) µi0i0 (b) µi1i1

Figure 4.11: Control actions for the reader � part 1

In Figures 4.12 and 4.13 the transitions modeling the reader advancing
to the next cell without the occurrence of overwriting are detailed. In all
four cases, the writer is not pointing to the jth cell, which is detected by the
existence of a token on the place lj0 or on the place lj1, and also determine
the next cell to be pointed by the reader. Besides that, token on place li0
or on place li1 when the reader has just accessed (i, 0) or (i, 1), respectively,
indicates that overwriting has not occurred. The shared control variables of
the reader are properly updated and so are the internal variables.

Observe that there are four possibilities to be covered: i) moving from
(i, 0) to (j, 0); ii) moving from (i, 1) to (j, 0); iii) moving from (i, 0) to (j, 1);
and iv) moving from (i, 1) to (j, 1). Each of these possibilities are modeled
in Figures 4.12(a), 4.12(b), 4.13(a) and 4.13(b) respectively.
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(a) µi0j0 (b) µi1j0

Figure 4.12: Control actions for the reader � part 2

(a) µi0j1 (b) µi1j1

Figure 4.13: Control actions for the reader � part 3

In Figures 4.14� 4.16 the transitions modeling the reader detecting an
overwriting cycle and running through the shared memory until it �nds the
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right cell are detailed. In Figure 4.14(a) the transition µi0e1 models the
reader pointing to (i, 0) and detecting the writer engaged in an overwriting
cycle by testing the place li1. Remember that a token in li1 when the reader
is pointing to (i, 0) indicates that the writer has written a new data item into
the ith cell when the reader was accessing it. Also remember that these data
accesses are performed in di�erent slots, preserving data coherence require-
ments. Figure 4.14(b) the same behavior is modeled, but with the reader
initially pointing to (i, 1).

(a) µi0e1 (b) µi1e1

Figure 4.14: Control actions for the reader � part 4

After detecting the overwriting cycle the reader enters into a special mode,
putting a token on place raj, and keeps advancing to the next cell until it
�nds the cell that is being addressed by the writer. When it happens, the
reader only tests if the writer is pointing to the cell without preparing to
access it. This behavior is modeled by the Petri nets in Figures 4.15.

The transition µi0e2 models the reader testing slot 0 at cell i and �nding
a new data item there. In this case it advances one more cell in order to test
it. The same behavior applies to transition µi1e2, but in this case the reader
is testing slot 1 at the same cell. These transitions are modeled by the Petri
nets of Figures 4.15(a) and 4.15(b) respectively. The reader process presents
this behavior until it �nds the cell which the writer is pointing to.

In Figure 4.16 the Petri net modeling the reader �nding the cell holding
the oldest non-read data item is modeled by transitions µi0e3 and µi1e3. The
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(a) µi0e2 (b) µi1e2

Figure 4.15: Control actions for the reader � part 5

(a) µi0e3 (b) µi1e3

Figure 4.16: Control actions for the reader � part 6

proper cell j, with j = i + 1 mod n, is found when: i) the reader �nds the
cell i such that there is a token in place w = 1 indicating that the writer is
pointing to it; ii) such ith cell has no indication of a new item, i.e. li0 and li1
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have no tokens, avoiding a con�ict with one of the transitions µi0e2 or µi1e2;
and iii) the reader �nds a new non-read data item on the jth cell which is
indicated by a token in lj0 or in lj1. Depending on which slot the data is
found, the µi0e3 or µi1e3 will be �red and the reader will prepare to read the
proper slot.

Figure 4.17: The complete reader module

Finally, all µ transitions are combined to replace the abstraction µ that
appears on Figure 4.10. After replacing it, the Petri net model shown in
Figure 4.17 is obtained. The �nal result is even more complex than it is for
the writer. Building and combining both processes result in a Petri net model
that is too complex to be handled by a human designer. Also, building those
models by hand is a procedure prone to errors. For this reason, a formal
de�nition of the modules for building the writer and the reader processes are
needed. Also, a procedure that can be executed by a computer program is
essential to obtain the models of such processes without running the risk of
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errors.
The Petri net module for the reader process of an OWRRBB ACM is

formally introduced in De�nition 4.10.

De�nition 4.10 (OWRRBB reader module) The OWRRBB reader
module is a tuple READER = (PNr, LOCr, EXTr, Tar , Tcr ,Mar ,Mcr)
where:

1. PNr is as de�ned by Figure 4.9;

2. LOCr = {〈r = i0〉, 〈r! = i0〉, 〈r = i1〉, 〈r! = i1〉, 〈r = j0〉,
〈r! = j0〉, 〈r = j1〉, 〈r! = j1〉;

3. EXTr = {〈w = i〉, 〈w = j〉, 〈li0〉, 〈li1〉, 〈lj0〉, 〈lj1〉};

4. Tar = {rdi0, rdi1};

5. Tcr = {µi0j0, µi0j1, µi1j0, µi1j1, µi0e1, µi0e2, µi0e3, µi1e1, µi1e2, µi1e3, };

6. Mar = {(wri0, (i, 0)), (wri1, (i, 1))};

7. Mcr = {(µi0j0, (i, 0), (j, 0)), (µi0j1, (i, 0), (j, 1)), (µi1j0, (i, 1), (j, 0)),
(µi1j1, (i, 1), (j, 1)), (µi0e1, (i, 0), (j,−1)), (µi0e2, (i,−1), (j,−1)),
(µi0e3, (i,−1), (j, 0)), (µi1e1, (i, 1), (j,−1)), (µi1e2, (i,−1), (j,−1)),
(µi1e3, (i,−1), (j, 1))}.

4.4.3 Connecting modules for OWRRBB ACMs

The connection of two modules, MOD1 and MOD2, is de�ned as another
Petri net module that is constructed by the union of them. De�nition 4.11
captures this.

De�nition 4.11 (Connection for Petri net modules) Given two Petri
net modules MOD1 and MOD2, where:

• MOD1 = (PN1, LOC1, EXT1, Ta1 , Tc1 ,Ma1 ,Mc1) and;

• MOD2 = (PN2, LOC2, EXT2, Ta2 , Tc2 ,Ma2 ,Mc2).

The union of them is a Petri net module m =
(PN,LOC,EXT, Ta, Tc,Ma,Mc) such that:

1. PN = PN1

⋃
PN2 where P = P1

⋃
P2, If two places have the same

label them they are the same, T = T1

⋃
T2 and F = F1

⋃
F2p
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2. LOC = LOC1

⋃
LOC2;

3. EXT = EXT1

⋃
EXT2;

4. Ta = Ta1

⋃
Ta2;

5. Tc = Tc1
⋃
Tc2;

6. Ma = Ma1

⋃
Ma2;

7. Mc = Mc1

⋃
Mc2.

The complete ACM model can also be generated by the union of the
Petri net models of each resulting process. The procedure is as introduced
by De�nition 4.11 except that rules 2 and 3 do not apply.

4.4.4 Initial marking for OWRRBB ACMs

The last required step is to set an appropriated initial marking for the Petri
net model. This can be done using De�nition 4.12.

De�nition 4.12 (Initial marking for OWRRBB ACMs) For any
Petri net model of an RRBB ACM, its initial marking is de�ned as follows.

1. M0(w11) = 1;

2. M0(w = 1) = 1;

3. M0(li1) = 1, if i 6= 1;

4. M0(r01) = 1;

5. M0(r! = i0) = 1 ∀i = 0 · · ·n− 1;

6. M0(r = 01) = 1;

7. M0(r! = i1) = 1 ∀i 6= 0

All other places are not marked.

Observe that according to De�nition 4.12, the writer is pointing at the
1st cell of the ACM and reader is pointing to the 0th cell. By this, it can be
deduced that the ACM is assumed to be initialized with some data on its 0th

cell.
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4.5 Conclusions

In this chapter the generation of Petri net models of ACMs using a modular
approach has been introduced. Di�erently to what has been presented in
Chapter 3, the method discussed here can be used in practice to obtain ACMs
of big sizes, which was not possible in practice with the previous method.
The payback is the need for formal veri�cation, which will be discussed on the
next chapter, of the Petri net models obtained using the modular approach.

The behavior expected from the re-reading and overwriting ACMs has
been de�ned as a transition system and speci�ed as a set of CTL formulae.
Then the generation of Petri net models has been detailed. The basic modules
used to obtain the models were de�ned, together with the procedure used to
connect them and build to entire model.

The reader may have noticed that there is no comparison between the
Petri net models generated on this chapter with the models obtained with
the method presented on Chapter 3. This is mainly because the method
presented on Chapter 3 cannot be used in practice. It is possible to obtain
only ACMs for the re-reading policy. For the overwriting policies, even very
small ACMs cannot be generated. For the particular case of the re-reading
ACMs, the obtained Petri nets are too similar. This is not a surprise, since
the modular method as designed based on the models obtained with that
technique. However, we have made comparisons only for very few and small
models, and we cannot ensure this is true for any generated model.

Unfortunately, since the method introduced in Chapter 3 has limited
practical use, a comparison between the results of both methods is not possi-
ble, in particular for overwriting policies. For the re-reading policy, the Petri
net models obtained from both methods are basically the same. It is not
a surprise since the modules were designed based on the Petri net models
obtained from the �rst approach. It should be said that the ACM-region
based method presents some advantage over the modular one. For some few
examples, a smaller Petri net is generated. Smaller means fewer variables,
which is good both for code synthesis and veri�cation.

However, even for the smaller overwriting ACM a comparison is not pos-
sible. This is mainly because the model obtained is too cumbersome to be
handled by a human. Di�erently to what happen to the re-reading policy,
the modules for the overwriting ACMs were designed from scratch without
any hint. It is possible the Petrify generates models that optimized compared
to the models generated with the modular approach. In this case, the source
code generated may also be faster. But this is pure speculation.

Finally, the source code can also be obtained from the state graph speci�-
cation, instead of sing Petri net models. The disadvantage of this alternative



4.5. CONCLUSIONS 83

is that it will be necessary to deal with an explicit representation of the state
space of the ACM, while with the Petri net it is not.
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Chapter 5

Building and verifying ACM

models

This chapter will discuss how the veri�cation of ACMs has been performed
using the Petri net models obtained through the method described on Chap-
ter 4. The veri�cation of two properties have been addressed: coherence and
freshness. Both have been described previously. More speci�cally, this chap-
ter details how the abstract description of ACMs introduced on Section 4.2
was modeled using the Symbolic Model Veri�er (SMV) [51]. Besides that, it
is also discussed how CTL formulae specifying coherence and freshness prop-
erties for ACMs of a given size are obtained. Then the SMV models and CTL
formulae are used to perform model checking in order to guarantee that the
properties are satis�ed by the models. However, since the ACMs artifacts
we intend to obtain are synthesized from the Petri net models and not from
those abstract models, it is also necessary to verify the Petri net models. In
this work it is done by verifying that the PN model is a re�nement of the
abstract model. In this way, it is possible to assure that all PN models satisfy
coherence and freshness. This is necessary to increase the reliability of the
ACM source code which is generated from the PN model. Since the source
code mimics the PN behavior, it should also preserve the referred properties.

5.1 Overview

The approach used in this work for the veri�cation of ACMs consists of �ve
main steps, as outlined in Figure 5.1. Since the starting point of the ACM
synthesis method is a functional speci�cation that consists only of a policy
speci�cation and the size of the bu�er, it is natural that the �rst step is the
generation of the models and properties to be veri�ed.

85
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In this way, to perform veri�cation it is necessary to generate the set of
CTL formulae specifying the desired properties of the ACM, i.e. coherence
and freshness, and the models that should be veri�ed against these formulae.
The formulae are generated according to Equations 4.1 and 4.2 if the ACM
to be veri�ed is a re-reading one, or according to Equations 4.3 and 4.4 of it
is an overwriting ACM.

Figure 5.1: The veri�cation �ow

Then an SMV model of the ACM is generated according to De�nitions 4.1
or 4.2, depending on the policy of the ACM. These two tasks are not part
of the veri�cation itself. However, they are required to obtain the models
and properties to perform the veri�cation. Without them, veri�cation with
SMV is not possible. The model obtained here is called the abstract model.
Together, these two tasks constitutes the �rst step of the veri�cation �ow
outlined in Figure 5.1.

With the CTL formulae and the SMV model at hand it is possible to
execute the second step of the veri�cation �ow, which consists in the �rst
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execution of the SMV model checker. This �rst run serves the purpose of
ensuring that the abstract model satis�es coherence and freshness properties.
If they are satis�ed, then it is a good start into direction on ACM synthesis.
However, the abstract model alone is not appropriated for the synthesis of
ACMs implementations. It is too abstract for that purpose. It is necessary
to have a more detailed speci�cation. For this, the Petri net model should
be used.

The Petri net model, which will be called the low-level model, is generated
on the third step according to the method presented in Sections 4.3 and 4.4,
depending on the type of ACM under synthesis. Once generated, this model
needs to be veri�ed to ensure its correctness with respect of the abstract
model. For this purpose, re�nement veri�cation can be applied.

The re�nement veri�cation method consists in verifying if the behavior
implemented in a low-level model is correct with respect to the behavior of
a more abstract model. In other words, re�nement veri�cation will be used
here to check if the behavior implemented by the Petri net model is correct
with respect to the behavior speci�ed in the SMV model. The �rst problem
that arises is that both models are not expressed in the same language. One
is an SMV model while the other is a Petri net. For this reason, the fourth
step consists in translating the Petri net model into an SMV one. Since the
Petri nets generated are always one-safe, such transformation is possible.

Besides this transformation it is also necessary to apply some modi�-
cations to the low-level model in order to specify the re�nement relation.
Speci�cally, it is of interest to determine whether, for a certain sequence of
data that is transmitted, the reader will recover the correct information. The
correct information is given by the abstract model. These modi�cations will
be detailed along this chapter.

Finally, once all models have been generated and the re�nement relation
has been described, the �fth step, which is the re�nement veri�cation, is
performed. If the result of this veri�cation is positive, then the ACM source
code (hardware or software) can be obtained with the formal guarantee that
the artifact will preserve the properties.

The reader will notice that the methodology does not foresee any action
if step 2, or 5, fails. As stated before, this is because veri�cation is used as a
validation tool of the methodology and not of the protocols. In other words,
the user is not expected to perform any veri�cation in the models. Since there
is no formal proof of the correctness of the methodology, this validation is
required to provide some con�dence that the method indeed works.

The ACMs introduced in this work have also been modeled as Coloured
Petri Nets [37, 38]. Besides the fact that this activity is not included in the
veri�cation �ow of Figure 5.1, the results obtained with the CPN models are
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also included here for completion. The CPN models have been subjected to
veri�cation using the ASKCTL library and a set of Message Sequence Charts
(MSCs) have been generated from the simulation of the model [27, 28]. The
generation of MSCs is particularly important for a better understood of the
ACM policies described here for those unfamiliar with the ACM protocols.

5.2 Veri�cation of the abstract models

The �rst step towards the veri�cation of the ACM models generated with
the method proposed in this work is to model the behavior described in
De�nitions 4.1 and 4.2 using some tool that can perform automatic model
checking of these models. Those de�nitions describe ACMs as �nite state
machines, in which the state of the system is given by the status of the
communication queue. It should be clear by now that those �nite state
machines are not general for ACMs of any size and that, by consequence,
ACMs of di�erent sizes have di�erent �nite state machines. For the same
reason the set of CTL formulae describing coherence and freshness properties
also changes according to the size of the ACM. More speci�cally, when the
size of the ACM grows, new CTL formulae are needed to describe those
properties correctly.

The behavior of ACMs has been described in this work through an SMV
model that can be parametrized. In order to obtain the SMV model for an
ACM of a given size, it is only necessary to set the size parameter properly.
This applies to both re-reading and overwriting policies.

The models obtained for both policies use the same schema. The SMV
modules feature is used to de�ne three basic modules. The �rst one models
the behavior of the writer process. The second one models the behavior of
the reader process. Finally, the third one is the main module, and is used to
instantiate one writer and one reader as SMV processes. The main module is
also used to instantiate some variables and connect both processes. In what
follows, these SMV models will be detailed.

5.2.1 SMV models for re-reading ACMs

As stated above, the SMV model for RRBB ACMs consists of three SMV
modules: one for the writer, one for the reader, and one to instantiate and
connect them, as shown in Figure 5.2. The model can be parametrized
according to the size of the ACM.

In the SMV language a module consists of a set of de�nitions that can
be reused. Modules may have parameters that can be used to connect the
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Figure 5.2: ACM SMV modules

instance of a certain module to the rest of the model. In some sense, an SMV
module is similar to a process de�nition, and the entrance point of the model
is the main module. In the ACMs models de�ned in this work the main
module is used to instantiate the writer and reader processes, which are also
modeled as modules, and connect them properly. Besides that, the variables
de�ning the ACM according to De�nition 4.1 are declared and initialized.
For instance, from De�nition 4.1 it is very clear that each process can be idle
or accessing the communication queue, and it is necessary to de�ne those
possible states. It is also necessary to declare the communication bu�er,
which can be an array, and the variables that will be written into the bu�er
and where the recovered information will be stored. Finally, it is necessary
to count how many items there are in the bu�er at a given instant time.

The variables writer and reader are used to control the status of the
writer and reader modules respectively, and they can assume the values idle
or accessing. wr_data is used to indicate which is the new data to be
written in the communication bu�er, while rd_data stores the last data
that has been read from it. The amount of data available in the bu�er is
indicated by variable counter, and, �nally, acm is an array that represents
the communication bu�er. The array of data acm can store at most as
many items as speci�ed by the size of the ACM, and from now on the size
of the ACM will be referred as ACM_SIZE. Besides acm, another array
called acm_previous is also used, it will be necessary in order to verify the
freshness property. For now it is enough to know that it has the value acm
had in the previous state.

When the writer stores a new item in the bu�er, counter is incremented.
When the reader removes one data item from the bu�er, counter is decre-
mented. Note that counter is set by both reader and writer modules. One
can think this is a contradiction with the ACM framework in which the
control variables are unidirectional. However, it is necessary to take into
account that at this point, we are only modeling the behavior speci�ed in
De�nition 4.1, which does not impose any constraints about how control
variables can be used.
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The next step is to initialize those variables. The status of both processes
is set to idle, the bu�er is initialized with some data, and the data counter
is set to one.

De�ning SMV modules

The last step towards the modeling of the abstract behavior of RRBB ACMs
is the de�nition of the behavior of the writer and reader modules. This can
be easily achieved by de�ning a Finite State Machine (FSM) for each module.
In Figures 5.3 and 5.4 the FSMs representing the behavior of the writer and
reader modules are introduced.

Figure 5.3: FSM for the SMV writer module (RRBB)

Initially the writer is in the idle state. If there is some empty cell in the
bu�er, which is indicated by the condition counter < ACM_SIZE, then
the writer can proceed and start writing a new data item. On the other
hand, if the writer is accessing the bu�er, it can release the new data item
at any time. These are in accordance with Rules 1 and 3 and De�nition 4.1
respectively. Note that if none of these is true, then the writer cannot execute,
according to Rule 2 of the same De�nition.

Figure 5.4: FSM for the SMV reader module (RRBB)
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On the other hand, the reader is not required to block under any circum-
stance. Initially the reader is also at idle state, and it may start accessing
the bu�er at any time, which corresponds to Rule 4 of De�nition 4.1. If the
reader is already accessing the bu�er two things may happen after it �nishes
the data access. First, if there is only one item available in the bu�er, it
cannot be removed, and in this case the reader prepares to re-read. This is
indicated condition counter=1 and by the idle state on the right side which
is marked as ready to re-read. Since the writer only increments counter
when releasing the item for reading, there is no di�erence in the FSM be-
tween Rules 5 and 6. Finally, if there is more than one data item available
for reading, i.e. counter > 1, then the reader �nishes accessing the bu�er
and removes the current data item from it, returning to the idle state; this
corresponds to Rule 7.

To better explain how the variables of the model are manipulated, it
is necessary to look deep into how the variables change when there is a
state transition. For instance, let us look at what happens when the reader
changes from accessing to idle removing one data item from the bu�er. This
is speci�ed by an SMV code such as:

1 next ( reader ) := i d l e ;
2 next ( counter ) := counter − 1 ;
3 f o r ( i = 0 ; i < ACM_SIZE−1; i = i + 1) {
4 next (acm [ i ] ) := acm [ i + 1 ] ;
5 }
6 next ( acm_previous ) := acm ;

In each line, the value of a variable in the next state is de�ned in terms
of its current value. For instance, since the code above refers to the reader,
the status of the writer does not change at all. In line 1 it is speci�ed that
the next status of the reader will be idle. In line 2 the value of counter
is decremented by one. In the for loop, the data item just read is removed
from the communication bu�er. This is done by shifting all ith elements of
the array acm to the previous one, i.e., making acm[i]=acm[i+1] for all
i ≥ 0. Finally, the current status of the bu�er acm is saved in the auxiliary
array acm_previous for veri�cation purposes.

The rest of the model will not be discussed in details. All the actions
speci�ed in the SMV language are intended to implement the behavior de-
scribed by De�nition 4.1. However, in Section A.1 of Appendix A a complete
SMV �le describing a 3 cell RRBB ACM can be found.
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Generating the CTL speci�cation

The last step towards veri�cation is the generation of CTL formulae as de-
�ned by Equations 4.1 and 4.2 on Section 4.2.1. For the coherence property,
only one CTL formula is necessary, and it consists only of a syntactic trans-
lation from the notation of Equation 4.1, which for the sake of readability is
reproduced below, to the SMV syntax.

AG (ar ∈ σ → (ar = a0 ∧ (aw ∈ σ → aw = aj ∧ j > 0)))

The equation above is described by the following SMV piece of code:

SPEC AG( reader = ac c e s s i n g −> ( rd_data = acm [ 0 ] & counter > 0) ) ;

where reader = accessing corresponds to ar ∈ σ, rd_data = acm[0] cor-
responds to ar = a0 and counter>0 simpli�es aw ∈ σ → aw = aj ∧ j > 0.
This can be done because the writer always accesses the �rst free position
in the array acm, i.e. the �rst position after the last data item, which is
indicated by the value of counter. Then it is only necessary to guarantee
that counter is greater than zero.

Generating CTL formulae for freshness is more complicated because the
number of formulae needed depends on the size of the ACM. For the smallest
case of a re-reading ACM with three cells, the following CTL formulae are
generated:

1 −− sequenc ing p r o p e r t i e s f o r counter = 1
2 SPEC AG( counter = 1 −>
3 AX(( counter >= 1 & acm [ 0 ] = acm_previous [ 0 ] ) ) ) ;
4

5 −− sequenc ing p r o p e r t i e s f o r counter = 2
6 SPEC AG( counter = 2 −>
7 AX(( counter >= 2 & acm [ 0 . . 1 ] = acm_previous [ 0 . . 1 ] ) | |
8 ( counter = 1 & acm [ 0 ] = acm_previous [ 1 ] ) ) ) ;
9

10 −− sequenc ing p r o p e r t i e s f o r counter = 3
11 SPEC AG( counter = 3 −>
12 AX(( counter >= 3 & acm [ 0 . . 2 ] = acm_previous [ 0 . . 2 ] ) | |
13 ( counter = 2 & acm [ 0 . . 1 ] = acm_previous [ 1 . . 2 ] ) ) ) ;

In the above, each CTL formula corresponds to the speci�cation of fresh-
ness for a given number of data items available in the bu�er. More speci�-
cally, the �rst formula speci�es that if there is one data item in the bu�er,
then in the next state at least this item will be in the bu�er. The second
formula speci�es that if the bu�er has two data items, then next time it will
have the same items or it will have only one item and this item will be the
second one in the bu�er. Note that in the formulae acm refers to the current
status of the bu�er, while acm_previous refers to the status of the bu�er on
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the previous state. Remember that in the SMV model, it is always backup
on each state transition.

Finally, the third CTL formula speci�es that if the bu�er has three data
items, then next it will have at least the same items or it will have two items
that will corresponds to the tail of the bu�er. Here, the terminology tail
denotes the last n − 1 elements of a list of size n. If the list is empty, then
its tail is also an empty list.

Observe that if the size of the ACM grows to four, then a fourth CTL
formula is needed to complete the speci�cation of freshness. This new formula
should be similar to the third one, but with some modi�cation on the values
the variables should assume.

Let us take the third formula in order to see how the formulae above
relate to Equation 4.2. Again, in order to help the reader, that equation is
reproduced below.

AG(|σ| = x→ AX((|σ′| >= x ∧ σ′ = σ+) ∨ (|σ′| = x− 1 ∧ σ′ = σ−)))

It is easy to note that the basic structure of the formula is just
a syntactic translation of AG(· · · → AX((· · · ∧ · · · ) ∨ (· · · ∧ · · · ))) into
SPEC AG(...->AX((...&...) || (...&...))). It is also easy to observe
that all atomic propositions involving |σ| is related to the variable counter.
For instance, |σ| = x corresponds to counter=3, and the same reasoning
applies to the other propositions where |σ| appears.

The most complicated part is how to express the σ′, σ+ and σ− in the
SMV language. It should be clear by now that at each state of the system,
the array acm has the data items available for reading in the current state,
while acm_previous has data values that were available in the previous state.
Note that in the AX(...) sub-formula all references are made having as
starting point a possible next state. σ′ represents the current status of the
data queue, i.e. acm, and σ+ and σ− both represent the previous status of
the data queue, i.e. acm_previous. The di�erence between them is that σ+

represents a possible growth on the data queue and σ− represents a reduction
on it.

In this way, it is easy to map σ′ = σ+ into
acm[0..2] = acm_previous[0..2], which means that the �rst three
data elements remain unmodi�ed. In this particular case, three is the
maximum size of the ACM, and it is not possible to increase the size of the
queue. But if it was the case, we just do not care about the status of fourth
element in this particular formula. On the other hand, σ′ = σ− is mapped
into acm[0..1] = acm_previous[1..2], meaning that the head of the
queue was removed and all its tail is shifted to the beginning of the array.
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Results of the generation of SMV models

Using this schema, we have speci�ed the sequencing determined by the fresh-
ness properties using a set of CTL formulae. If all of them are evaluated to
true, then freshness is said to be satis�ed.

Using the schema described above, RRBB ACMs of size up to 8192 cells
have been generated. The generation of the SMV models consists only of
changing one parameter in the SMV model describing the ACM. On the
other hand, since the number of formulae required to describe freshness grows
with the size of the ACM, the time required to generate such formulae also
depends on the size of the ACM. The generation of this 8192 cells RRBB
ACM took about one hour.

Using an Intel R©CoreTM2 Duo CPU (T5500) at 1.66 GHz with 2GB of
RAM, model checking has been performed on a number of those models. It
was possible to verify coherence on models up to 1024 cells and freshness
on models up to 512 cells. When trying to verify an ACM with more cells,
there is not enough memory to store the state space. Table 5.1 summarizes
the data collected from the SMV execution. For verifying coherence and
freshness of a 512 cells ACM it was necessary 595.94 seconds, and 1089.41
seconds respectively. For the coherence property it was possible to verify
ACMs up to 1024 cells, while for freshness the limit was 512 cells.

5.2.2 SMV models for overwriting ACMs

The SMV model for overwriting ACMs is similar to the model for re-reading
ACMS. In fact they share the same basic structure. It is divided in three SMV
modules, one modeling the writer behavior, one modeling the reader, and the
third is the main entry point of the model. In the main module, variables
are declared, and the processes are instantiated. As in the RRBB model, the
model is speci�c for an ACM of a given size, which can be parametrized.

The main di�erence between both models is the behavior speci�ed for each
process. In what follows, it will be discussed how the rules of De�nition 4.2
are related to the SMV model of an OWRRBB ACM. Let us start looking
at the writer module, which is given by the FSM of Figure 5.5.

As previously, each module consists of an FSM in which each state change
corresponds to a Rule on De�nition 4.2. Initially, the writer is idle. If the
writer starts accessing the bu�er and there is some available space, which
is given by condition counter < ACM_SIZE, then the writer changes to
the accessing state. This corresponds to the Rule 1.

In the case when the bu�er is already full of items, the writer engages
into an overwriting cycle. There are two possibilities, and in both the writer



5.2. VERIFICATION OF THE ABSTRACT MODELS 95

ACM size user time (coherence) user time (freshness)

3 0.02 s 0.03 s

4 0.02 s 0.04 s

5 0.02 s 0.04 s

6 0.03 s 0.03 s

7 0.03 s 0.06 s

8 0.03 s 0.07 s

16 0.07 s 0.15 s

32 0.14 s 0.48 s

64 0.24 s 2.27 s

128 1.07 s 16.16 s

256 8.18 s 106.03 s

512 73.07 s 1172.65 s

1024 602.1 s timeout

2048 timeout

Table 5.1: Model checking of RRBB ACMs

starts overwriting some data item. The �rst possibility is that the reader is
in the idle state, and it corresponds to Rule 2. In this case, the �rst data
item stored in acm should be discarded. On the other hand, if the reader
is accessing the bu�er, the second data item in acm will be discarded. This
corresponds to Rule 3 of De�nition 4.2. Observe that this happens due to the
fact that it should not be possible to discard a data item that is being read
at the moment. In both cases, the writer should indicate that an overwriting
has occurred.

Finally, when the writer �nishes accessing the communication bu�er, it
returns to the idle state. This happens at all accessing states, and these
transitions correspond to Rule 4.

It can be observed that the rules describing the behavior of the reader
process of OWRRBB ACMS are exactly the same that describe the behavior
of RRBB ACMS. This is expected, since both sets refer to the re-reading
characteristic of the reader. For this reason one can expect that the SMV



96 CHAPTER 5. BUILDING AND VERIFYING ACM MODELS

Figure 5.5: FSM for the SMV writer module (OWRRBB)

model for the reader is also the same, and in part this is true because it can
be done, and certainly all properties will be satis�ed. The problem is that
in this case, this model cannot be used to verify if the Petri net model of
OWRRBB ACMs obtained by the procedure introduced in Chapter 4 re�nes
it or not.

The reason is that in the Petri net model that is synthesized, the reader
needs to �walk� through the communication bu�er until it �nds the memory
position it should next access, which does not happens in the conceptual
description of De�nition 4.2. To solve this problem, a silent action is added
to the reader in such a way that it corresponds to that �walk�. In other
words, this action does not change the values of any variable of the system.
This modi�ed FSM is shown on Figure 5.6.

Initially, the reader is idle. When it start reading some item, its state
changes to accessing, which corresponds to Rule 5. Remember that it is not
necessary to check the bu�er for new items because the reader can always
re-read the last one if necessary. Then the reader can �nish accessing the
bu�er and return to idle. Again, it can remove a data item from the bu�er, or
prepare to re-read. As before, removing an item corresponds to Rule 6 while
preparing to re-read the item corresponds to Rules 7 and 8 of De�nition 4.2.

The new silent action is modeled by the arc labeled overwriting? at state
accessing. It represents the reader �nishing accessing the bu�er but when the
writer has engaged into an overwriting cycle. In this case, the reader does
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Figure 5.6: FSM for the SMV reader module (OWRRBB)

not modify any variable of the model. At some point the reader should �nish
the search for the right data item and stop the cycle of silent actions. Again,
this is necessary to synchronize the SMV abstract model behavior with the
more detailed Petri net model behavior when overwriting occurs.

Concerning the generation of the CTL formulae describing coherence and
freshness properties, it is done basically in the same way as described in
Section 5.2.1. Of course, in this case they are obtained from Equations 4.3
and 4.4. Just for illustration, the set of coherence and freshness CTL formulae
for a 2 cells OWRRBB ACM is given by:

1 −− COHERENCE
2 SPEC AG( reader = ac c e s s i n g −> ( rd_data = acm [ 0 ] & counter > 0) ) ;
3

4 −− FRESHNESS
5 −− sequenc ing p r o p e r t i e s f o r counter = 1
6 SPEC AG( counter = 1 −>
7 AX(( counter >= 1 & acm [ 0 ] = acm_previous [ 0 ] ) ) ) ;
8 −− sequenc ing p r o p e r t i e s f o r counter = 2
9 SPEC AG( counter = 2 −>

10 AX(( counter >= 2 & acm [ 0 . . 1 ] = acm_previous [ 0 . . 1 ] ) | |
11 ( counter = 1 & acm [ 0 ] = acm_previous [ 1 ] ) | |
12 ( counter = 1 & acm [ 0 ] = acm_previous [ 0 ] ) ) ) ;

Using the same hardware as before, a number of OWRRBB ACMs models
have been generate and veri�ed with the SMV model checker. As before,
veri�cation of coherence was feasible for ACMs up to 1024 cells, and 512 cells
for freshness. In Table 5.2 the time needed to verify them is summarized.

We omitted here the models of OWBB ACMs, i.e. the policy in which
only overwriting is allowed, but it can be easily obtained from the OWRRBB
ACM model. In Appendix A complete examples of SMV models for RRBB
with 3 cells and OWBB and OWRRBB ACMs with 2 cells each can be found.
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ACM size user time (coherence) user time (freshness)

2 0.02 s 0.02 s

3 0.03 s 0.04 s

4 0.03 s 0.05 s

5 0.04 s 0.04 s

6 0.03 s 0.06 s

7 0.05 s 0.08 s

8 0.04 s 0.1 s

16 0.06 s 0.22 s

32 0.18 s 0.73 s

64 0.55 s 3.59 s

128 3.51 s 21.12 s

256 26.55 s 136.02 s

512 204.49 s 1196.65 s

1024 1685.87 s timeout

2048 timeout

Table 5.2: Model checking of OWRRBB ACMs

5.3 Veri�cation of the Petri net model

The Petri net model generated using the procedure discussed on Chapter 4
will be used to synthesize source code, that can be in C++, Java, Verilog,
etc., that implements the behavior speci�ed by the model. In this way, it
is necessary to guarantee that such a model is correct with respect to the
behavior given by De�nitions 4.1 and 4.2 presented in Sections 4.2.1 and 4.2.2
respectively. Up to now, it has been discussed how the SMV model checker
was used to verify that SMV models obtained from such de�nitions satisfy
coherence and freshness properties. The problem is that this is not enough to
argue that the Petri net models that are synthesized in this work also satisfy
such properties, it is necessary to provide some formal guarantee of that.

The speci�cation of a system may be made at di�erent levels of abstrac-
tions [3, 11, 50]. This is particularly useful when the system to be veri�ed,
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called S1, is too complex that its state space cannot be dealt by the model
checker. In this case the designer can build a more abstract model, called
S2, of the system and prove the desired properties using this abstract model.
Then the designer must demonstrate that S1 is a re�nement of S2 with re-
spect to the desired properties, and if S2 satis�es those properties, so does
S1. In this case it is said that S1 implements S2.

To achieve this purpose the designer should specify a re�nement mapping
that translates the behavior of S2 into S1 in such a way that every observable
behavior of S1 is allowed by S2. The re�nement mapping is intended to relate
the abstract model behavior to the implementation behavior.

In this work, re�nement veri�cation is applied in the following way. The
Petri net models that are generated as described in Chapter 4 are used as
low-level speci�cations which are veri�ed against the SMV models described
in Section 5.2. Those models are used as the high-level speci�cation for this
purpose. Re�nement veri�cation is then applied to check if the data items
transmitted and recovered in both models are consistent with each other. If
this is true, the implementation model is said to satisfy the desired properties.

The �rst problem to solve is that the high level model has been described
as an SMV model, while the low-level model is a Petri net. Since the Petri
nets generated are one-safe, i.e. each place has at most one token at a time,
its state space is �nite. Consequently, it can be easily translated into a �nite
state machine described using the SMV language. Among other features, the
PEP tool [29] supports the translation of a Petri net into an SMV model,
and was used the synthesis framework described in this work.

5.3.1 Re�nement veri�cation

Re�nement veri�cation is supported in the SMV by the layer statement. In
the SMV language the layer keyword is used to de�ne a collection of abstract
signal de�nitions. In other words, the de�nitions inside a layer statement
are more abstract with respect to the de�nitions outside the layer statement.
Its syntax is as follows:

1 l a y e r <l ay e r i d e n t i f i e r >: {
2

3 <abs t r a c t model>
4 }
5

6 <low−l e v e l model>

In the synthesis framework de�ned here, the abstract model corresponds to
the initialization of the variables and instantiation of the modules as processes
(the module de�nitions themselves are not required to be inside the body of
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the layer). The low-level model corresponds to the SMV form of the Petri
net model.

The Petri net model speci�es the mechanisms to control access to the
ACM, but it does not model the transfers of real data. Since the goal is to
check if the implementation model re�nes the abstract model by checking the
transmitted data, it is necessary to model data transfers in the implementa-
tion model. This is done by adding to the implementation model an array for
the data, with the same size as the ACM. In other words, after translating
the Petri net model to SMV, an array is added to this new model. This new
array is called acmI, and it has one dimension for re-reading policy and two
dimensions for the overwriting policies. This new array is declared in the
main module of the abstract model, together with the acm array.

Then, the implementation model is modi�ed in the following way to sup-
port the data transfer. First, for each event modeling a data access action,
it is necessary to add the actions modeling the storage and retrieval of data
in the array.

Figure 5.7: Transition rd0 (RRBB)

For instance, the action of reading the item in cell 0, which is given by
the Petri net in Figure 5.7, in a three cells RRBB ACM is translated from
the Petri net model as the following piece of SMV code:

1 −−rd0
2 rd0 . enabled &
3 & next ( pr0 ) = 1
4 & next ( r0 ) = 0

Observe that the SMV model generated from a Petri net model is an FSM
that mimics the behavior of the Petri net. After adding the access to the
data array, the SMV code is transformed into:

1 −−rd0
2 rd0 . enabled
3 & next ( pr0 ) = 1
4 & next ( r0 ) = 0
5 & next ( rd_data ) = acmI [ 0 ]
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6 & next ( acmI ) = acmI
7 & rdp . running = 1

Observe that besides the data access in line 5, two more lines were also
added. rd_data is the only variable in the entire model that is modi�ed
by both abstract and implementation models. When performing re�nement
veri�cation, SMV will understand that this is the variable that de�nes the
re�nement relation. In practice it means that if it assumes the same value in
both models all the time, then the re�nement relation is satis�ed.

Line 6 is necessary to avoid non-determinism in the data stored in acmI.
If it is not present, in the next state the array can assume any possible value.
Note that this applies to all variables of the system, and they have been
omitted here for the sake of comprehension.

Line 7 speci�es a condition that this action will be executed only if the
process that will execute next in the abstract model is the reader. It is neces-
sary because at each step, SMV chooses non-deterministically which process
will execute next. This is what happens at the more abstract level even if
the processes are concurrent as the reader and writer described. However,
nothing guarantees that at the low-level an action that corresponds to some
action of that process will be also chosen. For this reason, the condition
rdp.running = 1 is added to all events of the reader in the low-level model.
The same occurs for the events of the writer, but in this case the condition
added is wrp.running = 1. Remember that rdp and wrp are the names
given to the instances of the reader and writer modules respectively.

Figure 5.8: Transition wr2 (RRBB)

Just for completion of data access action, which is given by the Petri net
in Figure 5.8, the writer is modi�ed to:

1 −−wr2
2 wr2 . enabled
3 & next (pw2) = 1
4 & next (w2) = 0
5 & next ( rd_data ) = rd_data
6 & next ( acmI [ 0 ] ) = acmI [ 0 ]
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7 & next ( acmI [ 1 ] ) = acmI [ 1 ]
8 & next ( acmI [ 2 ] ) = wr_data
9 & wrp . running = 1

where the last 5 lines have been added to the original model. Observe that
each position of acmI is set individually.

Figure 5.9: Transition λ01 (RRBB)

On the λ and µ actions, similar modi�cations are also needed. But in this
case they are done only to avoid changes in the values of the variables from
one state to another. For instance, the λ01 given by the Petri net in Figure
5.9, is given by:

1 −−l0_1
2 l0_1 . enabled
3 & next (we0 ) = 0
4 & next (we1 ) = 1
5 & next (wne0 ) = 1
6 & next (wne1 ) = 0
7 & next (w1) = 1
8 & next (pw0) = 0
9 & next ( rne1 ) = rne1

10 & next ( rd_data ) = rd_data
11 & next ( acmI ) = acmI
12 & wrp . running = 1

The following steps summarize what should be done to adapt the im-
plementation model in such a way that it can be used in the re�nement
veri�cation.

1. Add a data array, with the same size as the ACM, to the SMV code of
the Petri net model;

2. Identify in the SMV code generated by PEP the piece of code modeling
the occurrence of each transition t of the Petri net model;
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3. If t is a reader's action and t ∈ Ta, then the data stored in the ith

position of the data array created in step 1, where (t, i) ∈ Ma, should
be read;

4. If t is a writer's action and t ∈ Ta, then a new data item should be
stored in the ith position of the data array created in step 1, where
(t, i) ∈Ma.

Note that the only control actions included in the model are required to
avoid the non-determinism in the extra control variables. For instance, it
is not desirable to allow non-deterministic changes in the values stored in
the data array. By doing the above modi�cations in the SMV code of the
generated Petri net model, it is possible to verify that the implementation
model is a re�nement of the abstract model with respect to the data read from
the data array. It is important to note that the CTL formulae are de�ned
in terms of the data array. Thus, if both models always read the same data
from the array, and if the abstract model satis�es coherence and freshness,
then the implementation model will also satisfy those properties and it can
be used to synthesize the source code for the ACM with the guarantee that
the artifact obtained preserves those properties.

ACM size user time (RRBB) user time (OWRRBB)

2 - 0.55 s

3 0.1 s 4.61 s

4 0.26 s 652.63 s

5 0.73 s timeout

6 2.78 s

7 22.61 s

8 99.9 s

9 301.48 s

10 timeout

Table 5.3: Re�nement veri�cation (RRBB and OWRRBB)

Following the procedure described above a tool to automatically generate
ACMs was designed and implemented1. A number of RRBBs and OWRRBBs

1See http://acmgen.sourceforge.net/ for details.
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ACMs with di�erent sizes (starting from 2) were generated and proved to be
correct for all cases. The time required to verify those models is reported in
Table 5.3. For now, it was possible to verify RRBB ACMs with up to 9 cells
and OWRRBB ACMs with up to 4 cells using this approach.

5.4 A di�erent approach for coherence

One possible problem with the Petri net models generated on this work is
that the data access actions are considered as being atomic actions, which
is not necessarily true in the implementations. Usually, and especially in
hardware implementations, the start of a data access is preceded by a data
access request, then the data access proceeds. After �nishing the data access,
an acknowledgment signal is usually sent to indicate that the operation has
terminated.

The Petri net models introduced here can be easily modi�ed to consider
data access actions as non-atomic. For this it is only necessary to split each
transition that models a data access into two transitions in sequence, i.e. two
transitions that are connected by one place that is output of one transition
and input of the other. One of the transitions models the start of a data
access operation, while the other models the termination if such operation.

The schema of generating the Petri net models can be easily modi�ed to
generate such Petri nets. However, one extra place means another variable in
the �nal model, which may make the veri�cation of such systems even more
di�cult.

In the writer module for RRBB ACMs introduced in Figure 4.2(a) the
interpretation of a token on place wi as the writer is ready to access the ith

cells, while a token on place pwi means that the writer has �nished accessing
the cell but has not released the item for reading yet. In both cases, the
reader is not allowed to access those cells. In the same way, a token on
places ri or pri in the reader modules requires the writer not to access the
ith cell.

These two conditions together imply that a token on wi or on pwi requires
the absence of a token on both ri and pri. The other way around also applies.
Taking this fact into consideration, a possible way for expressing coherence
is:

AG((wi ∨ pwi)→ ¬(ri ∨ pri) ∧ (ri ∨ pri)→ ¬(wi ∨ pwi))

Observe that in this case it is not enough to have only one CTL formula
to describe coherence. Coherence is described in terms of each cell of the
ACM, for this it is necessary to have as many formulae as there are cells. For
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instance, to describe coherence for a three cell ACM the following formulae
are required:

1 SPEC AG((w0 | | pw0) −> ! ( r0 | | pr0 ) &
2 ( r0 | | pr0 ) −> ! (w0 | | pw0) )
3 SPEC AG((w1 | | pw1) −> ! ( r1 | | pr1 ) &
4 ( r1 | | pr1 ) −> ! (w1 | | pw1) )
5 SPEC AG((w2 | | pw2) −> ! ( r2 | | pr2 ) &
6 ( r2 | | pr2 ) −> ! (w2 | | pw2) )

In short terms, these formulae specify that at any time the sum of the
tokens at places wi, pwi, ri and pri is at most one. Then the alternative
coherence formulae can be rewritten as:

AG(M(wi) +M(pwi) +M(ri) +M(pri) ≤ 1)

Generating one CTL formula as described above is su�cient to specify
the coherence property. In this case, if coherence is true, then it is also
guaranteed that it will also be preserved in the case data access actions are
not treated as atomic. This approach has been used to verify with success
RRBB ACMs with up to ten cells. In Table 5.4 the time needed to verify
the models is shown.

ACM size user time ACM size user time

3 0.04s 8 3.94s

4 0.04s 9 6.09s

5 0.1s 10 12.16s

6 0.16s 11 timeout

7 0.99s

Table 5.4: Alternative coherence veri�cation

Observe that the results shown in Table 5.4 di�er from the results in
Tables 5.1 and 5.3. This happens for two di�erent reasons. In the �rst case,
the results for coherence veri�cation in Table 5.1 are much better due to the
fact that they refer to the veri�cation of the abstract model, which is much
less complex than the Petri net model or its SMV equivalent.

On the other hand, compared to the re�nement veri�cation of RRBB
ACMs results shown on Table 5.3, the results above are slightly better. This
is because the SMV model used here does not have details about the status of
the communication bu�er implemented by the variable acmI. This variable
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is used only for the re�nement veri�cation, making the veri�cation more
complex.

The need for this alternative approach for the veri�cation of coherence
will become more clear on Section 7.2 in which the synthesis of hardware
artifacts for ACMs is discussed.

5.5 Modeling and validating ACMs with

Coloured Petri Nets

In this Section an ACM �tting the behavior introduced in Section 4.2.2 mod-
eled as a Hierarchical Colored Petri Net (HCPN) [37, 38] will be described.
Then the properties of data coherence and data freshness will be de�ned us-
ing ASKCTL [6, 7], and the HCPN model of the ACM will be veri�ed for
these properties. Besides that, the HCPN models will be used to automati-
cally generate a set of Message Sequence Charts [31] from the simulation of
the HCPN model.

As stated in Section 5.1, this veri�cation activity does not �t into the
veri�cation �ow outlined on Figure 5.1. However, the MSCs obtained from
the simulation of the model can be used by those unfamiliar with the topic
to have a better comprehension of the behavior of the ACMs.

At this point, one can ask why not use CPN for synthesis directly instead
of using a combination of one-safe Petri nets and SMV models. The answer
is that it is easier to synthesize hardware, in which variables are mapped into
wires, from those kinds of Petri nets than from CPNs. Basically, there is no
need to map the rich data types of CPN into the binary world.

5.5.1 HCPN models for overwriting ACMs

An HCPN is a set of non-hierarchical CPN models in which each model is
called a page. Two mechanisms are introduced to allow hierarchical levels:
substitution transitions and fusion places. A substitution transition is a
transition that represents a CPN page. The fusion places are physically
di�erent but logically they are the same, de�ned by means of a fusion set.
All places belonging to the same fusion set have the same marking. As in
other types of Petri nets models, a marking of a place is the set of tokens in
that place at a given moment, and the marking of a net is the set of markings
of all places. When a marking of a place belonging to a fusion set changes,
the marking of all places belonging to that set also changes.

In order to manipulate tokens in a CPN, the concept of a multi-set is
de�ned. A multi-set is a set where it is possible to have several occurrences
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of the same element. This concept allows similar parts of the model to be
modeled as token information instead of structure replication.

Figures 5.10 and 5.11 shows the HCPN models for the writer and reader
processes as introduced by De�nition 4.2, respectively. Each process has two
transitions, one modeling the beginning of a bu�er access action and other
modeling the end of the action. In the initial state both processes are ready
to initiate an access action, and the bu�er is initialized with some data.

nq

q

nq

q

Finish

input (q);
output (nq);
action
(finish_writing q);

Start

input (q);
output (nq);
action
(start_writing q);

ACM

Fusion 1

[(0,none)]

QUEUE

Writing

E

Idle

e

E

Fusion 1

e

e

e

e

1 1`[(0,none)]

1 1`e

Figure 5.10: CPN model for the writer

Places labeled ACM in the page of the writer and in the page of the
reader model the queue of data σ. These places belong to the same fusion
set, meaning that they are the same place. For this reason we will not
distinguish them from now on. The type of the tokens in ACM is a list of
data items. A data item is a pair (data,status) where data is the data
being transmitted and status is one of wr, rd or none, indicating if the
data is being written or read in a given marking. To mitigate the state space
explosion, we used data as a Boolean, but it can be set as an integer, string
or any other data type.
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When the writer begins writing some data into the ACM, modeled by
transition Start in Figure 5.10, it adds a pair (data_value, wr) to the
end of the token already stored in place ACM. For instance, if the cur-
rent marking of ACM is [(false, none)] and the value to be transmitted
is true, then after the occurrence of Start the marking of ACM will be
[(false,none),(true,wr)]. In the notation of the previous Section we have

that 〈false〉 wrb(true)−−−−−−→ 〈false truewr〉.
In a similar way, when the writer �nishes accessing the ACM, modeled by

transition Finish, it updates the value of the token in place ACM to indicate
that the new value is available for reading. In the example above, the new
marking of ACM will be [(false,none),(true,none)].

nq

q

nq

q
Finish

input (q);
output (nq);
action
(finish_reading q);

Start

input (q);
output (nq);
action
(start_reading q);

ACM

Fusion 1

[(0,none)]

QUEUE

Reading

E

Idle

E

Fusion 1

e

e

e

e

e

1 1`[(0,none)]

1 1`e

Figure 5.11: CPN model for the reader

A similar reasoning applies to the reader process. When it starts reading
from the ACM, the value of the �rst element of the token on place ACM
is modi�ed to indicate the beginning of the access. More speci�cally, if
the value of the token is [(false,none),(true,none)], after the occurrence
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of transition Start of the reader process, the new marking of ACM will
be [(false,rd),(true,none)]. If the bu�er is full, some data item should
be replaced to proceed writing a new one. This is done by the function
start_writing() called in the code region of transition Start.

When the reader �nishes the data read action the �rst element of the list
of data items can be removed, depending on the status of the queue. Again,
if the list of data items contains [(false,rd),(true,none)], the head of the
list can be removed, and the new data queue will contain [(true,none)].
However, if the ACM contains [(false,rd)] or [(false,rd), (true,wr)], then
the head cannot be removed without the risk of both processes addressing
the same memory segment. In this case the reader will prepare to re-read the
head of the queue, and the marking of place ACM will not change. In any
case, the reader is not required to wait for any event of the writer. Observe
that neither process is required to wait for the other in any situation

5.5.2 SML functions

In both processes, the modi�cations of the value of a data item are executed
by the SML functions associated to each transition of the processes. These
functions are:

1. start_writing(q:QUEUE)

2. finish_writing(q:QUEUE)

3. start_reading(q:QUEUE)

4. finish_reading(q:QUEUE)

The function start_writing(q:QUEUE) is responsible for adding an item
of the type (DATA, wr) to the token representing the status of the bu�er.
The source code below shows such a function.

1 fun s ta r t_wr i t ing data : QUEUE =
2 (
3 l et

4 val wdata = d i s c r e t e (min , max) ;
5 val mesg = " s t a r t  wr i t i ng  "^Int . t oS t r i ng (wdata ) ;
6 in

7 msc . addEvent ( " wr i t e r " , " reader " , mesg ) ;
8 i f ( l ength data = n andalso

9 (#2 (hd data ) = rd ) ) then (
10 [ hd data ]^^( t l ( t l data ) ) ^^[(wdata , wr ) ]
11 ) else i f ( l ength data = n andalso

12 (#2 (hd data ) = none ) ) then
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13 t l ( data ) ^^[(wdata , wr ) ]
14 else

15 data ^^[(wdata , wr ) ]
16 end

17 ) ;

Two constants are declared: one representing the new data to be trans-
mitted, given by wdata; other to de�ne the message that appears on the
MSC. The function �rst generates the message that appears on the MSC
(line 7), then it checks if the size of the available data queue (i.e. the data
that has not been read) is equal to the size of the ACM or not (line 8). If
this is true and the reader is accessing the ACM (line 9) then the second
data item in the queue is removed and the writer starts putting a new data
item to the end of the queue (line 10). This code implements the behavior
de�ned by rule 3 in De�nition 4.2.

On the other hand, if the queue is full but the reader is not accessing the
ACM (lines 11 and 12), then the �rst item is discarded and the writer starts
storing a new data item at the end of the queue (line 13). This implements
the behavior of rule 2 of De�nition 4.2. Finally, if the queue is not full, the
writer simply starts storing a new data at the end of the queue (lines 14 and
15), which implements rule 1 of De�nition 4.2.

The function finish_writing(q:QUEUE) is responsible for changing the
last item in the bu�er from (DATA, wr) to (DATA, none) indicating that
the new data was released for reading. Its source code is shown below.

1 fun f i n i s h_wr i t i n g data :QUEUE =
2 (
3 l et

4 val mesg = " f i n i s h  wr i t i ng " ;
5 in

6 i f ( l ength ( t l data ) > 0) then

7 [ hd data ]^^ f i n i s h_wr i t i n g ( t l data )
8 else (
9 msc . addEvent ( " wr i t e r " , " reader " , mesg ) ;

10 [(#1 (hd data ) , none ) ]
11 )
12 end

13 ) ;

The writer is always allowed to release the new item. finish_writing

simply signals on the last data item that it has �nished writing by replacing
the pair (data, wr) by (data, none). Note that this is a recursive function,
so it needs to check that the queue is not empty (i.e. the data queue has
only its head). finish_writing implements the behavior de�ned by rule 4
of De�nition 4.2.
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The function start_reading(q:QUEUE) is responsible for changing the
�rst item in the bu�er from (DATA, none) to (DATA, rd) to indicate
that the reader started accessing it.

1 fun s tar t_read ing data : QUEUE =
2 (
3 l et

4 val mesg = " s t a r t  read ing  "^Int . t oS t r i ng (#1 (hd data ) ) ;
5 in

6 msc . addEvent ( " reader " , " wr i t e r " , mesg ) ;
7 [(#1 (hd data ) , rd ) ]^^ t l data
8 end

9 ) ;

The function finish_reading(q:QUEUE) is responsible for determining
if the reader will next re-read the current data item or get a new one. If
re-read is triggered, it changes the �rst item in the bu�er from (DATA, rd)
to (DATA, none), otherwise it removes that item from the bu�er.

1 fun f i n i sh_read ing data : QUEUE =
2 (
3 l et

4 val mesg = " f i n i s h  read ing " ;
5 in

6 msc . addEvent ( " reader " , " wr i t e r " , mesg ) ;
7 i f ( l ength data = 1) then

8 [(#1 (hd data ) , none ) ]
9 else i f (#2 (hd ( t l data ) ) = wr) then

10 [(#1 (hd data ) , none ) ]^^ t l data
11 else

12 t l data
13 end

14 ) ;

The behavior of start_reading and finish_reading can be in-
ferred from the description of the behavior of the writer related func-
tions. start_reading implements the behavior de�ned by rule 5, while
finish_reading implements the behavior of rule 6 to 8 of De�nition 4.2.

Note that the writer can also remove items from the queue when over-
writing it. This is done by the function start_writing() when the bu�er
is full of non-read data and the oldest non-read data item is overwritten. In
such cases, the second or the �rst item in the bu�er is replaced according
to whether the reader is accessing the bu�er or not. It is also interesting to
notice that in the writing functions the focus is on the act of starting writing,
while in the reading functions the focus is on �nishing reading. This is due
to the fact that the writer has no restrictions about releasing a new item,
while the reader has no restriction about getting the item it is prepared to
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get.

5.5.3 Generating Message Sequence Charts

In order to illustrate the behavior of the CPN model introduced above a
number of Message Sequence Charts (MSC) [31] has been automatically gen-
erated from the simulation of the model. For instance, in Figure 5.12 the
MSC generated when the reader and writer processes are about the same
speed is showed. In this case re-reading and overwriting do not occur.

Figure 5.12: MSC for no re-reading and no overwriting case

In such MSC the message labeled start writing 100 is generated by
the transition Start of the writer process and it indicates that it is starting
to write the value 100 in the bu�er. On the same way, the message �nish
writing indicates that the writer is releasing the new data item for reading
operation. The same reasoning applies for messages generated by the reader.

An important observation that should be done is that the labels of the
messages in the chart do not re�ect the information exchanged by the pro-
cesses. Such labels are abstractions of the changes in the token containing
the data being communicated, i.e. the token in place ACM. In the real im-
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plementation these messages are replaced by changes in values of the control
variables.

In the initial state the bu�er is initialized with the data value 0 and
none of the processes are accessing it. According to the MSC the following
sequence of states, as introduced in De�nition 4.2, is generated:

σ0 = 0

σ1 = 0 100w

σ2 = 0 100

σ3 = 0r 100

σ4 = 100

σ5 = 100r

σ6 = 100r 78w

σ7 = 100r 78

σ8 = 78

σ9 = 78 11w

σ10 = 78r 11w

Observe that the sequence of data received by the reader (0, 100, 78...)
is the same that was sent by the writer (0, 100, 78, 11...), except for the last
data that has not been received yet. Also, note that any σi can be easily
mapped into a token contained in the place ACM. For instance, 0 100w is
mapped into the token [(0, none), (100, wr)]

In Figure 5.13 the MSC generated when re-reading occurs is illustrated.
In this case reader accesses the bu�er twice, recovering the data value 0 on
both accesses, before the writer accesses it for the �rst time. Observe that
the writer accesses the bu�er before the reader �nishes its second operation.
For this reason, on the next access the reader recovers the new value 100,
otherwise it should engage in another re-reading operation.

For this sequence of messages, the sequence of states according to De�ni-
tion 4.2 is as follows:
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Figure 5.13: MSC for the re-reading case

σ0 = 0

σ1 = 0r

σ2 = 0

σ3 = 0r

σ4 = 0r 100w

σ5 = 0r 100

σ6 = 100

σ7 = 100r

Finally, in Figure 5.14 the MSCs obtained when overwriting occurs is
introduced. In this case, the writer attempts to send another data item
when the bu�er is already full of items. The writer �rst sends the value
100 and just after that it sends the value 78. On its second operation, the
value 100 is replaced due to the fact that the reader is already accessing
the memory position containing 0. This is needed in order to preserve data
coherence. Note that in this case the ACM can hold at most two data items
at a time. In this case the sequence of states is as follows:
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σ0 = 0

σ1 = 0r

σ2 = 0r 100w

σ3 = 0r 100

σ4 = 0r 78w

σ5 = 0r 78

σ6 = 78

σ7 = 78r

Figure 5.14: MSC for the overwriting case

As can be observed the MSCs generated by the model discussed above
re�ect the behavior de�ned by the transition system introduced by De�ni-
tion 4.2. The MSCs are not a proof of correctness of the model. However
they give a good intuition that the model is correct with respect to De�ni-
tion 4.2. Besides that, they promote an intuitive way of understanding how
the ACM policies work.

5.5.4 Veri�cation with ASKCTL

In order to give formal arguments of the correctness of the model, coherence
and freshness properties introduced in Section 4.2.2 were modeled using the
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ASKCTL model checker. ASKCTL is a model checker originally designed to
run inside the Design/CPN tools that is also embedded into CPNTools [39,
59]. In ASKCTL, model checking requires the generation of the occurrence
graph of the CPN model and then the generation of its strongly connected
components graph. Temporal logic formulae are described in a CTL-like
language and the atomic propositions are described by SML functions. Each
of these functions should receive as input a node of the occurrence graph and
evaluate it to true or false. Describing the formulae is a question of using the
correct syntax.

In ASKCTL, the operator→ is not available, so it is necessary to rewrite
the part of the CTL formula for coherence that is in the form A → B, to
its equivalent ¬A ∨ B. Also, it is necessary to use the ASKCTL operator
equivalent to AG. Finally, the atomic propositions are written as SML func-
tions receiving a node from the state space as a parameter and returning a
Boolean. The following ASKCTL formula is then obtained:

1 INV(OR(NOT(NF( " read ing " , has_rd ) ) ,
2 AND(NF( " read ing  head" , r d_ f i r s t ) ,
3 OR(NOT(NF( " wr i t i ng " , has_wr ) ) ,
4 NF("wr i t i ng  l a s t " , wr_last ) ) ) ) ) ;

In the above, INV is the ASKCTL equivalent of AG and has_rd, rd_first,
has_wr and wr_last are the SML functions for the atomic propositions.
has_rd and has_wr check if the reader and the writer are accessing the
ACM at a given state, respectively, while rd_first and wr_last check if
the reader is accessing the �rst position of the queue and if the writer is
accessing the last, in the case that some of them is accessing it. NF is used
to tell ASKCTL that the proposition refers to a node of the state graph and
not to an arc. The formula above is enough to verify ACMs of any size.

Freshness is much more complicated. It requires one formula for each
possible size the data queue may have, i.e. from 1 to n assuming that n is
the size of the ACM. For instance, the formula describing freshness for the
queue holding 2 items is given by:

1 INV(
2 OR(
3 NOT(NF( " l ength  o f  sigma i s  2" , check_length 2) ) ,
4 FORALL_NEXT(
5 OR(
6 AND(
7 OR(
8 NF(" | sigma ' |  = 2" , check_length 2) ,
9 NF(" | sigma ' |  = 2+1" , check_length 3)

10 ) ,
11 NF("sigma '  = sigma+" , check_sigma_plus ) ) ,
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12 AND(
13 NF(" | sigma ' |  = 2−1" , check_length 1) ,
14 NF("sigma '  = sigma−" , check_sigma_less )
15 )
16 )
17 )
18 )
19 ) ;

Again, it is necessary to re-write the A → B and replace the operator
AG and AX by its ASKCTL equivalents, which are INV and FORALL_NEXT,
respectively. check_length checks if the size of the data queue equals to
some integer, check_sigma_plus checks if the new queue is at the form
de�ned by σ+, and check_sigma_less checks if it is of the form σ− as
de�ned in Section 4.2.2.

One important observation that should be made here is that it is not
possible to verify coherence without the information about the previous state
of the data queue. So, to check for coherence a small modi�cation is made
to the model. A new place is added to the CPN to store the previous value
of the data queue. Every time a transitions �res, it backs up the token on
place ACM. On Figure 5.15 this modi�cation is shown.
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Figure 5.15: CPN model for the writer saving queue state
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Both properties were veri�ed and proved to be correct for a number of
OWRRBB ACMs of di�erent sizes. Observe that the model introduced here
is not generic in the sense of a model for OWRRBB ACMs of any size.
However, it is parametrized, and modifying the size of the ACM is a very
simple operation.

Besides coherence and freshness we have also veri�ed that the initial mark-
ing of the CPN model is a home marking, meaning that the system can always
return to its initial state if the set of allowed data values is �nite.

5.6 Conclusions

On this chapter the veri�cation of ACMs models has been introduced. The
properties addressed were coherence and freshness. The veri�cation method-
ology discussed here is mainly based on two steps. Firstly, the ACMs are
modeled in a more abstract way, without restricting the models to the use of
binary control variables or adding much detail about how the communication
bu�er is implemented. The abstract models are build in order to correspond
to De�nitions 4.1 and 4.2. These abstract models are then used to verify
coherence and freshness properties. The generation of the CTL formulae
needed to perform model checking is also detailed in this chapter.

Secondly, the Petri net models are translated into equivalent SMVmodels,
and mapping relations from the SMV abstract models to the SMV PN-based
ones are de�ned. This allows the designer to perform re�nement veri�cation
in order to determine if the PN model can be said to be an implementation
of the abstract model.

The results obtained for the veri�cation of the abstract model were quite
satisfactory, giving some con�dence that coherence and freshness may be
satis�ed for ACMs models of any size. On the other hand, the Petri net
models used in the re�nement veri�cation are too complex to obtain good
results, especially for the OWRRBB policy, and the state space explodes even
for very small ACMs. This is an indication that further investigation into
direction of getting better veri�cation results is needed. One possibility is to
apply proof by induction techniques, and another possibility is to reduce the
complexity of the PN model and extend the limits of model checking.

It is important to observe that the veri�cation methodology introduced
here is mainly based on the transformation of models from one language to
another. This translation process has not been proved to be free of errors,
which constitutes a weakness in the methodology. The correctness of the PN
models with respect to the abstract SMV models also depends on the correct
implementation of the procedures performing the transformation of the PN
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models into SMV ones.
Besides that, the ACMs have also been modeled as HCPN models. This

model has also been veri�ed in order to prove coherence and freshness prop-
erties. However, one of the most interesting results obtained from the HCPN
models was the possibility of automatically generating MSCs in which the
label of the events are the data access actions. This is very useful to better
understand how the ACM protocols should behave.
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Chapter 6

Automatic synthesis of ACM

software implementations

The main goal of this work is to provide a fully automatic method for the
synthesis of ACMs. The synthesis procedure should guarantee that the arti-
fact generated satis�es some desired properties. Up to now, the generation
of formal models of ACMs was detailed. This chapter introduces how to
synthesize an ACM implementation from those formal models. More specif-
ically, the synthesis of C++ [19, 20, 74] source code for both re-reading and
overwriting policies that implements the behavior speci�ed in the Petri net
model is addressed.

6.1 An historical perspective on code genera-

tion

Code generation from Petri net models has been studied since the end of
the seventies. Many approaches have been proposed for code generation.
Addressing a wide range of target languages, from machine code to high
level languages, such as C, Java or Ada. Such approaches are classi�ed into
three categories:

1. Centralized;

2. Totally decentralized;

3. Hybrid.

The centralized approaches attempts to check each transition of the model
in order to determine if it can be �red in the current state. There are e�cient
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procedures that minimize the number of transitions evaluated at a time,
but this approach has two main drawbacks. Firstly, the e�ciency of such
approach depends on the size of the net. Even optimized algorithms may
not have a satisfactory performance when the net grows. Secondly, such
procedures are sequential, which does not preserve the parallelism of the
models. On the other hand, for systems that are essentially sequential, such
approach can be considered adequate.

Silva [64] details two centralized approaches for code generation of binary
Petri nets. In the �rst approach, a Petri net model is simulated through a
Programmable Logic Controllers (PLC). A PLC is a digital computer used
for automation of electromechanical processes, such as the control of pro-
duction lines in the industry. In the second approach, the Petri net model
is simulated trough assembly code of a general purpose microprocessor, the
Motorola 6801.

In the totally decentralized approach, each place and transition of the
Petri net is implemented as a process. In this case the problem of preserving
the parallelism of the Petri net is solved satisfactorily. Such approach requires
proper primitives to communicate the processes. Traditional IPC methods,
such as semaphores and monitors, can be used for this purpose. The draw-
back is that the number of processes grows according to the size of the net.
The large number of processes, associated to the overhead introduced by the
IPC methods, may result in implementations with poor performance. Taub-
ner [76] used this approach to generate Occam source code from P/T nets,
while Hauschildt [32] addressed the generation of C source code for Unix
operating system from P/T nets.

The hybrid approach attempts to obtain high level information about
the Petri net model, partitioning it into sub-models that are mapped to
communicating processes. Kordon [43] presents a hybrid approach to manual
partitioning the Petri net model into communicating processes. It is focused
on P/T nets and on the generation of Ada source code that can be compiled.

There is a large number of works that address the code generation from
Petri net models problems. Most of them deal with code generation with the
purpose of obtaining a prototype that can be used to evaluate characteristics
that cannot be evaluated in the formal model, such as the performance of
a given implementation strategy. It is also possible to generate code from
high level Petri nets, such as Coloured Petri Nets. Mortensen [53] outlines
a methodology for code generation from CPNs, which is supported by the
Design/CPN tool, and demonstrates its usability through an industrial appli-
cation example. Such methodology can be used to generate C, Java, or even
machine code. A much more comprehensive discussion about code generation
from Petri nets can be found in [23] and the interested reader is encouraged
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to consult them.

6.2 Overview

In this work the author does not intend to introduce a new method for code
generation. The method described here is much like a hybrid approach in
which two sequential processes, the reader and writer, are clearly identi�ed.
The parallelism between the processes in the model is preserved since the
code generated for each one is executed as a separate process in the operating
system. However, the code of each process is totally sequential. This is not
a problem since parallelism exists only between processes. Observe that the
main purpose here is to show that it is feasible to synthesize ACM source code
from the PN models, and not to introduce an entire new synthesis approach.

The software implementation for ACMs is obtained directly from the Petri
net model of each process. The resulting source code is based on the simula-
tion of the net model. In other words, the source code obtained mimics the
Petri net behavior. Since the software implementation is intended to execute
at some speci�c environment, it is necessary to guarantee the availability of
some basic requirements. More, speci�cally, the operating system in which
the ACM will run should provide the following inter-process communication
(IPC) mechanisms:

• Shared memory

• Signal handling

Since the ACM model is built upon the use of a shared memory to com-
municate the participating processes, the need for the �rst requirement is
obvious. The second requirement is necessary due to the need to provide a
process with mechanisms of sending some speci�c signals to its counter-part.
This is particularly necessary for blocking policies in which one of the process
blocks waiting for some event. The signal handling must provide support for
it.

Brie�y, the synthesis method for each process consists of the following
steps:

1. Create a shared memory segment which is big enough to hold as many
data items as speci�ed by the ACM size;

2. For each place p of the Petri net model, declare a Boolean variable vp
named with the label of p. If p /∈ EXT , then initialize vp with the
value of the initial marking of p;
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3. For each transition t of the Petri net model, map t into an if statement
that is evaluated to true when the values all variables vp corresponding
to an input place of t are true. Set the body of the if statement
properly.

Each process initializes only its own control variables. If p ∈ EXT then it
will in be initialized by the counter-part process, since in this case vp is seen as
an external variable. Also, the body of the if statement implementing some
transition t consists of switching the values of the variables corresponding to
the input places of t to false and those corresponding to the output places of
t to true. Besides that, if t models a bu�er access action, it is also necessary
to add to the body of the if the actions needed to write (or read) a new
data item to (or from) the communication bu�er.

In this work, the ACM source code is synthesized as two C++ classes:
one implementing the writer process and the other implementing the reader.
Those classes are named Writer and Reader, respectively. Each ACM
process is instantiated as an object of its class.

Algorithms 6.1, 6.2 and 6.3 describe the procedures used to: i) declare
the control variables of each process; ii) synthesize the source code of the
reader process; and iii) synthesize the source code of the writer process. Of
course, the source code obtained depends on the speci�cs technicalities of the
target programming language and the operating system in which the ACM
will execute. Besides the fact that those algorithms are generic enough to
be used in the generation of code for any operating system that provides
the necessary support, all examples discussed in this chapter are speci�c for
the Linux environment. The source code we generate is POSIX (Portable
Operating System Interface) compliant, and for this reason we expect it to
compile and execute properly at any POSIX machine. However, it has been
tested only with the Linux operating system.

6.3 Declaring and sharing control variables

In order to perform the steps de�ned in Section 6.2, templates are used to
de�ne a basis for the source code of the ACM, then some gaps are ful�lled.
More precisely, such gaps consist of: i) the declaration of the communication
bu�er of a given size as a shared memory segment; ii) the declaration and
initialization of the control variables; and iii) the synthesis of the code that
controls the access to the ACM.

Observe that the generation of the source code is performed from the Petri
net model of each process and not from the model of the composed system.
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Algorithm 6.1 de�nes the procedure for the declaration and initialization of
the control variables.

Algorithm 6.1 Control variables declaration and initialization
1: for all p ∈ P do
2: if p ∈ LOC then
3: Declare vp as a local Boolean variable
4: Initialize variable vp with M0(p)
5: Make variable vp a shared one
6: else if p ∈ EXT then
7: Create a reference to a Boolean variable vp that has been shared by

the counter-part process
8: else
9: Declare vp as a local Boolean variable
10: Initialize variable vp with M0(p)
11: end if
12: end for

In the �rst case, vp is declared as a local Boolean variable that will be
shared with the counter-part process and initialized with the value of the
initial marking of p. In the second case, vp is a shared Boolean variable that
was declared and initialized in the counter-part process. In this particular
case, it cannot be initialized since it is a read-only control variable, from the
point of view of the process being synthesized. Then a reference to a shared
variable on the counter-part process is created. Finally, in the third case,
vp is declared as a private Boolean variable and is initialized with the value
of the initial marking of p. In other words, each place is implemented as a
single-bit control variable that can be updated only by one process, even if
they can be read by both processes.

The method described in this Section has been implemented to generate
C++ source code that can be executed properly under Unix environments [4,
60, 72, 73]. More speci�cally it has been tested in a Linux box with kernel
version 2.6.x. For this reason, some details about the implementation should
be considered carefully, always taking into account the speci�c technology
being used.

Declaring and initializing regular variables is done in the usual C++
way. For instance, in the writer process it can be found, among others, the
following declarations:

1 // i n t e r n a l p r i v a t e v a r i a b l e s
2 bool wi0 ;
3 bool pwi0 ;
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4

5 // i n t e r n a l shared v a r i a b l e s
6 bool ∗we0 ;
7 int we0_shmid ;
8 bool ∗wne0 ;
9 int wne0_shmid ;

10

11 // e x t e rna l shared v a r i a b l e s
12 bool ∗ rne1 ;
13 int rne1_shmid ;

Observe that internal variables are declared as simple Boolean attributes
of the class, while each shared variable requires two attributes. This is be-
cause the way shared memory segments are used in Unix operating systems.
Manipulating those segments requires a better comprehension of the Unix
mechanisms for interprocess communication (IPC), more speci�cally, how to
use shared memory segments. Observe that, the term shared memory seg-
ment refers to any piece of memory assigned as shared by the operating
system, and not the bu�er used to communicate between the processes.

First of all, it is necessary to choose one of the processes to initialize
the shared memory segment. In this work it is natural that the segments
for each control variable should be initialized by the process that owns the
variable. For the communication bu�er the writer process has been chosen,
but it makes no di�erence if the chosen one was the reader.

The communication bu�er is already declared in the C++ template �les
as a public attribute of the class that implements the writer process. The
type of data to be transmitted has been set to char, and to make the schema
independent of data type a #define statement was used. Depending on the
data type to be transmitted it is necessary to change that statement manually.
Then the shared memory is allocated and initialized in the constructor of the
class by the following code:

1 i f ( ( shm_id = shmget (SHMKEY, s izeof (acm_t) ∗ ACM_SIZE, \
2 PERMS | IPC_CREAT) ) < 0) {
3

4 c e r r << "Writer  e r r o r !  Cannot exec  shmget ( ) " << endl ;
5 e x i t ( errno ) ;
6 }
7

8 i f ( ( shm_data = (acm_t ∗) shmat ( shm_id , (acm_t ∗) 0 , 0) ) == \
9 (acm_t ∗) −1) {

10

11 c e r r << "Reader e r r o r !  Cannot exec  shmat ( ) " << endl ;
12 e x i t ( errno ) ;
13 }
14
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15 ∗shm_data = '− ' ;

On the above, shm_id represents the identi�er given by the kernel of the
operating system to the shared memory segment that is created through the
shmget() system call in line 1. In particular, the second parameter of the
system call speci�es the size of the segment to be allocated, which in this
case is de�ned as the size of one data item to be transmitted (acm_t that
here is a char) multiplied by the size of the ACM. Also, note the �ags PERMS
| IPC_CREAT which specify that a new shared segment should be created.

Then in line 8, shmat() is used to attach the new shared memory segment
identi�ed by shm_id to the address space of the calling process, i.e. to the
attribute shm_data. Finally, in the last line, the bu�er is initialized with a
simple dash.

The source code above was used to implement the communication bu�er
used in data transfers between the processes. A similar schema is used to
share all control variables of the system, with the important di�erence that
in the process that only reads a certain variable, the �ags on the shmget()

system call do not specify the creation of a new shared segment.

6.4 Synthesizing the data access and control

Up to now it has been discussed how to declare the control variables, but
the control part itself has not been synthesized, and there is no indication
on how the data is passed from one side to the other. The synthesis of the
control for the reader and writer processes is introduced by Algorithms 6.2
and 6.3, respectively.

In Algorithm 6.2 the synthesis method for the control of the reader process
is introduced. The �rst case captures the synthesis of control of a data
access transition. More speci�cally, it is a read transition addressing the ith

cell. Remember that in the notation introduced in Section 4.2.1, (t, i) ∈Ma

denotes a transition t that accesses the ith data cell. The control condition is
given by the pre-set of t, and if it is satis�ed then all variables corresponding
to a place in its pre-set are switched to false and the variables on its post-
set to true. Finally, some data is read from the ith cell. The second case
captures the synthesis of control of a control transition. As previously, the
condition is given by the pre-set of t, and then the variables on the pre-set is
switched to false, and the variables on the post-set to true. Note that in
the last case there is no need to read data from the bu�er.

Algorithm 6.3 is similar to Algorithm 6.2. Since it refers to the synthesis
of source code of the writer process, in line 7 a data write operation instead
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Algorithm 6.2 Synthesis of control for the reader
1: for all t ∈ T do
2: if t ∈ Ta with (t, i) ∈Ma then
3: Create new if statement
4: ∀p ∈ •t add to the if condition vp = true
5: ∀p ∈ •t add to the if body vp := false
6: ∀p ∈ t• add to the if body vp := true
7: Add to the if body an instruction to read data from the ith ACM

cell
8: else if t ∈ Tc with (t, i, j) ∈Mc then
9: Create new if statement
10: ∀p ∈ •t add to the if condition vp = true
11: ∀p ∈ •t add to the if body vp := false
12: ∀p ∈ t• add to the if body vp := true
13: end if
14: end for

of data read one is added. More speci�cally, the process will address the ith

cell.

6.4.1 Atomic transitions

In Algorithm 6.2 it can be noticed that transitions of the Petri net model,
which are atomic, are mapped into non-atomic actions. The non-atomicity of
the if statements in the C++ code may introduce undesired behavior during
runtime. However it is very unlikely that this bad behavior happens. The
critical situation occurs when both processes are about to point to the same
cell/slot. Let us analyze the problem for each policy. For re-reading only
ACMs, which have only one slot per cell, there are two critical moments:

1. When the bu�er is full of non-read items and the writer attempts to
write a new one;

2. When the bu�er if empty of non-read items and the reader attempts
to read a new one.

In the �rst case, the writer will try to advance to the next cell, which
the reader is pointing to, and then it will block until the cell is released.
If the writer tests the next cell before the reader �nishes releasing it, the
writer will stay where it is. Otherwise, it will advance. It is necessary that
the reader blocks its own next cell before releasing the current one. In this
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Algorithm 6.3 Synthesis of control for the writer
1: for all t ∈ T do
2: if t ∈ Ta with (t, i) ∈Ma then
3: Create new if statement
4: ∀p ∈ •t add to the if condition vp = true
5: ∀p ∈ •t add to the if body vp := false
6: ∀p ∈ t• add to the if body vp := true
7: Add to the if body a instruction to write new data on the ith ACM

cell
8: else if t ∈ Tc with (t, i, j) ∈Mc then
9: Create new if statement
10: ∀p ∈ •t add to the if condition vp = true
11: ∀p ∈ •t add to the if body vp := false
12: ∀p ∈ t• add to the if body vp := true
13: end if
14: end for

case, the reader will point to two cells at the same time before �nishing
its operation. The writer will only be allowed to advance after the reader
releases its current cell, and in this case the new next cell is already locked
by the reader. Proceeding in this way, the bad behavior will not occur. The
same reasoning applies to the second case.

For overwriting ACMs, the problem is more complicated. As stated be-
fore, the writer always attempts to write on di�erent slots every time it passes
through each cell. When both processes are accessing the same cell (di�erent
slots) and if both advances at the same time they will also point to di�erent
slots in the same cell. The reader will point to the slot containing the fresh
data item, which was accessed by the writer on the previous cycle. While
the writer will point to the slot that not been accessed in the previous cycle.

The problem occurs when the writer is faster than the reader. At some
moment it will advances through the circular bu�er and reaches the cell
the reader is point to again. At this moment, both processes will prepare
to advance to the same cell/slot. If this particular situation happens, the
communication protocol will present an undesired behavior. However, it is
interesting to notice that it only happens if the writer is able to generate
data items to ful�ll the bu�er, and store them there, even before the reader
is able to read only one data item. This is very unlikely to happen. To
better understand the problem let us analyze the following situation. A 3-
cell OWRRBB ACM that is full of non-read data items, both processes are
pointing at the same cell (di�erent slots), and both prepare to advance to
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the next cell at the same time. They will �rst test the values of the control
variables and, if the slot is free, they will change the values of the variables
in order to advance. This situation is illustrated in Figure 6.1(a).

(a) Both processes advancing to cell 1 (b) Writer advancing to cell 2

(c) Writer advancing to cell 0 (d) Writer advancing to cell 1

Figure 6.1: Execution of OWRRBB ACM with 3 cells.

If, for some reason, the reader blocks while advancing but after testing the
control variables, it may happens that the writer advances to cell 1, then to
cell 2, and then back to cell 0 before the reader �nishes its operation. In this
case, the next slot the writer will access is the same the reader is advancing
to, as illustrated in Figure 6.1(d). This is because the writer always advances
to the slot holding the oldest data item in the cell, and also because the reader
is blocked and has not release its current slot or locked the next one. In this
very speci�c case, the implementation fails. However, note that it may be
very unlike that the writer will be able run over the entire bu�er without the
reader being able to set few Boolean variables.
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One can argue that if the reader looses the CPU for a long time this
situation may occurs frequently, especially for data items of small size. To
guarantee that the implementation does not fail, it is necessary to ensure
that the process cannot lose the CPU when advancing to the next cell. In
other words, it is necessary to ensure that the statements implementing the
behavior of a control transition should be executed in the same CPU slice
the process has allocated at a given time. Note that this is not the same of
an atomic action.

The discussion above can bring the perception that the asynchrony be-
tween the processes is a�ected. This is partially true. The ACMs are mainly
designed to communicate processes running on di�erent time domains, such
as di�erent CPUs with their own clocks. In this way, giving a process the
warranty it will not lose the CPU when performing an action does not af-
fects the other process. Also, it is not the same as protecting the access to a
critical region with semaphores, since the other process is always allowed to
proceed if the control variables schema is respected.

6.4.2 Synthesis of the data access actions

These procedures have been used to generate C++ code that implements
the behavior for the ACMs. As previously, implementation issues related to
the speci�c operating system being used should be considered. For instance,
the synthesized data access actions, for both writer and reader processes of
a 3-cell re-reading ACM, are given by the C++ source code below. First let
us look at the writer.

1 void Writer : : Send (acm_t va l ) {
2

3 i f (w0 == true ) { //wr0
4

5 w0 = fa l se ;
6 pw0 = true ;
7 ∗( shm_data + 0) = va l ;
8 } else i f (w1 == true ) { //wr1
9

10 w1 = fa l se ;
11 pw1 = true ;
12 ∗( shm_data + 1) = va l ;
13 } else i f (w2 == true ) { //wr2
14

15 w2 = fa l se ;
16 pw2 = true ;
17 ∗( shm_data + 2) = va l ;
18 }
19 }
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In the above it is possible to see the Send()method, which actually writes
some data into the ACM. It belongs to the Writer class. It receives a data
item of type acm_t to be transmitted, and should be accessed through an
object of the class. Line 3 implements the test of the pre-set of transition wr0
in the Petri net model. If such transition is enabled in the model, then the
variables corresponding to its input places should have the value true. In this
case, the variables implementing the pre-set of wr0 are set to false, which is
implemented in line 5. Then, the variables implementing the post-set of wr0
are set to true in line 6. Then, some data is written into the 0th cell of the
ACM, which is implemented in line 7. Note that the parameter val is the new
data item to be sent, and shm_data implements the communication bu�er.
The same reasoning applies to the other if statements in lines 8 and 13, in
which the test of the pre-sets of transitions wr1 and wr2 are implemented.
Finally, it should be observed that the accesses to the correct data cell in the
bu�er are determined by simple pointer arithmetic. For instance, to access
the second position in the communication bu�er, *(shm_data +1) is used
in the source code. Then, the Receive() method of the Reader class is
introduced.

1 acm_t Reader : : Rece ive (void ) {
2

3 acm_t va l ;
4

5 i f ( r0 == true ) { // rd0
6

7 r0 = fa l se ;
8 pr0 = true ;
9 va l = ∗( shm_data + 0) ;

10 } else i f ( r1 == true ) { // rd1
11

12 r1 = fa l se ;
13 pr1 = true ;
14 va l = ∗( shm_data + 1) ;
15 } else i f ( r2 == true ) { // rd2
16

17 r2 = fa l se ;
18 pr2 = true ;
19 va l = ∗( shm_data + 2) ;
20 }
21

22 return ( va l ) ;
23 }

The same reasoning applies to the reader access method shown above.
The only di�erence is that instead of writing into the bu�er, it reads some
data from there and returns it to the calling method. Note that in both
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cases, the data access action does not require the corresponding process to
wait for any reason. This is because when a process is ready to access a
certain cell, the control actions had already been taken, and the correct cell
to be addressed has been determined previously.

6.4.3 Synthesis of the control actions

The methods implementing the control actions are somewhat more complex
due to the fact that it is necessary to provide a block mechanism to some of
the processes depending on the ACM policy. However, they follow the same
principle. For instance, applying Algorithm 6.3 the implementation of the
writer's control actions, i.e. the λ actions, would generate the C++ source
code below.

1 void Writer : : Lambda(void ) {
2

3 while ( true ) {
4

5 i f (∗we0 == true && ∗wne1 == true &&
6 w0p == true && ∗ rne1 == true ) { // l0_1
7

8 // s e t pre−s e t to f a l s e
9 ∗we0 = fa l se ;

10 ∗wne1 = fa l se ;
11 w0p = fa l se ;
12

13 // s e t post−s e t to t rue
14 w1 = true ;
15 ∗wne0 = true ;
16 ∗we1 = true ;
17

18 // l e a v e the loop
19 break ;
20 }
21

22 i f ( . . . ) { // l1_2
23

24 . . .
25 }
26

27 i f ( . . . ) { // l2_0
28

29 . . .
30 }
31

32 pause ( ) ;
33 }
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34 }

As before, each transition is implemented as an if statement whose con-
dition is given by the variables of the pre-set of the transition and the body
consists of switching the variables of the pre-set to false and the variables
of the post-set to true. For example, the code implementing the �ring of
transition λ01 is given by lines 5 to 20 in the piece of C++ code above. Note
that we0 and wne0 stands for w = 0 and w 6= 0, respectively.

It is important to observe that the control actions of the writer process
are inside an in�nite loop whose last instruction is a call to the pause()1

library function. This is done because if the reader is pointing to the next
cell, then there will not be any λ transition enabled. With the writer pointing
to the ith cell, it means that the reader is pointing at the (i+1)th cell. In this
case the writer should wait for the reader to execute, and using the pause()
function is the way of doing it on Unix. This also avoids busy waiting. The
pause() is terminated when the reader advances to its own next cell and
sends a signal to the writer indicating it. Then the writer executes again
and tries to advance to its next cell. The in�nite loop is broken by a break

statement in line 19.
The control actions of the reader process are implemented by the Mu()

method. Again, each transition is implemented as an if statement. For in-
stance, µ00 is implement by the code from lines 3 to 7 and µ01 is implemented
in lines 8 to 17. Observe that every time the reader executes a control ac-
tions, it sends the SIGCONT signal to the writer, as in lines 7 and 17. This
is to wake up the writer in the case it is sleeping due to a pause(). Since
this behavior mimics the Petri net model, both processes will not run into a
deadlock due to some race condition.

1 void Reader : :Mu(void ) {
2

3 i f ( r0p == true && ∗we1 == true ) { // m0_0
4

5 r0p = fa l se ;
6 r0 = true ;
7 k i l l ( pair_pid , SIGCONT) ;
8 } else i f (∗ re0 == true && ∗ rne1 == true &&
9 r0p == true && ∗wne1 == true ) { // m0_1

10

11 ∗ re0 = fa l se ;
12 ∗ rne1 = fa l se ;
13 r0p = fa l se ;
14 r1 = true ;

1The pause() library function causes the invoking process (or thread) to sleep until a
signal is received that either terminates it or causes it to call a signal-catching function.
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15 ∗ rne0 = true ;
16 ∗ re1 = true ;
17 k i l l ( pair_pid , SIGCONT) ;
18 } else i f ( . . . ) { // m1_1
19

20 . . .
21 } else i f ( . . . ) { // m1_2
22

23 . . .
24 } else i f ( . . . ) { // m2_2
25

26 . . .
27 } else i f ( . . . ) { // m2_0
28

29 . . .
30 }
31 }

6.4.4 Processes �ow

The methods generated above need to be integrated into the communicating
processes. As explained before and shown in Figures 6.2 and 6.3, the writer
�rst calls the Send() and then the Lambda() methods. On the other hand,
the reader �rst calls the Mu() and then the Receive() methods. In the
code generated these operations are encapsulated into two public methods:
Write() and Read(), available for the writer and reader objects, respectively.
With this, the correct use of the communication scheme is ensured.

In this chapter an automatic approach to generate source code from Petri
net models was discussed. The algorithms introduced here only give concep-
tual ideas on what needs to be done for the synthesis of the code. When
executing the procedure, many details related to the target programming
language has to be taken into account. The algorithms above were imple-
mented to generate C++ code to be executed on a Linux operating system.
The reader should consult [72] and [73] for more details on creating shared
memory segments on Unix like and POSIX operating systems.

The generation of C++ code for the overwriting policies is done by ex-
ecuting Algorithm 6.1 and some variants of Algorithms 6.3 and 6.2. These
variants di�ers from the original algorithms in the fact that they use Ma

and Mc as presented in De�nition 4.8 instead of De�nition 4.3. It is also
necessary to point out that since in overwriting policies there are two slots
per cell, a di�erent scheme to implement the communication bu�er is used.
But it still uses simple C++ pointer arithmetic.

More speci�cally, for an overwriting ACM of size n, it allocated enough
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Figure 6.2: Flowchart for the writer process

space for 2 × n data items. The available space is grouped into pairs that
will represent the pair (cell,slot). For instance, the cell 00 corresponds to
*(shm_data + 0), 01 corresponds to *(shm_data + 1), 10 corresponds to
*(shm_data + 2) and so on. The o�set needed to address the pair (cell,slot)
ij is given by i ∗ 2 + j.

In the source code a read operation will appear as

va l = ∗( shm_data + 0) ;

while a write operation appears as

∗( shm_data + 0) = va l ;

The complete source code for the 3-cell RRBB example used to illus-
trate the C++ code synthesis presented in this chapter is included in Ap-
pendix B.1. Additionally, links to complete examples of C++ code for 2 cells
OWBB and OWRRBB ACMs are also included.
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Figure 6.3: Flowchart for the reader process

6.5 Conclusions

In this chapter the automatic generation of C++ source code for the ACMs
was introduced. The algorithms used in the synthesis of the ACM were de-
tailed and the operating system requirements for the code to work correctly
were outlined. The synthesis of ACMs has been explained using the gen-
eration of C++ source code for the particular case of the Linux operating
system.

The source code is synthesized in such a way that it mimics the behavior
of the Petri net model of the ACM. For this reason and since the Petri
net satisfy coherence and freshness, the code is expected to satisfy these
properties.

The synthesis procedure outlined in this chapter has been used to gen-
erate a number of ACM implementations of di�erent sizes. The source code
was compiled, and a set of tests were performed in order to check that the
program behave as expected. As far as the tests show, no anomalies have
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been observed.
The reader may have observed that the generated C++ code is very

regular (because the original Petri nets are regular). One could develop a
single piece of code (per ACM policy) that would take the size N of the
ACM as a parameter, rather than generate separate pieces of code for each
individual N. However, proceeding like that, the designer will lose the ability
of generating code for di�erent protocols. As the methodology is de�ned,
the designer needs only to de�ne the PN modules following the de�nitions
presented in this, and the source code can be obtained. Besides that, since we
will be dealing with n-ary variables, we cannot even guarantee that if both
processes refer to the same variable at the same time, the reader process
will recover a valid value. For instance, a 3-cell ACM will require a two bits
variable to count the cells, and this 3-bit variable can represent four values.
This may be a serious problem.

Another issue with the C++ code generated is related to performance,
since the wide use of signals to communicate between the processes may
severely degrade the performance of the system. First of all, consider that
the main concern in this work was to demonstrate that the methodology was
feasible. Signals are only a particular way of implementing the solution for a
particular operating systems. Performance is a real problem that need to be
addressed, and more study is necessary to propose an implementation that
minimizes (or even does not use) signals. One possibility is to use DBUS2 to
manage process communication.

2�D-Bus is a message bus system, a simple way for applications to talk to one another.
In addition to interprocess communication, D-Bus helps coordinate process lifecycle; it
makes it simple and reliable to code a �single instance� application or daemon, and to
launch applications and daemons on demand when their services are needed.� [2].



Chapter 7

Automatic synthesis of ACM

hardware implementations

In this chapter the synthesis of hardware implementation of ACMs will be
introduced. Firstly, a generic design will be presented as a set of block
diagrams. This design can be used to obtain ACMs for both re-reading and
overwriting policies.

Due to this fact, the block diagrams are not complete in the sense that the
control of the reader and writer processes is not explicitly described there. For
this purpose, a set of Finite State Machines (FSM) describing both processes
are introduced for the RRBB policy. Since the FSM is speci�c for an ACM
of a certain size, a procedure to obtain the FSM for ACMs of any given size
is provided. Then it is discussed how the FSMs are related to the Petri net
models introduced on Chapter 4. Finally, the generation of Verilog source
code from the FSMs will be introduced.

The generation of hardware descriptions for the overwriting policies will
not be addressed here, only the re-reading one. However, the same schema
can be extended to support the generation of overwriting ACMs. For this it
is necessary only to de�ne the proper FSM, and substitute it into the design
�ow.

7.1 Block diagrams design

The general structure for an ACM hardware implementation is introduced
by the block diagram in Figure 7.1. Three main entities are de�ned. Two of
them represent the reader and writer applications that are provided by the
user of the ACM. The design of such applications is covered here. The third
entity is the ACM itself, which is the subject of the present work.

139
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Figure 7.1: The ACM general structure

As can be seen in Figure 7.1, the ACM connects to both, reader and
writer applications. Observe that the ACM receives the clock signal from
both writer and reader, meaning that part of it will execute in the same
clock domain as the reader and part will execute in the clock domain of the
writer application. The ACM also receives requests from both trough the
req signals and returns acknowledgments when the task has been performed
through ack. Finally, the ACM receives some data from the writer and sends
some data to the reader using the data buses.

Despite having the same labels in Figure 7.1, the signals connecting the
ACM to the writer application are not physically the same as those connect-
ing the ACM to the reader application. As stated above, the focus of this
chapter is on the design of the ACM, and not on the applications that use
it. For this reason, from now only the design of the ACM will be addressed.

The block diagram of the ACM is shown in Figure 7.2. The ACM is
composed of three modules: i) the writer module; ii) the reader module; and
iii) the shared memory module. Clearly these reader and writer modules are
not the reader and writer applications of Figure 7.1. The writer and reader
modules belong to di�erent clock domains. Each of them has its own clock
and reset signals, and they receives requests from the external applications.
On the other hand, the shared memory module does not share the clock with
either the writer or the reader modules, but it can react to stimuli from both
modules in order to store or recover some data item. Besides that, the writer
and reader modules are connected to allow each module to test the control
variables of its counter-part module.

Each internal module of the ACM communicates with the other modules
using the proper internal signals. For instance, when the writer module
receives a request from the environment, which is indicated by w_req=1,
it �rst makes a request to the shared memory module setting wreq to 1
and then it waits for the wack signal. After receiving wack, it forwards the
signal to the writer application using the wire w_ack. Then it checks if the
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Figure 7.2: The ACM block diagram

reader module is accessing the next cell by setting wsel to the value of the
next cell and checking the value of the input signal rd. If the reader is not
pointing at the next cell, the new data is released for reading and the writer
module prepares to write the next cell. Otherwise it waits until the reader is
not pointing to the next cell any more, if the ACM in question implements
a re-reading policy, or it discards some data item if the ACM implements an
overwriting policy. The behavior of the reader is similar to the behavior of
the writer, except the fact that if the writer module is pointing to the next
cell, the reader prepares to re-read the current cell.

The writer module is detailed in the block diagram of Figure 7.3. The con-
trol variables of the writer are implemented by the �ip-�ops named w0, w1,
· · · , wn on the left-bottom side of the diagram. Each �ip-�op implements
one control variable, and they are one-hot encoded, meaning that exactly one
of them must have the value set to 1 at any time. At each tick of the clock,
the writer engine updates the values of the control variables if necessary.

The reader module, which is shown in the block diagram of Figure 7.4, is
similar to the writer module. The main di�erence is that it receives data from
the shared memory module and returns this data to the reader application.
Observe that in both cases, a module �asks� the other if a cell is being accessed
or not by setting the value of its select signal properly, and the answer comes
by the corresponding result signal (rd or wr). In any case, the result is
only perceived after passing through two sequential �ip-�ops clock signals,
which requires two clock signals. This is necessary in order to minimize the
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Figure 7.3: The writer block diagram

probability of metastability problems since the access to the control variables
is not controlled by any mutual exclusion mechanism.

Observe that such block diagrams do not specify any speci�c behavior
about the writer or the reader, neither how the control variables are updated.
This is speci�ed in the writer/reader engine sub-modules. Using a schema
similar to the one used in Section 6.4 to encode the pair (cell, slot) of the
overwriting policies, it is possible to use the same block diagram of Figures 7.3
and 7.4 to design ACMs for both policies. The only need is to replace the
writer engine properly. Of course, the number of �ip-�ops needed to design
ACMs of di�erent sizes changes according to the amount of cells needed by
the ACM.

7.2 The �nite state machines of the engines

The last step needed to complete the design of a hardware implementation
of ACMs is to specify the behavior of the writer and reader engines. In
this work the behavior of each engine was de�ned as a Finite State Machine
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Figure 7.4: The reader block diagram

(FSM). Since there are ACMs of di�erent sizes, there will be one FSM for each
possible ACM size. In this section it will be described how to generate FSM
speci�cations for RRBB ACMs. For this purpose, the FSM for the smallest
possible RRBB ACM will be introduced �rst. Then it will be argued how to
obtain ACMs of any size from it.

In Figures 7.5 and 7.6 the FSMs of the writer and reader engines for a
3 cells RRBB ACM are shown. Initially the writer is in an idle state ready
to access the cell number 1, as indicated in the state labeled idle1. The
writer is already pointing to cell 1, and the next cell has also been selected,
indicated by wsel=2. When a writing request is received, the state changes
to init1, and a request is made to the shared memory module. These action
are indicated in the FSM by w_req=1 and wreq=1, respectively.

Once the request has been processed by the shared memory module, the
wack signal is received and the state changes to end1. Then the writer
engine checks if the reader is accessing the next cell by testing !rd. Remember
that wsel has already been set at state idle1. If the reader is not accessing
that cell, then the writer advances to it updating its own control variables,
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Figure 7.5: The writer �nite state machine

sends an acknowledgment signal to the application served and checks one
more cell ahead of the reader. This is indicated in the FSM by waddr=2,
w1=0, w2=1, w_ack=1 and wsel=0, respectively. This cycle is repeated
until the writer returns to the state idle1.

The reader FSM in Figure 7.6 behaves much in the same way as the writer
FSM. The main di�erence compared with the writer FSM in Figure 7.5 is
that in order to �nish a data access action the reader does not block (while
the writer blocks if the reader is pointing to the next cell). Instead, it returns
to the state in which it is ready to access the cell it has just read. In other
words, it prepares to re-read the current cell, and the values of the control
variables are not modi�ed. Note the arcs with conditions !wr andwr starting
from the states labeled end0, end1, and end2. These arcs indicate that the
status of the writer does not block the reader. The mechanism to access the
control variable of the writer module is the same, and it communicates with
the shared memory module in the same way as the writer.
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Figure 7.6: The reader �nite state machine

Finally, in Figure 7.7 the FSM for the shared memory module is shown.
This is the module actually responsible for executing the data access op-
erations in the communication bu�er, while the reader and writer modules
control where and when these operations are done. The shared memory mod-
ule communicates with both writer and reader modules and reacts to their
stimuli. It receives a request, a data to be stored and the address to store the
data from the writer module. After saving the data it returns an acknowl-
edgment signal indicating the termination of the action. It also receives a
request and an address from the reader, and returns the data requested and
an acknowledgment signal. Observe that the write and read operations can
be performed concurrently.
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Figure 7.7: The shared memory �nite state machine

7.3 Automatic generation of FSM speci�ca-

tions

From Figures 7.5 and 7.6 it is easy to observe that each FSM has a basic
pattern that is replicated in larger models. This happens due to the fact
that the control over each ACM cell is exactly the same, di�ering only in
the addresses they control the access to. For instance, it can be observed
that the writer FSM can be easily obtained from the FSM module shown in
Figure 7.8.

More speci�cally, in order to obtain the FSM of the 3-cell RRBB ACM
described previously, it is only needed to instantiate a number of FSM mod-
ules like the one in Figure 7.8 and connect them properly. Since this FSM
module expresses all the control needed for one ACM cell, the total number of
modules needed corresponds to the size of the ACM, e.g. for the 3-cell RRBB
above, three FSM modules are needed. To instantiate the FSM module for
the jth cell it is necessary to generate an FSM of the module and replace
all occurrences of the strings I, J and K properly (I, J and K represent the
number of the previous, the current and the next cell respectively, and they
must be replaced by j − 1, j and j + 1, respectively).

Finally, it is necessary to connect the obtained FSM modules. This is
easily done by just merging the output arc labeled !rd of the jth FSM module
with the input arc labeled !rd of the (j + i)th FSM module. Obverse that
we are considering the operation (j + 1) as ((j + 1) mod n), where n is the
ACM size. After these two simple steps the FSM of the writer engine of an
RRBB ACM is obtained. The synthesis of the FSM for the writer engine is
described in Algorithm 7.1.
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Figure 7.8: FSM writer module

The same procedure is applied to obtain the FSM for the reader engine.
The FSM module for the reader is shown in Figure 7.9.

Figure 7.9: FSM reader module

The attentive reader may have noted that the FSM models described
above do not corresponds to the Petri net models introduced in Section 4.3.
This is because in the Petri net models presented in Chapter 4 all data access
operations are treated as atomic, while in the FSM models above they are
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Algorithm 7.1 Synthesis of the FSM for the writer engine
1: for j = 0 to n− 1 do
2: Create new writer module as in Figure 7.5
3: Replace I by the value of j − 1
4: Replace J by the value of j
5: Replace K by the value of j + 1
6: if j 6= 0 then
7: Merge input arc of the jth module with the output arc of the j− 1th

module
8: end if
9: if j = (n− 1) then
10: Merge output arc of the jth module with the input arc of the 0th

module
11: end if
12: end for

not. This may lead one to think that coherence and freshness properties may
not be preserved on the implementations obtained from those FSM models.

In order to guarantee those properties it is necessary to modify the Petri
nets to model the data access operations as non-atomic actions. This would
require to split each transition t modeling the data access action into two new
transitions, ti and te. ti models the initiation of a data access action, while
te models the end of the data access action. The input places of t should be
input places of ti, and the output places of t should be output places of te.
Finally, ti and te should be connected by a new place. Then, the PN models
should be regenerated and subjected to model checking again. Clearly, this
approach increases the number of variables of the system, which also a�ects
negatively model checking performance.

From the Petri net modules used to build the models for RRBB ACMs
it is easy to observe that each transition that will be split has exactly one
input and one output place. This true for both writer and reader processes,
as can be seen in Figures 4.2(a) and 4.2(b), respectively. This means that
the modi�cations needed in the PN model will not change the sequence that
the cells on the ACM are addressed by the processes. This is necessarily
true because the two new transitions refer to the same data access action as
the old one. Consequently, the freshness property is also satis�ed in the new
Petri net model.

In order to argue why coherence is also satis�ed in the new Petri net
model, the alternative coherence veri�cation discussed on Section 5.4 will be
of great value. There, it has been proposed that coherence is also satis�ed
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if for any cell j in the ACM, the total amount of tokens on the input places
and output places of the data access transitions of j does not exceed one. In
other words, for all cell j, M(wj) + M(pwj) + M(rj) + M(prj) ≤ 1. This
has been veri�ed before, and has been proved true for a number of ACMs
instances.

In the new Petri net model, this way of describing coherence is mapped
to M(wj) +M(pwj) +M(nwj) +M(rj) +M(prj) +M(nrj) ≤ 1, where nwj
and nrj correspond to the new places added when splitting transitions wrj
and rdj respectively. It is obvious that this new constraint is preserved in
the new Petri net model, and consequently coherence is also satis�ed.

7.4 Verilog code synthesis

To complete the hardware synthesis for RRBB ACMs introduced in this
chapter, it is necessary to point out how to obtain an artifact that can be
synthesized as a physical hardware, from the set of FSMs presented in the
Sections above. In this Section it will be outlined how to obtain a Verilog [77]
code for RRBB ACMs.

The block diagrams described in Section 7.1 are used to generate a set of
templates in the Verilog language for ACMs of any size. It is only necessary
to take care to setup correctly the data type to be transmitted and the size of
the ACM. Note that in the ACM module this size does not appear explicitly,
however the signals wsel and rsel depend on it. More speci�cally, these
signals should have log2n− 1 wires, where n is the size of the ACM. Besides
that, it is also necessary to instantiate a number of �ip-�ops corresponding
to the size of the ACM in both reader and the writer Verilog modules. As
explained in Section 7.1, each �ip-�op corresponds to a binary variable that
controls the access to a speci�c cell. Also, all wires should be correctly
connected. Since the Verilog template �les are almost static, their setup will
not be detailed here.

The main problem is in the synthesis of the code that controls the access
to the shared memory, i.e. in the synthesis of the code corresponding to the
writer and reader engine sub-modules of Figures 7.3 and 7.4. These sub-
modules are described by the FSMs introduced in Section 7.2. The Verilog
code generation uses the simple idea of getting each FSM module used to
build the writer engine or the reader engine and mapping it to a piece of
Verilog code that is equivalent to the FSM module. The FSM module of the
writer engine is mapped to the following piece of Verilog code:

1 s t a t e [ IDLE_J ] :
2 begin
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3 i f (w_req) begin

4 w_ack <= 1 ' b0 ;
5 wreq <= 1 ' b1 ;
6 s t a t e [ IDLE_J ] <= 1 ' b0 ;
7 s t a t e [ INIT_J ] <= 1 ' b1 ;
8 end

9 end

10 s t a t e [ INIT_J ] :
11 begin

12 i f (wack ) begin

13 wreq <= 1 ' b0 ;
14 wdata <= w_data ;
15 s t a t e [ INIT_J ] <= 1 ' b0 ;
16 s t a t e [END_J] <= 1 ' b1 ;
17 end

18 end

19 s t a t e [END_J] :
20 begin

21 i f ( ! rd ) begin

22 w_J <= 1 ' b0 ;
23 w_J+1 <= 1 ' b1 ;
24 wsel <= J+2;
25 w_ack <= 1 ' b1 ;
26 waddr <= J+1;
27 s t a t e [END_J] <= 1 ' b0 ;
28 s t a t e [ IDLE_J+1] <= 1 ' b1 ;
29 end else begin

30 s t a t e [END_J] <= 1 ' b1 ;
31 end

32 end

For each FSM module instantiated, the corresponding Verilog code above
should also be instantiated. To proceed with this step, it is necessary to take
care of replacing the Js properly. In the above, the J should be replaced by
the corresponding number j of the jth cell. Note that J+1 should be replaced
by ((j + 1) mod n) and J+2 by ((j + 2) mod n), where n is the size of the
ACM. For instance, the Verilog code obtained to control the access to cell
number 0 is given by:

1 s t a t e [ IDLE_0 ] :
2 begin

3 i f (w_req) begin

4 w_ack <= 1 ' b0 ;
5 wreq <= 1 ' b1 ;
6 s t a t e [ IDLE_0 ] <= 1 ' b0 ;
7 s t a t e [ INIT_0 ] <= 1 ' b1 ;
8 end

9 end

10 s t a t e [ INIT_0 ] :
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11 begin

12 i f (wack ) begin

13 wreq <= 1 ' b0 ;
14 wdata <= w_data ;
15 s t a t e [ INIT_0 ] <= 1 ' b0 ;
16 s t a t e [END_0] <= 1 ' b1 ;
17 end

18 end

19 s t a t e [END_0 ] :
20 begin

21 i f ( ! rd ) begin

22 w_0 <= 1 ' b0 ;
23 w_1 <= 1 ' b1 ;
24 wsel <= 2 ;
25 w_ack <= 1 ' b1 ;
26 waddr <= 1 ;
27 s t a t e [END_0] <= 1 ' b0 ;
28 s t a t e [ IDLE_1 ] <= 1 ' b1 ;
29 end else begin

30 s t a t e [END_0] <= 1 ' b1 ;
31 end

32 end

The source code obtained using the procedure described above implies
two things:

1. All states of the FSM are enumerated and there is a state array that is
one-hot encoded to indicate the current state;

2. There is a case statement in which the Verilog code above is inserted.

For instance, for the 3-cell RRBB ACM, the state enumeration of the
writer engine sub-module is done by:

1 parameter IDLE_0=0, INIT_0=1, END_0=2,
2 IDLE_1=3, INIT_1=4, END_1=5,
3 IDLE_2=6, INIT_2=7, END_2=8;

and the case statement is de�ned as below:

1 case (1 ' b1 )
2 CASE BODY GENERATED FROM FSM
3 endcase

Observe that line 2 should be replaced by the proper case statements. The
source code obtained for the reader engine is similar to the one obtained for
the writer, and its generation follows the same idea. The main di�erences,
as can be expected, are that the reader engine returns a data item to its
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environment and that it does not blocks even in the absence of new non-
read data. The Verilog template used to generate the reader engine is shown
below.

1 s t a t e [ IDLE_J ] :
2 begin

3 i f ( r_req ) begin

4 r_ack <= 1 ' b0 ;
5 r r eq <= 1 ' b1 ;
6 s t a t e [ IDLE_J ] <= 1 ' b0 ;
7 s t a t e [ INIT_J ] <= 1 ' b1 ;
8 end

9 end

10 s t a t e [ INIT_J ] :
11 begin

12 i f ( rack ) begin

13 r r eq <= 1 ' b0 ;
14 r_data <= rdata ;
15 s t a t e [ INIT_J ] <= 1 ' b0 ;
16 s t a t e [END_J] <= 1 ' b1 ;
17 end

18 end

19 s t a t e [END_J] :
20 begin

21 i f ( ! wr ) begin

22 r_J <= 1 ' b0 ;
23 r_J+1 <= 1 ' b1 ;
24 r s e l <= J+2;
25 r_ack <= 1 ' b1 ;
26 raddr <= J+1;
27 s t a t e [END_J] <= 1 ' b0 ;
28 s t a t e [ IDLE_J+1] <= 1 ' b1 ;
29 end else begin

30 r_ack <= 1 ' b1 ;
31 raddr <= J ;
32 s t a t e [END_J] <= 1 ' b0 ;
33 s t a t e [ IDLE_J ] <= 1 ' b1 ;
34 end

35 end

As before, the Verilog code obtained will be embedded into the body of
a case statement and it is necessary to generate a piece of code for each cell
of the ACM. Again, all Js should be replaced by the corresponding number
j of the jth cell, J+1 by ((j+1) mod n) and J+2 by ((j+2) mod n), where
n is the size of the ACM.



7.5. AN ALTERNATIVE APPROACH 153

7.5 An alternative approach

In [64], Silva describes an alternative method for the realization of a Petri
net as a hardware artifact. That method can be applied for one-safe Petri
nets, which are used in the present work, and it is based on the following
principles:

1. Each place is implemented as a special type of �ip-�op;

2. The �ip-�op is activated when one of the transitions in the pre-set
of the corresponding place is �red, and deactivated when one of the
transitions in the post-set of the corresponding place is �red.

In other words, the places are implemented by an element with some memory,
and the hardware implementation mimics the Petri net behavior.

An SR �ip-�op is a digital circuit with memory to represent one bit.
Typically it has two inputs named S (set) and R (reset) , besides the clock
signal, and one output named Q as illustrated on Figure 7.10. The SR �ip-
�op may have priority on the set or on the reset signal.

Figure 7.10: Set-Reset Flip-�op

The behavior of the SR �ip-�op with priority on the set signal is given by
the truth table in Table 7.1. If S is activated, then the output Q will also be
activated. Q will remain activated even in the absence of S until the input R
is activated. Note that R has e�ect only in the absence of S due to the fact
that S has priority.

S R Q

0 0 Q

0 1 0

1 0 1

1 1 1

Table 7.1: Truth table for a SR �ip-�op with priority on the set
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This simple memory element can be used to implement a place with only
one input and one output transition. For this reason the SR �ip-�op is ex-
tended to implement places with more than one input and output transitions.
This is done by using NAND gates as shown on Figure 7.11.

Figure 7.11: Memory cell build upon an SR �ip-�op and NAND gates

CA gives the activation condition of the �ip-�op, and CD gives the deac-
tivation condition. In the Petri net notation CA and CD correspond to •p
and p•, where the p is the place implemented by the �ip-�op. Qp should
be set to true if any of the activation conditions is satis�ed. Observe that
S = CA1 ∧ · · · ∧ CAn , where n = | • p|. This means that S will be true if any
input CA is true. This can be easily checked using the truth table of S given
by Table 7.2.

CA1 · · · CAn S

0 0 0 0

0 x 1 1

1 x 0 1

1 1 1 1

Table 7.2: Truth table for S = CA1 ∧ · · · ∧ CAn

The same reasoning applies to the reset signal. Then it is necessary to
specify how the �ip-�ops are activated and deactivated. In other words, it is
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necessary to tell how to implement the behavior of the transitions and how
to connect the implementations of transitions and places.

The activation of a �ip-�op should happen when some of the input tran-
sitions of the place implemented by the �ip-�op is �red. In the same way, the
deactivation of the �ip-�op occurs when an output transition of the place im-
plemented by the �ip-�op is �red. The transitions can be easily implemented
by NAND or NOR logical gates.

(a) AND node (b) OR node

Figure 7.12: Typical PN structures

In Figure 7.12 typical structures of Petri net models are shown. These
generic structures are well known in the literature as an AND node and an
OR node. In short terms, these structures can be mapped into logic gates by
replacing the places by the �ip-�op cells as the one in Figure 7.11, and the
transitions by NAND gates.

(a) AND node implementation (b) OR node implementation

Figure 7.13: Implementation of the PN models

As expected, each arc of the PN model corresponds to a wire connecting
the logic elements. Besides that, the arcs linking a place p to a transition t
also requires a wire from the NAND gate of t to the �ip-�op of p. This is
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necessary due to the fact that a �ring of t is a cause of the deactivation of
the �ip-�op corresponding to p.

It is necessary to remember that the method discussed above can only be
applied for one-safe Petri nets. However, it is possible to extend it in order
to support k-limited Petri nets.

7.6 Conclusions

In this chapter the generation of hardware for the ACM re-reading protocol
has been outlined. The basic structure of the implementation is de�ned by a
set of block diagrams. These block diagrams have some gaps to be ful�lled to
complete the implementation. These gaps correspond to the behavior of the
writer and reader processes. It is shown how to obtain such behavior as an
FSM speci�cation and how these FSMs relate to the Petri net models of each
process. Then, the generation of Verilog code from the FSMs is outlined.

The hardware generation method is not complete since it does address
the overwriting policies. Clearly, this is a way this work can be extended.
However, from an engineering point of view, the method is a proper proof of
concept which indicates that the same approach can be used to obtain the
implementation of more complex protocols.



Chapter 8

Conclusions and future work

In this thesis Asynchronous Communication Mechanisms (ACMs) have been
studied, and two methods for the automatic generation of ACMs have been
proposed. The �rst method is based on the construction of a state graph
speci�cation that is synthesized into a Petri. The second approach skips the
state graph generation and attempts to construct the Petri net model of the
ACM directly. In both cases, the Petri net models are used to derive software
and hardware ACM implementations.

Since most ACMs tend to use single bit control variables, besides being
time consuming, the task of building ACMs manually is prone to errors when
the size of the ACM grows. This is mainly due to the number of control vari-
ables needed to implement an ACM. The importance of automatic methods
for the synthesis of ACMs relies on the guarantee that the obtained artifact
is free from errors and on how fast the implementation can be obtained. In
this work it has been shown how to obtain ACM implementations with a
reasonable guarantee that the artifacts preserve the coherence and freshness
properties.

The state graph based approach is described in Chapter 3. There, the
automation of two key steps in ACM synthesis is detailed. These are: i)
deriving of an interleaving state graph speci�cation given a functional speci-
�cation; and ii) the generation of an ACM Petri net model in the form of an
independent state machine using unidirectional shared variables. Previously,
these steps were the most tedious and time-consuming tasks in a manual
synthesis process, and, although suggested to be �automatable� because of
their systematic and step-by-step nature, they were never shown to be so
conclusively. We have applied this method to a number of �standard� ACM
types for writing and reading multi-cell bu�ers.

In Chapter 4 another approach to the automatic synthesis of ACMs is
introduced. This method is based on the use of modules for the construction
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of Petri net models that can be veri�ed against a more abstract speci�ca-
tion. Firstly, the behavior of re-reading and overwriting ACMs was formally
de�ned and the properties they should satisfy were described by CTL formu-
lae. Then the procedure of generating the Petri net models was presented,
including the de�nition of the basic modules and the algorithms required to
instantiate and connect them.

Compared to the state graph speci�cation approach, the method of gen-
erating Petri net models has the disadvantage of requiring the use of model
checking techniques to guarantee the correctness of the models generated. In
the �rst approach based on the state graph speci�cation and ACM regions,
it was guaranteed by construction. However, the cost of executing the ACM
regions algorithm is too high, and when it becomes limited by the state space
explosion problem, no Petri net model could be generated and synthesis fails.
In the second approach, state space explosion is limited to the veri�cation
of the Petri net model. This step is o� the main design �ow, as outlined in
Figure 4.1. Thus we could generate source code from the Petri net model
whether it can be veri�ed or not. An unveri�ed implementation nonetheless
has practical engineering signi�cances because the Petri net model is highly
regular and its behavior can be inferred from that of similar ACMs of smaller
and veri�able size.

The veri�cation of the Petri net models is detailed in Chapter 5. Firstly,
the mode abstract ACM behaviors described in De�nitions 4.1 and 4.2 are
modeled as transition systems and veri�ed to satisfy coherence and freshness
properties. Secondly, the Petri net model is transformed into a transition
system and is veri�ed to be a re�nement of the more abstract model. It was
possible to verify the abstract models of ACM of considerable size. However,
the re�nement veri�cation of overwriting ACMs is still very limited. It has
been observed that even for ACMs of small size, the state space explosion
problem causes the veri�cation to fail. This happens mainly due to the
amount of variables needed to correctly implement the overwriting ACMs,
which is considerable bigger than for re-reading ones.

Finally, the synthesis of ACMs implementations is detailed. Chapter 6
details the generation of C++ source code for re-reading and overwriting
policies. The only assumptions made about the operating system in which the
ACM will execute are: i) the existence of some inter-process communication
mechanism to allow a process to send a signal to another process; and ii) the
support of shared memory segments that can be accessed by two processes.
Then the generation of C++ source code for POSIX compliant operating
systems is detailed.

In Chapter 7 the synthesis of hardware is detailed for the re-reading policy.
Firstly, the basic hardware structure is described as a set of block diagrams.
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These block diagrams are used as templates in which the behavior of each
ACM process will replace some speci�c blocks. Then the generation of Verilog
code, which can be realized in hardware, for each ACM process is detailed.
The Verilog code replaces the corresponding blocks in the diagram, which
concludes the synthesis procedure.

Since model checking results for the overwriting results were not very
exciting, formal veri�cation of ACM models is one direction in which this
work can be extended. One possibility is to work on the Petri net model in
order to reduce the amount of control variables needed. This should make it
possible to verify bigger models, but this only alleviates the state explosion
problem. Another possibility is to apply induction proof methods.

Also, the generation of hardware for the overwriting policies has not been
addressed. This is another way of extending this work. Furthermore, it
is necessary to extend the hardware and software generation mechanism to
more realistic scenarios, in which the details of the available technologies
are considered. One possibility for the hardware generation schema is the
development of asynchronous memory modules which make use of the pro-
tocols and methods discussed in this work. The application of the software
generation schema to be used in the Linux kernel in order to implement
asynchronous system call is a possible practical application of ACMs.

Finally, all protocols addressed here only allow one writer and one reader.
It is necessary further investigation to obtain protocols that allows multiple
writers and/or readers. Besides that, the use of the shared memory in both
directions (i.e. both processes can read it and write into it) may also be
object of future investigation.
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Appendix A

SVM samples

On this appendix the SMV model of a 3-cell RRBB ACM is included. A
complete set of examples can be found at http://www.dee.ufcg.edu.br/
~kyller/acms/smv-samples.tar.bz2.

A.1 3-cell RRBB ACM SMV sample

1 −− Generated by ACMgen
2 −− Linux 2.6.26−1−686 at Fri Sep 12 09 :57 :27 BRT 2008
3 #de f i n e t rue 1
4 #de f i n e f a l s e 0
5

6 #de f i n e ACM_SIZE 3
7 typede f ACM 0 . . (ACM_SIZE − 1) ;
8

9 module writer_p ( wr i te r , reader , rd_data , wr_cont , acm , wr_data ,
acm2) {

10

11 case {
12 wr i t e r = i d l e & wr_cont < ACM_SIZE:
13 {
14 next ( wr i t e r ) := ac c e s s i n g ;
15 next ( reader ) := reader ;
16 next ( rd_data ) := rd_data ;
17 next (wr_cont ) := wr_cont ;
18 f o r ( i = 0 ; i < ACM_SIZE; i = i + 1) {
19 i f ( i = wr_cont ) {
20 next (acm [ i ] ) := wr_data ;
21 } else {
22 next (acm [ i ] ) := acm [ i ] ;
23 }
24 }
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25 next (acm2) := acm ;
26 }
27

28 wr i t e r = ac c e s s i n g :
29 {
30 next ( wr i t e r ) := i d l e ;
31 next ( reader ) := reader ;
32 next ( rd_data ) := rd_data ;
33 next (wr_cont ) := wr_cont + 1 ;
34 next (acm) := acm ;
35 next (acm2) := acm ;
36 }
37 }
38 }
39

40 module reader_p ( wr i te r , reader , rd_data , wr_cont , acm , wr_data ,
acm2) {

41

42 case {
43

44 reader = i d l e :
45 {
46 next ( wr i t e r ) := wr i t e r ;
47 next ( reader ) := ac c e s s i n g ;
48 next ( rd_data ) := acm [ 0 ] ;
49 next (wr_cont ) := wr_cont ;
50 next (acm) := acm ;
51 next (acm2) := acm ;
52 }
53

54 reader = ac c e s s i n g & wr_cont = 1 :
55 {
56 next ( wr i t e r ) := wr i t e r ;
57 next ( reader ) := i d l e ;
58 next ( rd_data ) := rd_data ;
59 next (wr_cont ) := wr_cont ;
60 next (acm) := acm ;
61 next (acm2) := acm ;
62 }
63

64 reader = ac c e s s i n g & wr_cont > 1 :
65 {
66 next ( wr i t e r ) := wr i t e r ;
67 next ( reader ) := i d l e ;
68 next ( rd_data ) := rd_data ;
69 next (wr_cont ) := wr_cont − 1 ;
70 f o r ( i = 0 ; i < ACM_SIZE−1; i = i + 1) {
71 next (acm [ i ] ) := acm [ i + 1 ] ;
72 }
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73 next (acm2) := acm ;
74 }
75 }
76 }
77

78 module main ( ) {
79

80 −− v a r i a b l e s d e c l a r a t i o n s
81 wri ter , r eader : { i d l e , a c c e s s i n g } ;
82

83 acm , acm2 : array ACM of boolean ;
84

85 wr_data , rd_data : boolean ;
86 wr_cont : 0 . .ACM_SIZE;
87

88 −− Sp e c i f i c a t i o n
89 l a y e r rrbb : {
90

91 in i t ( wr i t e r ) := i d l e ;
92 in i t ( reader ) := i d l e ;
93

94 in i t (acm [ 0 ] ) := wr_data ;
95 in i t (wr_cont ) := 1 ;
96 in i t (acm2) := acm ;
97 next (acm2) := acm ;
98

99 wrp : p roce s s writer_p ( wr i te r , reader , rd_data , wr_cont ,
acm , wr_data , acm2) ;

100 rdp : p roc e s s reader_p ( wr i te r , reader , rd_data , wr_cont ,
acm , wr_data , acm2) ;

101

102 case {
103 wr_cont < ACM_SIZE | wr i t e r = ac c e s s i n g : {
104 wrp . running := {0 ,1} ;
105 rdp . running := ~wrp . running ;
106 }
107

108 default : {
109 wrp . running := 0 ;
110 rdp . running := 1 ;
111 }
112 }
113 }
114

115 −− FAIRNESS CONSTRAINTS
116 FAIRNESS wrp . running ;
117 FAIRNESS rdp . running ;
118

119 −− CTL PROPERTIES
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120 −−−−> COHERENCE
121 SPEC AG( reader = ac c e s s i n g −> ( rd_data = acm [ 0 ] & wr_cont >

0) ) ;
122

123 −−−−> FRESHNESS
124 −− sequenc ing p r o p e r t i e s f o r wr_cont = 1
125 SPEC AG(wr_cont = 1 −>
126 AX(( wr_cont >= 1 & acm [ 0 ] = acm2 [ 0 ] ) ) ) ;
127 −− sequenc ing p r o p e r t i e s f o r wr_cont = 2
128 SPEC AG(wr_cont = 2 −>
129 AX(( wr_cont >= 2 & acm [ 0 . . 1 ] = acm2 [ 0 . . 1 ] ) | |
130 (wr_cont = 1 & acm [ 0 ] = acm2 [ 1 ] ) ) ) ;
131 −− sequenc ing p r o p e r t i e s f o r wr_cont = 3
132 SPEC AG(wr_cont = 3 −>
133 AX(( wr_cont >= 3 & acm [ 0 . . 2 ] = acm2 [ 0 . . 2 ] ) | |
134 (wr_cont = 2 & acm [ 0 . . 1 ] = acm2 [ 1 . . 2 ] ) ) ) ;
135 }
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C++ samples

On this appendix the C++ source code the writer process of a 3-cell RRBB
ACM is included. A complete set of examples can be found at http://www.
dee.ufcg.edu.br/~kyller/acms/cpp-samples.tar.bz2.

B.1 3-cell RRBB ACM C++ sample

B.1.1 Writer process .h �le

1 using namespace std ;
2

3 #include <errno . h>
4 #include <s i g n a l . h>
5 #include <s td i o . h>
6 #include <sys / ipc . h>
7 #include <sys /shm . h>
8 #include <sys / types . h>
9 #include <unis td . h>

10

11 #include <iostream>
12

13 #ifndef Writer_h
14 #define Writer_h
15

16 #define ACM_SIZE 3
17

18 #define SHMKEY (( key_t ) 21000)
19 #define SHMKEY1 ( ( key_t ) 21100)
20 #define PERMS 0666
21

22 #define acm_t char

23

165
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24 class Writer {
25

26 public :
27

28 acm_t ∗shm_data ;
29 long long int shm_id ;
30 pid_t pair_pid ;
31

32 // wr i t e r v a r i a b l e s
33 bool wi0 ;
34 bool wi1 ;
35 bool pwi0 ;
36 bool ∗we0 ;
37 int we0_shmid ;
38 bool ∗wne0 ;
39 int wne0_shmid ;
40 bool ∗we1 ;
41 int we1_shmid ;
42 bool ∗wne1 ;
43 int wne1_shmid ;
44 bool ∗ rne1 ;
45 int rne1_shmid ;
46 bool wi2 ;
47 bool pwi1 ;
48 bool ∗we2 ;
49 int we2_shmid ;
50 bool ∗wne2 ;
51 int wne2_shmid ;
52 bool ∗ rne2 ;
53 int rne2_shmid ;
54 bool pwi2 ;
55 bool ∗ rne0 ;
56 int rne0_shmid ;
57

58 Writer ( pid_t ) ;
59 ~Writer ( ) ;
60

61 void Write (acm_t) ;
62 void Write1 (acm_t) ;
63 void Send (acm_t) ;
64 void Lambda(void ) ;
65

66 private :
67

68 bool In i tLoca lShv ( ) ;
69 bool In i tExterna lShv ( ) ;
70 void DtLocalShv ( ) ;
71 void DtExternalShv ( ) ;
72 stat ic void Signa lHandler ( int ) ;
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73 } ;
74 #endif // Writer_h

B.1.2 Writer process .cpp �le

1 using namespace std ;
2

3 #include "Writer . h"
4

5 extern int errno ;
6

7 Writer : : Writer ( pid_t pid ) {
8

9 pair_pid = pid ;
10 s i g n a l (SIGCONT, Signa lHandler ) ;
11

12 i f ( ( shm_id = shmget (SHMKEY, s izeof (acm_t) ∗ ACM_SIZE, PERMS
| IPC_CREAT) ) < 0) {

13

14 c e r r << "Error  c r e a t i n g  Writer .  Cannot exec  shmget ( ) " <<
endl ;

15 e x i t ( errno ) ;
16 }
17

18 i f ( ( shm_data = (acm_t ∗) shmat ( shm_id , (acm_t ∗) 0 , 0) ) == (
acm_t ∗) −1) {

19

20 c e r r << "Error  c r e a t i n g  Writer .  Cannot exec  shmat ( ) " <<
endl ;

21 e x i t ( errno ) ;
22 }
23

24 ∗shm_data = '− ' ;
25

26 // wr i t e r v a r i a b l e s
27 wi0 = fa l se ;
28 wi1 = true ;
29 pwi0 = fa l se ;
30 wi2 = fa l se ;
31 pwi1 = fa l se ;
32 pwi2 = fa l se ;
33

34 In i tLoca lShv ( ) ;
35 In i tExterna lShv ( ) ;
36 }
37

38 Writer : : ~ Writer ( ) {
39

40 i f ( shmdt ( shm_data ) ) {
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41

42 cout << "Error  de s t roy ing  Writer .  Cannont exec  shmdt ( ) "
<< endl ;

43 e x i t ( errno ) ;
44 }
45

46 DtExternalShv ( ) ;
47 DtLocalShv ( ) ;
48 }
49

50 bool Writer : : In i tLoca lShv (void ) {
51

52 i f ( ( we0_shmid = shmget (SHMKEY1 + 16 , s izeof (bool ) , PERMS |
IPC_CREAT) ) < 0) {

53

54 cout << "Error  c r e a t i n g  we0_shmid .  Cannot exec  shmget ( ) "
<< endl ;

55 e x i t ( errno ) ;
56 }
57 i f ( ( we0 = (bool ∗) shmat (we0_shmid , (bool ∗) 0 , 0) ) == (bool

∗) −1) {
58

59 cout << "Error  c r e a t i n g  we0 .  Cannot exec  shmat ( ) " << endl
;

60 e x i t ( errno ) ;
61 }
62 ∗we0 = 0 ;
63

64 i f ( ( wne0_shmid = shmget (SHMKEY1 + 17 , s izeof (bool ) , PERMS |
IPC_CREAT) ) < 0) {

65

66 cout << "Error  c r e a t i n g  wne0_shmid .  Cannot exec  shmget ( ) "
<< endl ;

67 e x i t ( errno ) ;
68 }
69 i f ( ( wne0 = (bool ∗) shmat (wne0_shmid , (bool ∗) 0 , 0) ) == (

bool ∗) −1) {
70

71 cout << "Error  c r e a t i n g  wne0 .  Cannot exec  shmat ( ) " <<
endl ;

72 e x i t ( errno ) ;
73 }
74 ∗wne0 = 1 ;
75

76 i f ( ( we1_shmid = shmget (SHMKEY1 + 7 , s izeof (bool ) , PERMS |
IPC_CREAT) ) < 0) {

77

78 cout << "Error  c r e a t i n g  we1_shmid .  Cannot exec  shmget ( ) "
<< endl ;
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79 e x i t ( errno ) ;
80 }
81 i f ( ( we1 = (bool ∗) shmat (we1_shmid , (bool ∗) 0 , 0) ) == (bool

∗) −1) {
82

83 cout << "Error  c r e a t i n g  we1 .  Cannot exec  shmat ( ) " << endl
;

84 e x i t ( errno ) ;
85 }
86 ∗we1 = 1 ;
87

88 i f ( ( wne1_shmid = shmget (SHMKEY1 + 8 , s izeof (bool ) , PERMS |
IPC_CREAT) ) < 0) {

89

90 cout << "Error  c r e a t i n g  wne1_shmid .  Cannot exec  shmget ( ) "
<< endl ;

91 e x i t ( errno ) ;
92 }
93 i f ( ( wne1 = (bool ∗) shmat (wne1_shmid , (bool ∗) 0 , 0) ) == (

bool ∗) −1) {
94

95 cout << "Error  c r e a t i n g  wne1 .  Cannot exec  shmat ( ) " <<
endl ;

96 e x i t ( errno ) ;
97 }
98 ∗wne1 = 0 ;
99

100 i f ( ( we2_shmid = shmget (SHMKEY1 + 13 , s izeof (bool ) , PERMS |
IPC_CREAT) ) < 0) {

101

102 cout << "Error  c r e a t i n g  we2_shmid .  Cannot exec  shmget ( ) "
<< endl ;

103 e x i t ( errno ) ;
104 }
105 i f ( ( we2 = (bool ∗) shmat (we2_shmid , (bool ∗) 0 , 0) ) == (bool

∗) −1) {
106

107 cout << "Error  c r e a t i n g  we2 .  Cannot exec  shmat ( ) " << endl
;

108 e x i t ( errno ) ;
109 }
110 ∗we2 = 0 ;
111

112 i f ( ( wne2_shmid = shmget (SHMKEY1 + 14 , s izeof (bool ) , PERMS |
IPC_CREAT) ) < 0) {

113

114 cout << "Error  c r e a t i n g  wne2_shmid .  Cannot exec  shmget ( ) "
<< endl ;

115 e x i t ( errno ) ;
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116 }
117 i f ( ( wne2 = (bool ∗) shmat (wne2_shmid , (bool ∗) 0 , 0) ) == (

bool ∗) −1) {
118

119 cout << "Error  c r e a t i n g  wne2 .  Cannot exec  shmat ( ) " <<
endl ;

120 e x i t ( errno ) ;
121 }
122 ∗wne2 = 1 ;
123

124 }
125

126 bool Writer : : In i tExterna lShv (void ) {
127

128 while ( ( rne1_shmid = shmget ( (SHMKEY1 + 6) , s izeof (bool ) , 0) )
< 0) {

129

130 cout << "Error  c r e a t i n g  rne1_shmid .  Cannot exec  shmget ( ) "
<< endl ;

131 k i l l ( pair_pid , SIGCONT) ; s l e e p (1 ) ; // e x i t (
errno ) ;

132 }
133 while ( ( rne1 = (bool ∗) shmat ( rne1_shmid , (bool ∗) 0 , 0) ) ==

(bool ∗) −1) {
134

135 cout << "Error  c r e a t i n g  rne1 .  Cannot exec  shmat ( ) " <<
endl ;

136 k i l l ( pair_pid , SIGCONT) ; s l e e p (1 ) ; // e x i t (
errno ) ;

137 }
138 while ( ( rne2_shmid = shmget ( (SHMKEY1 + 12) , s izeof (bool ) , 0) )

< 0) {
139

140 cout << "Error  c r e a t i n g  rne2_shmid .  Cannot exec  shmget ( ) "
<< endl ;

141 k i l l ( pair_pid , SIGCONT) ; s l e e p (1 ) ; // e x i t (
errno ) ;

142 }
143 while ( ( rne2 = (bool ∗) shmat ( rne2_shmid , (bool ∗) 0 , 0) ) ==

(bool ∗) −1) {
144

145 cout << "Error  c r e a t i n g  rne2 .  Cannot exec  shmat ( ) " <<
endl ;

146 k i l l ( pair_pid , SIGCONT) ; s l e e p (1 ) ; // e x i t (
errno ) ;

147 }
148 while ( ( rne0_shmid = shmget ( (SHMKEY1 + 4) , s izeof (bool ) , 0) )

< 0) {
149
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150 cout << "Error  c r e a t i n g  rne0_shmid .  Cannot exec  shmget ( ) "
<< endl ;

151 k i l l ( pair_pid , SIGCONT) ; s l e e p (1 ) ; // e x i t (
errno ) ;

152 }
153 while ( ( rne0 = (bool ∗) shmat ( rne0_shmid , (bool ∗) 0 , 0) ) ==

(bool ∗) −1) {
154

155 cout << "Error  c r e a t i n g  rne0 .  Cannot exec  shmat ( ) " <<
endl ;

156 k i l l ( pair_pid , SIGCONT) ; s l e e p (1 ) ; // e x i t (
errno ) ;

157 }
158 }
159

160 void Writer : : DtLocalShv (void ) {
161

162 i f ( shmdt (we0 ) ) {
163

164 cout << "Error  de s t roy ing  we0 .  Cannot exec  shmdt ( ) " <<
endl ;

165 e x i t ( errno ) ;
166 }
167

168 i f ( shmdt (wne0 ) ) {
169

170 cout << "Error  de s t roy ing  wne0 .  Cannot exec  shmdt ( ) " <<
endl ;

171 e x i t ( errno ) ;
172 }
173

174 i f ( shmdt (we1 ) ) {
175

176 cout << "Error  de s t roy ing  we1 .  Cannot exec  shmdt ( ) " <<
endl ;

177 e x i t ( errno ) ;
178 }
179

180 i f ( shmdt (wne1 ) ) {
181

182 cout << "Error  de s t roy ing  wne1 .  Cannot exec  shmdt ( ) " <<
endl ;

183 e x i t ( errno ) ;
184 }
185

186 i f ( shmdt (we2 ) ) {
187

188 cout << "Error  de s t roy ing  we2 .  Cannot exec  shmdt ( ) " <<
endl ;
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189 e x i t ( errno ) ;
190 }
191

192 i f ( shmdt (wne2 ) ) {
193

194 cout << "Error  de s t roy ing  wne2 .  Cannot exec  shmdt ( ) " <<
endl ;

195 e x i t ( errno ) ;
196 }
197

198 }
199

200 void Writer : : DtExternalShv (void ) {
201

202 i f ( shmdt ( rne1 ) ) {
203

204 cout << "Error  de s t roy ing  rne1 .  Cannot exec  shmdt ( ) " <<
endl ;

205 e x i t ( errno ) ;
206 }
207

208 i f ( shmctl ( rne1_shmid , IPC_RMID, ( struct shmid_ds ∗) 0) < 0)
{

209

210 cout << "Error  de s t roy ing  rne1_shmid .  Cannot exec  shmctl
( ) " << endl ;

211 e x i t ( errno ) ;
212 }
213

214 i f ( shmdt ( rne2 ) ) {
215

216 cout << "Error  de s t roy ing  rne2 .  Cannot exec  shmdt ( ) " <<
endl ;

217 e x i t ( errno ) ;
218 }
219

220 i f ( shmctl ( rne2_shmid , IPC_RMID, ( struct shmid_ds ∗) 0) < 0)
{

221

222 cout << "Error  de s t roy ing  rne2_shmid .  Cannot exec  shmctl
( ) " << endl ;

223 e x i t ( errno ) ;
224 }
225

226 i f ( shmdt ( rne0 ) ) {
227

228 cout << "Error  de s t roy ing  rne0 .  Cannot exec  shmdt ( ) " <<
endl ;

229 e x i t ( errno ) ;
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230 }
231

232 i f ( shmctl ( rne0_shmid , IPC_RMID, ( struct shmid_ds ∗) 0) < 0)
{

233

234 cout << "Error  de s t roy ing  rne0_shmid .  Cannot exec  shmctl
( ) " << endl ;

235 e x i t ( errno ) ;
236 }
237

238 }
239

240 void Writer : : Write (acm_t va l ) {
241

242 Send ( va l ) ;
243 Lambda ( ) ;
244 }
245

246 void Writer : : Write1 (acm_t va l ) {
247

248 Lambda ( ) ;
249 Send ( va l ) ;
250 }
251

252 void Writer : : Send (acm_t va l ) {
253

254 i f ( wi0 == true ) {
255 // wr0
256 wi0 = fa l se ;
257 pwi0 = true ;
258 ∗( shm_data + 0) = va l ;
259 } else i f ( wi1 == true ) {
260 // wr1
261 wi1 = fa l se ;
262 pwi1 = true ;
263 ∗( shm_data + 1) = va l ;
264 } else i f ( wi2 == true ) {
265 // wr2
266 wi2 = fa l se ;
267 pwi2 = true ;
268 ∗( shm_data + 2) = va l ;
269 }
270 }
271

272 void Writer : : Lambda(void ) {
273

274 while ( true ) {
275

276 // l0_1
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277 i f (∗we0 == true && ∗wne1 == true && pwi0 == true && ∗
rne1 == true ) {

278

279 ∗we0 = fa l se ;
280 ∗wne1 = fa l se ;
281 pwi0 = fa l se ;
282 wi1 = true ;
283 ∗wne0 = true ;
284 ∗we1 = true ;
285 break ;
286 }
287 // l1_2
288 i f (∗we1 == true && ∗wne2 == true && pwi1 == true && ∗

rne2 == true ) {
289

290 ∗we1 = fa l se ;
291 ∗wne2 = fa l se ;
292 pwi1 = fa l se ;
293 wi2 = true ;
294 ∗wne1 = true ;
295 ∗we2 = true ;
296 break ;
297 }
298 // l2_0
299 i f (∗we2 == true && ∗wne0 == true && pwi2 == true && ∗

rne0 == true ) {
300

301 ∗we2 = fa l se ;
302 ∗wne0 = fa l se ;
303 pwi2 = fa l se ;
304 wi0 = true ;
305 ∗wne2 = true ;
306 ∗we0 = true ;
307 break ;
308 }
309

310 pause ( ) ;
311 }
312 }
313

314 void Writer : : S igna lHandler ( int s i gno ) {
315

316 i f ( s i gno == SIGCONT) {}
317

318 return ;
319 }



Appendix C

Verilog samples

On this appendix the Verilog code for the writer process of a 3-cell RRBB
ACM is included. A complete set of examples can be found at http://www.
dee.ufcg.edu.br/~kyller/acms/verilog-samples.tar.bz2.

C.1 3-cell RRBB ACM Verilog sample

1 module writer_engine (
2 c lock ,
3 ack ,
4 ereq ,
5 rd ,
6 edata ,
7 c e l l 0 ,
8 c e l l 1 ,
9 c e l l 2 ,

10 req ,
11 eack ,
12 addr ,
13 data ,
14 s e l ,
15 r e s e t
16 ) ;
17

18 parameter

19 IDLE0 = 0 ,
20 INIT0 = 1 ,
21 END0 = 2 ,
22 IDLE1 = 3 ,
23 INIT1 = 4 ,
24 END1 = 5 ,
25 IDLE2 = 6 ,

175
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26 INIT2 = 7 ,
27 END2 = 8 ;
28

29 input c l o ck ;
30 input ack ;
31 input ereq ;
32 input rd ;
33 input [ 3 1 : 0 ] edata ;
34 input r e s e t ;
35 output c e l l 0 ;
36 output c e l l 1 ;
37 output c e l l 2 ;
38 output req ;
39 output eack ;
40 output [ 1 : 0 ] addr ;
41 output [ 3 1 : 0 ] data ;
42 output [ 1 : 0 ] s e l ;
43

44 reg c e l l 0 ;
45 reg c e l l 1 ;
46 reg c e l l 2 ;
47 reg req ;
48 reg eack ;
49 reg [ 1 : 0 ] addr ;
50 reg [ 3 1 : 0 ] data ;
51 reg [ 1 : 0 ] s e l ;
52

53 reg [ 8 : 0 ] s t a t e ;
54

55 always @(posedge c l o ck or posedge r e s e t ) begin

56 i f ( r e s e t ) begin

57 c e l l 0 <= 1 ' b0 ;
58 c e l l 1 <= 1 ' b1 ;
59 c e l l 2 <= 1 ' b0 ;
60 s e l <= 2 ;
61 req <= 1 ' b0 ;
62 eack <= 1 ' b0 ;
63 addr <= 1 ;
64 data <= edata ;
65 s t a t e <= 9 ' b0 ;
66 s t a t e [ IDLE1 ] <= 1 ' b1 ;
67 end else begin

68 case (1 ' b1 )
69 s t a t e [ IDLE0 ] : begin

70 i f ( ereq ) begin

71 eack <= 1 ' b0 ;
72 req <= 1 ' b1 ;
73 s t a t e [ IDLE0 ] <= 1 ' b0 ;
74 s t a t e [ INIT0 ] <= 1 ' b1 ;
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75 end

76 end

77 s t a t e [ INIT0 ] : begin

78 i f ( ack ) begin

79 req <= 1 ' b0 ;
80 data <= edata ;
81 s t a t e [ INIT0 ] <= 1 ' b0 ;
82 s t a t e [END0] <= 1 ' b1 ;
83 end

84 end

85 s t a t e [END0 ] : begin

86 i f ( ! rd ) begin

87 c e l l 0 <= 1 ' b0 ;
88 c e l l 1 <= 1 ' b1 ;
89 s e l <= 2 ;
90 eack <= 1 ' b1 ;
91 addr <= 1 ;
92 s t a t e [END0] <= 1 ' b0 ;
93 s t a t e [ IDLE1 ] <= 1 ' b1 ;
94 end else begin

95 s t a t e [END0] <= 1 ' b1 ;
96 end

97 end

98 s t a t e [ IDLE1 ] : begin

99 i f ( ereq ) begin

100 eack <= 1 ' b0 ;
101 req <= 1 ' b1 ;
102 s t a t e [ IDLE1 ] <= 1 ' b0 ;
103 s t a t e [ INIT1 ] <= 1 ' b1 ;
104 end

105 end

106 s t a t e [ INIT1 ] : begin

107 i f ( ack ) begin

108 req <= 1 ' b0 ;
109 data <= edata ;
110 s t a t e [ INIT1 ] <= 1 ' b0 ;
111 s t a t e [END1] <= 1 ' b1 ;
112 end

113 end

114 s t a t e [END1 ] : begin

115 i f ( ! rd ) begin

116 c e l l 1 <= 1 ' b0 ;
117 c e l l 2 <= 1 ' b1 ;
118 s e l <= 0 ;
119 eack <= 1 ' b1 ;
120 addr <= 2 ;
121 s t a t e [END1] <= 1 ' b0 ;
122 s t a t e [ IDLE2 ] <= 1 ' b1 ;
123 end else begin
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124 s t a t e [END1] <= 1 ' b1 ;
125 end

126 end

127 s t a t e [ IDLE2 ] : begin

128 i f ( ereq ) begin

129 eack <= 1 ' b0 ;
130 req <= 1 ' b1 ;
131 s t a t e [ IDLE2 ] <= 1 ' b0 ;
132 s t a t e [ INIT2 ] <= 1 ' b1 ;
133 end

134 end

135 s t a t e [ INIT2 ] : begin

136 i f ( ack ) begin

137 req <= 1 ' b0 ;
138 data <= edata ;
139 s t a t e [ INIT2 ] <= 1 ' b0 ;
140 s t a t e [END2] <= 1 ' b1 ;
141 end

142 end

143 s t a t e [END2 ] : begin

144 i f ( ! rd ) begin

145 c e l l 2 <= 1 ' b0 ;
146 c e l l 0 <= 1 ' b1 ;
147 s e l <= 1 ;
148 eack <= 1 ' b1 ;
149 addr <= 0 ;
150 s t a t e [END2] <= 1 ' b0 ;
151 s t a t e [ IDLE0 ] <= 1 ' b1 ;
152 end else begin

153 s t a t e [END2] <= 1 ' b1 ;
154 end

155 end

156 endcase

157 end

158 end

159

160 endmodule
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