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Preface

A speci�cation of a concurrent system describes a set of components that
operate in a parallel environment and eventually interact� When modeling
such concurrent behavior� the set of states that the system can reach are
typically very large or even in�nite� This phenomenon is known as the state
space explosion problem� Consequently� algorithms that work on the state
space of such type of systems su�er from the state space explosion problem�
thus having high complexity�

Formal methods is a convenient tool for the analysis� veri�cation and
synthesis of concurrent systems� They are mathematically�based languages�
methods and tools that can be used in some cases despite the complexity
of the system under consideration� Structural methods are formal methods
that use the structure of the model in order to reason about its underlying
behavior� Those methods are specially suited when the system is large
and highly concurrent� In this work we present structural methods for the
synthesis of concurrent systems� with direct application to asynchronous
circuits�

Asynchronous circuits are the simplest class of concurrent systems� De�
spite of their simplicity� problems like the state space explosion problem
already exist� Therefore� state�based algorithms for the automatic synthesis
of asynchronous circuits can only synthesize small size speci�cations� This
work provides structural methods for the synthesis of large speci�cations�
The methods developed perform as a state�based method would do if there
was enough memory or machine�power� By using graph algorithms or linear
algebra� the design �ow presented avoids the computation of the whole state
space� Experimental results show the signi�cant improvement with respect
to existing approaches�
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Chapter �

Introduction

Concurrent systems have been studied for the last forty years by the Com�
puter Science community� From the beginning� it was clear that the use
of mathematically�based languages� methods and tools represented the best
way for specifying and analyzing such systems� This is what formal methods
are� theories that allow one to construct or verify complex systems� In some
cases� formal methods can be used despite the complexity of the concurrent
system�

It is widely accepted that there is not a unique formal model for the
speci�cation and analysis of a concurrent system� In the last two decades
several new models appeared� which contributed to a deeper understanding
of how concurrent systems work� and to realize what were the di�culties in
modeling them� Among other formal models� we can mention Petri nets ��
��
CCS ��� CSP ����� Temporal Logic ���� and I�O automata �	��

Once the speci�cation model is chosen� the designer must be provided
with a kit of methods that allow the design and veri�cation of the concurrent
system under consideration� The whole process of design and veri�cation
is called system engineering� and the development of e�cient methods and
tools for each one of those two steps represents one of the biggest challenges
for today�s technology� Many researchers in Computer Science in the last
decades have been addressing this issue� and still a lot needs to be done in
the future �����

The need for more research on developing new methods and tools for
the synthesis and veri�cation of concurrent systems is because most of the
existing methods are very complex� The hardness in the complexity of the
algorithms is due to the fact that most of the methods known up�to�date can
only be applied when the underlying state space is known� In general� the
state space corresponding to the speci�cation of a concurrent system is ex�
ponential on its size� This phenomenon is known as the state space explosion
problem� Even when using implicit data structures ���	�� or partial order
approaches ����� it is not enough to guarantee the avoidance of exponential

��
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state spaces�
The state space explosion problem appears even if the concurrent sys�

tem in consideration describes a very restricted behavior� For instance�
the behavior can be restricted to only allow binary actions to take place
in the system� thus describing an asynchronous circuit� This class of sys�
tems represents the simplest concurrent systems that one can deal with�
an asynchronous circuit is simply de�ned as an arbitrary interconnection of
gates that compute some function� Despite its simplicity� the development
of theories and methods for asynchronous circuit design and veri�cation is
important because�

�� Successful theories and methods working in the simplest case �i�e�
asynchronous circuits� can be generalized to bigger classes of concur�
rent systems�

�� Asynchronous circuits describe a more natural way of computing when
compared to clocked �synchronous� circuits� o�ering a di�erent ap�
proach to digital systems design�

Despite the second reason noted above� nowadays digital systems are
synchronous� in the underlying circuit of every digital system� a global sig�
nal �the clock� makes every component to be aware of when it is supposed
to �nish its computation� This process is repeatedly done even if the com�
ponent itself has no computations to perform� Therefore� it is natural that
power consumption and performance problems can appear in circuits de�
signed according to the synchronous paradigm� Moreover� the fact that a
global signal is distributed along the circuit makes almost impossible to de�
sign fully modular synchronous circuits� Some other drawbacks� like the
problem of the clock skew and the Electromagnetic Compatibility �EMC� are
also present in the synchronous paradigm� Several papers and books in the
literature highlight the limitations of synchronous circuits ��� 
�� ����

The asynchronous paradigm is free from all the problems existing in
the synchronous paradigm� It is� by de�nition� modular and the power
consumption in every asynchronous circuit is clearly lower compared to an
equivalent synchronous circuit� because computation is only performed when
needed� All the other problems of synchronous circuits are also naturally
avoided by the asynchronous paradigm ���

Despite the clear advantages of asynchronous circuits� they are seldom
used� The main reason is because� in general� asynchronous circuits are very
di�cult to design� For designing a synchronous circuit� one must simply de�
�ne the combinational logic necessary to compute the function� and surround
it with latches ����� Then by adapting the clock rate long enough to allow
the combinatorial circuit to produce its expected output� the designer avoids
the existence of errors on the circuit�s function �called hazards�� Note that
in this way� even if the circuit performs very rarely the most time consuming
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computation �� the clock cycle in an synchronous circuit is determined by
��

On the contrary� to prevent hazards from appearing in an asynchronous
circuit can be sometimes an art� especially if the system under consideration
is a complex one of medium�big size� This is because in an asynchronous
circuit� the fact that no global synchronization exists implies that for per�
forming a given function� the system can progress into several intermediate
states that result from the inherent parallelism of the asynchronous model�
Given that every intermediate state is valid for the system� the designer
must ensure that the state itself is free from hazards� For large and com�
plex systems� this task can be almost impossible to perform manually� The
development of methods and tools for the automated design �synthesis� and
veri�cation of asynchronous circuits is one of the hot topics addressed by
several researchers in the last two decades ��
� ��� ��� �� �� ���� The work
presented here describes a novel approach for the synthesis of asynchronous
circuits�

In the past few years� several researchers have provided reasons about
why it is needed to start thinking of introducing asynchronous ideas in ac�
tual synchronous systems� Following this advice� some of the important
microelectronics companies are incrementally introducing asynchronous de�
sign principles in their designs� Philips can be considered the main company
on exploiting asynchronous� Other companies such as Intel� Sun� IBM and
In�neon are also trying to get rid of the clock in some parts of their designs�
This mixture between clocked and unclocked circuits made part of the asyn�
chronous community to start focussing their research on less radical archi�
tectures� like the Globally Asynchronous Locally Synchronous �GALS�� In a
GALS system� modules are globally managed by means of handshakes �i�e�
asynchronously�� but the modules are considered to be locally synchronous�
This architecture allows the designer to decouple timing constraints on di�er�
ent modules and therefore some of the typical problems of pure synchronous
circuits like the clock skew are alleviated� Moreover� the GALS approach
allows one to substitute synchronous modules by asynchronous ones� while
preserving the functionality of the circuit ���� This fact also motivates the
need to continue working on the development of methods and tools for the
automatic design of asynchronous circuits�

Although several academic tools exist for the synthesis of asynchronous
circuits� it is assumed that there is a big di�erence these days between CAD
synthesis tools for synchronous and asynchronous circuits� There is still a
lot to be done within the asynchronous community in order to develop CAD
tools with similar degree of maturity of the synchronous approach� Some
of the leading researchers on asynchronous are still pointing out the lack
of mature CAD tools for asynchronous design� in the International Confer�
ence on Application and Theory of Petri Nets �ICATPN�	��� the author of
the invited paper �
�� claimed the need of tools for the synthesis of asyn�
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chronous controllers from an interpreted Petri net representing a circuit� In
the suggested approach� the Petri net is considered to be obtained from a
syntax�directed translation of a Hardware Description Language �HDL� pro�
gram specifying the behavior to synthesize� Two main features characterize
the Petri nets obtained by this approach� ��� the size is linear on the size
of the HDL program� but the state space is usually very large� and ��� the
net inherits the good structure of the program�

Moreover� the paper stresses the importance of the application of global
optimization� that can result in a signi�cant improvement of the quality of
the circuit synthesized� However� the existing approaches for performing
global optimization techniques can only be applied when the state space of
the underlying system is known� and therefore all those techniques su�er
from the well known state space explosion problem� Usually� global opti�
mization techniques can handle speci�cations with at most �	��	 binary vari�
ables� Even when applying partial order techniques ��
��� or using implicit
compact representations of the state space ���	�� does not help in general
to overcome the potential overhead of the state�based global optimization
methods�

In this thesis we provide the theory� methods and a CAD tool for the
synthesis of asynchronous circuits from interpreted Petri nets� Although
being able to synthesize any speci�cation in the class of Free�choice Petri
nets ������� we believe that the approach is specially well suited to be applied
to those speci�cations coming from a syntax�directed translation from a
HDL� The reason for this comes from the fact that the approach strongly
relies on using structural methods in almost all the stages of the synthesis
process� which can bene�t from the well�structuredness property of this type
of speci�cations�

The proposed design �ow can overcome the state space explosion prob�
lem by both using structural methods and by decomposing the system into
smaller subparts and performing the synthesis on each subpart afterwards�
The structural methods used are�

� Graph Theory� Mainly Petri net transformations� either to ensure
implementability of the speci�cation or for projecting the initial Petri
net into some set of variables� The transformations can also be applied
when trying to improve the �nal implementation according to some
objective function�

� Linear Programming� By using the marking equation of the inter�
preted Petri net to synthesize� it can be codi�ed in a integer linear
programming problem the check of some important implementability
conditions� It is also possible to use integer linear programming tech�
niques to support the process of decomposition of a speci�cation�

The experimental results obtained by our tool show that it can handle
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Figure ���� Comparison for area of the synthesized circuits�

speci�cations with hundreds of binary variables� and the quality of the cir�
cuits obtained is comparable to the one obtained by state�based approaches�
As a motivating example for this work� Figures ��� and ��� present a com�
parison of the results obtained by our CAD tool and petrify ����� a well
known state�based CAD tool for the synthesis of asynchronous controllers�

Figure ��� presents a comparison on the number of literals synthesized
by each tool� It is signi�cant the similarity of the quality of both approaches�
despite of the fact that in the �rst approach global optimization techniques
have been applied to the complete state space of each speci�cation� while in
our approach the speci�cation has been decomposed and synthesized sep�
arately� This similarity in the solutions obtained happens frequently� It
means that� very often it is not necessary to compute the complete state
space for the synthesis of a given signal of the circuit�

A comparative analysis on CPU time is shown in Figure ���� The y�axis
depicts the logarithm of the time needed by each tool to perform the synthe�
sis� In the case of benchmarks ���� � and �	� the state�based tool was aborted
after ten hours of computation� The �gure shows a clear improvement on
orders of magnitude of our approach�
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In conclusion� we present a theory for the synthesis of asynchronous
controllers� The resulting CAD tool can synthesize speci�cations with the
same quality and signi�cantly less time than present state�based methods�
It can handle bigger speci�cations� provided that structural methods are the
core of this work�

Figure ���� Comparison for CPU time for synthesizing every benchmark�

Organization of the Thesis

The necessary background and formal de�nitions of the basic notions appear
in Chapter �� Once the mathematical preliminaries are introduced� four
main topics are addressed� Transitions Systems� Petri Nets� Linear Algebra
and Asynchronous Circuits�

Chapter � presents the conditions that two reactive systems must ful�ll in
order to interact without having errors or deadlocks� The relation described�
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called I�O Compatibility� is then used in Chapter � to introduce a kit of
synthesis rules that can be applied to a Petri net specifying a reactive system�
It is shown how to apply those rules while preserving the I�O Compatibility
between the system and its environment� A structural encoding technique
for the synthesis of asynchronous circuits is also described in Chapter ��
which can also be modi�ed to preserve the I�O Compatibility�

Integer Linear Programming �ILP� techniques are used in Chapter  to
present methods for the veri�cation and synthesis of asynchronous circuits�
The models introduced focuses on the problem of the encoding� in the ver�
i�cation part� ILP models are introduced to semi�decide the problem of the
correct encoding for asynchronous circuits� On the synthesis part� a novel
method is introduced that allows one to split a speci�cation into several
subparts while preserving the implementability conditions�

The whole theory introduced in Chapters �� � and  is merged in Chap�
ter �� where a complete design �ow for the synthesis of asynchronous circuits
is presented� and �nally two examples of complete synthesis are described�
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Chapter �

Basic De�nitions

Las cosas que yo s�e
las sabe un tonto cualquiera

� Kiko Veneno� Salta la Rana

The necessary background for the theory presented in the following chap�
ters is introduced here� Section ��� describes the notation used throughout
the book� Section ��� presents reactive systems� the general class of systems
that are the object of study� Sections ��� and ��� describe two mathemat�
ical models� Petri nets and Transition systems� used to specify a reactive
system� Section �� presents the relation between the model of Petri nets
with the Linear Algebra theory� Finally� Section ��� de�nes formally what is
an asynchronous circuit� and explains how the synthesis of an asynchronous
circuit is performed� when some delay model is assumed�

��� Preliminaries

����� Sets

De�nition ����� Sets� A set X is a collection of distinct objects� called
elements or members� We use x � X to express that x is a member of the
set X�

Two ways of describing a set X are introduced�

� Exhaustive list of its elements� X � fa� b� cg� X � fx�� ���� xng�

� Members of the set must satisfy some condition� The format will be
X � fx jx satis�es condition �g where the condition can be expressed
either in natural language or as some predicate in �rst�order logic �

Given two sets X and Y � X � Y and X �� Y denote equality and
inequality of the sets X and Y � respectively� We write X � Y to denote

��
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that X is a subset of Y � and X � Y to denote that X is a proper subset of
Y � i�e�� X � Y and X �� Y � X nY denotes the set of members of X that are
not members of Y � The Cartesian product of X and Y � denoted by X � Y
is de�ned by

X � Y � f�x� y� jx � X � y � Y g

and the operator can be de�ned for any given ��nite� arity� The Cartesian
product of X�� ����Xn is de�ned by

X� � ����Xn � f�x�� ���� xn� jx� � X� � ��� � xn � Xng

When all the sets are the same� the Cartesian product can be abbreviated
as Xn� For instance� X � X � X is X�� Moreover� in this situation more
than one dimension can be de�ned in the Cartesian product�

Xn�m � f��x�� ���� xm�� ���� �xn� ���� xm�� jxi � Xg

Finally� some symbols are used to denote universal sets�

� the set of rational numbers� Q

� the set of integers� Z

� the set of nonnegative integers� N

� the set of binary numbers� B � f	� �g

����� Vectors and Matrices

A vector v of dimension n over a set X is an element from Xn� i�e�� v � Xn�
It will be denoted by �v�� v�� ���� vn�� For instance� v � ��� ���� ��� is a
vector of dimension three over Q � i�e� v � Q� � Given two vectors x and y of
dimension n� x � y denotes the product of the two vectors� de�ned by

x � y � �x�y�� ���� xnyn�

Vector vjP denotes a new vector formed only by the components appear�
ing in the index set P �

A matrix C of dimension n�m over a set X is an element from Xn�m�
The operations vC and Cv denote the left and right products of matrix C
and the vector v� only de�ned if the dimensions agree� Along the book� a
matrix will be denoted with bold capitals and a vector with italics� The
symbol � denotes a vector such that every component is 	�
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����� Sequences

Let � be a set� called alphabet� A �nite sequence �of length n� on � is a
mapping f�� ���� ng 	 �� We represent a �nite sequence � � f�� ���� ng 	 �
as the word x� x� ���xn� where xi � ��i�� for � 
 i 
 n� The empty sequence
is de�ned as � � � 	 �� with length 	� For instance� if � � fa� b� c� dg a
possible sequence of length  on � is � � aaacd�

If � � x� x� ���xn and � � y� y� ���ym are �nite sequences then the con�
catenation of � and �� denoted by � �� is the sequence x� x� ���xn y� y� ���ym
of length n�m� For any sequence �� � � � ��

The operator ���� x� denotes the number of occurrences of x in �� For
instance� if � � aaacd� ���� a� � �� ���� c� � � and ���� b� � 	�

Finally� the projection of sequence � into set X� denoted by �jX � is a
new sequence obtained by removing from � those elements not belonging to
X�

��� Reactive Systems

Reactive systems ���� are systems that operate in a distributed environment�
The events observed in a reactive system can be either input events� output
events or internal events� An input event represents a change in the envi�
ronment for which the system must react� In contrast� an output event is
generated by the system and can force other systems in the environment to
react to� Finally� an internal event represents system�s local progress� not
observable by the environment� Typical examples of reactive system are a
computer� a television set and a vending machine�

In this work� we deal with the synthesis problem of reactive systems�
Given a system and its environment� a synchronization protocol is com�
mitted in such a way that� at any state� the environment is guaranteed to
produce only those input actions acceptable by the system� This assump�
tion about the environment is opposite to other models in the literature
like I�O automata ���� where the system must always be able to accept
environment�s actions�

More speci�cally� the problem faced in this work is� given the speci�ca�
tion of a reactive system� generate an implementation realizable with design
primitives that commits the protocol established with the environment� Here
we focus on the synthesis of asynchronous circuits �see Section ��� for a gen�
eral description of this type of systems�� where the events of the reactive
system are rising and falling signal transitions and the design primitives are
logic gates�



�� CHAPTER �� BASIC DEFINITIONS

a

b b

bb

c

c

c

c

d d
d d

�a�

a

b c d

�b�

Figure ���� �a� Transition System� �b� Petri net�

��� Transition Systems

A Transition System is an automaton which describes the behavior of a sys�
tem of processes� It contains a set of possible states and a set of transitions
representing potential changes of the system�s state� A general description
of the model and extensions can be found in ����

De�nition ����� Transition System� A Transition System �TS� is a ��
tuple A � �S��� T� sin� where

� S is the set of states

� � is the alphabet of events

� T � S ��� S is the set of transitions

� sin � S is the initial state

Figure ����a� depicts an example of TS� The initial state is denoted by
an incident arc without source state�

De�nition ����� Reachability in a TS� The transitions are denoted by
�s� e� s�� or s

e
	 s�� An event is said to be enabled in the state s� denoted by

the predicate En�s� e�� if �s� e� s�� � T � for some s�� The reachability relation
between states is the transitive closure of the transition relation T � The
predicate s

�
	 s� denotes a sequence of events � that leads from s to s� by

�ring transitions in T � A state s is terminal if no event is enabled in s� A
TS is �nite if S and T are �nite sets�

De�nition ����� Language of a TS� A TS can be viewed as an automa	
ton with alphabet �� where every state is an accepting state� For a TS A� let
L�A� be the corresponding language� i�e� its set of sequences starting from
the initial state�
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De�nition ����� Deterministic TS� A TS is deterministic if for each
state s and each event e there can be at most one state s� such that s

e
	 s��

The synchronous product of two transition systems is a new transition
system which models the interaction between both systems ���� This oper�
ator will be used in Chapter � to present methods for checking the correct
interaction between two reactive systems�

De�nition ����� Synchronous Product� Let A � �SA��A� TA� sAin�� B �
�SB ��B� TB � sBin� be two TSs� The synchronous product of A and B� denoted
by A�B is another TS �S��� T� sin� de�ned by

� sin � hsAin� s
B
ini � S

� � � �A ��B

� S � SA � SB is the set of states reachable from sin according to the
following de�nition of T �

� Let hs�� s��i � S�

� If e � �A�B� s�
e
	 s� � TA and s��

e
	 s�� � TB� then hs�� s��i

e
	

hs�� s��i � T

� If e � �A n �B and s�
e
	 s� � TA� then hs�� s��i

e
	 hs�� s��i � T

� If e � �B n �A and s��
e
	 s�� � TB� then hs�� s��i

e
	 hs�� s��i � T

� No other transitions belong to T

The evens in a TS can be interpreted as the actions taking place in a
reactive system� This will allow to model a reactive system with a TS� An
interpreted TS is called reactive transition system�

De�nition ����
 Reactive Transition System� A Reactive Transition
System �RTS� is a TS �S��� T� sin� where � is partitioned into three pairwise
disjoint subsets of input ��I�� output ��O� and internal ��INT � events�
�OBS � �I � �O is called the set of observable events

��� Petri Nets

A Petri net is a mathematical representation of a concurrent system� The
theory of Petri nets was introduced by Carl Adam Petri in his dissertation
Kommunikation mit Automaten ��
�� A good summary on Petri net theory
can be found in �
�� whereas ���� presents an up�to�date survey both in
theory and applications of Petri nets nowadays�

The model is composed of two parts� a net and a marking� The net
represents the static structure of the system� while the marking denotes a
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distributed global state� The description of the net is done by specifying
two types of nodes and a �ow relation that makes the underlying graph to
be bipartite� Nodes called places are used to denote atomic states of the
system� while nodes called transitions denote changes of the states� Finally�
a marking is a distribution of tokens over the places�

De�nition ����� Petri Net� A Petri Net �PN� is a 
	tuple N � hP� T� F�m�i�
where�

� P is the set of places�

� T is the set of transitions�

� F � �P � T � � �T � P �	 N is the �ow relation� and

� m� � NjP j is the initial marking�

For any two nodes x and y� if F �x� y� � 	 then there is an arc from x to y�
with weight F �x� y�� Ordinary nets are those where F � �P �T �� �T �P �	
f	� �g� The net of Figure ��� is ordinary� Along this work we will assume
always ordinary nets�

A marking of a PN is a jP j�vector m� where the component p of the vector
is a natural number� If k is assigned to place p by marking m �denoted
m�p� � k�� we will say that p is marked with k tokens at m� Figure ���
shows a graphical view of a Petri net� Typically� transitions are denoted
by boxes �or black bars�� places are denoted by circles and the �ow relation
as directed arcs between the two sets� forming the bipartite structure� The
markingm of a place p is graphically indicated by placingm�p� tokens �black
dots� on each place p� In the PN of Figure ���� m��p�� � � and m��pi� � 	�
for � 
 i 
 
� or on its vector notation m� � ��� 	� 	� 	� 	� 	� 	� ��

The following de�nitions assume a given PN N � �P� T� F�m���
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De�nition ����� Paths and Cycles� A path is a sequence u� � � � ur of
nodes such that �i� � 
 i 	 r � F �ui� ui��� � 	� A path is called simple if
no node appears more than once on it� A simple path is called a cycle if all
nodes along path are dierent except the initial and the �nal node�

De�nition ����� Pre�sets� Post�sets� Given a node x � P � T � the set
�x � fy jF �y� x� � 	g is the pre	set of x and the set x� � fy jF �x� y� � 	g
is the post	set of x�

For instance� in Figure ���� �t� � fp�g� t
�
� � fp�� p�g�

�p� � ft�g and
p�� � ft�� t�g�

De�nition ����� Enabledness and Firing Rule� A transition t is en�
abled at marking m if each place p � �t is marked with at least F �p� t� tokens�
When a transition t is enabled� it can �re by removing F �p� t� tokens from
place p � �t and adding F �t� q� tokens to each place q � t��

In the PN of Figure ���� the only transitions enabled at the initial marking
are t� and t��

De�nition ����� Reachability and Feasible Sequences� A marking m�

is reachable from m if there is a sequence of �rings t�t� � � � tn that transforms
m into m�� denoted by m�t�t� � � � tnim�� A sequence of transitions t�t� � � � tn
is a feasible sequence if it is �rable from m�� The set of reachable markings
from m� is denoted by �m�i�

For instance� in the PN of Figure ���� the marking m � �	��				� is reach�
able through the feasible sequence t�� while the marking m� � �		��			� is
not reachable�

It is widespread the use of a transition system to describe the behavior
of a system of processes ���� The model of Petri nets does not represent
the behavior explicitly� but the causality relations among the set of actions
of the system� However� by considering the set of reachable markings as
the set of states of the system� and the transitions among this markings
as the transitions between the states� a transition system can be obtained
representing the underlying behavior of the PN� This transition system is
called reachability graph�

De�nition ����
 Reachability Graph� Given a PN N � �P� T� F�m���
its reachability graph is a transition system� denoted by RG�N� and de�ned
by

� �m�i is the set of states

� T is the alphabet of events
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� fhm� e�m�i jm�m� � �m�i �m
e
	 m�g is the set of transitions

� m� is the initial state

Figure ��� depicts an example of reachability graph �left�� associated to the
PN on the right�

De�nition ����� Deterministic PN� A PN N is deterministic if RG�N�
is deterministic�

De�nition ����	 Liveness� A PN is live i every transition can be in	
�nitely enabled through some feasible sequence of �rings from any marking
in �m�i�

De�nition ����� Boundedness and Safeness� A PN is k	bounded if no
marking in �m�i assigns more than k tokens to any place of the net� A net
is bounded if it is k	bounded for some k� A PN is safe if it is �	bounded�

The PN of Figure ��� is an example of live and safe PN�

De�nition ������ Home Marking and Reversibility� A marking is a
home marking if it is reachable from every marking of �m�i� A net is re�
versible if the initial marking m� is a home marking�

Following the sequence of �rings in the PN of Figure ���� it can be seen that
the initial marking of the PN is a home marking� Therefore the net is re�
versible� However� if we assign m�

� � �	��				� as initial marking� the net is
no longer reversible because m�

� is not a home marking� Note that reversibil�
ity is neither necessary nor su�cient condition for liveness�boundedness� the
net of Figure ��� with m�

� as initial marking is still live and safe�

De�nition ������ Triggering and Disabling� Let R � �m�i be the set
of markings where transition ti is enabled� Transition tj triggers transition ti
if there exists a reachable marking m such that m�tjim�� m �� R and m� � R�
Transition tj disables transition ti if there exists a reachable marking m
enabling both ti and tj� but in the marking m� such that m�tjim�� ti is not
enabled�

The triggering and disabling relations are illustrated using the PN of Fig�
ure ���� The only transition enabled at marking m � �					��� is t�� After
�ring t� the initial marking is reached� where both transitions t� and t� are
enabled� Therefore t� triggers both t� and t�� Moreover� at m� t� disables
t� and vice versa�

By imposing restrictions on the underlying structure of a Petri net� sev�
eral subclasses can be de�ned� In this work three subclasses are of interest�
State Machines� Marked Graphs and Free choice PNs�
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Figure ���� Non�free choice net�
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from Figure ����

A State Machine models a sequential system� where con�icts between
events can be expressed but concurrency is only possible if more than one
token is distributed over the net� On the other side� a Marked graph repre�
sents a concurrent�synchronizing system where con�icts between events do
not exist�

A Free choice PN can be seen as a State Machine enriched with Marked
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Graph�like concurrency and synchronization� Informally� in a Free choice net
whenever some output transition of a place p is enabled� all the transitions
in the post�set of p are enabled� and therefore it is always possible  to freely
choose! which one of them �res� This class of nets plays a central r"ole in
the theory of net systems because although being able to express non�trivial
behaviors� there still exist powerful methods for its analysis and synthesis� A
typical example is the reachability problem� EXPSPACE�hard for arbitrary
nets ����� but polynomial for the class of free choice live safe and reversible
Petri nets ������ Figures ��� and ��� depict examples of a Free Choice and
a non Free choice Petri net� respectively�

De�nition ������ Petri Net subclasses�

� A State Machine �SM� is a PN such that each transition has exactly
one input place and one output place�

� A Marked Graph �MG� is a PN such that each place has exactly one
input transition and one output transition�

� A Free choice Petri net �FC� is a PN such that for every place p and
transition t� if F �p� t� � 	 then for every place q such that F �q� t� � 	�
the equality F �p� t� � F �q� t� holds�

From the previous de�nition it can be seen that a PN which is an SM
it is also FC� Analogously� if a PN is a MG it is also FC� The converse to
the two previous inclusions does not hold� Figure ��� shows a FC PN which
is neither a SM nor a MG� However� a live and safe free�choice PN can be
decomposed into a set of SMs or MGs�

Theorem ����� Free�choice decomposition ����� A free	choice live and
safe Petri net �FCLSPN� can be decomposed into a set of strongly	connected
state	machines �marked graphs�� An SM�cover �MG�cover� of a FCLSPN is
a subset of state machines �marked graphs� such that every place �transi	
tion� is included at least in one state machine �marked graph�� Moreover� a
FCLSPN can be also decomposed into a set of strongly	connected one�token
state	machines� i�e� state	machines that at most contain one token at any
reachable marking�

Figure ��� shows MG and SM covers of the FCLSPN depicted in Figure ����
We use PNs to model reactive systems �see Section ����� in order to derive

algorithms that work at the net level and can implement the behavior of the
system� For that purpose a notion of PN modeling a reactive systems is next
introduced� leading to the de�nition of reactive Petri net� The new model
can be seen as a labeled Petri net ����� where labels on transitions represent
events occurring in a reactive system�
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De�nition ������ Reactive Petri Net� A Reactive Petri Net �RPN� is
a ��tuple ��P� T� F�m�����#� where

� �P� T� F�m�� is a PN

� � is partitioned as in De�nition �����

� # � T 	 �

Section ����� contains examples of RPNs modeling digital circuits�

Finally� the concept of redundant place is de�ned�

De�nition ������ Redundant place� Let N � �P � fpg� T� F�m�� be
a Petri net� Place p is called redundant if the net N � � �P� T� F ��m�

��
derived from removing p in N has the same set of feasible sequences� i�e
L�RG��N�� � L�RG�N ����

��� Linear Algebra and Petri Nets

Linear algebra theory ���� has proven to be useful for facing many problems
in very di�erent areas ���� Chapter  contains methods for the veri�cation
and synthesis of reactive systems using linear algebraic techniques� The basic
theory supporting the methods of Chapter  is presented in this section�

����� Linear Programming

A linear inequality or constraint is given by an integral vector a � Zn and
an integer b� It is represented by

a � x 
 b

and it is feasible over a set A if there exists some assignment k � An to x
satisfying a � k 
 b�

A system of linear inequalities is a set of linear inequalities� It is feasible
if there exists a vector that satis�es all inequalities of the set� If it is �nite
then it has a matrix based representation

A � x 
 vb

where the vectors a of the linear inequalities are the rows of the matrix A
and the numbers b are the components of the vector vb�
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De�nition ����� Linear Programming Problem� A linear program�
ming problem �LP� is a system A�x 
 b of linear inequalities� and optionally
a linear function cT � x called the objective function� A solution of the prob	
lem is a vector of rational numbers that satis�es the constraints� A solution
is optimal if it maximizes the value of the objective function �over the set of
all solutions�� An LP is feasible if it has a solution�

De�nition ����� Integer Linear Programming Problem� An integer
linear programming problem �ILP� is a LP where additionally� the integrality
on the set of solutions is required�

The complexity of solving a linear problem depends on the domain under
consideration�

Proposition ����� Complexity of Linear Programming �����

�� Each system of linear equalities over Q can be solved in polynomial
time �LP��

�� The solubility of systems of linear inequalities over Z or N is NP	
complete �ILP��

����� Approximation of the Reachability Set of a PN

Computing the reachability graph from a given PN is a very hard problem�
because the size of the reachability graph may grow exponentially with re�
spect to the size of the PN� or it even can be in�nite� The main reason is
that the concurrency in the PN must be implicitly expressed in the reacha�
bility graph� The interested reader can �nd in �
�� a discussion on the r"ole
of concurrency in relation with the size of the reachability graph�

Therefore it is interesting to approach the problem of reachability using
other models or techniques� In this section we describe how to use ILP

techniques to compute approximations of reachable markings of a PN�

Given a �ring sequence m�
�
	 m of a PN N � the number of tokens for

each place p in m is equal to the number of tokens of p in m� plus the
number of tokens added by the input transitions of p appearing in � minus
the tokens removed by the output transitions of p appearing in ��

m�p� � m��p� �
X
t��p

���� t�F �t� p��
X
t� p�

���� t�F �p� t�

The concepts of incidence matrix and Parikh vector are next introduced�
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Figure ��� �a� Petri net� �b� Spurious solution m � �			�	�T � �c� Potential
reachability graph�

De�nition ����� Incidence matrix of a PN� The matrix N � ZjP j�jT j

de�ned by

N�p� t� � F �p� t�� F �t� p�

is called the incidence matrix of N �

De�nition ����� Parikh vector� Let � be a feasible sequence of N � The
vector 
� de�ned by


� � ����� t��� �������� tn�� �����

is called the Parikh vector of ��

Using the previous de�nitions� the token conservation equations for all
the places in the net can be written in the following matrix form�
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m � m� �N � 
�

Which leads to the de�nition of the linear description of the reachability set
by means of an ILP�

De�nition ����� Marking Equation� If a marking m is reachable from
m�� then there exists a sequence � such that m�

�
	 m� and the following

problem has at least the solution X � 
�

m � m� �N �X �����

The equation m � m� �N �X is called the marking equation�

Special attention must be paid in previous de�nition� the marking equa�
tion only provides a necessary condition for reachability� If the marking
equation is infeasible� then m is not reachable from m�� but the inverse does
not hold in general� there are markings satisfying the marking equation
which are not reachable� Those markings are said to be spurious �
��� Fig�
ure ���a���c� presents an example of spurious marking� the Parikh vector

� � ���		��� and the marking m � �			�	� are a solution to the mark�
ing equation of the Petri net of Figure ���a�� as shown in Figure ���b���
However� m can not be reachable by any feasible sequence� only sequences
visiting negative markings can lead to m� Figure ���c� depicts the graph
containing the reachable markings and the spurious markings �shadowed��
This graph is called the potential reachability graph� The initial marking is
represented by the state ��				��

��� Asynchronous Circuits

Asynchronous circuits are digital circuits that react to the changes of their
input signals according to the functionality of the gates of the circuit �����
Synchronous circuits can be considered as a particular case of asynchronous
circuits in which some speci�c design rules and operation mode are imposed�

In general� any arbitrary interconnection of gates is considered an asyn�
chronous circuit� The synthesis problem consists in generating a proper
interconnection of gates that commits a correct interaction with the envi�
ronment according to some speci�ed protocol�

This section presents some discussion about the di�erent types of asyn�
chronous circuits nowadays� Afterwards the models used in this work for
the speci�cation and synthesis of asynchronous circuits are introduced�

�Both in the �gure and the explanation� we abuse the notation and skip the commas
in the de�nition of Parikh vectors and markings�
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����� Classes of Asynchronous Circuits

Asynchronous circuits can be classi�ed as being speed	independent� delay	
insensitive or bounded	delay circuits� depending on the delay assumptions
that are made �����

� Speed	independent circuits ��� �SI�� the behavior of a circuit in this
class is insensitive to the delay of its components �gates�� although it
can be sensitive to variations in the delays of the wires�

� Delay	insensitive circuits �DI�� the behavior is independent of both
gate and wire delays� This class of circuits although being very ro�
bust� has proven to be very small� and therefore the class of possible
behaviors implemented is limited ����

� Asynchronous bounded	delay circuits� the behavior is correct under
some delay assumptions�

In this work we focus on the synthesis of speed�independent circuits�
In modern VLSI technology� it may appear unrealistic the SI assumption
because communication across a large chip can actually take much longer
than any gate switching� However several reasons induce to consider SI

circuits useful nowadays �����

� The optimization capabilities of the more robust class of DI circuits
are almost non	existent� and synthesis techniques amount to a little
more than a syntax	driven translation from a speci�cation language
and peephole optimizations�

� any point	to	point communication can be modeled as a computation
delay without loss of generality�

� it is possible to enforce communication protocols between subcircuits
that ensure no dependency on communication delays� and

� it enables the use of Boolean optimization techniques to e�ciently im	
plement the circuit�

����� Control Circuits

The most common way to design hardware is by separating the design of
control logic from that of datapath logic� Designing the control logic means to
implement the control �ow of the system modeled� while designing datapath
logic means to deal with the operational part required in the system �
���
The design of the datapath can be carried on by using standard library
components�
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In this work we focus on the synthesis of control logic circuits� We are
interested in the synthesis of systems exhibiting a complex control logic
structure� where actual methods for synthesis can not succeed�

����� State Graphs

Asynchronous circuits can be modeled with a RTS� where the events repre�
sent changes in the value of the system signals� The VME Bus Controller
example in Fig� ��� will be used for illustrating the concepts� The interface is
depicted in Fig� ����a�� where the circuit controls data transfers between the
bus and the device� Figure ����b� shows the timing diagram corresponding
to the read cycle�

A transition labeled as xi� �xi�� denotes a rising �falling� of signal xi�
it switches from 	 to � �� to 	�� Figure ��
 shows the RTS specifying the be�
havior of the bus controller for the read cycle� Each state of an asynchronous
circuit can be encoded with a binary vector� representing the signal values
on that state� The set of encoded states are consistently encoded if no state
can have an enabled rising �falling� transition a� �a�� when the value of
the signal in that state is � �	� �see Section ���� for a formal de�nition
of consistency�� Correspondingly� for each signal of a RTS representing an
asynchronous circuit� a partition of the states of the RTS can be done by
separating the states where the signal has value one� from those where the
signal has value zero� This partition can only be done when the underly�
ing asynchronous circuit is consistently encoded� Figure ����a� shows the
partition induced by considering signal lds in the RTS of Fig� ��
� Each
transition from LDS�� to LDS�� is labeled with lds� and each transition
from LDS�� to LDS�� is labeled with lds�� A binary vector can be assigned
to each state if such partition is done for each signal of the system� The
encoded transition system is called State Graph�
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Figure ���� �a� Partition induced by signal lds� �b� State graph of the read
cycle� States are encoded with the vector �dsr� dtack� ldtack� d� lds��

De�nition ��
�� State Graph� A State Graph �SG� is a ��tuple A �
�A��X � �� where

� A� � �S��� T� sin� is a RTS

� X is the set of signals partitioned into inputs �I�� observable outputs
�Obs� and internal outputs �Int�� and � � X � f���g � f�g � where
all transitions not labeled with the silent event ��� are interpreted as
signal changes

� � � S 	 B jX j is the state encoding function

Figure ����b� shows the SG of the bus controller� We will denote by
�x�s� the value of signal x in state s� The following de�nitions relate signal
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transitions with states� For the sake of simplicity� the de�nitions assume
systems without silent events� Chapter � presents the conditions under
which a silent event can be removed while preserving the implementability
conditions�

����� Signal Transition Graphs

As in the case of the RTS model� events of a RPN can represent signal
changes of an asynchronous circuit� The model is called Signal Transition
Graph �����

De�nition ��
�� A Signal Transition Graph �STG� is a �	tuple �N�X �#��
where

� N � ��P� T� F�m�����#� is a RPN�

� X and � are de�ned as in De�nition ������

An example of STG specifying the bus controller is shown in Figure ����
Places of the STG with only one predecessor and one successor transition�
are not shown graphically as convention� The RTS associated to an STG is
an SG� The SG associated to the STG of Figure ��� is shown in ����b��

����� Synthesis of Speed�Independent Circuits

Speed�independent �SI� circuits is the class of asynchronous circuits that
work correctly regardless of the delay of their components �gates�� Currently�
there is a robust theory� design �ow and some tools ���� that support the
automatic synthesis of SI circuits�
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Figure ���	� Unbounded and unconsistent STG�

However� one of the major problems of the methods used for synthesis is
that they require an explicit knowledge of the state graph� Highly concurrent
systems often su�er the state explosion problem and� for this reason� the size
of the state graph can be a limiting factor for the practical application of
synthesis methods�

In this section� some basic concepts on the logic synthesis of SI circuits
are presented� We refer the reader to ���� for a deeper theory on how to
implement SI circuits� Here� we will focus on explaining the main step in
synthesis� the derivation of the Boolean equations that model the behavior
of the digital circuit�

Implementability as a Logic Circuit

A set of properties that guarantee the existence of a SI circuit is introduced
below� They are de�ned at the level of SG� but can be easily extended to
STGs� Instead of giving new de�nitions for STGs� we will simply consider
that a property holds in an STG if it holds in its underlying SG�

The properties are the following� boundedness� consistency� complete
state coding and output persistency�

Boundedness�

A necessary condition for the implementability of a logic circuit is that the
set of states is �nite� Although this seems to be an obvious assumption at
the level of SG� it is not so obvious at the level of STG� since an STG with
a �nite structure may have a in�nite number of reachable markings�

Figure ���	 shows an example of unbounded STG� the in�nite sequence
a� a� a� a�� � � never reaches a marking twice� and therefore the underlying
SG is in�nite�
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Consistency�

As shown in Figure ���� each signal xi de�nes a partition of the set of states�
The consistency of an SG refers to the fact that the events xi� and xi�
are the only ones that cross these two parts according to their meaning�
switching from 	 to � and from � to 	� respectively� This is captured by the
de�nition of consistent SG�

De�nition ��
�� Consistent SG� An SG is consistent if for each tran	
sition s

e
	 s� the following conditions hold�

� if e � xi�� then �i�s� � 	 and �i�s
�� � ��

� if e � xi�� then �i�s� � � and �i�s
�� � 	�

� in all other cases� �i�s� � �i�s
���

where �i denotes the component of the encoding vector corresponding to
signal xi�

The STG of Figure ���	 is not consistent� in the initial marking� both
transitions a� and a� are enabled� and therefore the initial marking belongs
to both the set of states where a is 	 and the set of states where as is ��
This implies that no partition can be made for signal a�

Complete State Coding

This property can be illustrated with the example of Figure ����b�� in which
there are two states with the same binary encoding� �	�	�� Moreover� the
states with the same binary code are behaviorally di�erent� This fact implies
that the system does not have enough information to determine how to react
by only looking at the value of its signals�

The distinguishability of behavior by state encoding is captured by the
following two de�nitions�

De�nition ��
�� Unique State Coding� ���� An SG satis�es the Unique
State Coding �USC� condition if every state in S is assigned a unique binary
code� Formally� USC means that the state encoding function� �� is injective�

De�nition ��
�� Complete State Coding� ���� An SG satis�es the
Complete State Coding �CSC� condition if for every pair of states s� s� � S
having the same binary code the sets of enabled non	input signals are the
same�

Both properties are su�cient to derive the Boolean equations for the
synthesized circuit� However� given that only the behavior of the non�input
signals must be implemented� encoding ambiguities for input signals are
acceptable�
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Output persistency

This property is required to ensure that the discrete behavior modeled with
SG has a robust correspondence with the real analog behavior of electronic
circuits�

De�nition ��
�
 Disabling� An event x is said to disable another event
y if there is a transition s

x
�	 s� such that y is enabled in s but not in s��

De�nition ��
�� Output persistency� An SG is said to be output per	
sistent if for any pair of events x and y such that x disables y� both x and
y are input events�

In logic circuits� disabling an event may result in non�deterministic be�
havior� Imagine� for example� that an AND gate has both inputs at � and the
output at 	� In this situation� the gate starts the process to switch the signal
towards � in a continuous way� If one of the inputs would fall to 	 during
this process� the output would interrupt this process and start moving the
signal to 	� thus producing an observable glitch� To avoid these situations�
that may produce unexpected events� the property of output persistency is
required�

Deriving Boolean equations

The procedure to derive Boolean next�state functions for output signals
from an SG is introduced� The procedure de�nes an incompletely speci�ed
function from which a gate implementation can be obtained after Boolean
minimization�

The next de�nition will be used later to explain how to derive Boolean
equations from an SG under the SI assumptions�

De�nition ��
�	 Excitation and quiescent regions� The positive and
negative excitation regions �ER� of signal x � X � denoted by ER�x�� and
ER�x��� are the sets of states in which x� and x� are enabled� respectively�
i�e�

ER�x�� � fs � S j �s
x�
�	 s� � Tg

ER�x�� � fs � S j �s
x�
�	 s� � Tg

The positive and negative quiescent regions �QR� of signal x � X � denoted
by QR�x�� and QR�x�� are the sets of states in which x has the same value�
� or �� and is stable� i�e�

QR�x�� � fs � S j �x�s� � � � s �� ER�x��g

QR�x�� � fs � S j �x�s� � 	 � s �� ER�x��g
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Figure ����� Example abcd� �a� Signal Transition Graph� �b� State Graph

An incompletely speci�ed n�variable logic function is a mapping F �
B n 	 f	� ���g� Each element B n is called a vertex or binary code� A literal
is either a variable xi or its complement xi � A cube c is a set of literals�
such that if xi � c then xi �� c and vice versa� Cubes are also represented
as an element f	� ���gn� in which value 	 denotes a complemented variable
xi� value � denotes a variable xi� and � indicates the fact that the variable
is not in the cube� A cover is a set of implicants which contains the on�set
and does not intersect with the o��set�

Given a speci�cation with n signals� the derivation of an incompletely
speci�ed function F x for each output signal x and for each v � B n can be
formalized as follows�

F x�v� �

��
�

� if � s � ER�x�� �QR�x�� � ��s� � v
	 if � s � ER�x�� �QR�x�� � ��s� � v
� if � � s � S � ��s� � v

The set of vertices in which F x�v� � � is called the on�set of signal x �ON�x���
whereas the codes in which F x�v� � 	 is called the o��set of x ��OFF�x���

The previous de�nition is ambiguous when there are two states� s� and
s�� for which ��s�� � ��s�� � v� s� � ER�x�� �QR�x�� and s� � ER�x���
QR�x��� This ambiguity is precisely what the CSC property avoids� and
this is why CSC is a necessary condition for implementability�

Figure ���� depicts an STG and the corresponding SG� Figure ���� shows
the Karnaugh maps of the incompletely speci�ed functions for signals a and
d� and its corresponding implementation with logic gates�

Notice that in the implementation of signal a� a three�input AND gate
is used� When no restriction is imposed in the fan�in �number of inputs� of
the gates used for the implementation of a signal� it is called complex gate
implementation� It assumes a universal library of gates where the designer
can �nd logic gates of arbitrary fan�in� When the library does not contains
some of the gates used in the implementation� a process of technology map	
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Figure ����� Complex gate implementation for the abcd example

ping must be done to accomplish the implementation with the existing gates
in the library �����

The complex gate implementation is not the only one that can be ob�
tained� from the incompletely speci�ed functions� other circuit architectures
can also be derived �����
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Chapter �

Compatibility of Reactive

Systems

Jugadoras� jugadores
esclavas y patrones

enciende la luz� si quieres ver algo
te ensucias f�acil jugando en el barro�

� Mala Rodriguez� Jugadoras� jugadores

The synthesis of a reactive system is a complex task� specially when
the system is large and�or highly concurrent ����� One of the possibilities
to overcome this di�culty relies on decomposing the system into di�erent
subsystems that interact according to some speci�ed protocol� The func�
tionality of the overall system is then obtained by the composition of the
functionalities of the subsystems ��
� �	�� From a software engineering point
of view� this allows to distribute the task of implementing the complete sys�
tem into di�erent designers� with the only restriction that each subsystem
must ful�ll the protocol�

Therefore one of the crucial points in the synthesis of a reactive system
is to be able to decide whether a set of subsystems can be composed and in	
teract according to some speci�ed protocol� For that purpose� it is necessary
�rst to de�ne what does interaction mean� when is the interaction correct
and what properties do we want to have in this dialogue�

The following questions are answered in this chapter�

� When can two reactive systems be connected and interact �

� When is this interaction correct �

� Is this problem decidable �

This chapter is based on the results presented in ���� ����

��
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Figure ���� Connection between di�erent reactive systems �the su�xes �

and � are used to denote input and output events� respectively��

��� Introduction

The notion we want to model is Input�Output compatibility� It is inspired in
the work by Dill ��
�� We now illustrate this notion with some examples and
show why other equivalences for concurrent systems are not appropriate�

Figure ����a� depicts two reactive systems� X and Y � synchronized by
a pair of events� a and b� Event a is an output for X and an input for
Y � whereas b is an input for X and an output for Y � Moreover� X has an
internal event  � When enabled� internal and output events may take an
unbounded� but �nite� delay to �re� At each state� a system has only a
�possibly empty� subset of input events enabled� If a non�enabled input is
produced by the other partner� a communication failure is produced�

The transition systems in Fig� ����a� are observational equivalent� How�
ever� they are not I�O compatible� according to the notion presented here�
In the initial state� only event a �produced by X� is enabled� After �ring
a synchronously in both systems� a new state is reached� In this state� Y
is ready to produce b� However� X is not ready to accept b before  is
produced and� thus� a communication failure occurs when Y �res b and X
has not �red  yet� Therefore� observational equivalence does not imply I�O
compatibility�

Figure ����b� shows that I�O compatibility does not imply observational
equivalence� The synchronization of X and Y through the input and output
events produces the following language� �abcd��� In the initial state� X
is ready to accept a and b in any order� i�e� they can �re concurrently�
However� Y produces a and b sequentially� This situation is reversed for
events c and d� accepted concurrently by Y but produced sequentially by
X� In either case� the synchronization between X and Y is correct and both
systems can interact without any failure� However� it is easy to see that X
and Y are not observationally equivalent�

Figure ����c� depicts another undesired situation� After having produced
event a� both systems block waiting for each other to �re some event� Thus�
a deadlock is produced� This interaction would be considered  fair! in I�O
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automata theory ����
There is another situation not acceptable for I�O compatible systems�

livelock� This situation occurs when one of the systems can manifest an
in�nite internal behavior without any interaction with the other partner�
Livelock�freeness can be checked in polynomial time for �nite RTSs�

I�O compatibility is inspired in the notion of conformation� introduced
by Dill ��
�� Conformation models the fact that a speci�cation is correctly
realized by a given implementation� In Dill�s work� the systems speci�ed are
digital circuits� and the mathematical model used is called trace structure� A
complete trace structure is a four�tuple containing the set of input signals �I��
the set of output signals �O�� the set of traces leading to a success �S� and
the set of traces leading to a failure �F �� with S� F � �I �O��� A complete
trace structure models complete executions of a circuit� allowing to express
liveness properties� The formal model for specifying a system considered
here� RTS� is more restricted that the one presented by Dill for complete
trace structures� However� the properties covered by our model� including
some notion of liveness� can be checked in polynomial time� whereas it is
PSPACE�complete for complete trace structures�

I�O automata ��� is a model similar to RTS� In fact� any RTS can
be expressed as an I�O automata by including a failure state that is the
sink of transitions labeled with the input events not enabled at each state�
In ���� a notion of automata satisfaction is presented� expressing when an
I�O automata speci�cation is correctly implemented by another I�O au�
tomata� The main di�erence between their satisfaction notion and the no�
tion presented in this chapter is that we guarantee the absence of deadlock
situations in the dialogue between two I�O compatible systems� Moreover�
the fact that systems are assumed to be livelock�free allows a local de�ni�
tion of the I�O compatibility� in contrast to the trace�based de�nition in
I�O automata� I�O compatibility has also relations with other equivalences
like testing equivalence ����� built�in at CIRCAL �����

In the area of asynchronous systems� several authors have de�ned di�er�
ent relations to model the concepts of re�nement and realization ���� ��� �	�


� ���� Among them� we emphasize the one proposed by Brzozowski and
Seger ����� They introduced formally the concept of input	properness and
de�ned a realization notion stronger than I�O compatibility� that requires
language equivalence�

Finally� Verhoe� proposed the XDI re�nement for delay�insensitive sys�
tems� This type of re�nement assumes that the dialogue between two sys�
tems is produced by introducing any arbitrary delay in the communication�
i�e� an event is received some time later than it is produced� Analogously
to ��
�� the expressive power of the XDI model allows to include progress
concerns in the model� Di�erently to the RTS model� the XDI model can
not express internal progress �only input�output events are allowed in the
model��
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��� Properties of Reactive Transition Systems

Depending on the interpretation of the events in an RTS� di�erent properties
can be de�ned�

De�nition ����� Livelock� A livelock is an in�nite trace of only internal
events� An RTS is livelock�free if it has no livelocks�

Livelocks can be detected in polynomial time in �nite RTSs� The problem
is reduced to the detection of cycles in a graph in which only the edges
labeled with internal events are taken into account�

De�nition ����� Input�properness� An RTS is input�proper when for
every internal transition s

e
	 s�� with e � �INT and for every input event

i � �I� En�s
�� i� �� En�s� i��

In other words� input�properness is a property that indicates that the
enabledness of an input event in a given state depends only on the observable
trace leading to that state� Input�properness was introduced in ���� and is a
crucial concept to preserve I�O compatibility� as shown later in Sect� ��� It
avoids the situations in which the system is doing some  pending! internal
work when the environment is producing an input event�

The underlying idea of input�properness was previously presented by
Dill ��
� when� as a result of hiding an output signal� the same trace could
be considered both as success and failure�

De�nition ����� Mirror� The mirror of A� denoted by A� is another RTS
identical to A� but in which the input and output alphabets of A have been
interchanged�

��� I	O Compatibility�

A formal description of the conditions needed for having a correct dialogue
between two RTSs is given in this section� We call this set of conditions
I�O compatibility� The properties derived from the I�O compatibility can
be stated in natural language�

�a� Safeness� if system A can produce an output event� then B must be
prepared to accept the event�

�b� Liveness� if system A is blocked waiting for a synchronization with B�
then B must produce an output event in a �nite period of time�

Theorems ������ ����� and ����� presented below de�ne formally this
properties�

Two RTSs are structurally I�O	compatible if they share the observational
set of events� in a way that they can be connected�
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De�nition ����� Structural I�O Compatibility� Let A � �SA��A� TA� sAin�
and B � �SB ��B� TB � sBin� be two RTSs� A and B are structurally I�O com�
patible if �A

I � �B
O� �

A
O � �B

I � �
A  �B

INT � � and �B �A
INT � ��

The following de�nition gives a concise formalization of the conditions
needed for characterizing the correct interaction of two RTSs�

De�nition ����� I�O Compatibility� Let A � �SA��A� TA� sAin� and
B � �SB ��B � TB� sBin� be two structurally I�O compatible RTSs� A and
B are I�O compatible� denoted by A� B� if A and B are livelock	free and
there exists a relation R � SA � SB such that�

�� sAinRs
B
in�

�� Receptiveness �output events of one party are expected by the other
party��

�a� If s�Rs
�
�� e � �A

O and s�
e
	 s� then En�s��� e� and �s��

e
	 s�� �

s�Rs
�
��

�b� If s�Rs
�
�� e � �B

O and s��
e
	 s�� then En�s�� e� and �s�

e
	 s� �

s�Rs
�
��

�� Internal Progress �internal process preserves the interaction��

�a� If s�Rs
�
�� e � �A

INT and s�
e
	 s� then s�Rs

�
��

�b� If s�Rs
�
�� e � �B

INT and s��
e
	 s�� then s�Rs

�
��


� Deadlock�freeness �both parties can not be blocked at the same time��

�a� If s�Rs
�
� and fe jEn�s�� e�g � �A

I then fe jEn�s��� e�g � �B
I �

�b� If s�Rs
�
� and fe jEn�s��� e�g � �B

I then fe jEn�s�� e�g � �A
I �

Let us consider the examples of Fig� ���� In Fig� ����a�� the receptiveness
condition fails and therefore X and Y are not I�O compatible� However�
the RTSs of Fig� ����b� are I�O compatible� Finally� Fig� ����c� presents an
example of violation of the deadlock�freeness condition�

Condition � has a strong impact on the behavior of the system� It
guarantees that the communication between A and B has no deadlocks �see
theorem �������

Lemma ����� Let A and B be two RTSs such that A � B� let R be an
I�O compatible relation between A and B and let A � B � �S��� T� sin� be
the synchronous product of A and B� Then� hs� s�i � S � sRs�

Proof� If hs� s�i � S� then there is a trace � that leads from sin to hs� s�i�
We prove the lemma by induction on the length of ��
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� Case j�j � 	� The initial states are related in Condition � of De�ni�
tion ������

� Case j�j � 	� Let � � ��e� with j��j � n� and assume that it holds for
any trace up to length n� Let hs�� s

�
�i be the state where the event e is

enabled� The induction hypothesis ensures that s� is I�O compatible
to s��� Two situations can happen in s� depending on the last event e
of �� either �� e � �O ��INT is enabled in s�� or �� only input events
are enabled in s�� In situation ��� Conditions ��� of De�nition �����
guarantee that s is I�O compatible to s�� In situation ��� applying
Condition � of De�nition ����� ensure that some non�input event is
enabled in state s�� of B� De�nition ���� and Conditions ��� on s��
and the enabled non�input event e guarantees s to be I�O compatible
to s��

�

Theorem ����� Safeness� Let A and B be two RTSs such that A � B�
and a trace � � L�A�B� of their synchronous product such that sin

�
	 hs� s�i�

If A can �re an output event in s� then the same event is enabled in state s�

of B�

Proof� It immediately follows from Lemma ����� and the condition of
receptiveness in the de�nition of I�O compatibility� �

Theorem ����� Absence of Livelocks� Let A and B be two RTSs such
that A� B� and let A�B be the synchronous product of A and B� Then�
A�B is livelock	free�

Proof� The de�nition of synchronous product implies that only livelocks
appear in A�B if either A or B has a livelock� But A and B are livelock�free
because A� B� �

The following theorem is the one that proves the absence of deadlocks
produced by the interaction between two I�O compatible RTSs�

Theorem ����� Liveness� Let A� B be two RTSs such that A� B� and
a trace � � L�A � B� of their synchronous product such that sin

�
	 hs� s�i�

If only input events of A are enabled in s� then there exists some trace

hs� s�i
��
	 hs� s��i such that some of the input events of A enabled in s are also

enabled in s�� as output events of B�

Proof� By Lemma ����� we have that sRs�� We also have that fe jEn�s� e�g �
�A
I � By Condition � of De�nition ����� we know that fe jEn�s��� e�g � �B

I �
Theorem ����� guarantees the livelock�freeness of A�B� and therefore from
hs� s�i there exists a trace of internal events reaching a state hs� s��i where no
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internal event is enabled� We know by Lemma ����� that sRs��� Condition �
of De�nition ������ together with the fact that no internal event is enabled in
s�� implies that there exists an output event enabled in s��� which is enabled
as input in s� �

��� A Polynomial
time Decision Procedure for I	O
Compatibility

A procedure for deciding if two �nite RTS are I�O compatible is presented
in this section� It is based on the synchronous product of transition systems�

Theorem ����� Let A � �SA��A� TA� sAin�� B � �SB ��B � TB � sBin� be two
livelock	free RTSs� A � B i A � B � �S��� T� sin� ful�lls the following
properties�

�� �a� For each state s � SA� for each event e � �A
O�

if En�s� e� holds and hs� s�i � S then En�hs� s�i� e� holds�

�b� For each state s� � SB� for each event e � �B
O�

if En�s� e� holds and hs� s�i � S then En�hs� s�i� e� holds�

�� For every hs� s�i � S� if hs� s�i � S is a terminal state� then s and s�

are terminal states in A and B� respectively�

Proof� The proof is divided into two parts�

Su�ciency�
Let R be an I�O compatibility relation between A and B and hs� s�i � S�
Lemma ����� guarantees that sRs��

�� Since sRs�� then En�s�� e� holds in B� By the de�nition of synchronous
product� En�hs� s�i� e� holds� �Similarly for ��b���

�� Every non�input event e enabled in s or s� induces e to be enabled in
hs� s�i� If only input events are enabled in one of the states� condition
� of De�nition ����� guarantees the enabling in the other state of a
non�input event� and the de�nition of synchronous product ensures
the existence of a transition leaving from hs� s�i�

Necessity�
We will proof that S is an I�O compatible relation between A and B� State
hsAin� s

B
ini belongs to S by de�nition of synchronous product� Let hs� s�i � S�

Property �� together with the de�nition of synchronous product implies the
receptiveness condition of De�nition ������ Condition � �internal progress�
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of De�nition ����� holds by the de�nition of synchronous product� every
internal event e enabled in s �s�� is also enabled in hs� s�i� and the state�s� of
S reached by the �ring of e in hs� s�i are exactly the pairs of I�O compatible
states induced by Condition � with s and s�� Condition � �deadlock�freeness�
of De�nition ����� also holds� if the events enabled in s are input events� then
given that hs� s�i is not terminal �due to Property ��� the only possibility
for having an event enabled in hs� s�i in De�nition ���� is when a non�input
event is enabled in s�� �

Theorem ����� enables the use of the synchronous product for deciding
the I�O compatibility of two �nite RTSs in polynomial�time�� It consists in
computing the synchronous product in the �rst step� and then checking the
conditions � and � of the theorem�

��� I	O Compatibility and Observational Equiva

lence�

In the �rst part of this section� the observational equivalence relation �� is
de�ned� Section ���� presents the relationship between I�O compatibility
and observational equivalence�

����� Observational Equivalence

The observational equivalence relation between two reactive systems was �rst
introduced by Milner in ��� The relation identi�es those systems whose
observable behavior is indistinguishable�

De�nition ����� Let A � �SA��A� TA� sAin� and B � �SB ��B � TB� sBin� be
two RTSs� A and B are observational equivalent �A � B� i �A

OBS � �B
OBS

and there exists a relation R � S � S� satisfying

�� sAinRs
B
in�

�� �a� �s � SA� �s� � SB s�t� sRs��

�b� �s� � SB� �s � SA s�t� sRs��

�� �a� �s� � SA� s�� � SB� if s�Rs
�
�� e � ��A

OBS� and s�
e
	 s� then

���� �� � ��B
INT �� such that s��

��e���	 s��� and s�Rs
�
��

�b� �s� � SA� s�� � SB� if s�Rs
�
�� e � ��A

OBS� and s��
e
	 s�� then

���� �� � ��A
INT �� such that s�

��e���	 s�� and s�Rs
�
��

�Figure ��� shows why it is necessary to consider only livelock�free RTSs in Theo�
rem ����	� Systems 	 and 
 are I�O compatible� but System 	 could have a livelock in the
state reached after the sequence b��a�
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Figure ���� Conditions ��a� and ��a� from the proof of Theorem �����

The two RTSs of Fig� ����a� are observational equivalent� because every
observable sequence of one of them can be executed in the other� Fig�
ures ����b���c� depict examples of non�observationally equivalent systems�

����� A Su	cient Condition for I
O Compatibility�

A su�cient condition for having I�O compatibility between two reactive sys�
tems can be obtained when combining the notions of observational equiva�
lence and input�properness�

Theorem ����� Let A � �SA��A� TA� sAin�� B � �SB ��B � TB � sBin� be two
livelock	free RTSs with �A

I � �B
O and �A

O � �B
I � If A and B are input

proper and A � B� then A� B�

Proof� Let R be the relation induced by the observational equivalence
between A and B� We will prove that R is also an I�O compatibility relation
between A and B� R must ful�ll the conditions of the I�O compatibility
relation�

� Condition �� sAinRs
B
in by De�nition �����

� Condition �a�� let s�Rs
�
�� and assume s�

e
	 s�� with e � �A

O�
Figure ����a� depicts the situation� The observational equivalence of
s� and s

�
� implies that a trace � of internal events exists in s�� enabling e�

The event e is an input event in B� and therefore the input�properness
of B ensures that in every state s� of �� En�s�� e� holds� In particular�
it also holds in the �rst state and� thus� En�s��� e�� The de�nition of R

ensures that every s�� such that s��
e
	 s�� is related with s� by R�

� Condition �a�� let s�Rs
�
� and assume s�

e
	 s�� with e � �A

INT � The
de�nition of R implies that s�Rs

�
��

� Condition �a�� let s�Rs
�
�� and suppose fe jEn�s�� e�g � �A

I � Fig�
ure ����b� depicts the situation� Let e be one of the input events
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Figure ���� Conditions ��a� and ��b� from the proof of Theorem �����

enabled in s�� The observational equivalence between s� and s�� re�
quires that a sequence � of internal events exists enabling e starting
in s��� and given that e in not input in B implies fe jEn�s��� e�g � �B

I �

An identical reasoning can be applied in the symmetric cases �conditions
��b�� ��b� and ��b��� �

When considering a system A and some I�O compatible system B� any
transformation of B preserving both input�properness and observational
equivalence will lead to another I�O compatible system�

Theorem ����� Let A � �SA��A� TA� sAin�� B � �SB ��B � TB � sBin� and
C � �SC ��C � TC � sCin� be three RTSs� If A � B� B � C� and C is input	
proper then A� C�

Proof� Let R� be the relation between A and B� and � the observational
equivalent relation between states from B and C� De�ne the relation R as�

�s � SA� s�� � SB � s� � SC � sR�s�� � s�� � s� � �s� s�� � R

The conditions that R must satisfy are the ones of De�nition ������ Re�
member that A � B implies that �B

O � �A
I and �B

I � �A
O� Moreover�

relation B � C implies that �B
OBS � �C

OBS �

� Condition �� the initial states are related in R by de�nition�

� Condition �a�� let s�Rs
�
�� and suppose s�

e
	 s� with e � �A

O�
Figure ����a� depicts the situation� Given that s�R

�s���� e is enabled

in s��� and for each s��� such that s���
e
	 s���� s�R

�s���� The observational
equivalence of s��� and s��� together with the fact that C is input�proper
implies that e is also enabled in s�� �identical reasoning of condition
��a� in Theorem ������ and the de�nition of � implies that each s��
such that s��

e
	 s�� must be related in � with s���� Then each s�� such

that s��
e
	 s�� is related by R with s��
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� Condition �b�� let s�Rs
�
�� and suppose s��

e
	 s�� with e � �B

O�
Figure ����b� depicts the situation� The observational equivalence of
s��� and s�� implies that there is a sequence � of internal events starting
in s��� and enabling e� and every state of � is observational equivalent
to s��� Moreover� every state of � is also related to s� by the condition
��b� of R�� In particular� s� is related by R� with the state s�� of � s�t�
s��

e
	 s���$ applying Condition ��b� of R�� En�s�� e� holds and for each

e s�t� s�
e
	 s�� s�R

�s���� The de�nition of R and � induces that each
such s� is related with s�� by R�

� Condition �a�� let s�Rs
�
�� and suppose s�

e
	 s� with e � �A

INT �
Then Condition ��a� of R� ensures s�R

�s��� and then applying the de��
nition of R implies s�Rs

�
��

� Condition �b�� let s�Rs
�
�� and suppose s��

e
	 s�� with e � �C

INT �
Then s��� � s��� and then s�Rs

�
��

� Condition �a�� let s�Rs
�
�� and suppose fejEn�s�� e�g � �A

I � Condi�
tion ��a� of R� ensures that fejEn�s��� � e�g � �B

I � let a be an event such

that s���
a
	 s���� with a �� �B

I � If a � �B
O� the related pair s��� � s�� ensures

that in s�� there is a feasible sequence of internal events �which can be
empty� enabling a� and therefore fejEn�s��� e�g � �C

I � If a � �B
INT � ap�

plying Condition ��b� of R� and the de�nition of �� s�R�s��� and s��� � s��
is obtained� respectively� The same reasoning applied to s�� s

��
� and s��

can now be applied to s�� s
��
� and s��� Given that B is livelock�free�

the sequence of internal events starting in s��� and passing through s���
must end in a state s�� where a observable event a� is enabled� State s��

is also related by R� with s�� and by � with s�� �applying inductively
the same reasoning applied to s����� Event a� belongs to �B

O because
otherwise a violation of Condition ��b� in R� arise� The previous case
�a � �B

O� enabled in s���� can be applied to s���

� Condition �b�� let s�Rs
�
�� and suppose fejEn�s��� e�g � �C

I � Let a

such that s���
a
	 s���� If a � �B

O� then a contradiction arises because
s��� � s�� and fejEn�s��� e�g � �C

I � If a � �B
I � then identical conditions

make En�s��� a� to hold� If a � �B
INT � then Conditions ��a� of R�

and � ensure that s�R
�s��� and s��� � s��� and the same reasoning of

s�� s
�
� and s��� can be applied to s�� s

�
� and s��� �but not in�nite times�

because B is livelock�free�� Therefore a feasible sequence of internal
events �which can be empty� exist from s��� reaching a state s�� such
that fejEn�s��� e�g � �C

I � with s�R
�s�� and s�� � s��� Condition ��b� of

R� ensures that fejEn�s�� e�g � �A
I �

�
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Figure ���� Relation between observational equivalence� input�properness
and I�O compatibility�

Figure ��� shows an example of application of Theorem ����� The trans�
formation of X which leads to X � preserves both observational equivalence
and input�properness� and then� X and X � can safely interact�

System 1

d?b?

c?a?

τ

a? c?a!

 System 2

c!

τ
d

1

c

a

2

b

Figure ��� Two I�O compatible systems that are not input�proper�

Finally� it must be noted that I�O compatibility does not require input�
properness� as shown in Fig� ��� This occurs when the non�input�proper
situations are not reachable by the interaction of the two systems�

��� Conclusion

A characterization of the class of systems that can be connected and interact
within a correct dialogue has been presented in this chapter� Afterwards�
an algorithm based on the synchronous products has been introduced� pro�
viding a polynomial procedure for deciding whether two systems are I�O
compatible� Finally the relation between one of the most well�known no�
tions of equivalence over reactive systems� observational equivalence� and
I�O compatibility is showed� with the concept of input�properness being the
key link between them�

The formal setting of this chapter makes the I�O compatibility notion
valid for any type of reactive system that can be described with an automa�
ton� As future work we are interested in adapting the I�O compatibility to
more abstract scenarios� like software systems or groupware systems ��	��
In groupware systems� the notion of synchronization in sending or receiving
a message can be more �exible� and therefore several new problems may
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appear in the interaction� Moreover� it is also interesting to investigate the
way several systems collaborate in sending or receiving a message�

In Chapter � we will use the I�O compatibility to derive synthesis rules
that allow to transform a system while preserving the correctness of the
dialogue with the environment�
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Chapter �

Petri Net Transformations

for Synthesis

Coisas pequenas s�ao
coisas pequenas

s�ao tudo o que eu te quero dar
� Madredeus� Coisas Pequenas

Very often a reactive system needs to be modi�ed to accomplish some
architectural requirement or even simply for its improvement� Such modi�
�cations can have a strong impact on the �nal implementation� leading in
the worst case to failures of the whole system�

In this chapter we tackle the problem of transforming the speci�cation
of a reactive system while preserving the correct �i�e� I�O compatible� inter�
action with the environment� Next we present an application of the theory
for the case of asynchronous circuits and the problem of the encoding�

This chapter is based on the results presented in ��� �� ��� �
��

��� Introduction

Once the speci�cation of a reactive system is done� the next step is to syn�
thesize it� which amounts to implementing the underlying behavior by using
the primitives that exist in the target architecture� Several problems can
appear in this process� the initial speci�cation can not be straightforward
implementable with the existing primitives� and therefore the designer must
transform the initial speci�cation in order to �t to the actual requirements�
However� if the system is transformed then some other systems in the en�
vironment may need to be changed in order to be able to interact with the
new system� This is an undesirable situation because it can lead to a circu�
lar chain of transformations� or simply because it is expensive to do when
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a small modi�cation was needed and big part of the environment is already
functioning�

Petri net transformations is the main topic of discussion in this chapter�
The rules presented here have di�erent goals� in Section ���� the focus is
on de�ning those transformations of a reactive Petri net that preserve I�O
compatibility with its environment� With the help of these transformations�
a designer can modify an initial speci�cation for the sake of arbitrary pur�
poses �correctness� improvement� etc ���� while ensuring that there will be
no problem in the dialogue between the transformed system and its envi�
ronment� A particular case� sketched in the �rst part of this introduction�
is when the reactive Petri net is modeling an asynchronous circuit and the
purpose is to derive Boolean equations implementing its behavior�

In Section ���� we focus in �nding a transformation that can be applied
to a signal transition graph �a reactive Petri net modeling an asynchronous
circuit� that makes the transformed net to be free from encoding problems�
As said in Chapter �� the problem of �nding a correct encoding is one of the
hard problems when facing the synthesis of a speed�independent circuit�

I
O Compatible Transformations

Here we want to sketch how to use the transformations presented in Sec�
tion ��� for the particular case of the synthesis of an asynchronous circuit�
In the example of Figures ����b�d� the goal is to synthesize a circuit that
can have a correct dialogue with the environment� We will assume that the
components of the circuit have arbitrary delays� Likewise� the environment
may take any arbitrary delay to produce any enabled output event�

Let us �rst have a look at Figure ����b�� The marked graph in the
environment can be considered as a speci�cation of a concurrent system�
The underlined transitions denote input events� Thus� an input event of
the environment must have a correspondence with an output event of the
system� and vice versa� The behavior denoted by this speci�cation can be
informally described as follows�

In the initial state� the environment will produce the event x��
After that� the environment will be able to accept the events y�
and z� concurrently from the system� After the arrival of z��
the environment will produce x�� that can occur concurrently
with y�� Next� it will wait for the system to sequentially produce
z� and y�� thus leading the environment back to the initial state�

The circuit shown in Figure ����b� behaves as speci�ed by the adjacent
marked graph� In this case� the behavior of the system is merely a mirror of
the behavior of the environment and then both are observational equivalent�
Moreover� given that both the environment and the system are input�proper�
Theorem ���� guarantees that the dialogue between them is compatible�
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Figure ���� �a� Connection between system and environment� �b� mirrored
implementation of a concurrent system� �c� valid implementation with con�
currency reduction� �d� invalid implementation�

Let us analyze now the system in Figure ����c�� In this case� the circuit
implements a behavior in which y� and z� are produced sequentially �the
transformation adds a place connecting y� to z���� Still� the system can
maintain a correct dialogue� since the environment is able to accept more
behaviors than the ones produced by the system� We can observe that� even
though the behavior is less concurrent� the implementation is simpler�

Let us �nally look at Figure ����d�� in which the events z�� y� and
x� are produced sequentially in this order �the transformation adds a place
connecting z� to y� and then adds a place connecting y� to x��� Due to
this reduction in concurrency� two bu�ers are su�cient to implement such
behavior� Even though the set of traces produced by the system is included
in the set of traces produced by the environment� the dialogue between
both is not correct� To illustrate that� let us assume the events x� and z�
have been produced from the initial state� We are now in a state in which
x� is enabled in the environment �output event� but not enabled in the
system� This violates the receptiveness condition for a correct dialogue� if
an output event is enabled in one component� the corresponding event must
also be enabled in the other component� In practice� if the environment

�For the sake of readability� redundant places are not shown in this example�
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ai �ai

cici��

Figure ���� Distributor built from David cells ����

would produce x�� the circuit could react with the event z� before y� is
produced�

In this example� two Petri net transformations have been applied� It has
been explained why one of them is acceptable and one of them is not� In
Section ��� a kit of Petri net rules is presented� to be applied over the class
of free�choice live and safe Petri nets �FCLSPN�� Afterwards� the conditions
under which the rules are acceptable are introduced� when the speci�cation
is a deterministic reactive Petri net�

Encoding Technique

In the speed�independent delay model� the Complete State Coding is a nec�
essary condition for a speci�cation to be implementable as a set logic equa�
tions �see Section ������ Unfortunately� till now no method has been able to
e�ectively tackle the problem of �nding an encoding of the speci�cation that
guarantees an implementation� Even the known structural methods working
for some subclasses of STGs rely on the fact that heuristics with a�ordable
computational cost will �nd a solution with high probability ���� ���� In this
chapter we present a method that guarantees a correct encoding and works
at the level of the Petri net�

The method presented in Section ��� has been inspired by previous work
for the direct synthesis of circuits from Petri nets� One of the relevant
techniques was proposed in �
��� where a set of cells that mimic the token
�ow in Petri nets was designed� The circuit was built by abutting the cells
and producing a structure isomorphic to the Petri net� This type of cells�
called David cells� were initially proposed in �����

Figure ��� depicts a very simple example on how these cells can be abut�
ted to build a distributor that controls the propagation of activities along a
ring� The behavior of one of the cells in the distributor can be summarized
by the following sequence of events�

� � � � ci�� �
� �z �

i�th cell
excitation

� ai � � ai�
� �z �

i�th cell setting

�
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� ai�� � � ai�� � � ci���
� �z �

�i� 	��th cell resetting

� ci �
� �z �

�i� 	��th cell
excitation

� � � �

In �
��� each cell was used to represent the behavior of one of the transitions
of the Petri net�

The example of the VME Bus Controller from Section ����� is used to
introduce the methods presented in Section ���� From Section ������ we
know that the STG has encoding problems� Figure ��� illustrates the method
presented in Section ���� for each place of the net� a new signal is introduced
mimicking the token �ow on that place� At the expense of incrementing its
size� the resulting net is free from encoding con�icts� The crucial point is
that� given that the technique works at the level of the net� it avoids to
su�er from the state explosion problem�
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Figure ���� Encoding rule applied to the VME Bus Controller example�
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��� I	O Compatible Transformations

����� Kit of PN Transformations

Three rules are presented for modifying the structure of a FCLSPN� The
rule �r is used for sequencing two concurrent transitions� It was �rst de�
�ned in �
�� Here a reduced version is presented� Rule �i does the opposite�
it increases the concurrency between two ordered transitions� �i can be
obtained as a combination of the ones appearing in �
�� Finally� rule �e
removes a given transition� It was �rst presented in ��
�� All three rules
preserve the liveness� safeness and free�choiceness�

Rule �r
The purpose of the rule �r is to eliminate the concurrency between two

transitions of the PN� This is done by inserting a place that connects the two
transitions� ordering their �ring� The following �gure presents an example
of concurrency reduction between transitions ti and tj

��

ji ji tt t t

tt

The formal de�nition of the rule is�
Let N � �P� T� F�m��� N

� � �P �� T� F ��m�
�� be two FCLSPNs� and tran�

sitions ti� tj � T � Then� �r�N� ti� tj� � N � if�

Conditions on N �

�� ftg � ���ti� �
���tj�

�� �ti � fpig � jp�i j � �

�� �tj � fpjg � jp�j j � �

�� m��pi� � m��pj�

Conditions on N ��

�� P � � P � fpg

�� F � � F � f�ti� p�� �p� tj�g

�� m�
�jP � m�jP � m�

��p� � 	

�For the sake of simplicity in the de�nition of the rules� we will abuse of the notation
and use �x� y� � F and �x� y� �� F for F �x� y� � 	 and F �x� y� � �� respectively�
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Rule �i
Inversely to rule �r� rule �i removes the causality relation between two

ordered transitions� making them concurrent�The following �gure presents
an example of increase of concurrency between transitions ti and tj �
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The formal de�nition of the rule is�
Let N � �P� T� F�m��� N � � �P �� T �� F ��m�

�� be two FCLSPNs� and
transitions ti� tj � T � In the following de�nition� places p�k represent new
places originated from places either in �ti �k � i� or in t�j �k � j�� Then�
�i�N� ti� tj� � N � if�

Conditions on N �

�� f�ti� p�� �p� tj�g � F

�� j�p j � j p�j � �

�� �q � �ti � j q�j � �

�� ti �� �t�j �
�

Conditions on N ��

�� P � � �P n fpg��
fp�ijpi �

�tig � fp�j jpj � t�jg

�� F � � �F n f�ti� p�� �p� tj�g��
f�y� p�i�j�y� pi� � Fg �
f�p�i� tj�j�pi� ti� � Fg �
f�p�j � y�j�pj � y� � Fg �
f�ti� p�j�j�tj � pj� � Fg �
f�y� p�j�j�y� pj� � F � y �� tjg

�� m�
�j�P n fpg	 � m�j�P n fpg	 �

�k � m�
��p

�
k� � m��pk� �m��p�

Rule �e
The rule �e eliminates a transition from the PN� The following �gure

presents an example of elimination of transition ��
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The formal de�nition of the rule is�
Let N � �P� T� F�m��� N

� � �P �� T �� F ��m�
�� be two FCLSPNs� transition

� � T and let P� � ����� ����� Then� �e�N� �� � N � if�

Conditions on N �

�� �p � p � �� � p� � f�g

Conditions on N ��

�� P � � �P n ��� � ���� � P�

�� T � � T n f�g

�� F � � �F n f �a� b� j �a� b� � F �
�a � � � b � ��g��
f�y� hp�� p�i�j�y� p�� � Fg�
f�hp�� p�i� y�j�p�� y� � Fg

�� m�
�jP n ������	 � m�jP n ������	 �

�hp�� p�i � P� �
m�

��hp�� p�i� � m��p�� �m��p��

����� I
O Compatible Transformations over RPN

The I�O compatible relation operator ��� can be lifted to RPNs�

De�nition ����� I�O compatible relation over RPN� Let A and B be
two RPNs with corresponding RTSs RTS�A� and RTS�B�� A� B if RTS�A��
RTS�B��

For each transformation of the kit presented in Section ������ the fol�
lowing sections enumerate those situations where the transformation can be
applied to the underlying FCLSPN of a deterministic RPN while preserving
the I�O compatible relation�

I�O compatible application of �r

The application of �r�A� e�� e�� preserves � when neither e� nor e� is
an input transition� In fact� it is su�cient to require only e� to be non�
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Figure ���� Di�erent possibilities for reducing concurrency�

input for the preservation of �� but then deadlock situations may arise�
Figure ��� exempli�es this� initially� both environment and system can safely
interact� Moreover� if either the environment or the system are transformed
by reducing concurrency between an input and an output� the interaction
can still be safe� However� the two transformed systems can not interact�
The formalization of the transformation is�

Theorem ����� Let the RPNs A� B and C with underlying FCLSPN and
corresponding deterministic RTSs �SA��A� TA� sAin�� �S

B ��B � TB � sBin� and
�SC ��C � TC � sCin�� respectively� Assume �C � �B� If

�� A� B

�� �r�B� e�� e�� � C� with e�� e� �� �B
I

then A� C�

Proof� Case fe�� e�g � fo�� o�g � �B
O� The other cases are similar�

Let R� be the relation between A and B� De�ne R as�

�s � SA� s�� � SB � s� � SC � sR�s�� � sBin
�
	 s�� � sCin

�
	 s� � sRs�

The following items treat individually conditions ��� of De�nition ������

� Condition �� taking � � � implies sAinRs
C
in�
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Figure ��� Conditions ��a� from the proof of Theorem ������

� Condition �a�� let s�Rs
�
�� and suppose s�

e
	 s� with e � �A

O�
Figure �� depicts the situation� Condition ��a� of R� ensures that
there exists s��� � SB s�t� s���

e
	 s��� and s�R

�s���� By de�nition of R�
� is enabled both in sBin and sCin� Then� each place marked by the
sequence � in B is also marked in C� because the �ow relation of B is
included in the �ow relation of C� Given that the initial marking of B
is preserved in C and the set of predecessor places for each input event
is also preserved� implies that e is also enabled in s��� The de�nition

of R makes each s�� s�t� s��
e
	 s�� to be related with s��

� Condition �b�� let s�Rs
�
�� and suppose s��

e
	 s�� with e � �C

O� The
set of predecessor places of e in B is a subset or is equal to the one in C�
Moreover� given that both the initial marking of B is identical to the
one in C� and each place marked by the sequence � in B is also marked
in C� implies that e is also enabled in s���� i�e� s

��
�

e
	 s���� Condition ��b�

of R� ensures that En�s�� e�� and each s� such that s�
e
	 s� is related

by R� with s���� The de�nition of R induces that each such s� is related
with s���

� Condition �a�� let s�Rs
�
�� and suppose s�

e
	 s� with e � �A

INT �
then a similar reasoning of Condition ��a� can be applied�

� Condition �b�� let s�Rs
�
�� and suppose s��

e
	 s�� with e � �C

INT �
then a similar reasoning of Condition ��b� can be applied�

� Condition �a�� let s�Rs
�
�� and suppose fejEn�s�� e�g � �A

I � Condi�
tion ��b� of R� ensures that fejEn�s���� e�g � �B

I � If the non�input event
enabled in s��� is di�erent from o�� then similar reasoning of previous
cases guarantees that the event is also enabled in s��� If the event en�
abled in s��� is o� and no non�input event is enabled in s��� we will proof
that o� is also enabled in s��� Assume the contrary� o� is enabled in s���
but no non�input event is enabled in s��� Applying the same reasoning
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of case ��a� we can conclude that the place p such that fpg � �o� in
B has a token in the marking m corresponding to state s��� Moreover�
the liveness of C ensures that from m there is a feasible sequence �
�let � be minimal� reaching a marking m� where o� is enabled� The
minimality of �� together with the fact that the new place p� added
by �r between o� and o� is unmarked in m �otherwise o� is enabled
in s��� because fp� p

�g � �o� in C� imply that o� �� �� and therefore
m��p� � �� which contradicts the safeness of C�

� Condition �b�� let s�Rs
�
�� and suppose fejEn�s��� e�g � �C

I � then
similar reasons of the previous cases ensure that fejEn�s��� � e�g � �B

I

and Condition ��b� of R� ensures that fejEn�s�� e�g � �A
O�

Finally� it can be proven that the language of RTS�C� is a subset of the
language of RTS�B�� Therefore� no in�nite trace of internal events can exist
in C implying that C is livelock�free� �

I�O compatible application of �i

The application of �i preserves � when�

�� at least one of the transitions involved is internal� and

�� no internal transition is inserted as trigger of an input transition

The purpose is to avoid the increase of concurrency between two ob�
servable transitions� in order to forbid the generation of unexpected traces
either on the environment or on the system� More formally�

Theorem ����� Let the RPNs A� B and C with underlying FCLSPN and
corresponding deterministic RTSs �SA��A� TA� sAin�� �S

B ��B � TB � sBin� and
�SC ��C � TC � sCin�� Assume �C � �B� If

�� A� B

�� �i�B� e�� e�� � C� with either e� � �B
INT or e� � �B

INT

�� B is input	proper


� �e � �e���
� � e �� �B

I

then A� C�

Proof� Conditions ��� of transformation �i ensure to preserve both the
observational equivalence and the input�properness of B� Theorem ����
induces A� C� �
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I�O compatible application of �e

Rule �e only preserves � when applied to internal transitions�

Theorem ����� Let the RPNs A� B and C with underlying FCLSPN and
corresponding deterministic RTSs �SA��A� TA� sAin�� �S

B ��B� TB � sBin� and
�SC ��C � TC � sCin�� Assume �C

OBS � �B
OBS� If

�� A� B

�� �e�B� e� � C� with e � �B
INT

�� B is input	proper

then A� C�

Proof� If the observational languages of two deterministic systems coin�
cide� then they are observational equivalent ����� It can be proven that the
observational language of C is the same to the one of B� Moreover� provided
that B is input proper and the causality relations regarding internal events
on B are preserved in C� C is also input proper and therefore� applying the
determinism of B and Theorem ���� implies A� C� �

The transformations presented above can introduce redundant places in
the target net� For dealing only with place�irredundant nets� the kit is aug�
mented with a rule for eliminating redundant places� Linear programming
techniques exist that decide the redundancy of a place e�ciently �
��� More�
over� each time a transformation is performed� it can be locally determined
the potential redundant places� and therefore the redundancy checking is
only applied to a few places�

��� Encoding Technique

This section presents a transformation applied to STGs� The features of this
transformation are the following�

� It guarantees the USC property�

� It preserves free�choiceness�

� It preserves consistency� liveness� safeness and observational equiva�
lence with respect to the input and output signals�

� It has linear complexity on the size of the STG�

This is the �rst method that guarantees a solution for the encoding prob�
lem and tackles the problem in linear complexity for the class of FCLSPNs�
The transformation is based on the insertion of a signal for each place of the
STG that mimics the token �ow on that place�
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�� Create the silent transitions �� and ���

�� For each place p � �t� create a new transition with
label sp� and insert new arcs and places for creating
a simple path from �� to ��� passing through sp��

�� For each place q � t�� substitute the arc �t� q� by the
arc ���� q�� create a new transition labeled as sq� and
insert new arcs and places for creating a simple path
from t to ��� passing through sq��

sq1+

spn-

sp1-

2ε1ε

t

pn

q1

qm

q1

qm

p1

pn

p1

sqm+

t

Figure ���� Transformation rule for each transition t � T �

The transformations will be presented as a rule to be applied to the
transitions of the STG� Before the application of the Structural Encoding�
the set of signals of the STG has been augmented with one signal sp for each
place p of the STG� In order to simplify the presentation of the rules and
the corresponding proofs� we will use silent transitions on the de�nition of
the rules�

����� Encoding Transformation

Let S � hhP�T �F �m�i�X �#i be an STG with underlying FCLSPN� The
Structural Encoding of S derives the STG Enc�S� in which a new internal
signal sp has been created for each place p � P� and the transformation
rule described in Figure ��� has been applied to each transition t � T �
The new transitions appearing in Enc�S�� labelled with sp�� will be called
E	transitions�

Figure ��
 shows how each place is encoded by at least two transitions
in a way that depending on wheter the transitions are predecessors or suc�
cessors� the encoding is negative or positive� respectively� In the Figure this
is presented for the places q and qi�

Let us now prove properties on Enc�S��

Proposition ����� Enc�S� is free	choice�
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Figure ��
� Encoding for places q and qi�

Proof� Every new place p appearing in Enc�S� has j�pj � jp�j � � by
construction� For each place p �transition t� of S� the set p� ��t� is identical
both in S and Enc�S�� Given that S is free�choice� Enc�S� is also free�
choice�

�

Proposition ����� Enc�S� is live� safe and is observationally equivalent to
S with respect to the input and output signals�

Proof� The transformation for structural encoding is a trivial combination
of a set of transformations proposed by Berthelot that preserve liveness�
safeness and home marking �
�� These transformations also preserve the
behavior condition� each con�ict resolution in Enc�S� is performed by some
observable transition� i�e� for every transition x� and place p such that
p � �x� and p� � � then x � Obs �

From the behavior condition� it immediately follows that observational
equivalence is also preserved� �

Proposition ����� Enc�S� is consistent�

Proof� Given that the observational equivalence is preserved� consistency
directly holds for the signals already in S� It only remains to prove that it
also holds for the E�transitions of the new inserted signals�

By construction� the new sp and sq signals mimic the token �ow in
places� Given that the dynamic behavior corresponds to a safe PN� no more
than two consecutive rising or falling transitions can occur for these signals�
�

Lemma ����� Let R be the new set of places inserted in S for constructing
Enc�S�� Every feasible complementary set between two reachable markings
m and m� of Enc�S� satis�es the equality mjR � m�jR�
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Figure ���� Place encoding to guarantee USC�

Proof� To prove that mjR � m�jR means to prove that every new place
inserted in S has the same amount of tokens both in m and m�� Figure ���
depicts a fragment of Enc�S� that results from applying the transformation
rule to a transition with p� � � � pn� and q� � � � qm as predecessor and successor
places� respectively� Without loss of generality� we will assume that the label
of the transition is x�� and that place qi has one successor transition with
label y�� By de�nition� if a feasible complementary set exists between m
andm� then ��m� � ��m��� With two exceptions that will be discussed later�
the marking of the new places inserted �places a� b� c and d in Figure ����
can be uniquely determined as follows�

m�ai� 	 � � sqi 	 
 � sp� 	 � � � 	 spn 	 � � x 	 �

m�bi� 	 � � sqi 	 � � sp� 	 � � � 	 spn 	 � � x 	 �

m�ci� 	 � � spi 	 � � sq� 	 � � � 	 sqm 	 � � x 	 �

m�di� 	 � � spi 	 
 � sq� 	 � � � 	 sqm 	 � � x 	 �

When de�ning the previous equations� it is important to use the fact
that the STG is safe and consistent� We will only prove the equality for
m�ai�� The other equalities can be proved in a similar way�

�
m�ai� � � implies sqi � 	� since sqi� is enabled� Otherwise the STG

would not be consistent� m�ai� � � also implies sp� � � � � � spn � �� since
the liveness and safeness of the STG imply that �� has not �red after x�
has �red� Therefore� none of the spi� transitions has �red yet� while all
spi� transitions already �red before x�� Finally� m�ai� � � clearly implies
x � ��

�
By the consistency of signal x� the only markings in which sp� � � � � �

spn � � and x � � correspond to markings in which some tokens are held in
the places after x� but before sp�� � � � spn�� The fact that sqi � 	 implies
that place ai has a token�
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As mentioned before� there are two exceptions in which the binary code
does not uniquely identify the marking in the new places inserted� One
exception corresponds to the submarkings in which m�b�� � � � � � m�bm� �
� and m�c�� � � � � � m�cn� � �� respectively� These submarkings are
only separated by a silent transition� ��� that makes them observationally
equivalent� The other exception corresponds to the submarkings separated
by ���

Finally� given that ��m� � ��m�� we can conclude that the previous
equations also hold for m�� and therefore the marking in R is identical both
in m and m�� �

Lemma ����� Let qi be a place of S� and Tc be a feasible complementary
set between two reachable markings m and m� of Enc�S�� Then� m�qi� �
�� m��qi� � ��

Proof� Without loss of generality� let qi be the one of Figure ���� Assume
that m�qi� � �� If no transition in q�i belongs to Tc then the claim trivially
holds�

The initial situation is depicted in Figure ����

Assume� without loss of generality �due to the free�choiceness of Enc�S���
that y� � Tc� and let m�� be the marking reached after �ring y�� From m��

it is possible to �re the set of E�transitions which result from the encoding
of y�� One transition of this set is sqi�� but note that ��m�sqi � �� Two
situations can happen�

�� sqi� � Tc� then at least a transition sqi� belongs to Tc� But every
copy of a sqi��transition is either in �x���� or in �z����� where z� is
another transition such that �z� � �x��� Assume that the transition
belonging to Tc is the one in �z����� The safeness of Enc�S� ensures
that the set of places from the encoding of z� is unmarked in m�
because otherwise there is a marking reachable from m having two
tokens on qi� But Lemma ����� ensures that the marking in the new
places inserted for encoding z� is the same both in m and m�� and
therefore every E�transition from the encoding of z� belongs to Tc�
adding again a token to qi�

�� sqi� �� Tc� no transition y� can appear in Tc after the �ring of y�
because transition �� from the encoding of y� does not belongs to Tc�
and then given that Enc�S� is consistent no sequence of transitions in
Tc can enable y� after the �ring of y�� Therefore y� appears before
of y� in Tc� Again� the consistency of Enc�S� implies that there exists
a place q such that q � �y�� m�q� � 	 and some sq� transition in the
path between y� and y� must be �red in order to put a token in q�

�In the simplest case� z� � x��
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Figure ���� Initial situation for proof of Lemma ������

Then there must be in Tc an sq� transition� but the actual situation
is not possible in Enc�S�� because�

� The positive E�transitions from the encoding of y� �let s��� ����
sk�� must be in Tc in order to enable sq��

� Lemma ����� ensures that the same marking exists both in m
and m� with respect to the set of places from the encoding of y��
Given that sqi� �� Tc implies that transition �� from the encoding
of y� is not in Tc� and then in m �m�� some of this places are
marked�

� And then the consistency of the E�signals inserted s�� ���� sk in
Enc�S� implies that the set of negative transitions s��� ���� sk�
can not be in Tc� because otherwise them can be autoconcurrent�
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Figure ���	� In the center the initial STG fragment� Enc�S�� technique
of the previous section� IO�Enc�S�� technique presented in this section to
preserve I�O compatibility�

But then Tc is not a complementary set�

�

Theorem ����� Enc�S� has the USC property�

Proof� This follows from Lemmas ����� and ������ together with the bound�
edness of Enc�S��

�

����� I
O Compatible Encoding Technique over STG

The encoding technique presented in Section ����� does not preserve the I�O
compatibility� because when the transformation rule is applied to an output
signal transition being a trigger of an input signal transition� internal events
�induced by the intermediate places of the initial STG� are inserted delaying
the input signal transition� and therefore there is a violation of Condition �
�receptiveness� of the I�O compatibility de�nition� The situation is depicted
in Figure ���	 �left�� the E�transitions in the shaded box �s� and s���
delay the input signal transition ackbus����

Figure ���	 �right� shows how the encoding technique presented in this
section will be applied to the STG fragment of the �gure� The only di�erence
between the new technique presented in this section and the one presented
in the previous section is in the way non�input signal transitions are encoded
�transition reqbus��� in the �gure�� for every transition of this type� the
E�transitions associated are inserted before of the transition itself� Input
signal transitions are encoded in the same way as in the technique presented
in the previous section� Figure ���� describes formally the new encoding
technique for non�input signal transitions�
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Figure ����� Transformation rule for non�input signals to preserve the I�O
Compatibility�

However� the new encoding technique presented here will also violate
the I�O compatibility for those STGs having two input signal transitions i�
and i� in sequence� because the encoding of i� will delay i� anyway� The
last part of this section will de�ne formally the class of STGs not having
two transitions in sequence� For that class of STGs �called IO�STG�� I�O
compatibility can be ensured�

Let us �rst concentrate on reasoning about whether the new encoding
technique ensures a correct encoding in the transformed net� All the prop�
erties except USC can be proved in the same way for this new technique�

Unfortunately� the new technique derived can only ensure USC if the
underlying Petri net is a marked graph� However� if the underlying Petri
net is Free choice and some additional structural condition is ful�lled� CSC
can be ensured� Informally� the structural condition is on places that have
more than one transition on their pre�set� This type of places are called join
places� The structural condition� called simple join condition� described
graphically in Figure ����� is the following�

Every transition in the pre	set of a join place p must have p as
its only successor place�

The formal de�nition of the class of FC Petri nets satisfying the simple
join condition is de�ned now�

De�nition ����� Simple Join Petri net� A simple join Petri net �SJ�
is a FCLSPN such that every join place ful�lls the simple join condition� i�e�
�p � j�pj � � �� �t � �p � t� � fpg�

As was mention before� the encoding technique presented in this section
can not guarantee unique state encoding for general FCLSPN� This can be
seen in the Figure ����� in the initial marking� the complementary sequence
fbusctl�� ���� reqbus�� nakbus�� ���� s�
�g �in boldface� connects two di�er�
ent markings having the same binary code assigned� thus violating the USC
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Figure ����� simple join condition to ensure a correct encoding in the mod�
i�ed encoding technique�

property �the underlined transitions denote input events�� However� we are
going to see that if the underlying Petri net is SJ� the set of output signals
enabled in both markings �busctl� in the example� will be the same�

The insertion of the E�transtions in the initial STG by the new encoding
technique makes the new STG to almost characterize the markings by looking
at the value of the signals nearby� like in the technique of previous section�
For input signal transitions or E�transitions resulting from the encoding of
an input signal� Lemmas ����� and ����� also hold for the new technique�
provided that input transitions are encoded in the same way� However�
for output signal transitions and E�transitions associated� Lemmas �����
and ����� only hold for SJ nets�

In the encoding of an output signal transition� the reasoning used in
Lemma ����� for characterizing places ai� bi and ci �Figure ���� holds if the
simple join condition is satis�ed in the net� For those places� it must be
considered now that x � 	 in the description of the marking� Using the con�
sistency of the signals and the safeness of the transformed net� an identical
reasoning of Lemma ����� can be applied� ensuring the characterization of
any ai� bi and ci place by the value of a set of signals�

However� Lemma ����� does not hold for places di resulting from the
encoding of an output signal transition� For such di�places� we can not
characterize the markings that put a token on them just by looking at the
value of the signals� This can only happen when two output transitions
share some join place on their post�set� as can be seen in the situation of
Figure ����� when two output transitions share some place on their post�set�
�place i in the �gure�� the markings m� and m� enabling each transition can
have the same code assigned� because both output transitions create a copy
of E�transition spi��

Let us �rst de�ne formally the two markings m� m� that have the same
code�

m��d� � ��m��d
�� � 	�m��j� � 	�m��i� � 	�m��k� � �� C

m��d� � 	�m��d
�� � ��m��j� � ��m��i� � 	�m��k� � 	� C
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Figure ����� �a� Alloc	Outbound example� �b� IO�Enc�Alloc�Outbound� has
CSC� It has not USC due to the complementary sequence �in boldface�
between two di�erent markings�

where C represents the marking for the rest of places of the net in m� and
m�� Note that both markings have the same token assignment inC� provided
that a slight di�erence in the marking of the rest of places means that the
transitions that added or removed the token will make the codes of the
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Figure ����� Situation where two markings can have the same code�

con�icting markings di�erent� and therefore no con�ict will exist� Now let
us reason why the distribution of tokens in places d� d�� i� j and k in m� and
m� is the previous one� if m� �m�� enables x� �z�� implies that m��d� � �
�m��d

�� � ��� m��d
�� � 	 �m��d� � 	� because if m��d

�� � � �m��d� � ��
then after �ring z� and x� at m� �m�� there will be two tokens on place i�
contradicting the safeness of the transformed net� Also the safeness of the
transformed net implies m��j� � m��i� � 	 and m��i� � m��k� � 	�

The values of the signals in m� and m� are�

spj � �� spi � �� spk � �� spm � 	� spr � 	� x � 	� z � 	

And then� the only possibility for spj � � at m� is when the token added
to j by the �ring of x� �if x� does not �res in the complementary sequence
betweenm� andm� we are done� is still in place j atm�� i�e� m��j� � �� This
reasoning can be symmetrically done for m� and spk� leading to m��k� � ��
Again� this is only true for SJ nets� Figure ��� shows a situation where�
provided that the simple join condition does not hold on the join place p�� a
CSC con�ict exists� described by the complementary sequence in boldface�

Now consider the marking m� reached after �ring x� at m�� It can be
formally de�ned as�

m��d� � 	�m��d
�� � 	�m��j� � ��m��i� � ��m��k� � �� C

which is the same marking reached after �ring z� at m�� Then the consis�
tency of the transformed net imply that x and z are indeed the same signal�
i�e� z� � xi�� This ensures that� according to what happens in Figure ����
with busctl�� no possible con�ict exists for the transition preceding the join
place�
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Figure ���� �a� Modi�ed Alloc	Outbound example� �b� Applying the encod�
ing technique to preserve I�O compatibility does not solves the CSC con�icts

However� depending on whether the simple join condition holds or not�
we can have a CSC con�ict in the transformed net� because the set of transi�
tions enabled at m� �enabled by the token at place k and the token at places
in C� can be di�erent from the set of transitions enabled at m� �enabled by
the token at place j and the token at places in C�� If the simple join condi�
tion holds� places j and k do not exist �in Figure ����� only solid lines will
represent the net� and therefore the same set of transitions will be enabled
by C both in m� and m�� If the simple join condition does not hold� we
can have situations like the one described in Figure ����b�� where in the
initial marking transitions busctl��� and sp��� are enabled and after �ring
the complementary sequence shown in boldface� only transition busctl� is
enabled�
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In conclusion� we can only ensure a correct encoding with the technique
presented in this section for SJ nets� For general FCLSPNs� some easy trans�
formations can be done to guarantee a correct encoding� but then the new
Petri net can violate the Free choice condition� As future work� we plan to
study the situation where this happens and whether the Free choice condi�
tion can be reestablished�

The remainder of the section will de�ne the class of STGs where the new
technique can be applied and I�O compatibility ensured� For the preserva�
tion of the I�O compatibility with respect to the environment� the encoding
technique presented in this section can only be applied to a restricted class
of speci�cations� the IO�STG class contains those STGs ful�lling both that
no input signal transition triggers another� and that the transitions in the
post�set of a choice place are all input signal transitions� More formally�

De�nition ����� An IO�STG is a Free	Choice STG where the following con	
ditions hold�

�� �ai� with a � I � �bj� � �bj� � �ai���� � b �� I��

�� �p � P � �jp�j � �� �bj� � p� � b � I��

And now we can state that when the encoding technique presented in
this section �called IO�Enc� is applied to an IO�STG� the new system can
work correctly in the environment where the initial system is assumed to
work correctly�

Theorem ����� Let S be an input	proper IO�STG with environment %S sat	
isfying that S � %S� Then IO�Enc�S�� %S

Proof� Direct application of Theorem ����� taking B � S� A � %S and C �
IO�Enc�S�� The input�properness of IO�Enc�S� is derived from the input�
properness of S and the fact that no new internal transition is delaying an
input in IO�Enc�S�� �

��� Conclusion

Several Petri net transformations have been introduced in this chapter� The
rules presented in the �rst section of the chapter� aim to support the synthe�
sis of reactive systems modeled as a Petri net� The theory of I�O Compati�
bility is used for showing that� when the rules are applied according to some
structural conditions� the correct interaction with the environment can be
guaranteed� As a future work it is interesting both to extend the kit of rules
and to weaken the restriction of application of the kit presented�

The second part introduces an encoding technique for the synthesis of
asynchronous circuits� To the best of our knowledge� it is the �rst structural
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technique that works in the class of STGs with underlying FCLSPN� It is
also shown how to modify the technique to preserve the I�O Compatibility
with the environment� which also requires to restrict the class of behaviors
where the technique can be applied�
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Chapter �

ILP Models for Synthesis

and Veri�cation of

Asynchronous Circuits

Everything
You think you know

� Massive Attack� Everywhen

In this chapter we present methods that use integer programming tech�
niques to verify the CSC�USC properties� necessary conditions for the ex�
istence of a speed�independent implementation� Moreover a method for
computing the set of signals needed for the implementation of a given signal
is presented�

The methods consist in adding constraints to the marking equation in
order to prove that the reachable states of the system are correctly encoded�
In the case of the veri�cation of CSC�USC properties� the experimental re�
sults show a speed�up of several orders of magnitude with respect to the
existing approaches�

This chapter is based in the results presented in �����

��� Introduction

The synthesis of asynchronous circuits from a given formalism �i�e� an au�
tomaton or a Petri net� can be separated into two steps ����� �i� check�
ing and �possibly� forcing implementability conditions and �ii� deriving the
next�state function for each signal generated by the system� Most of the
existing CAD tools for synthesis perform steps �i� and �ii� at the underlying
state graph level� thus su�ering from the well known state explosion prob�
lem� These tools� although using symbolic techniques for alleviating the

��
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cost of representing the state space� can only synthesize speci�cations with
moderate size�

In order to avoid the state explosion problem� structural methods for
steps �i� and �ii� have been proposed in the literature �
� ��� ���� The
work proposed in �
� ��� uses graph theoretic�based algorithms while ����
use both graph theoretic �by using causal order partial semantics of the
Petri net� called unfoldings ���� and linear algebraic techniques� A new and
promising direction is presented in ����� where the encoding problem is faced
by adopting the Boolean Satis�ability �SAT� approach�

To the best of our knowledge� the work in ���� is the �rst one that uses
linear algebraic techniques to approach the encoding problem� Although
completely characterizing the encoding problem� the techniques presented
in ���� �and also in ����� need to compute the unfolding of the net� whose size
can be exponential on the size of the net� In addition� the checking of the
Complete State Coding �CSC� in ���� needs to solve non�linear integer pro�
gramming problems� which is NP�hard ������� The work presented in this
chapter proposes linear algebraic methods for deriving su�cient conditions
for the encoding problem and novel methods for performing the synthesis
in a modular fashion� In our approach� the computation of the unfolding
is not performed� at the expense of checking only su�cient conditions for
synthesis� However� the experimental results indicate that this approach is
highly accurate and provides a speed�up of several orders of magnitude with
regard to ���� ����

Moreover� a novel algorithm for computing the set of signals needed to
synthesize a given signal is presented� which also uses integer programming
techniques� This allows to project the behavior into that set of signals and
perform the synthesis on the projection�

In summary� the work presented aims at facing the two important steps
�i� and �ii� in the synthesis of asynchronous circuits� it proposes powerful
methods for checking CSC�USC and a novel method for decomposing the
speci�cation into smaller ones while preserving the implementability condi	
tions� The methods presented here in combination with the ones presented
in Chapter � provide a complete design �ow for the synthesis of controllers�
described in the following chapter�

��� ILP for Verifying State Encoding

In this section it is shown how to formulate an ILP problem in order to verify
if a given speci�cation is correctly encoded�

The concept of complementary sequence is relevant in this chapter�

De�nition ����� Complementary sequence and Balanced Signals�
Given a set of signals � � fa�� � � � � ang� and a transition sequence �� we de	
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�ne code change����� as a j�j	vector where component i corresponds to the
result of the equation

P
ai�

���� ai���
P

ai�
���� ai��� When the i	th com	

ponent of the vector is �� we say that the signal ai is balanced� A complemen�
tary sequence � is a feasible transition sequence such that code change�����
� ��

A balanced signal in a sequence means that the number of positive and
negative transitions of the signal in the sequence is the same� In a comple�
mentary sequence all the signals are balanced� For instance� the sequence

d�� dtack�� dsr�� d�� dtack � anddsr�

is a complementary sequence because the signals appearing on it� i�e� d�
dtack and dsr� are balanced�

����� ILP for USC Checking

A USC con�ict appears in the SG of a system when there are two reachable
markings m��m� such that m� is reachable from m� by �ring a comple�
mentary sequence z� i�e� m�

x
	 m�

z
	 m�� Using the marking equation

�see Section ���� a su�cient condition for USC can be obtained� Before of
de�ning the model� we present an introductory example�

The example is the VME Bus Controller� presented in Section ������ As
said in the previous paragraph� the theory presented in the following sec�
tions is based in the marking equation of a Petri net�

In the STG of Figure ���a�� places names is shown explicitly� From this
STG� the incidence matrix associated to the STG is the following�

lds� dsr� ldtack� ldtack� d� dtack� dtack� lds� drs� d�

p� �� 	 �� 	 	 	 	 	 	 	
p� 	 	 �� 	 �� 	 	 	 	 	
p� 	 	 	 	 �� 	 �� 	 	 	
p
 	 	 	 	 	 	 �� 	 �� 	
p� 	 	 	 	 	 	 	 	 �� ��
p� 	 	 	 	 	 �� 	 	 	 ��
p� 	 �� 	 	 	 �� 	 	 	 	
p �� �� 	 	 	 	 	 	 	 	
p� 	 	 	 	 	 	 	 �� 	 ��
p�� 	 	 	 �� 	 	 	 �� 	 	
p�� �� 	 	 �� 	 	 	 	 	 	

The initial marking of the underlying Petri net is

m� � �	� 	� 	� 	� 	� 	� �� 	� 	� 	� ��
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Figure ��� �a� STG� �b� STG with CSC� �c� Projection for signal d� �d�
Circuit implementing d�

Assuming m� as initial marking� the assignment

x � ��� �� �� 	� 	� 	� 	� 	� 	� 	�

to the vector x is a solution to the marking equation �m� � m� �Nx�� It
means that the sequence of transitions corresponding to the Parikh vector
x is �rable at m�� and it leads to m�� where m� is

m� � �	� �� 	� 	� 	� 	� 	� 	� 	� 	� 	�

from the marking m� above� the assignment

z � �	� �� 	� 	� �� �� �� 	� �� ��

is again a solution to the marking equation� �m� � m� �Nz�� where the
following marking m� results

m� � �	� 	� 	� 	� 	� 	� 	� �� �� 	� 	�

which is clearly a marking di�erent from m�� The non�zero positions of
vector z correspond to transitions d�� dtack�� dsr�� d�� dtack� and dsr��
and then the sequence of transitions corresponding to z is a complementary
sequence� the number of positive and negative transitions of each signal
appearing in z is the same� So� according to the marking equation� there
are two di�erent markings m� and m� such that m� is reachable from m� by
�ring a complementary sequence� It is clear that� the code ��m�� is equal
to ��m��� We found a USC con�ict�
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Theorem ����� Let S � ��P� T� F�m�����#� be a consistent STG� S has
USC if the following ILP problem is infeasible�

ILP model for USC checking�

Reachability conditions�
m� � m� �Nx
m� � m� �Nz

m��m�� x� z � 	� x� z � ZjT j

code change��� z� � �
m� �� m�

����

Proof� If no solution exists for ���� then no possible complementary
sequence exists between any pair of reachable markings m��m� � �m�i such
that m� �� m�� �

In fact the constraint m� �� m� is not linear� but it can be replaced by
testing instead if at least one place has di�erent amount of tokens in m� and
m�� Therefore the initial non�linear problem can be transformed to jP j linear
problems� However� if the system is k�bounded� any reachable marking can
be encoded with a jP j k�ary vector� This allows us to express the inequality
between m� and m� as the inequality of two k�ary numbers �����

Note that the marking equation provides only necessary conditions for
a marking to be reachable� This means that either m� or m� or both can
be spurious markings� In the example� both m� and m� are real markings
because the underlying Petri net is a marked graph� and in this class of
nets the marking equation characterizes reachability ��
���� Moreover� if the
Petri net was FCLSPN and reversible� the existence of spurious markings
can also be avoided by using the set of traps of the system ����

In conclusion the USC con�ict detected is in fact a real one� As said be�
fore� provided that the method presented here uses the marking equation as
the main basis for reachability� implies that the method can only semidecide
the problem of USC� only when the model is infeasible we are sure that the
speci�cation is free from USC con�icts�

����� ILP for CSC Checking

A CSC con�ict exists when there exist two reachable markings m��m� such
that m� is reachable from m� though a complementary sequence z and
the set of non�input signals enabled in m� is di�erent from the one in m��
Note that the de�nition of CSC allows to check individually for each non�
input signal a whether a has a CSC violation� When every non�input signal
ful�lls the CSC conditions� the entire system has CSC� The check of CSC
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for each non�input signal can be performed in the following way� let ai� be
a transition of signal a� Then� a CSC con�ict exists if� �i� m� is reachable
from m� by �ring a complementary sequence� �ii� m� and m� have the same
code� �iii� ai� is enabled in m� and �iv� for every transition aj� of signal a�
aj� is not enabled in m�� The enabledness of a transition x at a marking
m can be characterized by the sum of tokens of the places in �x at m� x is
enabled at m if and only if the sum of tokens of the places in �x is equal to
the number of places in �x�

Now we can present a su�cient condition for CSC for each non�input
signal a�

Theorem ����� Let S � ��P� T� F�m�����#� be a consistent STG and non	
input signal a � �� S has CSC for a if the following problem is infeasible
for each transition ai��

ILP model for CSC checking�

�i� Reachability conditions �same as in ������

�ii� code change��� z� � �
�iii�

P
p� �ai�

m��p� � j�ai � j

�iv� �aj� �
P

p� �aj�
m��p� 	 j�aj � j

����

Proof� If ���� has no solutions� no complementary sequence exists between
any pair of reachable markings m� and m�� with only m� enabling signal a�
�

Note that the constraint m� �� m� is not needed in ����� If we continue
with the example of the VME Bus Controller� it can be shown that the USC
con�ict described in the previous section is also a CSC con�ict for signal d�
Given that it has been shown in the previous section that the assignments
x � ��� �� �� 	� 	� 	� 	� 	� 	� 	� and z � �	� �� 	� 	� �� �� �� 	� �� �� satisfy the �rst
two constraints� now we describe here the ful�llment of constraints �iii� and
�iv� by x and z� The former constraint is satis�ed because

X
p� �d�

m��p� � m��p�� � � � jfp�gj � j�d� j

and constraint �iv� is also satis�ed provided that

X
p� �d�

m��p� � m��p�� � 	 	 � � jfp�gj � j�d� j

note that constraint �iv� is not veri�ed for transition d�� because the con�
sistency of S is assumed�
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In conclusion� a CSC con�ict has been detected in the VME Bus Con�
troller example� Given that the the con�ict is a real one� it is mandatory
to solve it in order to been able to synthesize the speci�cation in the speed�
independent delay model� Chapter � has presented a structural method to
encode speci�cations in order to have a correct encoding�

��� ILP for Synthesis

In this section we propose a novel method to calculate the subset of sig�
nals onto which the STG must be projected to implement each signal� The
support of the next�state function of each signal will be a subset of this
support�

����� Computing a Support for Synthesis

The problem faced in this section is the following� given an STG S �
��P� T� F�m�����#� and a non�input signal a � �� can we compute a subset
�� of � such that it is enough for implementing fa& Two conditions must
be satis�ed by �� ��	��

�� Trig�a� � ���

�� S�� must have CSC for signal a�

Let such �� be called a CSC support of signal a in S�

De�nition ����� CSC Support� Let S be an STG with set of events ��
and a non	input signal a � �� A set �� � � is a CSC support of a in S if
S�� has no CSC con�icts for signal a and Trig�a� � ���

For example� a possible CSC support for signal d from the STG shown in
Figure ���c� is fldtack� cscg� Figure ���d� shows the projection induced by
this CSC support� and in Figure ���e� it is shown the �nal implementation�
The rest of this section is devoted to explain how to compute e�ciently a
CSC support for a given signal a�

The computation of a CSC support can be performed iteratively� starting
from an initial assignment� ILP techniques can be used to guide the search�
Imagine we have an initial set of signals �� � �� candidate to be the CSC

support of a given signal a� A way of determining whether �� is a CSC

support for signal a is by solving the following ILP problem�

ILP model for checking CSC support�

�i�� �iii� and �iv� from ����

code change���� z� � �
����
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If ���� is infeasible� then �� is enough for implementing a� Otherwise
the set �� must be augmented �from signals in �n��� with more signals until
���� is infeasible� Moreover if ���� is feasible� adding a balanced signal b
from � n �� will not turn the problem infeasible because z is still balanced
for �� � fbg� On the contrary� adding an unbalanced signal will assign a
di�erent code to markings m� and m� of ����� Therefore� the unbalanced
signals in z will be the candidates to be added to ��� The algorithm for
�nding a CSC support set for a non�input signal a is the following�

Algorithm for the calculation of CSC support�

CSC Support �STG S� Signal a� returns CSC support of a

�� �� Trig�a� � fag

while ���� is infeasible do

Let b be an unbalanced signal in z

�� �� �� � fbg

endwhile

return ��

Let us show how the algorithm performs the computation of the CSC sup�
port for signal d from the STG of Figure ���b�� where a new signal �csc� has
been inserted in the original STG to solve the encoding problem� The new in�
cidence matrixN� is the following� where transitions �columns� follow the or�
der �lds�� dsr�� ldtack�� ldtack�� d�� dtack�� dtack�� lds�� drs�� d�� csc�
� csc���

For computing the CSC support of signal d� the initial candidate assigned
by the algorithm is

�� � Trigg�d� � fdg � fldtack� csc� dg
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p� 	 	 	 	 	 	 	 	 �� 	 �� 	
p� 	 	 	 	 	 	 	 	 	 �� �� 	
p 	 	 	 	 	 �� 	 	 	 �� 	 	
p� 	 �� 	 	 	 �� 	 	 	 	 	 	
p�� 	 �� 	 	 	 	 	 	 	 	 	 ��
p�� 	 	 	 	 	 	 	 �� 	 �� 	 	
p�� 	 	 	 �� 	 	 	 �� 	 	 	 	
p�� 	 	 	 �� 	 	 	 	 	 	 	 ��

However for such N� and �� the problem ���� turns out to be infeasible�
and therefore fldtack� csc� dg is a valid CSC support for signal d�

In general it can happen that the set of trigger signals is not enough
to guarantee a valid CSC support� This makes algorithm CSC Support to
iterate� adding a new signal at each iteration in order to guarantee a correct
encoding for the signal� We illustrate this phenomenon using the STG of
Figure ��� from ����� Provided that the STG has forty places and twenty
four transitions� the incidence matrix is not shown here�

Imagine that we want to compute the CSC support for signal x
� The
initial assignment by the algorithm is

�� � Trigg�x
� � fx
g � fz� x�� x�� x
g

However� such �� does not makes problem ���� to be infeasible� the model
is found solvable for the solution x � 
�� and z � 
��� where

�� � x� � x� � x� � and �� � y� � y� � y� � y
�

and therefore� another signal must be added� The algorithm adds x�

�� � �� � fx�g � fz� x�� x�� x
� x�g

and still the new signal added does not induce the new problem to be infea�
sible� Note that in algorithm CSC Support the order chosen for selecting a
new signal to add among the set of unbalanced ones is arbitrary� and there�
fore it is imprecise whether the signal added is in fact necessary to make
the new problem infeasible� Choosing for instance lexicographical order� the
algorithm will make �ve more iterations� For instance� in the third iteration
the algorithm uses as a candidate for CSC support the following set of signals

�� � fz� x�� x�� x
� x�� x�� y�� y�g
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and the model is again found solvable for the solution x � 
�� and z � 
���
where

�� � x� � x� � x� � and �� � y� � y� � y� � y� � y
 � y��

The �nal set of signals that makes the model ���� to be infeasible is

�� � fz� x�� x�� x�� x
� x�� y�� y�� y�� y
g

In fact most of the new signals added are not really necessary for obtaining
a CSC support for signal x
� Next section shows how to modify problem
���� in order to avoid unnecessary inclusions of signals in the computation
of the CSC support for a given signal�

Implementation note

In order to avoid� as much as possible� unnecessary inclusions of signals in
the CSC support of a signal� we add an objective function to the problem
����� Assume E� and E� are the set of signals in � with initial value �

and �� respectively� We want to search for solutions of ���� such that the
number of unbalanced signals is minimal� The minimization of the objective
function

min �code change�E�� z� � code change�E�� z��

avoids any vector z as a solution if there is another vector z� such that a signal
with initial value 	 ��� is not balanced in code change�E�� z� �code change

�E�� z�� but is balanced in code change�E�� z
�� �code change�E�� z

���� There�
fore� this function reduces the number of unbalanced signals and� thus� less
choices are possible when the model is feasible and a new unbalanced signal
must be added to ���

Using the objective function on the previous example� it can be realized
that the set

�� � fz� x�� x
� x�� y
g

makes the model ���� to be infeasible� and therefore it is a CSC support
valid for signal x
� Note that it is avoided the inclusion of half of the signals
computed in the previous section�

����� Projection into the CSC Support

Assume that for a non�input signal a its CSC support set CSC�a� has been
computed by Algorithm CSC Support� The next step is to derive the pro�
jection of the STG S into CSC�a� �SCSC�a	�� The projection is computed

by the transformations described in ����� It is assumed that the projections



��	� ILP FOR SYNTHESIS ��

x3+ x4+ z+ x5+

x4-x3- z-

x5-

z- y4-

y4+z+

Figure ��� Projection of example PPARBCSC����� onto signal x
�

preserve trace equivalence on the set of traces with respect to the signals in
CSC�a� �i�e�L�S�jCSC�a	 � L�SCSC�a	���

Although SCSC�a	 and S are di�erent STGs� next theorem shows that
projection preserves CSC�

Theorem ����� Let S be an STG with CSC for the non	input signal a�
and SCSC�a	 be the projection preserving trace equivalence with S on the set

CSC�a�� Then SCSC�a	 has CSC�

Proof� By contradiction� Let us assume there are two reachable markings

s��� s
�
� in SCSC�a	 such that s��

��
�	 s��� s

�
�

��
�	 s��� ��s

�
�� � ��s��� and only s��

enables some transition ai� of signal a� Let s�� s�� ��� �� such that s�
��	 s��

s�
��	 s�� ��jCSC�a	 � ��� and ��jCSC�a	 � ���� Finally� let Trig�ai�� denote

the set of triggering transitions of ai�� Two cases arise�

��s�� � ��s��� then given that we have CSC for signal a in S either
both s� and s� enable a or none of them enables a� If both enable a then
given that the set of trigger transitions of ai� are in the CSC support of a
and s�

ai�	 implies that Trig�ai�� � ���� But then if every trigger transition
is �red in ���� there is a state s reachable by �ring some pre�x of ��� at
s�� which enables ai�� If s �� s�� we have that ai� � ���� and therefore

ai� � �� because ��� � ��� At this point� the fact that s�
ai�	 implies that

�� � �ai � �� with Trig�ai�� � �� We can iterate this process again with ��

and using the �niteness of �� we can conclude that s��
ai�	� contradicting the

assumption that ai� is only enabled in s��� If neither s� nor s� enables a then
the trace ���ai� belongs to L�SCSC�a	� but does not belong to L�S�jCSC�a	�

contradicting the assumption L�S�jCSC�a	 � L�SCSC�a	��

��s�� �� ��s��� if both s� and s� enable a or none of them enables a� then
the same reasoning of the previous case can be applied� If only one of them
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Figure ��� Art�m�n��

enables a� then CSC�a� is not a valid CSC support because some signal from
� nCSC�a� which makes ��s�� �� ��s�� hold is not added to CSC�a� in order
to make ��s��� and ��s��� di�erent� �

Figure �� shows the projection for the signal x
 of the STG depicted in
Figure ��� The CSC support used is �� � fz� x�� x
� x�� y
g�

��� Experimental Results for USC	CSC Checking

The methods presented in Section �� have been implemented in moebius� a
tool for the synthesis of speed�independent circuits� The experiments have
been performed on a PentiumTM ����� Ghz and ��M RAM�

Several parameterizable examples have been used to compare with other
existing approaches and to evaluate the impact of the size of the speci�cation
on the e�ciency of the method� The following examples have been used�

� PpWk�m�n� andPpArb�m�n�� examples modelingm pipelines weakly
synchronized� In addition PpArb�m�n� also includes arbitration� Ev�
ery benchmark in this set has CSC con�icts� These examples were
obtained from �����

� PpWkCsc�m�n� and PpArbCsc�m�n�� a modi�cation of the previ�
ous benchmarks to ful�ll the CSC property�

� TangramCsc�m�n�� examples obtained by translating a synthetic
Tangram program into a netlist of handshake components� The generic
netlist is shown in Fig� �� whereas a Tangram program from which
this structure can be obtained is shown in Figure ��� where the whole
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Figure �� Netlist of handshake components from a Tangram program�

begin
  forever do
    [a!1 || b!2 || c!3];
    [d!4 || e!5 || f!6];
    [g!7 || h!8 || i!9];
    [j!10 || k!11 || l!12];
  od
end

P1 (a:! int & b:! int & ... & l:! int).

P2 (a:? int & b:? int & ... & l:? int &

end

    x:! int & y:! int & z:! int).
begin
  xr,yr,zr: var int
  forever do
    [[a?xr | d?xr | g?xr | j?xr]; x!xr] ||
    [[b?yr | e?yr | h?yr | k?yr]; y!yr] ||
    [[c?zr | f?zr | i?zr | l?zr]; z!zr]
  od

Figure ��� Tangram program from which the structure of Figure � can be
obtained� as the parallel composition of P� and P��

system is build up as the parallel composition of the two processes de�
�ned P� and P�� Each handshake component is speci�ed as a Petri net
and the �nal controller is obtained as the composition of all Petri nets�
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Figure �
� STG for a sequencer in a Tangram program�
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Figure ��� STG for a parallelizer in a Tangram program�

Figures �
� �� and �� show the STGs for the sequencer� parallelizer
and mixer� respectively� The symbols  	!�  

! and  M! represent
sequencers� parallelizers and mixers� respectively� Each n�way compo�
nent is implemented as a tree of ��way components� This is a parame�
terizable benchmark that represents a typical controller obtained from
the direct translation of languages like Tangram ��� or Balsa �����

� Art�m�n�� examples modeling a di�erent way of synchronizing m
pipelines� The STG is depicted in Figure ��� Every benchmark in
this set has CSC con�icts�

� ArtCsc�m�n�� transformation of the corresponding benchmark by
means of the insertion of a new set of signals in order to ful�ll the CSC
property ����� The nets in this class of benchmarks are extremely large
compared to the corresponding benchmarks �for instance� Art��	� ��
has ��� places whileArtCsc��	� �� has ����� implying an exponential
growth of the underlying state space� Therefore the check of CSC�USC
for this benchmarks is a hard task�

The experiments for CSC�USC detection are presented in Tables ��
and ��� Each table reports the CPU time of each approach in seconds�
We use 'time� and 'mem� to indicate that the algorithm did not complete in
less than �	 hours or produced memory over�ow� respectively� The tools for
comparing the experimental results are�
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Figure ��� STG for a mixer in a Tangram program�

� CLP� the approach presented in ���� for the veri�cation of USC�CSC�
It uses non�linear integer programming methods and the unfolding of
the net�

� SAT� the approach presented in ���� for the veri�cation of CSC�� It
uses a satis�ability solver and the unfolding of the net�

� ILP� the approach presented here�

From the results one can conclude� as it was expected� that checking
USC is simpler than checking CSC� given the di�erent nature of the two
problems� Moreover� when some encoding con�ict exists� the ILP solver can
�nd it in short time� This is explained by the fact that proving the absence
of encoding con�icts requires an exhaustive exploration of the branch	and	
bound tree visited by ILP solvers� The superiority of ILP with respect to
CLP and SAT is evident�

��� Conclusion

Although ILP is NP�complete� in practice there are real applications where
the algorithms for mathematical programming perform very well� We believe
that if the methods presented in this chapter are applied to well�structured
STGs� the encoding problem can be considered as one of those good per�
forming applications of ILP� The experimental results show this fact� over
an extensive set of examples�

These well�structured STGs can be obtained by syntax�directed trans�
lation of HDL speci�cations in order to perform the synthesis ��� �� ����
Although the majority of the benchmarks used are not of this type� we have
seen experimentally that the structures of the nets obtained from HDL spec�
i�cations are always very regular� and therefore the results should be as good
as the ones presented here� However� as future work we plan to do a deeper
study on how good the methods perform on this type of speci�cations�

�Checking for USC is not implemented in SAT
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benchmark jP j jT j j�j CLP SAT ILP

PPWK����	 �� � �� ���� ���
 ����

PPWK�����	 �� �� �� ��
� ���� ����

PPWK����	 �� � �� ���� ���
 ����

PPWK����	 ��� �� � ���� ���� ����

PPWK�����	 �
� �
 �� ������ ���
 ����

PPWKCSC����	 �� � �� ���
 ��� ����

PPWKCSC�����	 �� �� �� �
���� ���� ����

PPWKCSC����	 �� � �� ���� ���
 ����

PPWKCSC����	 �� �� � �����
 ���� ��
�

PPWKCSC�����	 �

 �
 �� time ��
� ���

PPARB����	 � 
 �� ���� ���� ����

PPARB�����	 ��� �� �� ���� ���� ����

PPARB����	 �� �
 �� ���� ���� ����

PPARB����	 �� �� �
 ���� ��� ���

PPARB�����	 ��
 �� 
� ���� ���� ����

PPARBCSC����	  
 �� 
��� ���� ���

PPARBCSC�����	 ��� �� �� ������� ����
 ��
�

PPARBCSC����	 �� �
 �� ����� ���� ���


PPARBCSC����	 ��� �� �
 time ���� ����

PPARBCSC�����	 ��� �� 
� time ����� ����

TANGRAMCSC����	 �
� �� � ���� ���� ���

TANGRAMCSC�
��	 ��� ��� � ���� ���
 ����

ART�����	 ��� �� �� ���� ��
� ����

ART�����	 
�� �� ��� ���� ����� ���


ART�����	 ��� �� ��� ���� ��� ����

ART�
���	 �� �� ��� ����
 ��
��� ����

ART�����	 ���� �� 
�� ������ ����
� ��
�

ARTCSC�����	 ��� ��� ��� time �
 m � m

ARTCSC�����	 ���� ���� ��� time mem �� m

ARTCSC�����	 ���� ���� ��� time mem ��� h

ARTCSC�
���	 ���� ���� ���� time mem ��� h

ARTCSC�����	 ��� ���� ���� time mem � h

Table ��� CSC detection for well�structured STGs�
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benchmark jP j jT j j�j CLP ILP

PPWK����	 ��� �� � ����� ����

PPWK�����	 �
� �
 �� ����� ����

PPWKCSC����	 �� �� � ������� ����

PPWKCSC�����	 �

 �
 �� time ����

PPARB����	 �� �� �
 ���� ����

PPARB�����	 ��
 �� 
� ���� ���

PPARBCSC����	 ��� �� �
 time ����

PPARBCSC�����	 ��� �� 
� time ����

TANGRAMCSC����	 �
� �� � ���� ����

TANGRAMCSC�
��	 ��� ��� � ���� ����

ART�
���	 �� �� ��� �
���� ����

ART�����	 ���� �� 
�� ����
 ����

ARTCSC�
���	 ���� ���� ���� time �
 m

ARTCSC�����	 ��� ���� ���� time �� m

Table ��� USC detection for well�structured STGs�
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Chapter �

A Design Flow for the

Synthesis of Asynchronous

Circuits

This chapter presents a complete design �ow for the synthesis of asyn�
chronous circuits� It is built from the theory presented in the previous
chapters� The design �ow is capable of checking implementability conditions�
such as� complete state coding� and deriving a gate netlist to implement the
speci�ed behavior� It can synthesize speci�cations with few thousands of
transitions in the Petri net� providing a speed�up of several orders of magni�
tude with regard to other existing approaches� Moreover� the quality of the
circuits derived is comparable to the optimal ones that can be obtained by
using state�based logic minimization techniques� The complete design �ow
has been implemented in the tool moebius�

This chapter is based in the results presented in �����

��� Introduction

Several methods have been presented in the literature for the synthesis of
speed�independent circuits� One can classify them by the way the synthesis
is performed�

� State	based methods ���� ��� ��� perform the synthesis from the state
space of the speci�cation� They can derive optimal implementations�
but su�er from the state explosion problem and therefore can only
synthesize small�medium size speci�cations�

� Structural methods �
� �	� ���� working at the level of the Petri net�
can synthesize big size speci�cations but the behavior accepted in the
design �ow is restricted and the quality of the circuits is in general

�	�
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not comparable to the state�based approach� The fact that the un�
derlying state space of the speci�cation is approximated can make
these methods to overestimate or underestimate the ful�llment of the
implementability conditions�

� Hardware Description Language methods ��� ��� where a syntax�directed
translation into communicating handshaking components� that are
later implemented as handshake circuits� This approach guarantees an
implementation by construction� and moreover the resulting speci�ca�
tion to synthesize is well�structured� provided the well�structuredness
of a HDL� However� this approach does not exploit the potential opti�
mizations that can be performed at the logic level� Typically� the size
of the circuits obtained is linear on the size of the speci�cation�

The design �ow presented in the next section combines the three type
of methods presented above� aiming at keeping the advantages of all three
while avoiding their disadvantages�

State�based methods are used in the �nal stage of the �ow� when the
speci�cation has been decomposed into smaller ones that can be easily han�
dled by this type of methods� This allows to use the optimization capabilities
of state�based approaches�

Structural methods� namely graph�based algorithms and linear algebra�
are used along the design �ow in order to support the steps needed for
the speed�independent synthesis� The methods range from checking imple�
mentability conditions by solving a linear programming problem to trans�
form the speci�cation via Petri net transformations to improve the quality
of the resulting implementation�

Finally� it is assumed that the speci�cations are well�structured� The
�ow can accept any behavior represented in a free�choice Petri net� We
believe that speci�cations derived from HDL can be mapped into this class of
nets ��� ��� Moreover� the fact that HDL are well�structured by construction
helps in alleviating the complexity of the structural methods used�

��� The Design Flow

In this section a new design �ow for the synthesis of asynchronous circuits
is presented� The major gains with respect to previous methods are�

� The synthesis of a speed�independent circuit implementing non�input
signals can be done in most of the cases� despite of the size of the
whole speci�cation�

� The use of structural methods allows to deal with very large speci��
cations�
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Figure ���� Synthesis of asynchronous circuits�

� Optimization techniques can be applied in some stages of the process�

� The correct interaction with the environment can be preserved�

The synthesis �ow is depicted in Figure ���� Given a consistent STG

with underlying FCLSPN� the encoding technique presented in Chapter �
is applied when the ILP check for correct encoding described in Chapter 
gives a positive answer� The resulting STG contains a new set of signals
that ensure the USC or CSC property� depending on the encoding technique
applied� Since many of these signals may be unnecessary to guarantee either
USC or even CSC� they are iteratively removed using greedy heuristics until
no more signals can be removed without violating the USC�CSC property�
This greedy process makes use of the ILP methods presented in Chapter �
The reduced STG is next projected onto di�erent sets of signals to implement
each individual output signal�

The kit of transformations presented in Chapter � can also be applied
once the STG is known to be correctly encoded� This is represented in
Figure ��� by a self�loop in the Reduced STG node� Although its application
is not automatic in the tool� the designer can apply them and each time
verify if the transformed STG is correctly encoded� For the automation of
the application of the transformations� several heuristics can be used� For
instance� transformation �r �concurrency reduction� can be used to improve
the performance of the circuit by means of reducing the length of the critical
cycle of the net� Some heuristics for area estimation can also be applied�
for instance� using structural methods ���� it can be estimated the number
of literals in each excitation region� and try to guide the application of the
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rules to reduce it� Some preliminary work on this can be found in ����
One weak point of the design �ow presented is that� when the projections

are computed� several redundant places can appear� because transformation
�e can increase the number of places in the net each time it is applied� How�
ever� some heuristics have been implemented in the tool that� using su�cient
conditions for a place to be redundant �which can be evaluated in constant
time provided that the transformations are local�� �nd the majority of such
redundant places� The redundant places found are removed immediately�
This solution alleviates considerably the problem�

It is important to note that the design �ow presented here is only re�
stricted to free choice STGs when the speci�cation has encoding problems� If
the initial STG has a correct encoding and the projections applied preserve
trace equivalence� then we can guarantee correctness on the resulting im�
plementation� This will be illustrated in the next section� where a non�free
choice speci�cation is synthesized by our tool�

��� Synthesis Examples

In this section we present the complete synthesis of two tiny speci�cations�
Despite of their magnitude� the examples used illustrate how the synthesis
is performed in the design �ow proposed�

The �rst example used� the VME Bus Controller� allows us to describe
each step of the design �ow� encoding� greedy removal of signals� CSC sup�
port computation� projection and synthesis�

The second example presented is PPARBCSC������ a non�free choice spec�
i�cation� It is shown that� provided that the STG is initially correctly en�
coded� the design �ow can synthesize it despite of not being a free choice
net�

����� Synthesis of the VME Bus Controller

Let us explain step by step how to perform the synthesis of the VME Bus
Controller example� depicted in Figure ��� �left�� In Section ��� it is de�
tected a USC con�ict� which is also a CSC con�ict� Then� in order to be able
to synthesize the STG we have to transform it �rst� We apply the encoding
technique of Section ���� which guarantees USC on the resulting STG� The
STG obtained is shown in Figure ����right��

From the STG of Figure ����right�� a greedy process for the removal
of the signals inserted by the encoding technique is done� The process is
shown in Figures ���� ��� and ���� At each step� one signal is eliminated if�
when removed from the STG� the new speci�cation does not has encoding
con�icts�
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Figure ��� CSC support computation and projection for the VME Bus
Controller example�

From the �nal STG shown in Figure ���� neither signal sp� nor signal
sp�� can be removed without introducing encoding con�icts� This �nishes
the process of greedy removal of signals�

Once the reduced STG is reached� it must be computed the CSC support
for each non�input signal� applying the algorithm CSC Support� which is
presented in Section ����� Afterwards the projection of the STG into the
CSC support of each non�input signal is performed� This is illustrated in
Figure ���

And �nally� a speed�independent synthesis of each projection is per�
formed� Figure ��� presents the synthesis for the �ve non�input signals re�
maining in the STG� Provided the small size of the projections� state�based
techniques can be applied for performing the synthesis�
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In the example the tool petrify has been used for the synthesis� using the
�complex gates� architecture�

When synthesizing the projection for each non�input signal a� every sig�
nal in the projection but a is considered as an input signal� This prevents
the logic synthesis to try to solve possible con�icts for the rest of signals�

����� Synthesis of the PPARBCSC���� Example

If each step of the design �ow presented in this chapter must be performed�
its application is limited to STGs with underlying FCLSPNs� However� if the
initial speci�cation has a correct encoding� the design �ow can be applied
independently of the class of the underlying Petri net� provided that the
projections preserve trace equivalence�

In this section we present the synthesis of the PPARBCSC����� example�
shown in Figure ��� It is a non�free choice speci�cation� which has a correct
encoding� The example models a ��pipeline synchronized� with arbitration
between some of the output signals� We focus on the synthesis of one of the
pipelines� represented by the signals x�� x�� x�� x�� x and z� The synthesis
of the remaining pipeline is symmetrical�

Provided that the initial STG has a correct encoding� the �rst two steps
of the design �ow �i�e�� encoding and greedy removal of signals� are not
applied� The CSC support computation and projection for signals x�� x��
x�� and for signals x�� x and z is shown in Figures ��
 and ���� respectively�
The CPU time for computing the support and performing the projection is
negligible for such a tiny example�

From each projection� the speed�independent synthesis is performed us�
ing the tool petrify� Figures ��� and ���	 depict the �nal implementation for
signals x�� x�� x�� and for signals x�� x and z� respectively� The �technol�
ogy mapping� option of petrify has been chosen� in order to realize that C�
elements can be used for the implementation of some signals in the pipeline�
Apart for the synthesis of signal x�� where a ��way OR gate and a ��way
AND gate are needed for its implementation� the rest of signals can be
synthesized with ��way gates�

��� Experimental Results

Experiments have been performed on some of the benchmarks described in
the previous chapter� Table ��� shows experiments on synthesis to check the
quality of the generated circuits� The column �Lit� reports the number of
literals� in factored form� of the netlist� The results are compared with the
circuits obtained by petrify ����� a state�based synthesis tool� on the same
controllers� From the reported CPU time� the time needed for computing a
support and for projection was negligible when compared to the time needed
for deriving logic equations�
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Figure ��
� CSC support computation and projection for PPARBCSC�����
example� signals x�� x�� x��

Table ��� shows that the quality of the circuits obtained by the ILP�
based technique is comparable to that of the circuits obtained by petrify�
Moreover it is clear that our approach can deal with larger speci�cations�

TheTangramCsc��� �� example� shown in Figure �� illustrates the
suitability of our approach for the synthesis of speci�cations generated from
a HDL� According to ���� the cost of implementing the handshake compo�
nents is the following��

Component C�elements ��input gates literals

��way sequencer ��� � � 
��way parallelizer �jj� � � ��
��way mixer �M� � � ��

The circuit in Fig� � has � sequencers� � parallelizers and � mixers� ���
literals� This would be the cost obtained by a syntax	directed translation�
The cost obtained by logic synthesis methods is signi�cantly smaller�

��� Conclusion

In this chapter we have presented a new design �ow for the synthesis of
asynchronous circuits� In the approach proposed� all but the last step are

�A C�element is assumed to cost � literals� c � ab� c�a� b��
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Figure ���� CSC support computation and projection for PPARBCSC�����
example� signals x�� x� z�

structural� This allows to deal with speci�cations that are impossible to
synthesize with state�based methods� In the last step� i�e� when the logic
synthesis is performed� state�based methods can be applied because the
projections are typically small�

We have measured the quality of the resulting circuits by means of count�
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Figure ���� Speed�independent synthesis of the PPARBCSC����� example� sig�
nals x�� x�� x��

ing the number of literals� This measure shows that the circuits synthesized
by our approach are comparable to those obtained by global optimization
techniques� As a future work� it would be interesting to have other parame�
ters for measuring the quality of the synthesized circuits� and to be able to
guide the projection and synthesis by these measures�

Moreover� it would also be interesting to do a deep comparison of the
method presented in this work with respect to some alternative methods for
synthesizing AFSMs� For instance� in ����� algorithms are proposed for this
purpose� which are able to synthesize speci�cations where speed�independent
synthesis tools like petrify fail� However� it should be mentioned that the
methods proposed there restrict the type speci�cations to synthesize �no
input�output concurrency is allowed�� while neither petrify nor the approach
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Figure ���	� Speed�independent synthesis of the PPARBCSC����� example�
signals x�� x� z�

presented here do this type of restriction� As an example� the VME Bus
controller speci�cation used in several chapters of this book can not be
synthesized by the methods presented in �����
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benchmark states jP j jT j j�j Lit� CPU

Pfy ILP Pfy ILP

PPWKCSC����	 ��� 
� �� �� �� �� � �

PPWKCSC����	 ��
�� �� � �� � � 
� �

PPWKCSC����	 ���� ��� ��� �� � � ��� mem �

PPWKCSC�����	 ���� ���� �
� �
 �� � ��� time �

PPARBCSC����	 ��

� �� �� �� �� �� �� �

PPARBCSC����	 ���� ��� ��� �� �� ��� ��� �� ��

PPARBCSC����	 ���� ��� ��� �� �
 ��� ��� ����� ��

PPARBCSC�����	 ���� ���� ��� �� 
� � ��� time ��

TANGRAMCSC����	 
�� �
� �� � �� ��� �� �
�

TANGRAMCSC�
��	 ��� ��� ��� � � �
� mem � h

Table ���� Support computation� projection and synthesis compared to
state�based approach�
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Conclusions

The development of formal methods for the synthesis of concurrent systems
was the main goal of this work� Structural methods was the tool to imple�
ment our goal�

Despite their simplicity� asynchronous circuits are di�cult to design and
verify� Provided that they are the simplest type of concurrent systems� we
focused our attention on this type of systems� Several problems appear in the
synthesis of asynchronous circuits� The reason is that� given that there is no
global clock synchronizing each component of the circuit� the introduction of
errors in the early stages of the speci�cation happens very often� One of the
necessary conditions for a speci�cation to be implementable is the encoding
condition� When the speci�cation has a correct encoding� the circuit knows
which signal must generate and when� Therefore� to guarantee a correct
encoding is a crucial problem in the synthesis of asynchronous circuits�

The problem of encoding was the �rst one that we faced in this work�
Assuming that the speci�cation was given as an interpreted Petri net� we
developed a structural encoding technique that guarantees a correct encod�
ing in the transformed net� The technique� described in Chapter �� is based
on the insertion of signals into the original Petri net� To the best of our
knowledge� it is the �rst technique that guarantees an encoding for the class
of STGs with underlying FCLSPN�

The encoding technique developed brought us to a new problem� if we
transform the initial speci�cation� do we have to transform also the environ�
ment in order to guarantee that both� the speci�cation and the environment�
will understand each other & The question is in fact more general� and can
be asked for any type of reactive system� what are the conditions needed
to guarantee that two reactive systems can interact without having errors
or deadlocks & The answer can be found in Chapter �� where the reactive
systems are speci�ed as an automaton and the notion is called I�O Com�
patibility� We also developed a polynomial time procedure to verify I�O
Compatibility� and provided su�cient conditions when some facts of the

��
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systems are known� like observational equivalence�
We developed a kit of transformation rules� applied to a Petri net spec�

ifying a reactive system� that preserve the I�O Compatibility between the
system and its environment� and adapted the encoding technique to pre�
serve I�O Compatibility� This provides to the designer of a reactive system
some freedom to change the initial speci�cation� while preserving its correct
functioning on the environment where the system is supposed to work� The
theory is described in the �rst part of Chapter ��

Afterwards we realized that the design �ow that we had in mind needed
e�cient ways of verifying whether the initial speci�cation has a correct en�
coding� This would help� for instance� to prevent the application of the
encoding technique when the speci�cation already has a correct encoding�
Using the marking equation of the Petri net� we have developed ILP mod�
els for a fast veri�cation of either USC or CSC� The experimental results
show a signi�cant �orders of magnitude� speed�up with respect to existing
methods� Moreover� ILP models were introduced for supporting the de�
composition �projection� of the initial speci�cation into smaller ones while
preserving the implementability conditions� This crucial step allowed us to
use� in the �nal stage of our design �ow� state�based algorithms because the
resulting projections were typically small� The models were introduced in
Chapter �

Finally we merged all the theory developed into a full design �ow for
the synthesis of asynchronous circuits� Consequently we implemented it
as the moebius tool� Our approach for synthesis� presented in Chapter ��
provided a considerable speed�up with respect to existing approaches� When
compared to state�based methods� which can perform global optimization
techniques� the tool proved to obtain circuits with similar area� However�
the tool needed considerably less time to perform the synthesis� Very often
it happened that our approach was able to synthesize speci�cations not
implementable by state�based methods� due to the state explosion problem�

For each one of the problems faced in this work� more work is expected
to be done in the future� First� we are interested in extending the encoding
technique to bigger classes than the FCLSPN� This will allow to apply the
full design �ow to more speci�cations�

Second� extending also the kit of synthesis rules presented in Chapter �
will allow to o�er more situations where the system can be changed� Three
dimensions can be considered for extension� i� to add new rules to the ex�
isting kit� ii� to weaken the conditions under which the rules can be applied�
and iii� to extend the class of Petri nets where the rules can be applied�

Third� it is interesting to adapt the I�O Compatibility to more complex
models� Some work has been doing for adapting I�O Compatibility to the
model of Team Automata ����� Team automata is a formal framework for
the speci�cation and analysis of Computer Supported Cooperative Work
�CSCW�� In a team automata� the type of synchronization between subsys�
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tems is also a variable of the model� Several concepts change when trying
to adapt the I�O Compatibility notion to team automaton� the concept
of deadlock� for instance� is strongly related to the type of synchronization
that the components must follow� and therefore� depending on the type of
synchronization established� a system can be considered deadlocked or not�

As a fourth research direction� we are interested in the study of the com�
plexity of the encoding problem for general marked graphs� More speci��
cally� we want to �nd ILP models where the integrality constraint can be
avoided and the model� provided that the marking equation characterizes
reachability for marked graphs� still characterizes the problem of the encod�
ing but only has polynomial complexity�

Finally it is also interesting to study techniques that alleviate the com�
plexity of the ILP models introduced in Chapter � One way of alleviating
the complexity is reducing the incidence matrix of the problem� The prob�
lem that we want to study is how to reduce the incidence matrix in a way
that no spurious solutions are introduced when using the marking equation�
to approximate the reachability graph� We have developed some models
that� using an SM�cover of the Petri net� reduce drastically the size of the
matrix but still some work must be done to guarantee that no new spurious
solutions are introduced�
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