
Structural Methods for the Synthesis of

Well�Formed Concurrent Speci�cations

Josep Carmona Vargas

Draft submitted in Partial Ful�llment of the Requirements

for the Degree of Doctor in Computer Science

Universitat Polit�ecnica de Catalunya

Software Department

�

A todos aquellos que siempre estar�an dentro de m���

�

Acknowledgments

I would like to thank my advisor Jordi Cortadella� who showed me what
real research is� It is di�cult to summarize in a paragraph all the help and
encouragement that Jordi has been giving to me in the last four years� I am
really grateful to him and hope that we will keep on working together in the
future�

I would also like to thank my colleagues in the Escola Polit�ecnica Supe�
rior de Castelldefels� and my former colleagues in the Software department
of the UPC� I am specially grateful to Jetty Kleijn and Grzegorz Rozenberg�
who hosted me nine months at the Leiden Institute of Advanced Computer
Science�

In the last four years� I had several discussions about the topics of my
thesis with people directly or indirectly related� I think it is fair to mention
them here� Enric Pastor� Javier Esparza� Alex Yakovlev� Victor Khomenko�
Josep Diaz� Luciano Lavagno� Peter Notebaert� Ivan Blunno� Jetty Kleijn�
Radu Negulescu� Michael Yoeli and some others� I also thank Sanjeevan
Kanapathipillai who decoded some of the cryptic English sentences found
in early stages of this manuscript�

This work was supported in part by a doctoral grant of the Generalitat
de Catalunya� grant �			FI�		�
�� by a grant in the SEGRAVIS project
�Syntactic and Semantic Integration of Visual Modeling Techniques� under
contract HPRN�CT��		��		�
� the Ministerio de Educaci�on y Ciencia of
Spain under contract CICYT TIC �		����
� and by the Asynchronous Cir�
cuit Design Work Group �ACiD�WG�� contract IST������������

Finally� I would like to thank all my family and friends for obvious rea�
sons� and thanks to music� for always being there whenever I needed it�

�

Preface

A speci�cation of a concurrent system describes a set of components that
operate in a parallel environment and eventually interact� When modeling
such concurrent behavior� the set of states that the system can reach are
typically very large or even in�nite� This phenomenon is known as the state
space explosion problem� Consequently� algorithms that work on the state
space of such type of systems su�er from the state space explosion problem�
thus having high complexity�

Formal methods is a convenient tool for the analysis� veri�cation and
synthesis of concurrent systems� They are mathematically�based languages�
methods and tools that can be used in some cases despite the complexity
of the system under consideration� Structural methods are formal methods
that use the structure of the model in order to reason about its underlying
behavior� Those methods are specially suited when the system is large
and highly concurrent� In this work we present structural methods for the
synthesis of concurrent systems� with direct application to asynchronous
circuits�

Asynchronous circuits are the simplest class of concurrent systems� De�
spite of their simplicity� problems like the state space explosion problem
already exist� Therefore� state�based algorithms for the automatic synthesis
of asynchronous circuits can only synthesize small size speci�cations� This
work provides structural methods for the synthesis of large speci�cations�
The methods developed perform as a state�based method would do if there
was enough memory or machine�power� By using graph algorithms or linear
algebra� the design �ow presented avoids the computation of the whole state
space� Experimental results show the signi�cant improvement with respect
to existing approaches�

�

Contents

� Introduction ��

� Basic De�nitions ��

��� Preliminaries ��

����� Sets ��

����� Vectors and Matrices �	

����� Sequences ��

��� Reactive Systems ��

��� Transition Systems ��

��� Petri Nets ��

�� Linear Algebra and Petri Nets � � � � � � � � � � � � � � � � � � ��

���� Linear Programming ��

���� Approximation of the Reachability Set of a PN � � � � �	

��� Asynchronous Circuits ��

����� Classes of Asynchronous Circuits � � � � � � � � � � � � ��

����� Control Circuits ��

����� State Graphs ��

����� Signal Transition Graphs � � � � � � � � � � � � � � � � ��

���� Synthesis of Speed�Independent Circuits � � � � � � � � ��

� Compatibility of Reactive Systems ��

��� Introduction ��

��� Properties of Reactive Transition Systems � � � � � � � � � � � ��

��� I�O Compatibility� ��

��� A Polynomial�time Decision Procedure for I�O Compatibility ��

�� I�O Compatibility and Observational Equivalence� � � � � � � 	

���� Observational Equivalence � � � � � � � � � � � � � � � � 	

���� A Su�cient Condition for I�O Compatibility� � � � � � �

��� Conclusion �

� Transformations for Synthesis ��

��� Introduction �

��� I�O Compatible Transformations � � � � � � � � � � � � � � � � ��

�

�	 CONTENTS

����� Kit of PN Transformations � � � � � � � � � � � � � � � ��
����� I�O Compatible Transformations over RPN � � � � � � ��

��� Encoding Technique ��
����� Encoding Transformation � � � � � � � � � � � � � � � � ��
����� I�O Compatible Encoding Technique over STG � � � �
�

��� Conclusion �	

� ILP for Veri�cation and Synthesis 	�
�� Introduction ��
�� ILP for Verifying State Encoding � � � � � � � � � � � � � � � � ��

���� ILP for USC Checking � � � � � � � � � � � � � � � � � � �
���� ILP for CSC Checking � � � � � � � � � � � � � � � � � � �

�� ILP for Synthesis ��
���� Computing a Support for Synthesis � � � � � � � � � � � ��
���� Projection into the CSC Support � � � � � � � � � � � � ��

�� Experimental Results for USC�CSC Checking � � � � � � � � � ��
� Conclusion �

 Synthesis of Asynchronous Circuits ���
��� Introduction �	�
��� The Design Flow �	�
��� Synthesis Examples �	�

����� Synthesis of the VME Bus Controller � � � � � � � � � �	�
����� Synthesis of the PPARBCSC����� Example � � � � � � � � ��	

��� Experimental Results ��	
�� Conclusion ���

� Conclusions ���

Chapter �

Introduction

Concurrent systems have been studied for the last forty years by the Com�
puter Science community� From the beginning� it was clear that the use
of mathematically�based languages� methods and tools represented the best
way for specifying and analyzing such systems� This is what formal methods
are� theories that allow one to construct or verify complex systems� In some
cases� formal methods can be used despite the complexity of the concurrent
system�

It is widely accepted that there is not a unique formal model for the
speci�cation and analysis of a concurrent system� In the last two decades
several new models appeared� which contributed to a deeper understanding
of how concurrent systems work� and to realize what were the di�culties in
modeling them� Among other formal models� we can mention Petri nets ��
��
CCS ��� CSP ����� Temporal Logic ���� and I�O automata �	��

Once the speci�cation model is chosen� the designer must be provided
with a kit of methods that allow the design and veri�cation of the concurrent
system under consideration� The whole process of design and veri�cation
is called system engineering� and the development of e�cient methods and
tools for each one of those two steps represents one of the biggest challenges
for today�s technology� Many researchers in Computer Science in the last
decades have been addressing this issue� and still a lot needs to be done in
the future �����

The need for more research on developing new methods and tools for
the synthesis and veri�cation of concurrent systems is because most of the
existing methods are very complex� The hardness in the complexity of the
algorithms is due to the fact that most of the methods known up�to�date can
only be applied when the underlying state space is known� In general� the
state space corresponding to the speci�cation of a concurrent system is ex�
ponential on its size� This phenomenon is known as the state space explosion
problem� Even when using implicit data structures ���	�� or partial order
approaches ����� it is not enough to guarantee the avoidance of exponential

��

�� CHAPTER �� INTRODUCTION

state spaces�
The state space explosion problem appears even if the concurrent sys�

tem in consideration describes a very restricted behavior� For instance�
the behavior can be restricted to only allow binary actions to take place
in the system� thus describing an asynchronous circuit� This class of sys�
tems represents the simplest concurrent systems that one can deal with�
an asynchronous circuit is simply de�ned as an arbitrary interconnection of
gates that compute some function� Despite its simplicity� the development
of theories and methods for asynchronous circuit design and veri�cation is
important because�

�� Successful theories and methods working in the simplest case �i�e�
asynchronous circuits� can be generalized to bigger classes of concur�
rent systems�

�� Asynchronous circuits describe a more natural way of computing when
compared to clocked �synchronous� circuits� o�ering a di�erent ap�
proach to digital systems design�

Despite the second reason noted above� nowadays digital systems are
synchronous� in the underlying circuit of every digital system� a global sig�
nal �the clock� makes every component to be aware of when it is supposed
to �nish its computation� This process is repeatedly done even if the com�
ponent itself has no computations to perform� Therefore� it is natural that
power consumption and performance problems can appear in circuits de�
signed according to the synchronous paradigm� Moreover� the fact that a
global signal is distributed along the circuit makes almost impossible to de�
sign fully modular synchronous circuits� Some other drawbacks� like the
problem of the clock skew and the Electromagnetic Compatibility �EMC� are
also present in the synchronous paradigm� Several papers and books in the
literature highlight the limitations of synchronous circuits ���
�� ����

The asynchronous paradigm is free from all the problems existing in
the synchronous paradigm� It is� by de�nition� modular and the power
consumption in every asynchronous circuit is clearly lower compared to an
equivalent synchronous circuit� because computation is only performed when
needed� All the other problems of synchronous circuits are also naturally
avoided by the asynchronous paradigm ���

Despite the clear advantages of asynchronous circuits� they are seldom
used� The main reason is because� in general� asynchronous circuits are very
di�cult to design� For designing a synchronous circuit� one must simply de�
�ne the combinational logic necessary to compute the function� and surround
it with latches ����� Then by adapting the clock rate long enough to allow
the combinatorial circuit to produce its expected output� the designer avoids
the existence of errors on the circuit�s function �called hazards�� Note that
in this way� even if the circuit performs very rarely the most time consuming

��

computation �� the clock cycle in an synchronous circuit is determined by
��

On the contrary� to prevent hazards from appearing in an asynchronous
circuit can be sometimes an art� especially if the system under consideration
is a complex one of medium�big size� This is because in an asynchronous
circuit� the fact that no global synchronization exists implies that for per�
forming a given function� the system can progress into several intermediate
states that result from the inherent parallelism of the asynchronous model�
Given that every intermediate state is valid for the system� the designer
must ensure that the state itself is free from hazards� For large and com�
plex systems� this task can be almost impossible to perform manually� The
development of methods and tools for the automated design �synthesis� and
veri�cation of asynchronous circuits is one of the hot topics addressed by
several researchers in the last two decades ��
� ��� ��� �� �� ���� The work
presented here describes a novel approach for the synthesis of asynchronous
circuits�

In the past few years� several researchers have provided reasons about
why it is needed to start thinking of introducing asynchronous ideas in ac�
tual synchronous systems� Following this advice� some of the important
microelectronics companies are incrementally introducing asynchronous de�
sign principles in their designs� Philips can be considered the main company
on exploiting asynchronous� Other companies such as Intel� Sun� IBM and
In�neon are also trying to get rid of the clock in some parts of their designs�
This mixture between clocked and unclocked circuits made part of the asyn�
chronous community to start focussing their research on less radical archi�
tectures� like the Globally Asynchronous Locally Synchronous �GALS�� In a
GALS system� modules are globally managed by means of handshakes �i�e�
asynchronously�� but the modules are considered to be locally synchronous�
This architecture allows the designer to decouple timing constraints on di�er�
ent modules and therefore some of the typical problems of pure synchronous
circuits like the clock skew are alleviated� Moreover� the GALS approach
allows one to substitute synchronous modules by asynchronous ones� while
preserving the functionality of the circuit ���� This fact also motivates the
need to continue working on the development of methods and tools for the
automatic design of asynchronous circuits�

Although several academic tools exist for the synthesis of asynchronous
circuits� it is assumed that there is a big di�erence these days between CAD
synthesis tools for synchronous and asynchronous circuits� There is still a
lot to be done within the asynchronous community in order to develop CAD
tools with similar degree of maturity of the synchronous approach� Some
of the leading researchers on asynchronous are still pointing out the lack
of mature CAD tools for asynchronous design� in the International Confer�
ence on Application and Theory of Petri Nets �ICATPN�	��� the author of
the invited paper �
�� claimed the need of tools for the synthesis of asyn�

�� CHAPTER �� INTRODUCTION

chronous controllers from an interpreted Petri net representing a circuit� In
the suggested approach� the Petri net is considered to be obtained from a
syntax�directed translation of a Hardware Description Language �HDL� pro�
gram specifying the behavior to synthesize� Two main features characterize
the Petri nets obtained by this approach� ��� the size is linear on the size
of the HDL program� but the state space is usually very large� and ��� the
net inherits the good structure of the program�

Moreover� the paper stresses the importance of the application of global
optimization� that can result in a signi�cant improvement of the quality of
the circuit synthesized� However� the existing approaches for performing
global optimization techniques can only be applied when the state space of
the underlying system is known� and therefore all those techniques su�er
from the well known state space explosion problem� Usually� global opti�
mization techniques can handle speci�cations with at most �	��	 binary vari�
ables� Even when applying partial order techniques ��
��� or using implicit
compact representations of the state space ���	�� does not help in general
to overcome the potential overhead of the state�based global optimization
methods�

In this thesis we provide the theory� methods and a CAD tool for the
synthesis of asynchronous circuits from interpreted Petri nets� Although
being able to synthesize any speci�cation in the class of Free�choice Petri
nets ������� we believe that the approach is specially well suited to be applied
to those speci�cations coming from a syntax�directed translation from a
HDL� The reason for this comes from the fact that the approach strongly
relies on using structural methods in almost all the stages of the synthesis
process� which can bene�t from the well�structuredness property of this type
of speci�cations�

The proposed design �ow can overcome the state space explosion prob�
lem by both using structural methods and by decomposing the system into
smaller subparts and performing the synthesis on each subpart afterwards�
The structural methods used are�

� Graph Theory� Mainly Petri net transformations� either to ensure
implementability of the speci�cation or for projecting the initial Petri
net into some set of variables� The transformations can also be applied
when trying to improve the �nal implementation according to some
objective function�

� Linear Programming� By using the marking equation of the inter�
preted Petri net to synthesize� it can be codi�ed in a integer linear
programming problem the check of some important implementability
conditions� It is also possible to use integer linear programming tech�
niques to support the process of decomposition of a speci�cation�

The experimental results obtained by our tool show that it can handle

�

Figure ���� Comparison for area of the synthesized circuits�

speci�cations with hundreds of binary variables� and the quality of the cir�
cuits obtained is comparable to the one obtained by state�based approaches�
As a motivating example for this work� Figures ��� and ��� present a com�
parison of the results obtained by our CAD tool and petrify ����� a well
known state�based CAD tool for the synthesis of asynchronous controllers�

Figure ��� presents a comparison on the number of literals synthesized
by each tool� It is signi�cant the similarity of the quality of both approaches�
despite of the fact that in the �rst approach global optimization techniques
have been applied to the complete state space of each speci�cation� while in
our approach the speci�cation has been decomposed and synthesized sep�
arately� This similarity in the solutions obtained happens frequently� It
means that� very often it is not necessary to compute the complete state
space for the synthesis of a given signal of the circuit�

A comparative analysis on CPU time is shown in Figure ���� The y�axis
depicts the logarithm of the time needed by each tool to perform the synthe�
sis� In the case of benchmarks ���� � and �	� the state�based tool was aborted
after ten hours of computation� The �gure shows a clear improvement on
orders of magnitude of our approach�

�� CHAPTER �� INTRODUCTION

In conclusion� we present a theory for the synthesis of asynchronous
controllers� The resulting CAD tool can synthesize speci�cations with the
same quality and signi�cantly less time than present state�based methods�
It can handle bigger speci�cations� provided that structural methods are the
core of this work�

Figure ���� Comparison for CPU time for synthesizing every benchmark�

Organization of the Thesis

The necessary background and formal de�nitions of the basic notions appear
in Chapter �� Once the mathematical preliminaries are introduced� four
main topics are addressed� Transitions Systems� Petri Nets� Linear Algebra
and Asynchronous Circuits�

Chapter � presents the conditions that two reactive systems must ful�ll in
order to interact without having errors or deadlocks� The relation described�

�

called I�O Compatibility� is then used in Chapter � to introduce a kit of
synthesis rules that can be applied to a Petri net specifying a reactive system�
It is shown how to apply those rules while preserving the I�O Compatibility
between the system and its environment� A structural encoding technique
for the synthesis of asynchronous circuits is also described in Chapter ��
which can also be modi�ed to preserve the I�O Compatibility�

Integer Linear Programming �ILP� techniques are used in Chapter to
present methods for the veri�cation and synthesis of asynchronous circuits�
The models introduced focuses on the problem of the encoding� in the ver�
i�cation part� ILP models are introduced to semi�decide the problem of the
correct encoding for asynchronous circuits� On the synthesis part� a novel
method is introduced that allows one to split a speci�cation into several
subparts while preserving the implementability conditions�

The whole theory introduced in Chapters �� � and is merged in Chap�
ter �� where a complete design �ow for the synthesis of asynchronous circuits
is presented� and �nally two examples of complete synthesis are described�

�� CHAPTER �� INTRODUCTION

Chapter �

Basic De�nitions

Las cosas que yo s�e
las sabe un tonto cualquiera

� Kiko Veneno� Salta la Rana

The necessary background for the theory presented in the following chap�
ters is introduced here� Section ��� describes the notation used throughout
the book� Section ��� presents reactive systems� the general class of systems
that are the object of study� Sections ��� and ��� describe two mathemat�
ical models� Petri nets and Transition systems� used to specify a reactive
system� Section �� presents the relation between the model of Petri nets
with the Linear Algebra theory� Finally� Section ��� de�nes formally what is
an asynchronous circuit� and explains how the synthesis of an asynchronous
circuit is performed� when some delay model is assumed�

��� Preliminaries

����� Sets

De�nition ����� Sets� A set X is a collection of distinct objects� called
elements or members� We use x � X to express that x is a member of the
set X�

Two ways of describing a set X are introduced�

� Exhaustive list of its elements� X � fa� b� cg� X � fx�� ���� xng�

� Members of the set must satisfy some condition� The format will be
X � fx jx satis�es condition �g where the condition can be expressed
either in natural language or as some predicate in �rst�order logic �

Given two sets X and Y � X � Y and X �� Y denote equality and
inequality of the sets X and Y � respectively� We write X � Y to denote

��

�	 CHAPTER �� BASIC DEFINITIONS

that X is a subset of Y � and X � Y to denote that X is a proper subset of
Y � i�e�� X � Y and X �� Y � X nY denotes the set of members of X that are
not members of Y � The Cartesian product of X and Y � denoted by X � Y
is de�ned by

X � Y � f�x� y� jx � X � y � Y g

and the operator can be de�ned for any given ��nite� arity� The Cartesian
product of X�� ����Xn is de�ned by

X� � ����Xn � f�x�� ���� xn� jx� � X� � ��� � xn � Xng

When all the sets are the same� the Cartesian product can be abbreviated
as Xn� For instance� X � X � X is X�� Moreover� in this situation more
than one dimension can be de�ned in the Cartesian product�

Xn�m � f��x�� ���� xm�� ���� �xn� ���� xm�� jxi � Xg

Finally� some symbols are used to denote universal sets�

� the set of rational numbers� Q

� the set of integers� Z

� the set of nonnegative integers� N

� the set of binary numbers� B � f	� �g

����� Vectors and Matrices

A vector v of dimension n over a set X is an element from Xn� i�e�� v � Xn�
It will be denoted by �v�� v�� ���� vn�� For instance� v � ��� ���� ��� is a
vector of dimension three over Q � i�e� v � Q� � Given two vectors x and y of
dimension n� x � y denotes the product of the two vectors� de�ned by

x � y � �x�y�� ���� xnyn�

Vector vjP denotes a new vector formed only by the components appear�
ing in the index set P �

A matrix C of dimension n�m over a set X is an element from Xn�m�
The operations vC and Cv denote the left and right products of matrix C
and the vector v� only de�ned if the dimensions agree� Along the book� a
matrix will be denoted with bold capitals and a vector with italics� The
symbol � denotes a vector such that every component is 	�

���� REACTIVE SYSTEMS ��

����� Sequences

Let � be a set� called alphabet� A �nite sequence �of length n� on � is a
mapping f�� ���� ng 	 �� We represent a �nite sequence � � f�� ���� ng 	 �
as the word x� x� ���xn� where xi � ��i�� for �
 i
 n� The empty sequence
is de�ned as � � � 	 �� with length 	� For instance� if � � fa� b� c� dg a
possible sequence of length on � is � � aaacd�

If � � x� x� ���xn and � � y� y� ���ym are �nite sequences then the con�
catenation of � and �� denoted by � �� is the sequence x� x� ���xn y� y� ���ym
of length n�m� For any sequence �� � � � ��

The operator ���� x� denotes the number of occurrences of x in �� For
instance� if � � aaacd� ���� a� � �� ���� c� � � and ���� b� � 	�

Finally� the projection of sequence � into set X� denoted by �jX � is a
new sequence obtained by removing from � those elements not belonging to
X�

��� Reactive Systems

Reactive systems ���� are systems that operate in a distributed environment�
The events observed in a reactive system can be either input events� output
events or internal events� An input event represents a change in the envi�
ronment for which the system must react� In contrast� an output event is
generated by the system and can force other systems in the environment to
react to� Finally� an internal event represents system�s local progress� not
observable by the environment� Typical examples of reactive system are a
computer� a television set and a vending machine�

In this work� we deal with the synthesis problem of reactive systems�
Given a system and its environment� a synchronization protocol is com�
mitted in such a way that� at any state� the environment is guaranteed to
produce only those input actions acceptable by the system� This assump�
tion about the environment is opposite to other models in the literature
like I�O automata ���� where the system must always be able to accept
environment�s actions�

More speci�cally� the problem faced in this work is� given the speci�ca�
tion of a reactive system� generate an implementation realizable with design
primitives that commits the protocol established with the environment� Here
we focus on the synthesis of asynchronous circuits �see Section ��� for a gen�
eral description of this type of systems�� where the events of the reactive
system are rising and falling signal transitions and the design primitives are
logic gates�

�� CHAPTER �� BASIC DEFINITIONS

a

b b

bb

c

c

c

c

d d
d d

�a�

a

b c d

�b�

Figure ���� �a� Transition System� �b� Petri net�

��� Transition Systems

A Transition System is an automaton which describes the behavior of a sys�
tem of processes� It contains a set of possible states and a set of transitions
representing potential changes of the system�s state� A general description
of the model and extensions can be found in ����

De�nition ����� Transition System� A Transition System �TS� is a ��
tuple A � �S��� T� sin� where

� S is the set of states

� � is the alphabet of events

� T � S ��� S is the set of transitions

� sin � S is the initial state

Figure ����a� depicts an example of TS� The initial state is denoted by
an incident arc without source state�

De�nition ����� Reachability in a TS� The transitions are denoted by
�s� e� s�� or s

e
	 s�� An event is said to be enabled in the state s� denoted by

the predicate En�s� e�� if �s� e� s�� � T � for some s�� The reachability relation
between states is the transitive closure of the transition relation T � The
predicate s

�
	 s� denotes a sequence of events � that leads from s to s� by

�ring transitions in T � A state s is terminal if no event is enabled in s� A
TS is �nite if S and T are �nite sets�

De�nition ����� Language of a TS� A TS can be viewed as an automa	
ton with alphabet �� where every state is an accepting state� For a TS A� let
L�A� be the corresponding language� i�e� its set of sequences starting from
the initial state�

���� PETRI NETS ��

De�nition ����� Deterministic TS� A TS is deterministic if for each
state s and each event e there can be at most one state s� such that s

e
	 s��

The synchronous product of two transition systems is a new transition
system which models the interaction between both systems ���� This oper�
ator will be used in Chapter � to present methods for checking the correct
interaction between two reactive systems�

De�nition ����� Synchronous Product� Let A � �SA��A� TA� sAin�� B �
�SB ��B� TB � sBin� be two TSs� The synchronous product of A and B� denoted
by A�B is another TS �S��� T� sin� de�ned by

� sin � hsAin� s
B
ini � S

� � � �A ��B

� S � SA � SB is the set of states reachable from sin according to the
following de�nition of T �

� Let hs�� s��i � S�

� If e � �A�B� s�
e
	 s� � TA and s��

e
	 s�� � TB� then hs�� s��i

e
	

hs�� s��i � T

� If e � �A n �B and s�
e
	 s� � TA� then hs�� s��i

e
	 hs�� s��i � T

� If e � �B n �A and s��
e
	 s�� � TB� then hs�� s��i

e
	 hs�� s��i � T

� No other transitions belong to T

The evens in a TS can be interpreted as the actions taking place in a
reactive system� This will allow to model a reactive system with a TS� An
interpreted TS is called reactive transition system�

De�nition ����
 Reactive Transition System� A Reactive Transition
System �RTS� is a TS �S��� T� sin� where � is partitioned into three pairwise
disjoint subsets of input ��I�� output ��O� and internal ��INT � events�
�OBS � �I � �O is called the set of observable events

��� Petri Nets

A Petri net is a mathematical representation of a concurrent system� The
theory of Petri nets was introduced by Carl Adam Petri in his dissertation
Kommunikation mit Automaten ��
�� A good summary on Petri net theory
can be found in �
�� whereas ���� presents an up�to�date survey both in
theory and applications of Petri nets nowadays�

The model is composed of two parts� a net and a marking� The net
represents the static structure of the system� while the marking denotes a

�� CHAPTER �� BASIC DEFINITIONS

p1

t2

p5

t6t5

p4p2

t1

p3

t4t3

p6 p7

t7

Figure ���� Petri net�

distributed global state� The description of the net is done by specifying
two types of nodes and a �ow relation that makes the underlying graph to
be bipartite� Nodes called places are used to denote atomic states of the
system� while nodes called transitions denote changes of the states� Finally�
a marking is a distribution of tokens over the places�

De�nition ����� Petri Net� A Petri Net �PN� is a
	tuple N � hP� T� F�m�i�
where�

� P is the set of places�

� T is the set of transitions�

� F � �P � T � � �T � P �	 N is the �ow relation� and

� m� � NjP j is the initial marking�

For any two nodes x and y� if F �x� y� � 	 then there is an arc from x to y�
with weight F �x� y�� Ordinary nets are those where F � �P �T �� �T �P �	
f	� �g� The net of Figure ��� is ordinary� Along this work we will assume
always ordinary nets�

A marking of a PN is a jP j�vector m� where the component p of the vector
is a natural number� If k is assigned to place p by marking m �denoted
m�p� � k�� we will say that p is marked with k tokens at m� Figure ���
shows a graphical view of a Petri net� Typically� transitions are denoted
by boxes �or black bars�� places are denoted by circles and the �ow relation
as directed arcs between the two sets� forming the bipartite structure� The
markingm of a place p is graphically indicated by placingm�p� tokens �black
dots� on each place p� In the PN of Figure ���� m��p�� � � and m��pi� � 	�
for �
 i

� or on its vector notation m� � ��� 	� 	� 	� 	� 	� 	� ��

The following de�nitions assume a given PN N � �P� T� F�m���

���� PETRI NETS �

De�nition ����� Paths and Cycles� A path is a sequence u� � � � ur of
nodes such that �i� �
 i 	 r � F �ui� ui��� � 	� A path is called simple if
no node appears more than once on it� A simple path is called a cycle if all
nodes along path are dierent except the initial and the �nal node�

De�nition ����� Pre�sets� Post�sets� Given a node x � P � T � the set
�x � fy jF �y� x� � 	g is the pre	set of x and the set x� � fy jF �x� y� � 	g
is the post	set of x�

For instance� in Figure ���� �t� � fp�g� t
�
� � fp�� p�g�

�p� � ft�g and
p�� � ft�� t�g�

De�nition ����� Enabledness and Firing Rule� A transition t is en�
abled at marking m if each place p � �t is marked with at least F �p� t� tokens�
When a transition t is enabled� it can �re by removing F �p� t� tokens from
place p � �t and adding F �t� q� tokens to each place q � t��

In the PN of Figure ���� the only transitions enabled at the initial marking
are t� and t��

De�nition ����� Reachability and Feasible Sequences� A marking m�

is reachable from m if there is a sequence of �rings t�t� � � � tn that transforms
m into m�� denoted by m�t�t� � � � tnim�� A sequence of transitions t�t� � � � tn
is a feasible sequence if it is �rable from m�� The set of reachable markings
from m� is denoted by �m�i�

For instance� in the PN of Figure ���� the marking m � �	��				� is reach�
able through the feasible sequence t�� while the marking m� � �		��			� is
not reachable�

It is widespread the use of a transition system to describe the behavior
of a system of processes ���� The model of Petri nets does not represent
the behavior explicitly� but the causality relations among the set of actions
of the system� However� by considering the set of reachable markings as
the set of states of the system� and the transitions among this markings
as the transitions between the states� a transition system can be obtained
representing the underlying behavior of the PN� This transition system is
called reachability graph�

De�nition ����
 Reachability Graph� Given a PN N � �P� T� F�m���
its reachability graph is a transition system� denoted by RG�N� and de�ned
by

� �m�i is the set of states

� T is the alphabet of events

�� CHAPTER �� BASIC DEFINITIONS

� fhm� e�m�i jm�m� � �m�i �m
e
	 m�g is the set of transitions

� m� is the initial state

Figure ��� depicts an example of reachability graph �left�� associated to the
PN on the right�

De�nition ����� Deterministic PN� A PN N is deterministic if RG�N�
is deterministic�

De�nition ����	 Liveness� A PN is live i every transition can be in	
�nitely enabled through some feasible sequence of �rings from any marking
in �m�i�

De�nition ����� Boundedness and Safeness� A PN is k	bounded if no
marking in �m�i assigns more than k tokens to any place of the net� A net
is bounded if it is k	bounded for some k� A PN is safe if it is �	bounded�

The PN of Figure ��� is an example of live and safe PN�

De�nition ������ Home Marking and Reversibility� A marking is a
home marking if it is reachable from every marking of �m�i� A net is re�
versible if the initial marking m� is a home marking�

Following the sequence of �rings in the PN of Figure ���� it can be seen that
the initial marking of the PN is a home marking� Therefore the net is re�
versible� However� if we assign m�

� � �	��				� as initial marking� the net is
no longer reversible because m�

� is not a home marking� Note that reversibil�
ity is neither necessary nor su�cient condition for liveness�boundedness� the
net of Figure ��� with m�

� as initial marking is still live and safe�

De�nition ������ Triggering and Disabling� Let R � �m�i be the set
of markings where transition ti is enabled� Transition tj triggers transition ti
if there exists a reachable marking m such that m�tjim�� m �� R and m� � R�
Transition tj disables transition ti if there exists a reachable marking m
enabling both ti and tj� but in the marking m� such that m�tjim�� ti is not
enabled�

The triggering and disabling relations are illustrated using the PN of Fig�
ure ���� The only transition enabled at marking m � �					��� is t�� After
�ring t� the initial marking is reached� where both transitions t� and t� are
enabled� Therefore t� triggers both t� and t�� Moreover� at m� t� disables
t� and vice versa�

By imposing restrictions on the underlying structure of a Petri net� sev�
eral subclasses can be de�ned� In this work three subclasses are of interest�
State Machines� Marked Graphs and Free choice PNs�

���� PETRI NETS �

Figure ���� Non�free choice net�

p1

t2

p5p4

p7

t7

t6t5

p6

p2

t1

t3

p6

t5

p1

t2

p4

t7

p3

t4 t6

p5

p7

t7

t1

p1

t2

p2

t1

p3

t4t3

p6

p1

p7

t7

MG2

SM2

MG1

SM1

Figure ���� An MG�cover �MG��MG�� and an SM�cover �SM��SM�� of PN
from Figure ����

A State Machine models a sequential system� where con�icts between
events can be expressed but concurrency is only possible if more than one
token is distributed over the net� On the other side� a Marked graph repre�
sents a concurrent�synchronizing system where con�icts between events do
not exist�

A Free choice PN can be seen as a State Machine enriched with Marked

�� CHAPTER �� BASIC DEFINITIONS

Graph�like concurrency and synchronization� Informally� in a Free choice net
whenever some output transition of a place p is enabled� all the transitions
in the post�set of p are enabled� and therefore it is always possible to freely
choose! which one of them �res� This class of nets plays a central r"ole in
the theory of net systems because although being able to express non�trivial
behaviors� there still exist powerful methods for its analysis and synthesis� A
typical example is the reachability problem� EXPSPACE�hard for arbitrary
nets ����� but polynomial for the class of free choice live safe and reversible
Petri nets ������ Figures ��� and ��� depict examples of a Free Choice and
a non Free choice Petri net� respectively�

De�nition ������ Petri Net subclasses�

� A State Machine �SM� is a PN such that each transition has exactly
one input place and one output place�

� A Marked Graph �MG� is a PN such that each place has exactly one
input transition and one output transition�

� A Free choice Petri net �FC� is a PN such that for every place p and
transition t� if F �p� t� � 	 then for every place q such that F �q� t� � 	�
the equality F �p� t� � F �q� t� holds�

From the previous de�nition it can be seen that a PN which is an SM
it is also FC� Analogously� if a PN is a MG it is also FC� The converse to
the two previous inclusions does not hold� Figure ��� shows a FC PN which
is neither a SM nor a MG� However� a live and safe free�choice PN can be
decomposed into a set of SMs or MGs�

Theorem ����� Free�choice decomposition ����� A free	choice live and
safe Petri net �FCLSPN� can be decomposed into a set of strongly	connected
state	machines �marked graphs�� An SM�cover �MG�cover� of a FCLSPN is
a subset of state machines �marked graphs� such that every place �transi	
tion� is included at least in one state machine �marked graph�� Moreover� a
FCLSPN can be also decomposed into a set of strongly	connected one�token
state	machines� i�e� state	machines that at most contain one token at any
reachable marking�

Figure ��� shows MG and SM covers of the FCLSPN depicted in Figure ����
We use PNs to model reactive systems �see Section ����� in order to derive

algorithms that work at the net level and can implement the behavior of the
system� For that purpose a notion of PN modeling a reactive systems is next
introduced� leading to the de�nition of reactive Petri net� The new model
can be seen as a labeled Petri net ����� where labels on transitions represent
events occurring in a reactive system�

���� LINEAR ALGEBRA AND PETRI NETS ��

De�nition ������ Reactive Petri Net� A Reactive Petri Net �RPN� is
a ��tuple ��P� T� F�m�����#� where

� �P� T� F�m�� is a PN

� � is partitioned as in De�nition �����

� # � T 	 �

Section ����� contains examples of RPNs modeling digital circuits�

Finally� the concept of redundant place is de�ned�

De�nition ������ Redundant place� Let N � �P � fpg� T� F�m�� be
a Petri net� Place p is called redundant if the net N � � �P� T� F ��m�

��
derived from removing p in N has the same set of feasible sequences� i�e
L�RG��N�� � L�RG�N ����

��� Linear Algebra and Petri Nets

Linear algebra theory ���� has proven to be useful for facing many problems
in very di�erent areas ���� Chapter contains methods for the veri�cation
and synthesis of reactive systems using linear algebraic techniques� The basic
theory supporting the methods of Chapter is presented in this section�

����� Linear Programming

A linear inequality or constraint is given by an integral vector a � Zn and
an integer b� It is represented by

a � x
 b

and it is feasible over a set A if there exists some assignment k � An to x
satisfying a � k
 b�

A system of linear inequalities is a set of linear inequalities� It is feasible
if there exists a vector that satis�es all inequalities of the set� If it is �nite
then it has a matrix based representation

A � x
 vb

where the vectors a of the linear inequalities are the rows of the matrix A
and the numbers b are the components of the vector vb�

�	 CHAPTER �� BASIC DEFINITIONS

De�nition ����� Linear Programming Problem� A linear program�
ming problem �LP� is a system A�x
 b of linear inequalities� and optionally
a linear function cT � x called the objective function� A solution of the prob	
lem is a vector of rational numbers that satis�es the constraints� A solution
is optimal if it maximizes the value of the objective function �over the set of
all solutions�� An LP is feasible if it has a solution�

De�nition ����� Integer Linear Programming Problem� An integer
linear programming problem �ILP� is a LP where additionally� the integrality
on the set of solutions is required�

The complexity of solving a linear problem depends on the domain under
consideration�

Proposition ����� Complexity of Linear Programming �����

�� Each system of linear equalities over Q can be solved in polynomial
time �LP��

�� The solubility of systems of linear inequalities over Z or N is NP	
complete �ILP��

����� Approximation of the Reachability Set of a PN

Computing the reachability graph from a given PN is a very hard problem�
because the size of the reachability graph may grow exponentially with re�
spect to the size of the PN� or it even can be in�nite� The main reason is
that the concurrency in the PN must be implicitly expressed in the reacha�
bility graph� The interested reader can �nd in �
�� a discussion on the r"ole
of concurrency in relation with the size of the reachability graph�

Therefore it is interesting to approach the problem of reachability using
other models or techniques� In this section we describe how to use ILP

techniques to compute approximations of reachable markings of a PN�

Given a �ring sequence m�
�
	 m of a PN N � the number of tokens for

each place p in m is equal to the number of tokens of p in m� plus the
number of tokens added by the input transitions of p appearing in � minus
the tokens removed by the output transitions of p appearing in ��

m�p� � m��p� �
X
t��p

���� t�F �t� p��
X
t� p�

���� t�F �p� t�

The concepts of incidence matrix and Parikh vector are next introduced�

���� LINEAR ALGEBRA AND PETRI NETS ��

p5

t2

p4

t1

p1

t5 t6

p3p2

t3 t4

�a�

1

0

0

0

0

−1

+1

+1

−1

−1

+1

+1

+1

−1

+1

−1

−1

−1

−1

−1

+1 +1

0

0

0 0

0 0

0

0

0

0 0

0

0

3

2

0

0

1

1

σ

+

0

0

0

2

0

=

0m = m + N

�b�

10000

01100

00011

01001 00101

t3 t4

t3 t4 t3
t4

t1

t2

t4

t5 t6

t3

01010

00002

00110

00200

00020

02000

�c�

Figure ��� �a� Petri net� �b� Spurious solution m � �			�	�T � �c� Potential
reachability graph�

De�nition ����� Incidence matrix of a PN� The matrix N � ZjP j�jT j

de�ned by

N�p� t� � F �p� t�� F �t� p�

is called the incidence matrix of N �

De�nition ����� Parikh vector� Let � be a feasible sequence of N � The
vector
� de�ned by

� � ����� t��� �������� tn�� �����

is called the Parikh vector of ��

Using the previous de�nitions� the token conservation equations for all
the places in the net can be written in the following matrix form�

�� CHAPTER �� BASIC DEFINITIONS

m � m� �N �
�

Which leads to the de�nition of the linear description of the reachability set
by means of an ILP�

De�nition ����� Marking Equation� If a marking m is reachable from
m�� then there exists a sequence � such that m�

�
	 m� and the following

problem has at least the solution X �
�

m � m� �N �X �����

The equation m � m� �N �X is called the marking equation�

Special attention must be paid in previous de�nition� the marking equa�
tion only provides a necessary condition for reachability� If the marking
equation is infeasible� then m is not reachable from m�� but the inverse does
not hold in general� there are markings satisfying the marking equation
which are not reachable� Those markings are said to be spurious �
��� Fig�
ure ���a���c� presents an example of spurious marking� the Parikh vector

� � ���		��� and the marking m � �			�	� are a solution to the mark�
ing equation of the Petri net of Figure ���a�� as shown in Figure ���b���
However� m can not be reachable by any feasible sequence� only sequences
visiting negative markings can lead to m� Figure ���c� depicts the graph
containing the reachable markings and the spurious markings �shadowed��
This graph is called the potential reachability graph� The initial marking is
represented by the state ��				��

��� Asynchronous Circuits

Asynchronous circuits are digital circuits that react to the changes of their
input signals according to the functionality of the gates of the circuit �����
Synchronous circuits can be considered as a particular case of asynchronous
circuits in which some speci�c design rules and operation mode are imposed�

In general� any arbitrary interconnection of gates is considered an asyn�
chronous circuit� The synthesis problem consists in generating a proper
interconnection of gates that commits a correct interaction with the envi�
ronment according to some speci�ed protocol�

This section presents some discussion about the di�erent types of asyn�
chronous circuits nowadays� Afterwards the models used in this work for
the speci�cation and synthesis of asynchronous circuits are introduced�

�Both in the �gure and the explanation� we abuse the notation and skip the commas
in the de�nition of Parikh vectors and markings�

���� ASYNCHRONOUS CIRCUITS ��

����� Classes of Asynchronous Circuits

Asynchronous circuits can be classi�ed as being speed	independent� delay	
insensitive or bounded	delay circuits� depending on the delay assumptions
that are made �����

� Speed	independent circuits ��� �SI�� the behavior of a circuit in this
class is insensitive to the delay of its components �gates�� although it
can be sensitive to variations in the delays of the wires�

� Delay	insensitive circuits �DI�� the behavior is independent of both
gate and wire delays� This class of circuits although being very ro�
bust� has proven to be very small� and therefore the class of possible
behaviors implemented is limited ����

� Asynchronous bounded	delay circuits� the behavior is correct under
some delay assumptions�

In this work we focus on the synthesis of speed�independent circuits�
In modern VLSI technology� it may appear unrealistic the SI assumption
because communication across a large chip can actually take much longer
than any gate switching� However several reasons induce to consider SI

circuits useful nowadays �����

� The optimization capabilities of the more robust class of DI circuits
are almost non	existent� and synthesis techniques amount to a little
more than a syntax	driven translation from a speci�cation language
and peephole optimizations�

� any point	to	point communication can be modeled as a computation
delay without loss of generality�

� it is possible to enforce communication protocols between subcircuits
that ensure no dependency on communication delays� and

� it enables the use of Boolean optimization techniques to e�ciently im	
plement the circuit�

����� Control Circuits

The most common way to design hardware is by separating the design of
control logic from that of datapath logic� Designing the control logic means to
implement the control �ow of the system modeled� while designing datapath
logic means to deal with the operational part required in the system �
���
The design of the datapath can be carried on by using standard library
components�

�� CHAPTER �� BASIC DEFINITIONS

DSr

DSw

DTACK

LDS

LDTACK

Device

VME Bus

Controller

D

Transceiver
DataBus

�a�

dsr

lds

ldtack

d

dtack

�b�

Figure ���� �a� Interface� �b� Timing Diagram�

In this work we focus on the synthesis of control logic circuits� We are
interested in the synthesis of systems exhibiting a complex control logic
structure� where actual methods for synthesis can not succeed�

����� State Graphs

Asynchronous circuits can be modeled with a RTS� where the events repre�
sent changes in the value of the system signals� The VME Bus Controller
example in Fig� ��� will be used for illustrating the concepts� The interface is
depicted in Fig� ����a�� where the circuit controls data transfers between the
bus and the device� Figure ����b� shows the timing diagram corresponding
to the read cycle�

A transition labeled as xi� �xi�� denotes a rising �falling� of signal xi�
it switches from 	 to � �� to 	�� Figure ��
 shows the RTS specifying the be�
havior of the bus controller for the read cycle� Each state of an asynchronous
circuit can be encoded with a binary vector� representing the signal values
on that state� The set of encoded states are consistently encoded if no state
can have an enabled rising �falling� transition a� �a�� when the value of
the signal in that state is � �	� �see Section ���� for a formal de�nition
of consistency�� Correspondingly� for each signal of a RTS representing an
asynchronous circuit� a partition of the states of the RTS can be done by
separating the states where the signal has value one� from those where the
signal has value zero� This partition can only be done when the underly�
ing asynchronous circuit is consistently encoded� Figure ����a� shows the
partition induced by considering signal lds in the RTS of Fig� ��
� Each
transition from LDS�� to LDS�� is labeled with lds� and each transition
from LDS�� to LDS�� is labeled with lds�� A binary vector can be assigned
to each state if such partition is done for each signal of the system� The
encoded transition system is called State Graph�

���� ASYNCHRONOUS CIRCUITS �

dsr+

dsr+

dsr+

dtack+ dsr-

d-

dtack-

dtack-

dtack-

ldtack- ldtack- ldtack-

lds-lds-lds-ldtack+

d+

lds+

Figure ��
� Transition System specifying the bus controller�

dsr+

dsr+

dsr+

dtack+ dsr-

d-

dtack-

dtack-

dtack-

ldtack- ldtack- ldtack-

lds-lds-lds-ldtack+

d+

lds+
LDS=0

LDS=1

�a�

dsr+

dsr+

dsr+

dtack+ dsr−

d−

dtack−

dtack−

dtack−

ldtack− ldtack− ldtack−

lds−lds−lds−ldtack+

d+

lds+

10000

10001

10111 11111 01111

01101

01100

01000
00000

00101

0010010100

10101
10101

�b�

Figure ���� �a� Partition induced by signal lds� �b� State graph of the read
cycle� States are encoded with the vector �dsr� dtack� ldtack� d� lds��

De�nition ��
�� State Graph� A State Graph �SG� is a ��tuple A �
�A��X � �� where

� A� � �S��� T� sin� is a RTS

� X is the set of signals partitioned into inputs �I�� observable outputs
�Obs� and internal outputs �Int�� and � � X � f���g � f�g � where
all transitions not labeled with the silent event ��� are interpreted as
signal changes

� � � S 	 B jX j is the state encoding function

Figure ����b� shows the SG of the bus controller� We will denote by
�x�s� the value of signal x in state s� The following de�nitions relate signal

�� CHAPTER �� BASIC DEFINITIONS

lds+

d+

dtack+ lds−

d−

dtack−

dsr+ ldtack+ ldtack−

dsr−

Figure ���� Signal Transition Graph specifying the bus controller�

transitions with states� For the sake of simplicity� the de�nitions assume
systems without silent events� Chapter � presents the conditions under
which a silent event can be removed while preserving the implementability
conditions�

����� Signal Transition Graphs

As in the case of the RTS model� events of a RPN can represent signal
changes of an asynchronous circuit� The model is called Signal Transition
Graph �����

De�nition ��
�� A Signal Transition Graph �STG� is a �	tuple �N�X �#��
where

� N � ��P� T� F�m�����#� is a RPN�

� X and � are de�ned as in De�nition ������

An example of STG specifying the bus controller is shown in Figure ����
Places of the STG with only one predecessor and one successor transition�
are not shown graphically as convention� The RTS associated to an STG is
an SG� The SG associated to the STG of Figure ��� is shown in ����b��

����� Synthesis of Speed�Independent Circuits

Speed�independent �SI� circuits is the class of asynchronous circuits that
work correctly regardless of the delay of their components �gates�� Currently�
there is a robust theory� design �ow and some tools ���� that support the
automatic synthesis of SI circuits�

���� ASYNCHRONOUS CIRCUITS �

a+ a−

a− a+

Figure ���	� Unbounded and unconsistent STG�

However� one of the major problems of the methods used for synthesis is
that they require an explicit knowledge of the state graph� Highly concurrent
systems often su�er the state explosion problem and� for this reason� the size
of the state graph can be a limiting factor for the practical application of
synthesis methods�

In this section� some basic concepts on the logic synthesis of SI circuits
are presented� We refer the reader to ���� for a deeper theory on how to
implement SI circuits� Here� we will focus on explaining the main step in
synthesis� the derivation of the Boolean equations that model the behavior
of the digital circuit�

Implementability as a Logic Circuit

A set of properties that guarantee the existence of a SI circuit is introduced
below� They are de�ned at the level of SG� but can be easily extended to
STGs� Instead of giving new de�nitions for STGs� we will simply consider
that a property holds in an STG if it holds in its underlying SG�

The properties are the following� boundedness� consistency� complete
state coding and output persistency�

Boundedness�

A necessary condition for the implementability of a logic circuit is that the
set of states is �nite� Although this seems to be an obvious assumption at
the level of SG� it is not so obvious at the level of STG� since an STG with
a �nite structure may have a in�nite number of reachable markings�

Figure ���	 shows an example of unbounded STG� the in�nite sequence
a� a� a� a�� � � never reaches a marking twice� and therefore the underlying
SG is in�nite�

�� CHAPTER �� BASIC DEFINITIONS

Consistency�

As shown in Figure ���� each signal xi de�nes a partition of the set of states�
The consistency of an SG refers to the fact that the events xi� and xi�
are the only ones that cross these two parts according to their meaning�
switching from 	 to � and from � to 	� respectively� This is captured by the
de�nition of consistent SG�

De�nition ��
�� Consistent SG� An SG is consistent if for each tran	
sition s

e
	 s� the following conditions hold�

� if e � xi�� then �i�s� � 	 and �i�s
�� � ��

� if e � xi�� then �i�s� � � and �i�s
�� � 	�

� in all other cases� �i�s� � �i�s
���

where �i denotes the component of the encoding vector corresponding to
signal xi�

The STG of Figure ���	 is not consistent� in the initial marking� both
transitions a� and a� are enabled� and therefore the initial marking belongs
to both the set of states where a is 	 and the set of states where as is ��
This implies that no partition can be made for signal a�

Complete State Coding

This property can be illustrated with the example of Figure ����b�� in which
there are two states with the same binary encoding� �	�	�� Moreover� the
states with the same binary code are behaviorally di�erent� This fact implies
that the system does not have enough information to determine how to react
by only looking at the value of its signals�

The distinguishability of behavior by state encoding is captured by the
following two de�nitions�

De�nition ��
�� Unique State Coding� ���� An SG satis�es the Unique
State Coding �USC� condition if every state in S is assigned a unique binary
code� Formally� USC means that the state encoding function� �� is injective�

De�nition ��
�� Complete State Coding� ���� An SG satis�es the
Complete State Coding �CSC� condition if for every pair of states s� s� � S
having the same binary code the sets of enabled non	input signals are the
same�

Both properties are su�cient to derive the Boolean equations for the
synthesized circuit� However� given that only the behavior of the non�input
signals must be implemented� encoding ambiguities for input signals are
acceptable�

���� ASYNCHRONOUS CIRCUITS ��

Output persistency

This property is required to ensure that the discrete behavior modeled with
SG has a robust correspondence with the real analog behavior of electronic
circuits�

De�nition ��
�
 Disabling� An event x is said to disable another event
y if there is a transition s

x
�	 s� such that y is enabled in s but not in s��

De�nition ��
�� Output persistency� An SG is said to be output per	
sistent if for any pair of events x and y such that x disables y� both x and
y are input events�

In logic circuits� disabling an event may result in non�deterministic be�
havior� Imagine� for example� that an AND gate has both inputs at � and the
output at 	� In this situation� the gate starts the process to switch the signal
towards � in a continuous way� If one of the inputs would fall to 	 during
this process� the output would interrupt this process and start moving the
signal to 	� thus producing an observable glitch� To avoid these situations�
that may produce unexpected events� the property of output persistency is
required�

Deriving Boolean equations

The procedure to derive Boolean next�state functions for output signals
from an SG is introduced� The procedure de�nes an incompletely speci�ed
function from which a gate implementation can be obtained after Boolean
minimization�

The next de�nition will be used later to explain how to derive Boolean
equations from an SG under the SI assumptions�

De�nition ��
�	 Excitation and quiescent regions� The positive and
negative excitation regions �ER� of signal x � X � denoted by ER�x�� and
ER�x��� are the sets of states in which x� and x� are enabled� respectively�
i�e�

ER�x�� � fs � S j �s
x�
�	 s� � Tg

ER�x�� � fs � S j �s
x�
�	 s� � Tg

The positive and negative quiescent regions �QR� of signal x � X � denoted
by QR�x�� and QR�x�� are the sets of states in which x has the same value�
� or �� and is stable� i�e�

QR�x�� � fs � S j �x�s� � � � s �� ER�x��g

QR�x�� � fs � S j �x�s� � 	 � s �� ER�x��g

�	 CHAPTER �� BASIC DEFINITIONS

d- a-

b+

d+

c-

a+

b-c+

1001

1000

1010

0010

0110

0100

0101

0001

0000

0111

0011

1011
c-

d-c+

c+

c+

b+

b+

b+
d+

b-

a+

d-

d-

a b c d

(a) (b)

a-

a-

a-

ER(a-)

QR(a+)

ER(a+)

QR(a-)

Figure ����� Example abcd� �a� Signal Transition Graph� �b� State Graph

An incompletely speci�ed n�variable logic function is a mapping F �
B n 	 f	� ���g� Each element B n is called a vertex or binary code� A literal
is either a variable xi or its complement xi � A cube c is a set of literals�
such that if xi � c then xi �� c and vice versa� Cubes are also represented
as an element f	� ���gn� in which value 	 denotes a complemented variable
xi� value � denotes a variable xi� and � indicates the fact that the variable
is not in the cube� A cover is a set of implicants which contains the on�set
and does not intersect with the o��set�

Given a speci�cation with n signals� the derivation of an incompletely
speci�ed function F x for each output signal x and for each v � B n can be
formalized as follows�

F x�v� �

��
�

� if � s � ER�x�� �QR�x�� � ��s� � v
	 if � s � ER�x�� �QR�x�� � ��s� � v
� if � � s � S � ��s� � v

The set of vertices in which F x�v� � � is called the on�set of signal x �ON�x���
whereas the codes in which F x�v� � 	 is called the o��set of x ��OFF�x���

The previous de�nition is ambiguous when there are two states� s� and
s�� for which ��s�� � ��s�� � v� s� � ER�x�� �QR�x�� and s� � ER�x���
QR�x��� This ambiguity is precisely what the CSC property avoids� and
this is why CSC is a necessary condition for implementability�

Figure ���� depicts an STG and the corresponding SG� Figure ���� shows
the Karnaugh maps of the incompletely speci�ed functions for signals a and
d� and its corresponding implementation with logic gates�

Notice that in the implementation of signal a� a three�input AND gate
is used� When no restriction is imposed in the fan�in �number of inputs� of
the gates used for the implementation of a signal� it is called complex gate
implementation� It assumes a universal library of gates where the designer
can �nd logic gates of arbitrary fan�in� When the library does not contains
some of the gates used in the implementation� a process of technology map	

���� ASYNCHRONOUS CIRCUITS ��

b
c
d

a
d

c

b

0 0

0 0

−

−

−

−

11

0

−

−

00 01 11 10

00

01

11

10

c d
a b

00 01 11 10

00

01

11

10

a b
c d

−

0

0

0

0

0

1 −

0 0 0

0

1

10

1

0 0 0

Signal ‘d’Signal ‘a’

Figure ����� Complex gate implementation for the abcd example

ping must be done to accomplish the implementation with the existing gates
in the library �����

The complex gate implementation is not the only one that can be ob�
tained� from the incompletely speci�ed functions� other circuit architectures
can also be derived �����

�� CHAPTER �� BASIC DEFINITIONS

Chapter �

Compatibility of Reactive

Systems

Jugadoras� jugadores
esclavas y patrones

enciende la luz� si quieres ver algo
te ensucias f�acil jugando en el barro�

� Mala Rodriguez� Jugadoras� jugadores

The synthesis of a reactive system is a complex task� specially when
the system is large and�or highly concurrent ����� One of the possibilities
to overcome this di�culty relies on decomposing the system into di�erent
subsystems that interact according to some speci�ed protocol� The func�
tionality of the overall system is then obtained by the composition of the
functionalities of the subsystems ��
� �	�� From a software engineering point
of view� this allows to distribute the task of implementing the complete sys�
tem into di�erent designers� with the only restriction that each subsystem
must ful�ll the protocol�

Therefore one of the crucial points in the synthesis of a reactive system
is to be able to decide whether a set of subsystems can be composed and in	
teract according to some speci�ed protocol� For that purpose� it is necessary
�rst to de�ne what does interaction mean� when is the interaction correct
and what properties do we want to have in this dialogue�

The following questions are answered in this chapter�

� When can two reactive systems be connected and interact �

� When is this interaction correct �

� Is this problem decidable �

This chapter is based on the results presented in ���� ����

��

�� CHAPTER 	� COMPATIBILITY OF REACTIVE SYSTEMS

τ
b? b!

a

b c

d

b

a

d!

b?
d?

b?

c!

b

a

c

(a) (b) (c)

X Y
X Y X Y

a! a?
a?

a?

a!

b!
c? d?

c?
a? a!

b? c?

c! b!

Figure ���� Connection between di�erent reactive systems �the su�xes �

and � are used to denote input and output events� respectively��

��� Introduction

The notion we want to model is Input�Output compatibility� It is inspired in
the work by Dill ��
�� We now illustrate this notion with some examples and
show why other equivalences for concurrent systems are not appropriate�

Figure ����a� depicts two reactive systems� X and Y � synchronized by
a pair of events� a and b� Event a is an output for X and an input for
Y � whereas b is an input for X and an output for Y � Moreover� X has an
internal event � When enabled� internal and output events may take an
unbounded� but �nite� delay to �re� At each state� a system has only a
�possibly empty� subset of input events enabled� If a non�enabled input is
produced by the other partner� a communication failure is produced�

The transition systems in Fig� ����a� are observational equivalent� How�
ever� they are not I�O compatible� according to the notion presented here�
In the initial state� only event a �produced by X� is enabled� After �ring
a synchronously in both systems� a new state is reached� In this state� Y
is ready to produce b� However� X is not ready to accept b before is
produced and� thus� a communication failure occurs when Y �res b and X
has not �red yet� Therefore� observational equivalence does not imply I�O
compatibility�

Figure ����b� shows that I�O compatibility does not imply observational
equivalence� The synchronization of X and Y through the input and output
events produces the following language� �abcd��� In the initial state� X
is ready to accept a and b in any order� i�e� they can �re concurrently�
However� Y produces a and b sequentially� This situation is reversed for
events c and d� accepted concurrently by Y but produced sequentially by
X� In either case� the synchronization between X and Y is correct and both
systems can interact without any failure� However� it is easy to see that X
and Y are not observationally equivalent�

Figure ����c� depicts another undesired situation� After having produced
event a� both systems block waiting for each other to �re some event� Thus�
a deadlock is produced� This interaction would be considered fair! in I�O

	��� INTRODUCTION �

automata theory ����
There is another situation not acceptable for I�O compatible systems�

livelock� This situation occurs when one of the systems can manifest an
in�nite internal behavior without any interaction with the other partner�
Livelock�freeness can be checked in polynomial time for �nite RTSs�

I�O compatibility is inspired in the notion of conformation� introduced
by Dill ��
�� Conformation models the fact that a speci�cation is correctly
realized by a given implementation� In Dill�s work� the systems speci�ed are
digital circuits� and the mathematical model used is called trace structure� A
complete trace structure is a four�tuple containing the set of input signals �I��
the set of output signals �O�� the set of traces leading to a success �S� and
the set of traces leading to a failure �F �� with S� F � �I �O��� A complete
trace structure models complete executions of a circuit� allowing to express
liveness properties� The formal model for specifying a system considered
here� RTS� is more restricted that the one presented by Dill for complete
trace structures� However� the properties covered by our model� including
some notion of liveness� can be checked in polynomial time� whereas it is
PSPACE�complete for complete trace structures�

I�O automata ��� is a model similar to RTS� In fact� any RTS can
be expressed as an I�O automata by including a failure state that is the
sink of transitions labeled with the input events not enabled at each state�
In ���� a notion of automata satisfaction is presented� expressing when an
I�O automata speci�cation is correctly implemented by another I�O au�
tomata� The main di�erence between their satisfaction notion and the no�
tion presented in this chapter is that we guarantee the absence of deadlock
situations in the dialogue between two I�O compatible systems� Moreover�
the fact that systems are assumed to be livelock�free allows a local de�ni�
tion of the I�O compatibility� in contrast to the trace�based de�nition in
I�O automata� I�O compatibility has also relations with other equivalences
like testing equivalence ����� built�in at CIRCAL �����

In the area of asynchronous systems� several authors have de�ned di�er�
ent relations to model the concepts of re�nement and realization ���� ��� �	�

� ���� Among them� we emphasize the one proposed by Brzozowski and
Seger ����� They introduced formally the concept of input	properness and
de�ned a realization notion stronger than I�O compatibility� that requires
language equivalence�

Finally� Verhoe� proposed the XDI re�nement for delay�insensitive sys�
tems� This type of re�nement assumes that the dialogue between two sys�
tems is produced by introducing any arbitrary delay in the communication�
i�e� an event is received some time later than it is produced� Analogously
to ��
�� the expressive power of the XDI model allows to include progress
concerns in the model� Di�erently to the RTS model� the XDI model can
not express internal progress �only input�output events are allowed in the
model��

�� CHAPTER 	� COMPATIBILITY OF REACTIVE SYSTEMS

��� Properties of Reactive Transition Systems

Depending on the interpretation of the events in an RTS� di�erent properties
can be de�ned�

De�nition ����� Livelock� A livelock is an in�nite trace of only internal
events� An RTS is livelock�free if it has no livelocks�

Livelocks can be detected in polynomial time in �nite RTSs� The problem
is reduced to the detection of cycles in a graph in which only the edges
labeled with internal events are taken into account�

De�nition ����� Input�properness� An RTS is input�proper when for
every internal transition s

e
	 s�� with e � �INT and for every input event

i � �I� En�s
�� i� �� En�s� i��

In other words� input�properness is a property that indicates that the
enabledness of an input event in a given state depends only on the observable
trace leading to that state� Input�properness was introduced in ���� and is a
crucial concept to preserve I�O compatibility� as shown later in Sect� ��� It
avoids the situations in which the system is doing some pending! internal
work when the environment is producing an input event�

The underlying idea of input�properness was previously presented by
Dill ��
� when� as a result of hiding an output signal� the same trace could
be considered both as success and failure�

De�nition ����� Mirror� The mirror of A� denoted by A� is another RTS
identical to A� but in which the input and output alphabets of A have been
interchanged�

��� I	O Compatibility�

A formal description of the conditions needed for having a correct dialogue
between two RTSs is given in this section� We call this set of conditions
I�O compatibility� The properties derived from the I�O compatibility can
be stated in natural language�

�a� Safeness� if system A can produce an output event� then B must be
prepared to accept the event�

�b� Liveness� if system A is blocked waiting for a synchronization with B�
then B must produce an output event in a �nite period of time�

Theorems ������ ����� and ����� presented below de�ne formally this
properties�

Two RTSs are structurally I�O	compatible if they share the observational
set of events� in a way that they can be connected�

	�	� I
O COMPATIBILITY� �

De�nition ����� Structural I�O Compatibility� Let A � �SA��A� TA� sAin�
and B � �SB ��B� TB � sBin� be two RTSs� A and B are structurally I�O com�
patible if �A

I � �B
O� �

A
O � �B

I � �
A �B

INT � � and �B �A
INT � ��

The following de�nition gives a concise formalization of the conditions
needed for characterizing the correct interaction of two RTSs�

De�nition ����� I�O Compatibility� Let A � �SA��A� TA� sAin� and
B � �SB ��B � TB� sBin� be two structurally I�O compatible RTSs� A and
B are I�O compatible� denoted by A� B� if A and B are livelock	free and
there exists a relation R � SA � SB such that�

�� sAinRs
B
in�

�� Receptiveness �output events of one party are expected by the other
party��

�a� If s�Rs
�
�� e � �A

O and s�
e
	 s� then En�s��� e� and �s��

e
	 s�� �

s�Rs
�
��

�b� If s�Rs
�
�� e � �B

O and s��
e
	 s�� then En�s�� e� and �s�

e
	 s� �

s�Rs
�
��

�� Internal Progress �internal process preserves the interaction��

�a� If s�Rs
�
�� e � �A

INT and s�
e
	 s� then s�Rs

�
��

�b� If s�Rs
�
�� e � �B

INT and s��
e
	 s�� then s�Rs

�
��

� Deadlock�freeness �both parties can not be blocked at the same time��

�a� If s�Rs
�
� and fe jEn�s�� e�g � �A

I then fe jEn�s��� e�g � �B
I �

�b� If s�Rs
�
� and fe jEn�s��� e�g � �B

I then fe jEn�s�� e�g � �A
I �

Let us consider the examples of Fig� ���� In Fig� ����a�� the receptiveness
condition fails and therefore X and Y are not I�O compatible� However�
the RTSs of Fig� ����b� are I�O compatible� Finally� Fig� ����c� presents an
example of violation of the deadlock�freeness condition�

Condition � has a strong impact on the behavior of the system� It
guarantees that the communication between A and B has no deadlocks �see
theorem �������

Lemma ����� Let A and B be two RTSs such that A � B� let R be an
I�O compatible relation between A and B and let A � B � �S��� T� sin� be
the synchronous product of A and B� Then� hs� s�i � S � sRs�

Proof� If hs� s�i � S� then there is a trace � that leads from sin to hs� s�i�
We prove the lemma by induction on the length of ��

�� CHAPTER 	� COMPATIBILITY OF REACTIVE SYSTEMS

� Case j�j � 	� The initial states are related in Condition � of De�ni�
tion ������

� Case j�j � 	� Let � � ��e� with j��j � n� and assume that it holds for
any trace up to length n� Let hs�� s

�
�i be the state where the event e is

enabled� The induction hypothesis ensures that s� is I�O compatible
to s��� Two situations can happen in s� depending on the last event e
of �� either �� e � �O ��INT is enabled in s�� or �� only input events
are enabled in s�� In situation ��� Conditions ��� of De�nition �����
guarantee that s is I�O compatible to s�� In situation ��� applying
Condition � of De�nition ����� ensure that some non�input event is
enabled in state s�� of B� De�nition ���� and Conditions ��� on s��
and the enabled non�input event e guarantees s to be I�O compatible
to s��

�

Theorem ����� Safeness� Let A and B be two RTSs such that A � B�
and a trace � � L�A�B� of their synchronous product such that sin

�
	 hs� s�i�

If A can �re an output event in s� then the same event is enabled in state s�

of B�

Proof� It immediately follows from Lemma ����� and the condition of
receptiveness in the de�nition of I�O compatibility� �

Theorem ����� Absence of Livelocks� Let A and B be two RTSs such
that A� B� and let A�B be the synchronous product of A and B� Then�
A�B is livelock	free�

Proof� The de�nition of synchronous product implies that only livelocks
appear in A�B if either A or B has a livelock� But A and B are livelock�free
because A� B� �

The following theorem is the one that proves the absence of deadlocks
produced by the interaction between two I�O compatible RTSs�

Theorem ����� Liveness� Let A� B be two RTSs such that A� B� and
a trace � � L�A � B� of their synchronous product such that sin

�
	 hs� s�i�

If only input events of A are enabled in s� then there exists some trace

hs� s�i
��
	 hs� s��i such that some of the input events of A enabled in s are also

enabled in s�� as output events of B�

Proof� By Lemma ����� we have that sRs�� We also have that fe jEn�s� e�g �
�A
I � By Condition � of De�nition ����� we know that fe jEn�s��� e�g � �B

I �
Theorem ����� guarantees the livelock�freeness of A�B� and therefore from
hs� s�i there exists a trace of internal events reaching a state hs� s��i where no

	��� A POLYNOMIAL�TIME DECISION PROCEDURE FOR I
O COMPATIBILITY��

internal event is enabled� We know by Lemma ����� that sRs��� Condition �
of De�nition ������ together with the fact that no internal event is enabled in
s�� implies that there exists an output event enabled in s��� which is enabled
as input in s� �

��� A Polynomial
time Decision Procedure for I	O
Compatibility

A procedure for deciding if two �nite RTS are I�O compatible is presented
in this section� It is based on the synchronous product of transition systems�

Theorem ����� Let A � �SA��A� TA� sAin�� B � �SB ��B � TB � sBin� be two
livelock	free RTSs� A � B i A � B � �S��� T� sin� ful�lls the following
properties�

�� �a� For each state s � SA� for each event e � �A
O�

if En�s� e� holds and hs� s�i � S then En�hs� s�i� e� holds�

�b� For each state s� � SB� for each event e � �B
O�

if En�s� e� holds and hs� s�i � S then En�hs� s�i� e� holds�

�� For every hs� s�i � S� if hs� s�i � S is a terminal state� then s and s�

are terminal states in A and B� respectively�

Proof� The proof is divided into two parts�

Su�ciency�
Let R be an I�O compatibility relation between A and B and hs� s�i � S�
Lemma ����� guarantees that sRs��

�� Since sRs�� then En�s�� e� holds in B� By the de�nition of synchronous
product� En�hs� s�i� e� holds� �Similarly for ��b���

�� Every non�input event e enabled in s or s� induces e to be enabled in
hs� s�i� If only input events are enabled in one of the states� condition
� of De�nition ����� guarantees the enabling in the other state of a
non�input event� and the de�nition of synchronous product ensures
the existence of a transition leaving from hs� s�i�

Necessity�
We will proof that S is an I�O compatible relation between A and B� State
hsAin� s

B
ini belongs to S by de�nition of synchronous product� Let hs� s�i � S�

Property �� together with the de�nition of synchronous product implies the
receptiveness condition of De�nition ������ Condition � �internal progress�

	 CHAPTER 	� COMPATIBILITY OF REACTIVE SYSTEMS

of De�nition ����� holds by the de�nition of synchronous product� every
internal event e enabled in s �s�� is also enabled in hs� s�i� and the state�s� of
S reached by the �ring of e in hs� s�i are exactly the pairs of I�O compatible
states induced by Condition � with s and s�� Condition � �deadlock�freeness�
of De�nition ����� also holds� if the events enabled in s are input events� then
given that hs� s�i is not terminal �due to Property ��� the only possibility
for having an event enabled in hs� s�i in De�nition ���� is when a non�input
event is enabled in s�� �

Theorem ����� enables the use of the synchronous product for deciding
the I�O compatibility of two �nite RTSs in polynomial�time�� It consists in
computing the synchronous product in the �rst step� and then checking the
conditions � and � of the theorem�

��� I	O Compatibility and Observational Equiva

lence�

In the �rst part of this section� the observational equivalence relation �� is
de�ned� Section ���� presents the relationship between I�O compatibility
and observational equivalence�

����� Observational Equivalence

The observational equivalence relation between two reactive systems was �rst
introduced by Milner in ��� The relation identi�es those systems whose
observable behavior is indistinguishable�

De�nition ����� Let A � �SA��A� TA� sAin� and B � �SB ��B � TB� sBin� be
two RTSs� A and B are observational equivalent �A � B� i �A

OBS � �B
OBS

and there exists a relation R � S � S� satisfying

�� sAinRs
B
in�

�� �a� �s � SA� �s� � SB s�t� sRs��

�b� �s� � SB� �s � SA s�t� sRs��

�� �a� �s� � SA� s�� � SB� if s�Rs
�
�� e � ��A

OBS� and s�
e
	 s� then

���� �� � ��B
INT �� such that s��

��e���	 s��� and s�Rs
�
��

�b� �s� � SA� s�� � SB� if s�Rs
�
�� e � ��A

OBS� and s��
e
	 s�� then

���� �� � ��A
INT �� such that s�

��e���	 s�� and s�Rs
�
��

�Figure ��� shows why it is necessary to consider only livelock�free RTSs in Theo�
rem ����	� Systems 	 and
 are I�O compatible� but System 	 could have a livelock in the
state reached after the sequence b��a�

	��� I
O COMPATIBILITY AND OBSERVATIONAL EQUIVALENCE��

2

s1

s e?

σe?
1s’

s’2
e!

�a�

s1

e!

e! e’!

1s’

σ

�b�

Figure ���� Conditions ��a� and ��a� from the proof of Theorem �����

The two RTSs of Fig� ����a� are observational equivalent� because every
observable sequence of one of them can be executed in the other� Fig�
ures ����b���c� depict examples of non�observationally equivalent systems�

����� A Su	cient Condition for I
O Compatibility�

A su�cient condition for having I�O compatibility between two reactive sys�
tems can be obtained when combining the notions of observational equiva�
lence and input�properness�

Theorem ����� Let A � �SA��A� TA� sAin�� B � �SB ��B � TB � sBin� be two
livelock	free RTSs with �A

I � �B
O and �A

O � �B
I � If A and B are input

proper and A � B� then A� B�

Proof� Let R be the relation induced by the observational equivalence
between A and B� We will prove that R is also an I�O compatibility relation
between A and B� R must ful�ll the conditions of the I�O compatibility
relation�

� Condition �� sAinRs
B
in by De�nition �����

� Condition �a�� let s�Rs
�
�� and assume s�

e
	 s�� with e � �A

O�
Figure ����a� depicts the situation� The observational equivalence of
s� and s

�
� implies that a trace � of internal events exists in s�� enabling e�

The event e is an input event in B� and therefore the input�properness
of B ensures that in every state s� of �� En�s�� e� holds� In particular�
it also holds in the �rst state and� thus� En�s��� e�� The de�nition of R

ensures that every s�� such that s��
e
	 s�� is related with s� by R�

� Condition �a�� let s�Rs
�
� and assume s�

e
	 s�� with e � �A

INT � The
de�nition of R implies that s�Rs

�
��

� Condition �a�� let s�Rs
�
�� and suppose fe jEn�s�� e�g � �A

I � Fig�
ure ����b� depicts the situation� Let e be one of the input events

� CHAPTER 	� COMPATIBILITY OF REACTIVE SYSTEMS

2 s’2s2

s 1s’’ 1s’1

s’’
e! e? e?

R’ ~~

�a�

1 1s’’ 1s

s2 s’2

s’2

s’
R

e!

e!e! σ
s’’

~~

�b�

Figure ���� Conditions ��a� and ��b� from the proof of Theorem �����

enabled in s�� The observational equivalence between s� and s�� re�
quires that a sequence � of internal events exists enabling e starting
in s��� and given that e in not input in B implies fe jEn�s��� e�g � �B

I �

An identical reasoning can be applied in the symmetric cases �conditions
��b�� ��b� and ��b��� �

When considering a system A and some I�O compatible system B� any
transformation of B preserving both input�properness and observational
equivalence will lead to another I�O compatible system�

Theorem ����� Let A � �SA��A� TA� sAin�� B � �SB ��B � TB � sBin� and
C � �SC ��C � TC � sCin� be three RTSs� If A � B� B � C� and C is input	
proper then A� C�

Proof� Let R� be the relation between A and B� and � the observational
equivalent relation between states from B and C� De�ne the relation R as�

�s � SA� s�� � SB � s� � SC � sR�s�� � s�� � s� � �s� s�� � R

The conditions that R must satisfy are the ones of De�nition ������ Re�
member that A � B implies that �B

O � �A
I and �B

I � �A
O� Moreover�

relation B � C implies that �B
OBS � �C

OBS �

� Condition �� the initial states are related in R by de�nition�

� Condition �a�� let s�Rs
�
�� and suppose s�

e
	 s� with e � �A

O�
Figure ����a� depicts the situation� Given that s�R

�s���� e is enabled

in s��� and for each s��� such that s���
e
	 s���� s�R

�s���� The observational
equivalence of s��� and s��� together with the fact that C is input�proper
implies that e is also enabled in s�� �identical reasoning of condition
��a� in Theorem ������ and the de�nition of � implies that each s��
such that s��

e
	 s�� must be related in � with s���� Then each s�� such

that s��
e
	 s�� is related by R with s��

	��� I
O COMPATIBILITY AND OBSERVATIONAL EQUIVALENCE��

� Condition �b�� let s�Rs
�
�� and suppose s��

e
	 s�� with e � �B

O�
Figure ����b� depicts the situation� The observational equivalence of
s��� and s�� implies that there is a sequence � of internal events starting
in s��� and enabling e� and every state of � is observational equivalent
to s��� Moreover� every state of � is also related to s� by the condition
��b� of R�� In particular� s� is related by R� with the state s�� of � s�t�
s��

e
	 s���$ applying Condition ��b� of R�� En�s�� e� holds and for each

e s�t� s�
e
	 s�� s�R

�s���� The de�nition of R and � induces that each
such s� is related with s�� by R�

� Condition �a�� let s�Rs
�
�� and suppose s�

e
	 s� with e � �A

INT �
Then Condition ��a� of R� ensures s�R

�s��� and then applying the de��
nition of R implies s�Rs

�
��

� Condition �b�� let s�Rs
�
�� and suppose s��

e
	 s�� with e � �C

INT �
Then s��� � s��� and then s�Rs

�
��

� Condition �a�� let s�Rs
�
�� and suppose fejEn�s�� e�g � �A

I � Condi�
tion ��a� of R� ensures that fejEn�s��� � e�g � �B

I � let a be an event such

that s���
a
	 s���� with a �� �B

I � If a � �B
O� the related pair s��� � s�� ensures

that in s�� there is a feasible sequence of internal events �which can be
empty� enabling a� and therefore fejEn�s��� e�g � �C

I � If a � �B
INT � ap�

plying Condition ��b� of R� and the de�nition of �� s�R�s��� and s��� � s��
is obtained� respectively� The same reasoning applied to s�� s

��
� and s��

can now be applied to s�� s
��
� and s��� Given that B is livelock�free�

the sequence of internal events starting in s��� and passing through s���
must end in a state s�� where a observable event a� is enabled� State s��

is also related by R� with s�� and by � with s�� �applying inductively
the same reasoning applied to s����� Event a� belongs to �B

O because
otherwise a violation of Condition ��b� in R� arise� The previous case
�a � �B

O� enabled in s���� can be applied to s���

� Condition �b�� let s�Rs
�
�� and suppose fejEn�s��� e�g � �C

I � Let a

such that s���
a
	 s���� If a � �B

O� then a contradiction arises because
s��� � s�� and fejEn�s��� e�g � �C

I � If a � �B
I � then identical conditions

make En�s��� a� to hold� If a � �B
INT � then Conditions ��a� of R�

and � ensure that s�R
�s��� and s��� � s��� and the same reasoning of

s�� s
�
� and s��� can be applied to s�� s

�
� and s��� �but not in�nite times�

because B is livelock�free�� Therefore a feasible sequence of internal
events �which can be empty� exist from s��� reaching a state s�� such
that fejEn�s��� e�g � �C

I � with s�R
�s�� and s�� � s��� Condition ��b� of

R� ensures that fejEn�s�� e�g � �A
I �

�

� CHAPTER 	� COMPATIBILITY OF REACTIVE SYSTEMS

1τ2

τ2 τ1
2

τ2

ττ
1τ

a

b

XX

b?a! b!a?
X’: X’’:

a?

b!

a?
b!

b!

Figure ���� Relation between observational equivalence� input�properness
and I�O compatibility�

Figure ��� shows an example of application of Theorem ����� The trans�
formation of X which leads to X � preserves both observational equivalence
and input�properness� and then� X and X � can safely interact�

System 1

d?b?

c?a?

τ

a? c?a!

 System 2

c!

τ
d

1

c

a

2

b

Figure ��� Two I�O compatible systems that are not input�proper�

Finally� it must be noted that I�O compatibility does not require input�
properness� as shown in Fig� ��� This occurs when the non�input�proper
situations are not reachable by the interaction of the two systems�

��� Conclusion

A characterization of the class of systems that can be connected and interact
within a correct dialogue has been presented in this chapter� Afterwards�
an algorithm based on the synchronous products has been introduced� pro�
viding a polynomial procedure for deciding whether two systems are I�O
compatible� Finally the relation between one of the most well�known no�
tions of equivalence over reactive systems� observational equivalence� and
I�O compatibility is showed� with the concept of input�properness being the
key link between them�

The formal setting of this chapter makes the I�O compatibility notion
valid for any type of reactive system that can be described with an automa�
ton� As future work we are interested in adapting the I�O compatibility to
more abstract scenarios� like software systems or groupware systems ��	��
In groupware systems� the notion of synchronization in sending or receiving
a message can be more �exible� and therefore several new problems may

	��� CONCLUSION

appear in the interaction� Moreover� it is also interesting to investigate the
way several systems collaborate in sending or receiving a message�

In Chapter � we will use the I�O compatibility to derive synthesis rules
that allow to transform a system while preserving the correctness of the
dialogue with the environment�

� CHAPTER 	� COMPATIBILITY OF REACTIVE SYSTEMS

Chapter �

Petri Net Transformations

for Synthesis

Coisas pequenas s�ao
coisas pequenas

s�ao tudo o que eu te quero dar
� Madredeus� Coisas Pequenas

Very often a reactive system needs to be modi�ed to accomplish some
architectural requirement or even simply for its improvement� Such modi�
�cations can have a strong impact on the �nal implementation� leading in
the worst case to failures of the whole system�

In this chapter we tackle the problem of transforming the speci�cation
of a reactive system while preserving the correct �i�e� I�O compatible� inter�
action with the environment� Next we present an application of the theory
for the case of asynchronous circuits and the problem of the encoding�

This chapter is based on the results presented in ��� �� ��� �
��

��� Introduction

Once the speci�cation of a reactive system is done� the next step is to syn�
thesize it� which amounts to implementing the underlying behavior by using
the primitives that exist in the target architecture� Several problems can
appear in this process� the initial speci�cation can not be straightforward
implementable with the existing primitives� and therefore the designer must
transform the initial speci�cation in order to �t to the actual requirements�
However� if the system is transformed then some other systems in the en�
vironment may need to be changed in order to be able to interact with the
new system� This is an undesirable situation because it can lead to a circu�
lar chain of transformations� or simply because it is expensive to do when

� CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

a small modi�cation was needed and big part of the environment is already
functioning�

Petri net transformations is the main topic of discussion in this chapter�
The rules presented here have di�erent goals� in Section ���� the focus is
on de�ning those transformations of a reactive Petri net that preserve I�O
compatibility with its environment� With the help of these transformations�
a designer can modify an initial speci�cation for the sake of arbitrary pur�
poses �correctness� improvement� etc ���� while ensuring that there will be
no problem in the dialogue between the transformed system and its envi�
ronment� A particular case� sketched in the �rst part of this introduction�
is when the reactive Petri net is modeling an asynchronous circuit and the
purpose is to derive Boolean equations implementing its behavior�

In Section ���� we focus in �nding a transformation that can be applied
to a signal transition graph �a reactive Petri net modeling an asynchronous
circuit� that makes the transformed net to be free from encoding problems�
As said in Chapter �� the problem of �nding a correct encoding is one of the
hard problems when facing the synthesis of a speed�independent circuit�

I
O Compatible Transformations

Here we want to sketch how to use the transformations presented in Sec�
tion ��� for the particular case of the synthesis of an asynchronous circuit�
In the example of Figures ����b�d� the goal is to synthesize a circuit that
can have a correct dialogue with the environment� We will assume that the
components of the circuit have arbitrary delays� Likewise� the environment
may take any arbitrary delay to produce any enabled output event�

Let us �rst have a look at Figure ����b�� The marked graph in the
environment can be considered as a speci�cation of a concurrent system�
The underlined transitions denote input events� Thus� an input event of
the environment must have a correspondence with an output event of the
system� and vice versa� The behavior denoted by this speci�cation can be
informally described as follows�

In the initial state� the environment will produce the event x��
After that� the environment will be able to accept the events y�
and z� concurrently from the system� After the arrival of z��
the environment will produce x�� that can occur concurrently
with y�� Next� it will wait for the system to sequentially produce
z� and y�� thus leading the environment back to the initial state�

The circuit shown in Figure ����b� behaves as speci�ed by the adjacent
marked graph� In this case� the behavior of the system is merely a mirror of
the behavior of the environment and then both are observational equivalent�
Moreover� given that both the environment and the system are input�proper�
Theorem ���� guarantees that the dialogue between them is compatible�

���� INTRODUCTION �

ΣI

OΣ

Σ O’

Σ I’

Environment System

�a�

z+

x−

z−

x+

y+y−

x

y

z

Environment System

y+
z+

x−

z−

y−

x+

�b�

x

y

z

Environment System
x+

z+

y+

z−

y−z+

x−

z−

y−

x+

y+

x−

�c�

x

y

z

Environment System
x+

y+

z+

z−

y−z+

x−

z−

y−

x+

y+

x−

�d�

Figure ���� �a� Connection between system and environment� �b� mirrored
implementation of a concurrent system� �c� valid implementation with con�
currency reduction� �d� invalid implementation�

Let us analyze now the system in Figure ����c�� In this case� the circuit
implements a behavior in which y� and z� are produced sequentially �the
transformation adds a place connecting y� to z���� Still� the system can
maintain a correct dialogue� since the environment is able to accept more
behaviors than the ones produced by the system� We can observe that� even
though the behavior is less concurrent� the implementation is simpler�

Let us �nally look at Figure ����d�� in which the events z�� y� and
x� are produced sequentially in this order �the transformation adds a place
connecting z� to y� and then adds a place connecting y� to x��� Due to
this reduction in concurrency� two bu�ers are su�cient to implement such
behavior� Even though the set of traces produced by the system is included
in the set of traces produced by the environment� the dialogue between
both is not correct� To illustrate that� let us assume the events x� and z�
have been produced from the initial state� We are now in a state in which
x� is enabled in the environment �output event� but not enabled in the
system� This violates the receptiveness condition for a correct dialogue� if
an output event is enabled in one component� the corresponding event must
also be enabled in the other component� In practice� if the environment

�For the sake of readability� redundant places are not shown in this example�

�	 CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

ai �ai

cici��

Figure ���� Distributor built from David cells ����

would produce x�� the circuit could react with the event z� before y� is
produced�

In this example� two Petri net transformations have been applied� It has
been explained why one of them is acceptable and one of them is not� In
Section ��� a kit of Petri net rules is presented� to be applied over the class
of free�choice live and safe Petri nets �FCLSPN�� Afterwards� the conditions
under which the rules are acceptable are introduced� when the speci�cation
is a deterministic reactive Petri net�

Encoding Technique

In the speed�independent delay model� the Complete State Coding is a nec�
essary condition for a speci�cation to be implementable as a set logic equa�
tions �see Section ������ Unfortunately� till now no method has been able to
e�ectively tackle the problem of �nding an encoding of the speci�cation that
guarantees an implementation� Even the known structural methods working
for some subclasses of STGs rely on the fact that heuristics with a�ordable
computational cost will �nd a solution with high probability ���� ���� In this
chapter we present a method that guarantees a correct encoding and works
at the level of the Petri net�

The method presented in Section ��� has been inspired by previous work
for the direct synthesis of circuits from Petri nets� One of the relevant
techniques was proposed in �
��� where a set of cells that mimic the token
�ow in Petri nets was designed� The circuit was built by abutting the cells
and producing a structure isomorphic to the Petri net� This type of cells�
called David cells� were initially proposed in �����

Figure ��� depicts a very simple example on how these cells can be abut�
ted to build a distributor that controls the propagation of activities along a
ring� The behavior of one of the cells in the distributor can be summarized
by the following sequence of events�

� � � � ci�� �
� �z �

i�th cell
excitation

� ai � � ai�
� �z �

i�th cell setting

�

���� INTRODUCTION ��

� ai�� � � ai�� � � ci���
� �z �

�i� 	��th cell resetting

� ci �
� �z �

�i� 	��th cell
excitation

� � � �

In �
��� each cell was used to represent the behavior of one of the transitions
of the Petri net�

The example of the VME Bus Controller from Section ����� is used to
introduce the methods presented in Section ���� From Section ������ we
know that the STG has encoding problems� Figure ��� illustrates the method
presented in Section ���� for each place of the net� a new signal is introduced
mimicking the token �ow on that place� At the expense of incrementing its
size� the resulting net is free from encoding con�icts� The crucial point is
that� given that the technique works at the level of the net� it avoids to
su�er from the state explosion problem�

lds+

ldtack+

sp2+

sp1−

sp3+

sp2−

d+

sp4+

sp3−

dtack+

dsr−

sp5+

sp4−

sp9+ sp6+

sp5−

d−

sp11−sp8−

sp1+

sp10+

sp9−

lds−

ldtack−

sp11+

sp10−

sp7+

sp6−

dtack−

dsr+

sp8+

sp7−
p8

p7

p1

p2

p3

p4

p5
p6 p9

p11

p10

ENCODING RULE

lds+

d+

dtack+ lds−

d−

dtack−

dsr+ ldtack+ ldtack−

dsr−

Figure ���� Encoding rule applied to the VME Bus Controller example�

�� CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

��� I	O Compatible Transformations

����� Kit of PN Transformations

Three rules are presented for modifying the structure of a FCLSPN� The
rule �r is used for sequencing two concurrent transitions� It was �rst de�
�ned in �
�� Here a reduced version is presented� Rule �i does the opposite�
it increases the concurrency between two ordered transitions� �i can be
obtained as a combination of the ones appearing in �
�� Finally� rule �e
removes a given transition� It was �rst presented in ��
�� All three rules
preserve the liveness� safeness and free�choiceness�

Rule �r
The purpose of the rule �r is to eliminate the concurrency between two

transitions of the PN� This is done by inserting a place that connects the two
transitions� ordering their �ring� The following �gure presents an example
of concurrency reduction between transitions ti and tj

��

ji ji tt t t

tt

The formal de�nition of the rule is�
Let N � �P� T� F�m��� N

� � �P �� T� F ��m�
�� be two FCLSPNs� and tran�

sitions ti� tj � T � Then� �r�N� ti� tj� � N � if�

Conditions on N �

�� ftg � ���ti� �
���tj�

�� �ti � fpig � jp�i j � �

�� �tj � fpjg � jp�j j � �

�� m��pi� � m��pj�

Conditions on N ��

�� P � � P � fpg

�� F � � F � f�ti� p�� �p� tj�g

�� m�
�jP � m�jP � m�

��p� � 	

�For the sake of simplicity in the de�nition of the rules� we will abuse of the notation
and use �x� y� � F and �x� y� �� F for F �x� y� � 	 and F �x� y� � �� respectively�

���� I
O COMPATIBLE TRANSFORMATIONS ��

Rule �i
Inversely to rule �r� rule �i removes the causality relation between two

ordered transitions� making them concurrent�The following �gure presents
an example of increase of concurrency between transitions ti and tj �

ε1

ε

ti

tj

1
p

ti

p

tjp

p
2

p
3

4

2

The formal de�nition of the rule is�
Let N � �P� T� F�m��� N � � �P �� T �� F ��m�

�� be two FCLSPNs� and
transitions ti� tj � T � In the following de�nition� places p�k represent new
places originated from places either in �ti �k � i� or in t�j �k � j�� Then�
�i�N� ti� tj� � N � if�

Conditions on N �

�� f�ti� p�� �p� tj�g � F

�� j�p j � j p�j � �

�� �q � �ti � j q�j � �

�� ti �� �t�j �
�

Conditions on N ��

�� P � � �P n fpg��
fp�ijpi �

�tig � fp�j jpj � t�jg

�� F � � �F n f�ti� p�� �p� tj�g��
f�y� p�i�j�y� pi� � Fg �
f�p�i� tj�j�pi� ti� � Fg �
f�p�j � y�j�pj � y� � Fg �
f�ti� p�j�j�tj � pj� � Fg �
f�y� p�j�j�y� pj� � F � y �� tjg

�� m�
�j�P n fpg	 � m�j�P n fpg	 �

�k � m�
��p

�
k� � m��pk� �m��p�

Rule �e
The rule �e eliminates a transition from the PN� The following �gure

presents an example of elimination of transition ��

�� CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

titk tm

tpts tr

tk tm ti

ts tr tp

p13 p14p23 p24ε

p1 p2

p4p3

The formal de�nition of the rule is�
Let N � �P� T� F�m��� N

� � �P �� T �� F ��m�
�� be two FCLSPNs� transition

� � T and let P� � ����� ����� Then� �e�N� �� � N � if�

Conditions on N �

�� �p � p � �� � p� � f�g

Conditions on N ��

�� P � � �P n ��� � ���� � P�

�� T � � T n f�g

�� F � � �F n f �a� b� j �a� b� � F �
�a � � � b � ��g��
f�y� hp�� p�i�j�y� p�� � Fg�
f�hp�� p�i� y�j�p�� y� � Fg

�� m�
�jP n ������	 � m�jP n ������	 �

�hp�� p�i � P� �
m�

��hp�� p�i� � m��p�� �m��p��

����� I
O Compatible Transformations over RPN

The I�O compatible relation operator ��� can be lifted to RPNs�

De�nition ����� I�O compatible relation over RPN� Let A and B be
two RPNs with corresponding RTSs RTS�A� and RTS�B�� A� B if RTS�A��
RTS�B��

For each transformation of the kit presented in Section ������ the fol�
lowing sections enumerate those situations where the transformation can be
applied to the underlying FCLSPN of a deterministic RPN while preserving
the I�O compatible relation�

I�O compatible application of �r

The application of �r�A� e�� e�� preserves � when neither e� nor e� is
an input transition� In fact� it is su�cient to require only e� to be non�

���� I
O COMPATIBLE TRANSFORMATIONS �

o

o

o
i

System

i o

o
i

Environment

i

o

i

i

Figure ���� Di�erent possibilities for reducing concurrency�

input for the preservation of �� but then deadlock situations may arise�
Figure ��� exempli�es this� initially� both environment and system can safely
interact� Moreover� if either the environment or the system are transformed
by reducing concurrency between an input and an output� the interaction
can still be safe� However� the two transformed systems can not interact�
The formalization of the transformation is�

Theorem ����� Let the RPNs A� B and C with underlying FCLSPN and
corresponding deterministic RTSs �SA��A� TA� sAin�� �S

B ��B � TB � sBin� and
�SC ��C � TC � sCin�� respectively� Assume �C � �B� If

�� A� B

�� �r�B� e�� e�� � C� with e�� e� �� �B
I

then A� C�

Proof� Case fe�� e�g � fo�� o�g � �B
O� The other cases are similar�

Let R� be the relation between A and B� De�ne R as�

�s � SA� s�� � SB � s� � SC � sR�s�� � sBin
�
	 s�� � sCin

�
	 s� � sRs�

The following items treat individually conditions ��� of De�nition ������

� Condition �� taking � � � implies sAinRs
C
in�

�� CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

e
1s´

e

s´2́

s´´in siń

s2

e

s

s2́

R

1 1s´´
´

σ σ

Figure ��� Conditions ��a� from the proof of Theorem ������

� Condition �a�� let s�Rs
�
�� and suppose s�

e
	 s� with e � �A

O�
Figure �� depicts the situation� Condition ��a� of R� ensures that
there exists s��� � SB s�t� s���

e
	 s��� and s�R

�s���� By de�nition of R�
� is enabled both in sBin and sCin� Then� each place marked by the
sequence � in B is also marked in C� because the �ow relation of B is
included in the �ow relation of C� Given that the initial marking of B
is preserved in C and the set of predecessor places for each input event
is also preserved� implies that e is also enabled in s��� The de�nition

of R makes each s�� s�t� s��
e
	 s�� to be related with s��

� Condition �b�� let s�Rs
�
�� and suppose s��

e
	 s�� with e � �C

O� The
set of predecessor places of e in B is a subset or is equal to the one in C�
Moreover� given that both the initial marking of B is identical to the
one in C� and each place marked by the sequence � in B is also marked
in C� implies that e is also enabled in s���� i�e� s

��
�

e
	 s���� Condition ��b�

of R� ensures that En�s�� e�� and each s� such that s�
e
	 s� is related

by R� with s���� The de�nition of R induces that each such s� is related
with s���

� Condition �a�� let s�Rs
�
�� and suppose s�

e
	 s� with e � �A

INT �
then a similar reasoning of Condition ��a� can be applied�

� Condition �b�� let s�Rs
�
�� and suppose s��

e
	 s�� with e � �C

INT �
then a similar reasoning of Condition ��b� can be applied�

� Condition �a�� let s�Rs
�
�� and suppose fejEn�s�� e�g � �A

I � Condi�
tion ��b� of R� ensures that fejEn�s���� e�g � �B

I � If the non�input event
enabled in s��� is di�erent from o�� then similar reasoning of previous
cases guarantees that the event is also enabled in s��� If the event en�
abled in s��� is o� and no non�input event is enabled in s��� we will proof
that o� is also enabled in s��� Assume the contrary� o� is enabled in s���
but no non�input event is enabled in s��� Applying the same reasoning

���� I
O COMPATIBLE TRANSFORMATIONS �

of case ��a� we can conclude that the place p such that fpg � �o� in
B has a token in the marking m corresponding to state s��� Moreover�
the liveness of C ensures that from m there is a feasible sequence �
�let � be minimal� reaching a marking m� where o� is enabled� The
minimality of �� together with the fact that the new place p� added
by �r between o� and o� is unmarked in m �otherwise o� is enabled
in s��� because fp� p

�g � �o� in C� imply that o� �� �� and therefore
m��p� � �� which contradicts the safeness of C�

� Condition �b�� let s�Rs
�
�� and suppose fejEn�s��� e�g � �C

I � then
similar reasons of the previous cases ensure that fejEn�s��� � e�g � �B

I

and Condition ��b� of R� ensures that fejEn�s�� e�g � �A
O�

Finally� it can be proven that the language of RTS�C� is a subset of the
language of RTS�B�� Therefore� no in�nite trace of internal events can exist
in C implying that C is livelock�free� �

I�O compatible application of �i

The application of �i preserves � when�

�� at least one of the transitions involved is internal� and

�� no internal transition is inserted as trigger of an input transition

The purpose is to avoid the increase of concurrency between two ob�
servable transitions� in order to forbid the generation of unexpected traces
either on the environment or on the system� More formally�

Theorem ����� Let the RPNs A� B and C with underlying FCLSPN and
corresponding deterministic RTSs �SA��A� TA� sAin�� �S

B ��B � TB � sBin� and
�SC ��C � TC � sCin�� Assume �C � �B� If

�� A� B

�� �i�B� e�� e�� � C� with either e� � �B
INT or e� � �B

INT

�� B is input	proper

� �e � �e���
� � e �� �B

I

then A� C�

Proof� Conditions ��� of transformation �i ensure to preserve both the
observational equivalence and the input�properness of B� Theorem ����
induces A� C� �

�� CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

I�O compatible application of �e

Rule �e only preserves � when applied to internal transitions�

Theorem ����� Let the RPNs A� B and C with underlying FCLSPN and
corresponding deterministic RTSs �SA��A� TA� sAin�� �S

B ��B� TB � sBin� and
�SC ��C � TC � sCin�� Assume �C

OBS � �B
OBS� If

�� A� B

�� �e�B� e� � C� with e � �B
INT

�� B is input	proper

then A� C�

Proof� If the observational languages of two deterministic systems coin�
cide� then they are observational equivalent ����� It can be proven that the
observational language of C is the same to the one of B� Moreover� provided
that B is input proper and the causality relations regarding internal events
on B are preserved in C� C is also input proper and therefore� applying the
determinism of B and Theorem ���� implies A� C� �

The transformations presented above can introduce redundant places in
the target net� For dealing only with place�irredundant nets� the kit is aug�
mented with a rule for eliminating redundant places� Linear programming
techniques exist that decide the redundancy of a place e�ciently �
��� More�
over� each time a transformation is performed� it can be locally determined
the potential redundant places� and therefore the redundancy checking is
only applied to a few places�

��� Encoding Technique

This section presents a transformation applied to STGs� The features of this
transformation are the following�

� It guarantees the USC property�

� It preserves free�choiceness�

� It preserves consistency� liveness� safeness and observational equiva�
lence with respect to the input and output signals�

� It has linear complexity on the size of the STG�

This is the �rst method that guarantees a solution for the encoding prob�
lem and tackles the problem in linear complexity for the class of FCLSPNs�
The transformation is based on the insertion of a signal for each place of the
STG that mimics the token �ow on that place�

��	� ENCODING TECHNIQUE ��

�� Create the silent transitions �� and ���

�� For each place p � �t� create a new transition with
label sp� and insert new arcs and places for creating
a simple path from �� to ��� passing through sp��

�� For each place q � t�� substitute the arc �t� q� by the
arc ���� q�� create a new transition labeled as sq� and
insert new arcs and places for creating a simple path
from t to ��� passing through sq��

sq1+

spn-

sp1-

2ε1ε

t

pn

q1

qm

q1

qm

p1

pn

p1

sqm+

t

Figure ���� Transformation rule for each transition t � T �

The transformations will be presented as a rule to be applied to the
transitions of the STG� Before the application of the Structural Encoding�
the set of signals of the STG has been augmented with one signal sp for each
place p of the STG� In order to simplify the presentation of the rules and
the corresponding proofs� we will use silent transitions on the de�nition of
the rules�

����� Encoding Transformation

Let S � hhP�T �F �m�i�X �#i be an STG with underlying FCLSPN� The
Structural Encoding of S derives the STG Enc�S� in which a new internal
signal sp has been created for each place p � P� and the transformation
rule described in Figure ��� has been applied to each transition t � T �
The new transitions appearing in Enc�S�� labelled with sp�� will be called
E	transitions�

Figure ��
 shows how each place is encoded by at least two transitions
in a way that depending on wheter the transitions are predecessors or suc�
cessors� the encoding is negative or positive� respectively� In the Figure this
is presented for the places q and qi�

Let us now prove properties on Enc�S��

Proposition ����� Enc�S� is free	choice�

	 CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

. . . .

. . . .

. . . .

sq+

z+ ε1 ε2

y+ ε1

a+

sqi+

ε1 ε2

sk+

s1+

sq-

sqi-

ε2

q

iq

Figure ��
� Encoding for places q and qi�

Proof� Every new place p appearing in Enc�S� has j�pj � jp�j � � by
construction� For each place p �transition t� of S� the set p� ��t� is identical
both in S and Enc�S�� Given that S is free�choice� Enc�S� is also free�
choice�

�

Proposition ����� Enc�S� is live� safe and is observationally equivalent to
S with respect to the input and output signals�

Proof� The transformation for structural encoding is a trivial combination
of a set of transformations proposed by Berthelot that preserve liveness�
safeness and home marking �
�� These transformations also preserve the
behavior condition� each con�ict resolution in Enc�S� is performed by some
observable transition� i�e� for every transition x� and place p such that
p � �x� and p� � � then x � Obs �

From the behavior condition� it immediately follows that observational
equivalence is also preserved� �

Proposition ����� Enc�S� is consistent�

Proof� Given that the observational equivalence is preserved� consistency
directly holds for the signals already in S� It only remains to prove that it
also holds for the E�transitions of the new inserted signals�

By construction� the new sp and sq signals mimic the token �ow in
places� Given that the dynamic behavior corresponds to a safe PN� no more
than two consecutive rising or falling transitions can occur for these signals�
�

Lemma ����� Let R be the new set of places inserted in S for constructing
Enc�S�� Every feasible complementary set between two reachable markings
m and m� of Enc�S� satis�es the equality mjR � m�jR�

��	� ENCODING TECHNIQUE
�

pn

a�

bm

c�

cn

d�

dn

q�

qi

p�

am

b�

�� ��

qm

sq��

sqm�

x�

sp��

spn�

y�

Figure ���� Place encoding to guarantee USC�

Proof� To prove that mjR � m�jR means to prove that every new place
inserted in S has the same amount of tokens both in m and m�� Figure ���
depicts a fragment of Enc�S� that results from applying the transformation
rule to a transition with p� � � � pn� and q� � � � qm as predecessor and successor
places� respectively� Without loss of generality� we will assume that the label
of the transition is x�� and that place qi has one successor transition with
label y�� By de�nition� if a feasible complementary set exists between m
andm� then ��m� � ��m��� With two exceptions that will be discussed later�
the marking of the new places inserted �places a� b� c and d in Figure ����
can be uniquely determined as follows�

m�ai� 	 � � sqi 	
 � sp� 	 � � � 	 spn 	 � � x 	 �

m�bi� 	 � � sqi 	 � � sp� 	 � � � 	 spn 	 � � x 	 �

m�ci� 	 � � spi 	 � � sq� 	 � � � 	 sqm 	 � � x 	 �

m�di� 	 � � spi 	
 � sq� 	 � � � 	 sqm 	 � � x 	 �

When de�ning the previous equations� it is important to use the fact
that the STG is safe and consistent� We will only prove the equality for
m�ai�� The other equalities can be proved in a similar way�

�
m�ai� � � implies sqi � 	� since sqi� is enabled� Otherwise the STG

would not be consistent� m�ai� � � also implies sp� � � � � � spn � �� since
the liveness and safeness of the STG imply that �� has not �red after x�
has �red� Therefore� none of the spi� transitions has �red yet� while all
spi� transitions already �red before x�� Finally� m�ai� � � clearly implies
x � ��

�
By the consistency of signal x� the only markings in which sp� � � � � �

spn � � and x � � correspond to markings in which some tokens are held in
the places after x� but before sp�� � � � spn�� The fact that sqi � 	 implies
that place ai has a token�

� CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

As mentioned before� there are two exceptions in which the binary code
does not uniquely identify the marking in the new places inserted� One
exception corresponds to the submarkings in which m�b�� � � � � � m�bm� �
� and m�c�� � � � � � m�cn� � �� respectively� These submarkings are
only separated by a silent transition� ��� that makes them observationally
equivalent� The other exception corresponds to the submarkings separated
by ���

Finally� given that ��m� � ��m�� we can conclude that the previous
equations also hold for m�� and therefore the marking in R is identical both
in m and m�� �

Lemma ����� Let qi be a place of S� and Tc be a feasible complementary
set between two reachable markings m and m� of Enc�S�� Then� m�qi� �
�� m��qi� � ��

Proof� Without loss of generality� let qi be the one of Figure ���� Assume
that m�qi� � �� If no transition in q�i belongs to Tc then the claim trivially
holds�

The initial situation is depicted in Figure ����

Assume� without loss of generality �due to the free�choiceness of Enc�S���
that y� � Tc� and let m�� be the marking reached after �ring y�� From m��

it is possible to �re the set of E�transitions which result from the encoding
of y�� One transition of this set is sqi�� but note that ��m�sqi � �� Two
situations can happen�

�� sqi� � Tc� then at least a transition sqi� belongs to Tc� But every
copy of a sqi��transition is either in �x���� or in �z����� where z� is
another transition such that �z� � �x��� Assume that the transition
belonging to Tc is the one in �z����� The safeness of Enc�S� ensures
that the set of places from the encoding of z� is unmarked in m�
because otherwise there is a marking reachable from m having two
tokens on qi� But Lemma ����� ensures that the marking in the new
places inserted for encoding z� is the same both in m and m�� and
therefore every E�transition from the encoding of z� belongs to Tc�
adding again a token to qi�

�� sqi� �� Tc� no transition y� can appear in Tc after the �ring of y�
because transition �� from the encoding of y� does not belongs to Tc�
and then given that Enc�S� is consistent no sequence of transitions in
Tc can enable y� after the �ring of y�� Therefore y� appears before
of y� in Tc� Again� the consistency of Enc�S� implies that there exists
a place q such that q � �y�� m�q� � 	 and some sq� transition in the
path between y� and y� must be �red in order to put a token in q�

�In the simplest case� z� � x��

��	� ENCODING TECHNIQUE
�

qi

y+

sq-

s1+ sk+

ε1

sqi-

ε2

q

ε1

ε2

x+

sq+

ε1

ε2

z+

sqi+

y-

Figure ���� Initial situation for proof of Lemma ������

Then there must be in Tc an sq� transition� but the actual situation
is not possible in Enc�S�� because�

� The positive E�transitions from the encoding of y� �let s��� ����
sk�� must be in Tc in order to enable sq��

� Lemma ����� ensures that the same marking exists both in m
and m� with respect to the set of places from the encoding of y��
Given that sqi� �� Tc implies that transition �� from the encoding
of y� is not in Tc� and then in m �m�� some of this places are
marked�

� And then the consistency of the E�signals inserted s�� ���� sk in
Enc�S� implies that the set of negative transitions s��� ���� sk�
can not be in Tc� because otherwise them can be autoconcurrent�

� CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

s5+

s4-

ackbus-/1

reqbus-/1

s6+

s5-

s5+

s4-

ackbus-/1

IO-Enc(S)

reqbus-/1

s6+

s5-

reqbus-/1

ackbus-/1

4

5

6

SEnc(S)

Figure ���	� In the center the initial STG fragment� Enc�S�� technique
of the previous section� IO�Enc�S�� technique presented in this section to
preserve I�O compatibility�

But then Tc is not a complementary set�

�

Theorem ����� Enc�S� has the USC property�

Proof� This follows from Lemmas ����� and ������ together with the bound�
edness of Enc�S��

�

����� I
O Compatible Encoding Technique over STG

The encoding technique presented in Section ����� does not preserve the I�O
compatibility� because when the transformation rule is applied to an output
signal transition being a trigger of an input signal transition� internal events
�induced by the intermediate places of the initial STG� are inserted delaying
the input signal transition� and therefore there is a violation of Condition �
�receptiveness� of the I�O compatibility de�nition� The situation is depicted
in Figure ���	 �left�� the E�transitions in the shaded box �s� and s���
delay the input signal transition ackbus����

Figure ���	 �right� shows how the encoding technique presented in this
section will be applied to the STG fragment of the �gure� The only di�erence
between the new technique presented in this section and the one presented
in the previous section is in the way non�input signal transitions are encoded
�transition reqbus��� in the �gure�� for every transition of this type� the
E�transitions associated are inserted before of the transition itself� Input
signal transitions are encoded in the same way as in the technique presented
in the previous section� Figure ���� describes formally the new encoding
technique for non�input signal transitions�

��	� ENCODING TECHNIQUE

ε2ε1 t

sq1+

sqm+

p1

pn

p1

qm

q1

qm

q1

pn

t

sp1−

spn−

Figure ����� Transformation rule for non�input signals to preserve the I�O
Compatibility�

However� the new encoding technique presented here will also violate
the I�O compatibility for those STGs having two input signal transitions i�
and i� in sequence� because the encoding of i� will delay i� anyway� The
last part of this section will de�ne formally the class of STGs not having
two transitions in sequence� For that class of STGs �called IO�STG�� I�O
compatibility can be ensured�

Let us �rst concentrate on reasoning about whether the new encoding
technique ensures a correct encoding in the transformed net� All the prop�
erties except USC can be proved in the same way for this new technique�

Unfortunately� the new technique derived can only ensure USC if the
underlying Petri net is a marked graph� However� if the underlying Petri
net is Free choice and some additional structural condition is ful�lled� CSC
can be ensured� Informally� the structural condition is on places that have
more than one transition on their pre�set� This type of places are called join
places� The structural condition� called simple join condition� described
graphically in Figure ����� is the following�

Every transition in the pre	set of a join place p must have p as
its only successor place�

The formal de�nition of the class of FC Petri nets satisfying the simple
join condition is de�ned now�

De�nition ����� Simple Join Petri net� A simple join Petri net �SJ�
is a FCLSPN such that every join place ful�lls the simple join condition� i�e�
�p � j�pj � � �� �t � �p � t� � fpg�

As was mention before� the encoding technique presented in this section
can not guarantee unique state encoding for general FCLSPN� This can be
seen in the Figure ����� in the initial marking� the complementary sequence
fbusctl�� ���� reqbus�� nakbus�� ���� s�
�g �in boldface� connects two di�er�
ent markings having the same binary code assigned� thus violating the USC

� CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

Figure ����� simple join condition to ensure a correct encoding in the mod�
i�ed encoding technique�

property �the underlined transitions denote input events�� However� we are
going to see that if the underlying Petri net is SJ� the set of output signals
enabled in both markings �busctl� in the example� will be the same�

The insertion of the E�transtions in the initial STG by the new encoding
technique makes the new STG to almost characterize the markings by looking
at the value of the signals nearby� like in the technique of previous section�
For input signal transitions or E�transitions resulting from the encoding of
an input signal� Lemmas ����� and ����� also hold for the new technique�
provided that input transitions are encoded in the same way� However�
for output signal transitions and E�transitions associated� Lemmas �����
and ����� only hold for SJ nets�

In the encoding of an output signal transition� the reasoning used in
Lemma ����� for characterizing places ai� bi and ci �Figure ���� holds if the
simple join condition is satis�ed in the net� For those places� it must be
considered now that x � 	 in the description of the marking� Using the con�
sistency of the signals and the safeness of the transformed net� an identical
reasoning of Lemma ����� can be applied� ensuring the characterization of
any ai� bi and ci place by the value of a set of signals�

However� Lemma ����� does not hold for places di resulting from the
encoding of an output signal transition� For such di�places� we can not
characterize the markings that put a token on them just by looking at the
value of the signals� This can only happen when two output transitions
share some join place on their post�set� as can be seen in the situation of
Figure ����� when two output transitions share some place on their post�set�
�place i in the �gure�� the markings m� and m� enabling each transition can
have the same code assigned� because both output transitions create a copy
of E�transition spi��

Let us �rst de�ne formally the two markings m� m� that have the same
code�

m��d� � ��m��d
�� � 	�m��j� � 	�m��i� � 	�m��k� � �� C

m��d� � 	�m��d
�� � ��m��j� � ��m��i� � 	�m��k� � 	� C

��	� ENCODING TECHNIQUE

nakbus+

ackctl+

17

reqbus+

ackbus+req-/1

ack-/1

req+

busctl+

busctl+/1

ackctl-/2

busctl-/2

reqbus-/1

ackbus-/1

busctl-/3

ackctl-/1

ack+ reqbus-/2

nakbus-/1

1

2

3

4

5

67

8

9

10

11

12

13

14

15 16

�a�

ackbus-/1

ackctl-/1

req-/1

req+

ackctl-/2

s3-/1

reqbus-/1

ackbus+

s6+

s5-

s7+

s6-

busctl-/3

s8+

s7-

s9+

s8-

ack+

s10+

s9-

s11+

s10-

ack-/1

s12+

s11-

s1+

s12-

busctl+/1

s4+

s3-

s5+

s4-

busctl+
ackctl+

s3+

s2-

reqbus+

nakbus+

s13+

s14+

s13-

reqbus-/2

nakbus-/1

s15+

s14-

s16+

s15-

busctl-/2

s17+

s16-

s1+

s17-

s1-

s2+

�b�

Figure ����� �a� Alloc	Outbound example� �b� IO�Enc�Alloc�Outbound� has
CSC� It has not USC due to the complementary sequence �in boldface�
between two di�erent markings�

where C represents the marking for the rest of places of the net in m� and
m�� Note that both markings have the same token assignment inC� provided
that a slight di�erence in the marking of the rest of places means that the
transitions that added or removed the token will make the codes of the

� CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

z+

j

ε1

spi+

m spm-

ε1 spr-r

spi+/1

d

d’

spk+

spj+

x+

i

k

Figure ����� Situation where two markings can have the same code�

con�icting markings di�erent� and therefore no con�ict will exist� Now let
us reason why the distribution of tokens in places d� d�� i� j and k in m� and
m� is the previous one� if m� �m�� enables x� �z�� implies that m��d� � �
�m��d

�� � ��� m��d
�� � 	 �m��d� � 	� because if m��d

�� � � �m��d� � ��
then after �ring z� and x� at m� �m�� there will be two tokens on place i�
contradicting the safeness of the transformed net� Also the safeness of the
transformed net implies m��j� � m��i� � 	 and m��i� � m��k� � 	�

The values of the signals in m� and m� are�

spj � �� spi � �� spk � �� spm � 	� spr � 	� x � 	� z � 	

And then� the only possibility for spj � � at m� is when the token added
to j by the �ring of x� �if x� does not �res in the complementary sequence
betweenm� andm� we are done� is still in place j atm�� i�e� m��j� � �� This
reasoning can be symmetrically done for m� and spk� leading to m��k� � ��
Again� this is only true for SJ nets� Figure ��� shows a situation where�
provided that the simple join condition does not hold on the join place p�� a
CSC con�ict exists� described by the complementary sequence in boldface�

Now consider the marking m� reached after �ring x� at m�� It can be
formally de�ned as�

m��d� � 	�m��d
�� � 	�m��j� � ��m��i� � ��m��k� � �� C

which is the same marking reached after �ring z� at m�� Then the consis�
tency of the transformed net imply that x and z are indeed the same signal�
i�e� z� � xi�� This ensures that� according to what happens in Figure ����
with busctl�� no possible con�ict exists for the transition preceding the join
place�

��	� ENCODING TECHNIQUE
�

nakbus+

ackctl+

req-/1

ack-/1

req+

ack+

9

10

11

12

17

reqbus+

ackbus+

busctl+

busctl+/1

ackctl-/2

busctl-/2

reqbus-/1

ackbus-/1

busctl-/3

ackctl-/1

reqbus-/2

nakbus-/1

2

3

4

5

67

8

13

14

15 16

o1+

18

19

o1-

20

1

�a�

ackbus-/1

ackctl-/1

s12-

busctl+

s13+

s3-/1

s14+

s13-

reqbus-/2

nakbus-/1

s15+

s14-

s16+

s15-

busctl-/2

ackctl-/2

s17+

s16-

s1+

s17-

nakbus+

busctl+/1

ackctl+

s2+

s1-

s3+

s2-

reqbus+

ackbus+

s4+

s3-

s5+

s4-

reqbus-/1

s6+

s5-

s7+

s6-

busctl-/3

s8+

s7-

s9+

s8-

ack+

req-/1

s10+

s9-

s11+

s20-s10-

ack-/1

req+

s12+

s11-

s18+s1+

s19+

s18-

o1+

s20+

s19-

01-

�b�

Figure ���� �a� Modi�ed Alloc	Outbound example� �b� Applying the encod�
ing technique to preserve I�O compatibility does not solves the CSC con�icts

However� depending on whether the simple join condition holds or not�
we can have a CSC con�ict in the transformed net� because the set of transi�
tions enabled at m� �enabled by the token at place k and the token at places
in C� can be di�erent from the set of transitions enabled at m� �enabled by
the token at place j and the token at places in C�� If the simple join condi�
tion holds� places j and k do not exist �in Figure ����� only solid lines will
represent the net� and therefore the same set of transitions will be enabled
by C both in m� and m�� If the simple join condition does not hold� we
can have situations like the one described in Figure ����b�� where in the
initial marking transitions busctl��� and sp��� are enabled and after �ring
the complementary sequence shown in boldface� only transition busctl� is
enabled�

�	 CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

In conclusion� we can only ensure a correct encoding with the technique
presented in this section for SJ nets� For general FCLSPNs� some easy trans�
formations can be done to guarantee a correct encoding� but then the new
Petri net can violate the Free choice condition� As future work� we plan to
study the situation where this happens and whether the Free choice condi�
tion can be reestablished�

The remainder of the section will de�ne the class of STGs where the new
technique can be applied and I�O compatibility ensured� For the preserva�
tion of the I�O compatibility with respect to the environment� the encoding
technique presented in this section can only be applied to a restricted class
of speci�cations� the IO�STG class contains those STGs ful�lling both that
no input signal transition triggers another� and that the transitions in the
post�set of a choice place are all input signal transitions� More formally�

De�nition ����� An IO�STG is a Free	Choice STG where the following con	
ditions hold�

�� �ai� with a � I � �bj� � �bj� � �ai���� � b �� I��

�� �p � P � �jp�j � �� �bj� � p� � b � I��

And now we can state that when the encoding technique presented in
this section �called IO�Enc� is applied to an IO�STG� the new system can
work correctly in the environment where the initial system is assumed to
work correctly�

Theorem ����� Let S be an input	proper IO�STG with environment %S sat	
isfying that S � %S� Then IO�Enc�S�� %S

Proof� Direct application of Theorem ����� taking B � S� A � %S and C �
IO�Enc�S�� The input�properness of IO�Enc�S� is derived from the input�
properness of S and the fact that no new internal transition is delaying an
input in IO�Enc�S�� �

��� Conclusion

Several Petri net transformations have been introduced in this chapter� The
rules presented in the �rst section of the chapter� aim to support the synthe�
sis of reactive systems modeled as a Petri net� The theory of I�O Compati�
bility is used for showing that� when the rules are applied according to some
structural conditions� the correct interaction with the environment can be
guaranteed� As a future work it is interesting both to extend the kit of rules
and to weaken the restriction of application of the kit presented�

The second part introduces an encoding technique for the synthesis of
asynchronous circuits� To the best of our knowledge� it is the �rst structural

���� CONCLUSION ��

technique that works in the class of STGs with underlying FCLSPN� It is
also shown how to modify the technique to preserve the I�O Compatibility
with the environment� which also requires to restrict the class of behaviors
where the technique can be applied�

�� CHAPTER �� TRANSFORMATIONS FOR SYNTHESIS

Chapter �

ILP Models for Synthesis

and Veri�cation of

Asynchronous Circuits

Everything
You think you know

� Massive Attack� Everywhen

In this chapter we present methods that use integer programming tech�
niques to verify the CSC�USC properties� necessary conditions for the ex�
istence of a speed�independent implementation� Moreover a method for
computing the set of signals needed for the implementation of a given signal
is presented�

The methods consist in adding constraints to the marking equation in
order to prove that the reachable states of the system are correctly encoded�
In the case of the veri�cation of CSC�USC properties� the experimental re�
sults show a speed�up of several orders of magnitude with respect to the
existing approaches�

This chapter is based in the results presented in �����

��� Introduction

The synthesis of asynchronous circuits from a given formalism �i�e� an au�
tomaton or a Petri net� can be separated into two steps ����� �i� check�
ing and �possibly� forcing implementability conditions and �ii� deriving the
next�state function for each signal generated by the system� Most of the
existing CAD tools for synthesis perform steps �i� and �ii� at the underlying
state graph level� thus su�ering from the well known state explosion prob�
lem� These tools� although using symbolic techniques for alleviating the

��

�� CHAPTER �� ILP FOR VERIFICATION AND SYNTHESIS

cost of representing the state space� can only synthesize speci�cations with
moderate size�

In order to avoid the state explosion problem� structural methods for
steps �i� and �ii� have been proposed in the literature �
� ��� ���� The
work proposed in �
� ��� uses graph theoretic�based algorithms while ����
use both graph theoretic �by using causal order partial semantics of the
Petri net� called unfoldings ���� and linear algebraic techniques� A new and
promising direction is presented in ����� where the encoding problem is faced
by adopting the Boolean Satis�ability �SAT� approach�

To the best of our knowledge� the work in ���� is the �rst one that uses
linear algebraic techniques to approach the encoding problem� Although
completely characterizing the encoding problem� the techniques presented
in ���� �and also in ����� need to compute the unfolding of the net� whose size
can be exponential on the size of the net� In addition� the checking of the
Complete State Coding �CSC� in ���� needs to solve non�linear integer pro�
gramming problems� which is NP�hard ������� The work presented in this
chapter proposes linear algebraic methods for deriving su�cient conditions
for the encoding problem and novel methods for performing the synthesis
in a modular fashion� In our approach� the computation of the unfolding
is not performed� at the expense of checking only su�cient conditions for
synthesis� However� the experimental results indicate that this approach is
highly accurate and provides a speed�up of several orders of magnitude with
regard to ���� ����

Moreover� a novel algorithm for computing the set of signals needed to
synthesize a given signal is presented� which also uses integer programming
techniques� This allows to project the behavior into that set of signals and
perform the synthesis on the projection�

In summary� the work presented aims at facing the two important steps
�i� and �ii� in the synthesis of asynchronous circuits� it proposes powerful
methods for checking CSC�USC and a novel method for decomposing the
speci�cation into smaller ones while preserving the implementability condi	
tions� The methods presented here in combination with the ones presented
in Chapter � provide a complete design �ow for the synthesis of controllers�
described in the following chapter�

��� ILP for Verifying State Encoding

In this section it is shown how to formulate an ILP problem in order to verify
if a given speci�cation is correctly encoded�

The concept of complementary sequence is relevant in this chapter�

De�nition ����� Complementary sequence and Balanced Signals�
Given a set of signals � � fa�� � � � � ang� and a transition sequence �� we de	

���� ILP FOR VERIFYING STATE ENCODING �

�ne code change����� as a j�j	vector where component i corresponds to the
result of the equation

P
ai�

���� ai���
P

ai�
���� ai��� When the i	th com	

ponent of the vector is �� we say that the signal ai is balanced� A complemen�
tary sequence � is a feasible transition sequence such that code change�����
� ��

A balanced signal in a sequence means that the number of positive and
negative transitions of the signal in the sequence is the same� In a comple�
mentary sequence all the signals are balanced� For instance� the sequence

d�� dtack�� dsr�� d�� dtack � anddsr�

is a complementary sequence because the signals appearing on it� i�e� d�
dtack and dsr� are balanced�

����� ILP for USC Checking

A USC con�ict appears in the SG of a system when there are two reachable
markings m��m� such that m� is reachable from m� by �ring a comple�
mentary sequence z� i�e� m�

x
	 m�

z
	 m�� Using the marking equation

�see Section ���� a su�cient condition for USC can be obtained� Before of
de�ning the model� we present an introductory example�

The example is the VME Bus Controller� presented in Section ������ As
said in the previous paragraph� the theory presented in the following sec�
tions is based in the marking equation of a Petri net�

In the STG of Figure ���a�� places names is shown explicitly� From this
STG� the incidence matrix associated to the STG is the following�

lds� dsr� ldtack� ldtack� d� dtack� dtack� lds� drs� d�

p� �� 	 �� 	 	 	 	 	 	 	
p� 	 	 �� 	 �� 	 	 	 	 	
p� 	 	 	 	 �� 	 �� 	 	 	
p
 	 	 	 	 	 	 �� 	 �� 	
p� 	 	 	 	 	 	 	 	 �� ��
p� 	 	 	 	 	 �� 	 	 	 ��
p� 	 �� 	 	 	 �� 	 	 	 	
p �� �� 	 	 	 	 	 	 	 	
p� 	 	 	 	 	 	 	 �� 	 ��
p�� 	 	 	 �� 	 	 	 �� 	 	
p�� �� 	 	 �� 	 	 	 	 	 	

The initial marking of the underlying Petri net is

m� � �	� 	� 	� 	� 	� 	� �� 	� 	� 	� ��

�� CHAPTER �� ILP FOR VERIFICATION AND SYNTHESIS

p11

p9p6
p5

p4

p3

p2

p1

p7

p8

p10

lds+

d+

dtack+dtack−

dsr+ ldtack+ ldtack−

dsr−

lds−

d−

�a�

1310

12
p

p

11

9

8

7

6

5

4

3

2

1

p

p

p p

p

p

p

p

p

p

p

dsr+ ldtack+ ldtack-

csc+

d-

csc-

dsr-

lds-dtack+dtack-

d+

lds+

�b�

ldtack−

csc+

d−

csc−

d+

ldtack+

�c�

ldtack

csc
d

�e�

Figure ��� �a� STG� �b� STG with CSC� �c� Projection for signal d� �d�
Circuit implementing d�

Assuming m� as initial marking� the assignment

x � ��� �� �� 	� 	� 	� 	� 	� 	� 	�

to the vector x is a solution to the marking equation �m� � m� �Nx�� It
means that the sequence of transitions corresponding to the Parikh vector
x is �rable at m�� and it leads to m�� where m� is

m� � �	� �� 	� 	� 	� 	� 	� 	� 	� 	� 	�

from the marking m� above� the assignment

z � �	� �� 	� 	� �� �� �� 	� �� ��

is again a solution to the marking equation� �m� � m� �Nz�� where the
following marking m� results

m� � �	� 	� 	� 	� 	� 	� 	� �� �� 	� 	�

which is clearly a marking di�erent from m�� The non�zero positions of
vector z correspond to transitions d�� dtack�� dsr�� d�� dtack� and dsr��
and then the sequence of transitions corresponding to z is a complementary
sequence� the number of positive and negative transitions of each signal
appearing in z is the same� So� according to the marking equation� there
are two di�erent markings m� and m� such that m� is reachable from m� by
�ring a complementary sequence� It is clear that� the code ��m�� is equal
to ��m��� We found a USC con�ict�

���� ILP FOR VERIFYING STATE ENCODING �

Theorem ����� Let S � ��P� T� F�m�����#� be a consistent STG� S has
USC if the following ILP problem is infeasible�

ILP model for USC checking�

Reachability conditions�
m� � m� �Nx
m� � m� �Nz

m��m�� x� z � 	� x� z � ZjT j

code change��� z� � �
m� �� m�

����

Proof� If no solution exists for ���� then no possible complementary
sequence exists between any pair of reachable markings m��m� � �m�i such
that m� �� m�� �

In fact the constraint m� �� m� is not linear� but it can be replaced by
testing instead if at least one place has di�erent amount of tokens in m� and
m�� Therefore the initial non�linear problem can be transformed to jP j linear
problems� However� if the system is k�bounded� any reachable marking can
be encoded with a jP j k�ary vector� This allows us to express the inequality
between m� and m� as the inequality of two k�ary numbers �����

Note that the marking equation provides only necessary conditions for
a marking to be reachable� This means that either m� or m� or both can
be spurious markings� In the example� both m� and m� are real markings
because the underlying Petri net is a marked graph� and in this class of
nets the marking equation characterizes reachability ��
���� Moreover� if the
Petri net was FCLSPN and reversible� the existence of spurious markings
can also be avoided by using the set of traps of the system ����

In conclusion the USC con�ict detected is in fact a real one� As said be�
fore� provided that the method presented here uses the marking equation as
the main basis for reachability� implies that the method can only semidecide
the problem of USC� only when the model is infeasible we are sure that the
speci�cation is free from USC con�icts�

����� ILP for CSC Checking

A CSC con�ict exists when there exist two reachable markings m��m� such
that m� is reachable from m� though a complementary sequence z and
the set of non�input signals enabled in m� is di�erent from the one in m��
Note that the de�nition of CSC allows to check individually for each non�
input signal a whether a has a CSC violation� When every non�input signal
ful�lls the CSC conditions� the entire system has CSC� The check of CSC

�� CHAPTER �� ILP FOR VERIFICATION AND SYNTHESIS

for each non�input signal can be performed in the following way� let ai� be
a transition of signal a� Then� a CSC con�ict exists if� �i� m� is reachable
from m� by �ring a complementary sequence� �ii� m� and m� have the same
code� �iii� ai� is enabled in m� and �iv� for every transition aj� of signal a�
aj� is not enabled in m�� The enabledness of a transition x at a marking
m can be characterized by the sum of tokens of the places in �x at m� x is
enabled at m if and only if the sum of tokens of the places in �x is equal to
the number of places in �x�

Now we can present a su�cient condition for CSC for each non�input
signal a�

Theorem ����� Let S � ��P� T� F�m�����#� be a consistent STG and non	
input signal a � �� S has CSC for a if the following problem is infeasible
for each transition ai��

ILP model for CSC checking�

�i� Reachability conditions �same as in ������

�ii� code change��� z� � �
�iii�

P
p� �ai�

m��p� � j�ai � j

�iv� �aj� �
P

p� �aj�
m��p� 	 j�aj � j

����

Proof� If ���� has no solutions� no complementary sequence exists between
any pair of reachable markings m� and m�� with only m� enabling signal a�
�

Note that the constraint m� �� m� is not needed in ����� If we continue
with the example of the VME Bus Controller� it can be shown that the USC
con�ict described in the previous section is also a CSC con�ict for signal d�
Given that it has been shown in the previous section that the assignments
x � ��� �� �� 	� 	� 	� 	� 	� 	� 	� and z � �	� �� 	� 	� �� �� �� 	� �� �� satisfy the �rst
two constraints� now we describe here the ful�llment of constraints �iii� and
�iv� by x and z� The former constraint is satis�ed because

X
p� �d�

m��p� � m��p�� � � � jfp�gj � j�d� j

and constraint �iv� is also satis�ed provided that

X
p� �d�

m��p� � m��p�� � 	 	 � � jfp�gj � j�d� j

note that constraint �iv� is not veri�ed for transition d�� because the con�
sistency of S is assumed�

��	� ILP FOR SYNTHESIS ��

In conclusion� a CSC con�ict has been detected in the VME Bus Con�
troller example� Given that the the con�ict is a real one� it is mandatory
to solve it in order to been able to synthesize the speci�cation in the speed�
independent delay model� Chapter � has presented a structural method to
encode speci�cations in order to have a correct encoding�

��� ILP for Synthesis

In this section we propose a novel method to calculate the subset of sig�
nals onto which the STG must be projected to implement each signal� The
support of the next�state function of each signal will be a subset of this
support�

����� Computing a Support for Synthesis

The problem faced in this section is the following� given an STG S �
��P� T� F�m�����#� and a non�input signal a � �� can we compute a subset
�� of � such that it is enough for implementing fa& Two conditions must
be satis�ed by �� ��	��

�� Trig�a� � ���

�� S�� must have CSC for signal a�

Let such �� be called a CSC support of signal a in S�

De�nition ����� CSC Support� Let S be an STG with set of events ��
and a non	input signal a � �� A set �� � � is a CSC support of a in S if
S�� has no CSC con�icts for signal a and Trig�a� � ���

For example� a possible CSC support for signal d from the STG shown in
Figure ���c� is fldtack� cscg� Figure ���d� shows the projection induced by
this CSC support� and in Figure ���e� it is shown the �nal implementation�
The rest of this section is devoted to explain how to compute e�ciently a
CSC support for a given signal a�

The computation of a CSC support can be performed iteratively� starting
from an initial assignment� ILP techniques can be used to guide the search�
Imagine we have an initial set of signals �� � �� candidate to be the CSC

support of a given signal a� A way of determining whether �� is a CSC

support for signal a is by solving the following ILP problem�

ILP model for checking CSC support�

�i�� �iii� and �iv� from ����

code change���� z� � �
����

�	 CHAPTER �� ILP FOR VERIFICATION AND SYNTHESIS

x1+ x2+ x3+ x4+ z+ x5+

x4-x3-x2-x1- z-

x5- y5-

z-

y5+ z+

y4- y3-

y4+ y3+

y2-

y2+

y1-

y1+

Figure ��� PPARBCSC�����

If ���� is infeasible� then �� is enough for implementing a� Otherwise
the set �� must be augmented �from signals in �n��� with more signals until
���� is infeasible� Moreover if ���� is feasible� adding a balanced signal b
from � n �� will not turn the problem infeasible because z is still balanced
for �� � fbg� On the contrary� adding an unbalanced signal will assign a
di�erent code to markings m� and m� of ����� Therefore� the unbalanced
signals in z will be the candidates to be added to ��� The algorithm for
�nding a CSC support set for a non�input signal a is the following�

Algorithm for the calculation of CSC support�

CSC Support �STG S� Signal a� returns CSC support of a

�� �� Trig�a� � fag

while ���� is infeasible do

Let b be an unbalanced signal in z

�� �� �� � fbg

endwhile

return ��

Let us show how the algorithm performs the computation of the CSC sup�
port for signal d from the STG of Figure ���b�� where a new signal �csc� has
been inserted in the original STG to solve the encoding problem� The new in�
cidence matrixN� is the following� where transitions �columns� follow the or�
der �lds�� dsr�� ldtack�� ldtack�� d�� dtack�� dtack�� lds�� drs�� d�� csc�
� csc���

For computing the CSC support of signal d� the initial candidate assigned
by the algorithm is

�� � Trigg�d� � fdg � fldtack� csc� dg

��	� ILP FOR SYNTHESIS ��

p� �� 	 	 	 	 	 	 	 	 	 	 ��
p� �� 	 �� 	 	 	 	 	 	 	 	 	
p� 	 	 �� 	 �� 	 	 	 	 	 	 	
p
 	 	 	 	 �� 	 �� 	 	 	 	 	
p� 	 	 	 	 	 	 �� 	 �� 	 	 	
p� 	 	 	 	 	 	 	 	 �� 	 �� 	
p� 	 	 	 	 	 	 	 	 	 �� �� 	
p 	 	 	 	 	 �� 	 	 	 �� 	 	
p� 	 �� 	 	 	 �� 	 	 	 	 	 	
p�� 	 �� 	 	 	 	 	 	 	 	 	 ��
p�� 	 	 	 	 	 	 	 �� 	 �� 	 	
p�� 	 	 	 �� 	 	 	 �� 	 	 	 	
p�� 	 	 	 �� 	 	 	 	 	 	 	 ��

However for such N� and �� the problem ���� turns out to be infeasible�
and therefore fldtack� csc� dg is a valid CSC support for signal d�

In general it can happen that the set of trigger signals is not enough
to guarantee a valid CSC support� This makes algorithm CSC Support to
iterate� adding a new signal at each iteration in order to guarantee a correct
encoding for the signal� We illustrate this phenomenon using the STG of
Figure ��� from ����� Provided that the STG has forty places and twenty
four transitions� the incidence matrix is not shown here�

Imagine that we want to compute the CSC support for signal x
� The
initial assignment by the algorithm is

�� � Trigg�x
� � fx
g � fz� x�� x�� x
g

However� such �� does not makes problem ���� to be infeasible� the model
is found solvable for the solution x �
�� and z �
��� where

�� � x� � x� � x� � and �� � y� � y� � y� � y
�

and therefore� another signal must be added� The algorithm adds x�

�� � �� � fx�g � fz� x�� x�� x
� x�g

and still the new signal added does not induce the new problem to be infea�
sible� Note that in algorithm CSC Support the order chosen for selecting a
new signal to add among the set of unbalanced ones is arbitrary� and there�
fore it is imprecise whether the signal added is in fact necessary to make
the new problem infeasible� Choosing for instance lexicographical order� the
algorithm will make �ve more iterations� For instance� in the third iteration
the algorithm uses as a candidate for CSC support the following set of signals

�� � fz� x�� x�� x
� x�� x�� y�� y�g

�� CHAPTER �� ILP FOR VERIFICATION AND SYNTHESIS

and the model is again found solvable for the solution x �
�� and z �
���
where

�� � x� � x� � x� � and �� � y� � y� � y� � y� � y
 � y��

The �nal set of signals that makes the model ���� to be infeasible is

�� � fz� x�� x�� x�� x
� x�� y�� y�� y�� y
g

In fact most of the new signals added are not really necessary for obtaining
a CSC support for signal x
� Next section shows how to modify problem
���� in order to avoid unnecessary inclusions of signals in the computation
of the CSC support for a given signal�

Implementation note

In order to avoid� as much as possible� unnecessary inclusions of signals in
the CSC support of a signal� we add an objective function to the problem
����� Assume E� and E� are the set of signals in � with initial value �

and �� respectively� We want to search for solutions of ���� such that the
number of unbalanced signals is minimal� The minimization of the objective
function

min �code change�E�� z� � code change�E�� z��

avoids any vector z as a solution if there is another vector z� such that a signal
with initial value 	 ��� is not balanced in code change�E�� z� �code change

�E�� z�� but is balanced in code change�E�� z
�� �code change�E�� z

���� There�
fore� this function reduces the number of unbalanced signals and� thus� less
choices are possible when the model is feasible and a new unbalanced signal
must be added to ���

Using the objective function on the previous example� it can be realized
that the set

�� � fz� x�� x
� x�� y
g

makes the model ���� to be infeasible� and therefore it is a CSC support
valid for signal x
� Note that it is avoided the inclusion of half of the signals
computed in the previous section�

����� Projection into the CSC Support

Assume that for a non�input signal a its CSC support set CSC�a� has been
computed by Algorithm CSC Support� The next step is to derive the pro�
jection of the STG S into CSC�a� �SCSC�a	�� The projection is computed

by the transformations described in ����� It is assumed that the projections

��	� ILP FOR SYNTHESIS ��

x3+ x4+ z+ x5+

x4-x3- z-

x5-

z- y4-

y4+z+

Figure ��� Projection of example PPARBCSC����� onto signal x
�

preserve trace equivalence on the set of traces with respect to the signals in
CSC�a� �i�e�L�S�jCSC�a	 � L�SCSC�a	���

Although SCSC�a	 and S are di�erent STGs� next theorem shows that
projection preserves CSC�

Theorem ����� Let S be an STG with CSC for the non	input signal a�
and SCSC�a	 be the projection preserving trace equivalence with S on the set

CSC�a�� Then SCSC�a	 has CSC�

Proof� By contradiction� Let us assume there are two reachable markings

s��� s
�
� in SCSC�a	 such that s��

��
�	 s��� s

�
�

��
�	 s��� ��s

�
�� � ��s��� and only s��

enables some transition ai� of signal a� Let s�� s�� ��� �� such that s�
��	 s��

s�
��	 s�� ��jCSC�a	 � ��� and ��jCSC�a	 � ���� Finally� let Trig�ai�� denote

the set of triggering transitions of ai�� Two cases arise�

��s�� � ��s��� then given that we have CSC for signal a in S either
both s� and s� enable a or none of them enables a� If both enable a then
given that the set of trigger transitions of ai� are in the CSC support of a
and s�

ai�	 implies that Trig�ai�� � ���� But then if every trigger transition
is �red in ���� there is a state s reachable by �ring some pre�x of ��� at
s�� which enables ai�� If s �� s�� we have that ai� � ���� and therefore

ai� � �� because ��� � ��� At this point� the fact that s�
ai�	 implies that

�� � �ai � �� with Trig�ai�� � �� We can iterate this process again with ��

and using the �niteness of �� we can conclude that s��
ai�	� contradicting the

assumption that ai� is only enabled in s��� If neither s� nor s� enables a then
the trace ���ai� belongs to L�SCSC�a	� but does not belong to L�S�jCSC�a	�

contradicting the assumption L�S�jCSC�a	 � L�SCSC�a	��

��s�� �� ��s��� if both s� and s� enable a or none of them enables a� then
the same reasoning of the previous case can be applied� If only one of them

�� CHAPTER �� ILP FOR VERIFICATION AND SYNTHESIS

x(m−1)2+

x(m−1)1+x21+

x22+

x(m−1)n+

xmn−

xm1−

xmn+

xm2+

xm1+

x1n−

x11−

x1n+

x11+

x12+

x(m−1)n−x2n−

x(m−1)1−x21−

x2n+

Figure ��� Art�m�n��

enables a� then CSC�a� is not a valid CSC support because some signal from
� nCSC�a� which makes ��s�� �� ��s�� hold is not added to CSC�a� in order
to make ��s��� and ��s��� di�erent� �

Figure �� shows the projection for the signal x
 of the STG depicted in
Figure ��� The CSC support used is �� � fz� x�� x
� x�� y
g�

��� Experimental Results for USC	CSC Checking

The methods presented in Section �� have been implemented in moebius� a
tool for the synthesis of speed�independent circuits� The experiments have
been performed on a PentiumTM ����� Ghz and ��M RAM�

Several parameterizable examples have been used to compare with other
existing approaches and to evaluate the impact of the size of the speci�cation
on the e�ciency of the method� The following examples have been used�

� PpWk�m�n� andPpArb�m�n�� examples modelingm pipelines weakly
synchronized� In addition PpArb�m�n� also includes arbitration� Ev�
ery benchmark in this set has CSC con�icts� These examples were
obtained from �����

� PpWkCsc�m�n� and PpArbCsc�m�n�� a modi�cation of the previ�
ous benchmarks to ful�ll the CSC property�

� TangramCsc�m�n�� examples obtained by translating a synthetic
Tangram program into a netlist of handshake components� The generic
netlist is shown in Fig� �� whereas a Tangram program from which
this structure can be obtained is shown in Figure ��� where the whole

���� EXPERIMENTAL RESULTS FOR USC
CSC CHECKING �

M

x y z

g h i j k l

a d g fj b e h k c

f

M

l

a b c d

i

e

| | | || |

;

M

| |

Figure �� Netlist of handshake components from a Tangram program�

begin
 forever do
 [a!1 || b!2 || c!3];
 [d!4 || e!5 || f!6];
 [g!7 || h!8 || i!9];
 [j!10 || k!11 || l!12];
 od
end

P1 (a:! int & b:! int & ... & l:! int).

P2 (a:? int & b:? int & ... & l:? int &

end

 x:! int & y:! int & z:! int).
begin
 xr,yr,zr: var int
 forever do
 [[a?xr | d?xr | g?xr | j?xr]; x!xr] ||
 [[b?yr | e?yr | h?yr | k?yr]; y!yr] ||
 [[c?zr | f?zr | i?zr | l?zr]; z!zr]
 od

Figure ��� Tangram program from which the structure of Figure � can be
obtained� as the parallel composition of P� and P��

system is build up as the parallel composition of the two processes de�
�ned P� and P�� Each handshake component is speci�ed as a Petri net
and the �nal controller is obtained as the composition of all Petri nets�

�� CHAPTER �� ILP FOR VERIFICATION AND SYNTHESIS

b0+

b0-s- c0+b1-
cb

a c1-a0+

b1+ c1+

a1+

a0-a1- s+c0-

;

Figure �
� STG for a sequencer in a Tangram program�

c0+ c1+
b

sc- c0- c1-
c

a1+ a0-

sb+a

sc+

a1-| | a0+

b0+ b1+ sb- b0- b1-

Figure ��� STG for a parallelizer in a Tangram program�

Figures �
� �� and �� show the STGs for the sequencer� parallelizer
and mixer� respectively� The symbols 	!�

! and M! represent
sequencers� parallelizers and mixers� respectively� Each n�way compo�
nent is implemented as a tree of ��way components� This is a parame�
terizable benchmark that represents a typical controller obtained from
the direct translation of languages like Tangram ��� or Balsa �����

� Art�m�n�� examples modeling a di�erent way of synchronizing m
pipelines� The STG is depicted in Figure ��� Every benchmark in
this set has CSC con�icts�

� ArtCsc�m�n�� transformation of the corresponding benchmark by
means of the insertion of a new set of signals in order to ful�ll the CSC
property ����� The nets in this class of benchmarks are extremely large
compared to the corresponding benchmarks �for instance� Art��	� ��
has ��� places whileArtCsc��	� �� has ����� implying an exponential
growth of the underlying state space� Therefore the check of CSC�USC
for this benchmarks is a hard task�

The experiments for CSC�USC detection are presented in Tables ��
and ��� Each table reports the CPU time of each approach in seconds�
We use 'time� and 'mem� to indicate that the algorithm did not complete in
less than �	 hours or produced memory over�ow� respectively� The tools for
comparing the experimental results are�

���� CONCLUSION �

b0+ c0+ c1+ b1+ b0- c0- c1- b1-

a0+ c0+ c1+ a1+

a

a0- c0- c1- a1-c

b

M

Figure ��� STG for a mixer in a Tangram program�

� CLP� the approach presented in ���� for the veri�cation of USC�CSC�
It uses non�linear integer programming methods and the unfolding of
the net�

� SAT� the approach presented in ���� for the veri�cation of CSC�� It
uses a satis�ability solver and the unfolding of the net�

� ILP� the approach presented here�

From the results one can conclude� as it was expected� that checking
USC is simpler than checking CSC� given the di�erent nature of the two
problems� Moreover� when some encoding con�ict exists� the ILP solver can
�nd it in short time� This is explained by the fact that proving the absence
of encoding con�icts requires an exhaustive exploration of the branch	and	
bound tree visited by ILP solvers� The superiority of ILP with respect to
CLP and SAT is evident�

��� Conclusion

Although ILP is NP�complete� in practice there are real applications where
the algorithms for mathematical programming perform very well� We believe
that if the methods presented in this chapter are applied to well�structured
STGs� the encoding problem can be considered as one of those good per�
forming applications of ILP� The experimental results show this fact� over
an extensive set of examples�

These well�structured STGs can be obtained by syntax�directed trans�
lation of HDL speci�cations in order to perform the synthesis ��� �� ����
Although the majority of the benchmarks used are not of this type� we have
seen experimentally that the structures of the nets obtained from HDL spec�
i�cations are always very regular� and therefore the results should be as good
as the ones presented here� However� as future work we plan to do a deeper
study on how good the methods perform on this type of speci�cations�

�Checking for USC is not implemented in SAT

�� CHAPTER �� ILP FOR VERIFICATION AND SYNTHESIS

benchmark jP j jT j j�j CLP SAT ILP

PPWK����	 �� � �� ���� ���
 ����

PPWK�����	 �� �� �� ��
� ���� ����

PPWK����	 �� � �� ���� ���
 ����

PPWK����	 ��� �� � ���� ���� ����

PPWK�����	 �
� �
 �� ������ ���
 ����

PPWKCSC����	 �� � �� ���
 ��� ����

PPWKCSC�����	 �� �� �� �
���� ���� ����

PPWKCSC����	 �� � �� ���� ���
 ����

PPWKCSC����	 �� �� � �����
 ���� ��
�

PPWKCSC�����	 �

 �
 �� time ��
� ���

PPARB����	 �
 �� ���� ���� ����

PPARB�����	 ��� �� �� ���� ���� ����

PPARB����	 �� �
 �� ���� ���� ����

PPARB����	 �� �� �
 ���� ��� ���

PPARB�����	 ��
 ��
� ���� ���� ����

PPARBCSC����	
 ��
��� ���� ���

PPARBCSC�����	 ��� �� �� ������� ����
 ��
�

PPARBCSC����	 �� �
 �� ����� ���� ���

PPARBCSC����	 ��� �� �
 time ���� ����

PPARBCSC�����	 ��� ��
� time ����� ����

TANGRAMCSC����	 �
� �� � ���� ���� ���

TANGRAMCSC�
��	 ��� ��� � ���� ���
 ����

ART�����	 ��� �� �� ���� ��
� ����

ART�����	
�� �� ��� ���� ����� ���

ART�����	 ��� �� ��� ���� ��� ����

ART�
���	 �� �� ��� ����
 ��
��� ����

ART�����	 ���� ��
�� ������ ����
� ��
�

ARTCSC�����	 ��� ��� ��� time �
 m � m

ARTCSC�����	 ���� ���� ��� time mem �� m

ARTCSC�����	 ���� ���� ��� time mem ��� h

ARTCSC�
���	 ���� ���� ���� time mem ��� h

ARTCSC�����	 ��� ���� ���� time mem � h

Table ��� CSC detection for well�structured STGs�

���� CONCLUSION ��

benchmark jP j jT j j�j CLP ILP

PPWK����	 ��� �� � ����� ����

PPWK�����	 �
� �
 �� ����� ����

PPWKCSC����	 �� �� � ������� ����

PPWKCSC�����	 �

 �
 �� time ����

PPARB����	 �� �� �
 ���� ����

PPARB�����	 ��
 ��
� ���� ���

PPARBCSC����	 ��� �� �
 time ����

PPARBCSC�����	 ��� ��
� time ����

TANGRAMCSC����	 �
� �� � ���� ����

TANGRAMCSC�
��	 ��� ��� � ���� ����

ART�
���	 �� �� ��� �
���� ����

ART�����	 ���� ��
�� ����
 ����

ARTCSC�
���	 ���� ���� ���� time �
 m

ARTCSC�����	 ��� ���� ���� time �� m

Table ��� USC detection for well�structured STGs�

�		 CHAPTER �� ILP FOR VERIFICATION AND SYNTHESIS

Chapter �

A Design Flow for the

Synthesis of Asynchronous

Circuits

This chapter presents a complete design �ow for the synthesis of asyn�
chronous circuits� It is built from the theory presented in the previous
chapters� The design �ow is capable of checking implementability conditions�
such as� complete state coding� and deriving a gate netlist to implement the
speci�ed behavior� It can synthesize speci�cations with few thousands of
transitions in the Petri net� providing a speed�up of several orders of magni�
tude with regard to other existing approaches� Moreover� the quality of the
circuits derived is comparable to the optimal ones that can be obtained by
using state�based logic minimization techniques� The complete design �ow
has been implemented in the tool moebius�

This chapter is based in the results presented in �����

��� Introduction

Several methods have been presented in the literature for the synthesis of
speed�independent circuits� One can classify them by the way the synthesis
is performed�

� State	based methods ���� ��� ��� perform the synthesis from the state
space of the speci�cation� They can derive optimal implementations�
but su�er from the state explosion problem and therefore can only
synthesize small�medium size speci�cations�

� Structural methods �
� �	� ���� working at the level of the Petri net�
can synthesize big size speci�cations but the behavior accepted in the
design �ow is restricted and the quality of the circuits is in general

�	�

�	� CHAPTER �� SYNTHESIS OF ASYNCHRONOUS CIRCUITS

not comparable to the state�based approach� The fact that the un�
derlying state space of the speci�cation is approximated can make
these methods to overestimate or underestimate the ful�llment of the
implementability conditions�

� Hardware Description Language methods ��� ��� where a syntax�directed
translation into communicating handshaking components� that are
later implemented as handshake circuits� This approach guarantees an
implementation by construction� and moreover the resulting speci�ca�
tion to synthesize is well�structured� provided the well�structuredness
of a HDL� However� this approach does not exploit the potential opti�
mizations that can be performed at the logic level� Typically� the size
of the circuits obtained is linear on the size of the speci�cation�

The design �ow presented in the next section combines the three type
of methods presented above� aiming at keeping the advantages of all three
while avoiding their disadvantages�

State�based methods are used in the �nal stage of the �ow� when the
speci�cation has been decomposed into smaller ones that can be easily han�
dled by this type of methods� This allows to use the optimization capabilities
of state�based approaches�

Structural methods� namely graph�based algorithms and linear algebra�
are used along the design �ow in order to support the steps needed for
the speed�independent synthesis� The methods range from checking imple�
mentability conditions by solving a linear programming problem to trans�
form the speci�cation via Petri net transformations to improve the quality
of the resulting implementation�

Finally� it is assumed that the speci�cations are well�structured� The
�ow can accept any behavior represented in a free�choice Petri net� We
believe that speci�cations derived from HDL can be mapped into this class of
nets ��� ��� Moreover� the fact that HDL are well�structured by construction
helps in alleviating the complexity of the structural methods used�

��� The Design Flow

In this section a new design �ow for the synthesis of asynchronous circuits
is presented� The major gains with respect to previous methods are�

� The synthesis of a speed�independent circuit implementing non�input
signals can be done in most of the cases� despite of the size of the
whole speci�cation�

� The use of structural methods allows to deal with very large speci��
cations�

���� THE DESIGN FLOW �	�

Transformations
+

CSC Checking

STG has USC/CSC
(do nothing)

Initial STG

 Circuit for a1 Circuit for an

Encoded STG

(IO)Encoding for USC/CSC

Reduced STG

Greedy removal of signals

CSC support for a1 CSC support for an

 Projection for a1 Projection for an

 Synthesis Synthesis

Figure ���� Synthesis of asynchronous circuits�

� Optimization techniques can be applied in some stages of the process�

� The correct interaction with the environment can be preserved�

The synthesis �ow is depicted in Figure ���� Given a consistent STG

with underlying FCLSPN� the encoding technique presented in Chapter �
is applied when the ILP check for correct encoding described in Chapter
gives a positive answer� The resulting STG contains a new set of signals
that ensure the USC or CSC property� depending on the encoding technique
applied� Since many of these signals may be unnecessary to guarantee either
USC or even CSC� they are iteratively removed using greedy heuristics until
no more signals can be removed without violating the USC�CSC property�
This greedy process makes use of the ILP methods presented in Chapter �
The reduced STG is next projected onto di�erent sets of signals to implement
each individual output signal�

The kit of transformations presented in Chapter � can also be applied
once the STG is known to be correctly encoded� This is represented in
Figure ��� by a self�loop in the Reduced STG node� Although its application
is not automatic in the tool� the designer can apply them and each time
verify if the transformed STG is correctly encoded� For the automation of
the application of the transformations� several heuristics can be used� For
instance� transformation �r �concurrency reduction� can be used to improve
the performance of the circuit by means of reducing the length of the critical
cycle of the net� Some heuristics for area estimation can also be applied�
for instance� using structural methods ���� it can be estimated the number
of literals in each excitation region� and try to guide the application of the

�	� CHAPTER �� SYNTHESIS OF ASYNCHRONOUS CIRCUITS

rules to reduce it� Some preliminary work on this can be found in ����
One weak point of the design �ow presented is that� when the projections

are computed� several redundant places can appear� because transformation
�e can increase the number of places in the net each time it is applied� How�
ever� some heuristics have been implemented in the tool that� using su�cient
conditions for a place to be redundant �which can be evaluated in constant
time provided that the transformations are local�� �nd the majority of such
redundant places� The redundant places found are removed immediately�
This solution alleviates considerably the problem�

It is important to note that the design �ow presented here is only re�
stricted to free choice STGs when the speci�cation has encoding problems� If
the initial STG has a correct encoding and the projections applied preserve
trace equivalence� then we can guarantee correctness on the resulting im�
plementation� This will be illustrated in the next section� where a non�free
choice speci�cation is synthesized by our tool�

��� Synthesis Examples

In this section we present the complete synthesis of two tiny speci�cations�
Despite of their magnitude� the examples used illustrate how the synthesis
is performed in the design �ow proposed�

The �rst example used� the VME Bus Controller� allows us to describe
each step of the design �ow� encoding� greedy removal of signals� CSC sup�
port computation� projection and synthesis�

The second example presented is PPARBCSC������ a non�free choice spec�
i�cation� It is shown that� provided that the STG is initially correctly en�
coded� the design �ow can synthesize it despite of not being a free choice
net�

����� Synthesis of the VME Bus Controller

Let us explain step by step how to perform the synthesis of the VME Bus
Controller example� depicted in Figure ��� �left�� In Section ��� it is de�
tected a USC con�ict� which is also a CSC con�ict� Then� in order to be able
to synthesize the STG we have to transform it �rst� We apply the encoding
technique of Section ���� which guarantees USC on the resulting STG� The
STG obtained is shown in Figure ����right��

From the STG of Figure ����right�� a greedy process for the removal
of the signals inserted by the encoding technique is done� The process is
shown in Figures ���� ��� and ���� At each step� one signal is eliminated if�
when removed from the STG� the new speci�cation does not has encoding
con�icts�

��	� SYNTHESIS EXAMPLES �	

(5.1) infeasible

sp3+

sp2-

d+

sp4+

sp3-

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp11+

sp10-

sp7+

sp6-

dtack-

dsr+

sp8+

sp7-

lds+

ldtack+

sp2+

sp11-sp8-

Remove sp11, model
(5.1) infeasible

Remove sp1, model

sp8-

Remove sp2, model
(5.1) infeasible

lds+

ldtack+

sp2+

sp3+

sp2-

d+

sp4+

sp3-

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp11-sp8-

sp10+

sp9-

lds-

ldtack-

sp11+

sp10-

sp7+

sp6-

dtack-

dsr+

sp8+

sp7-

sp1+

sp1-

d+

sp4+

sp3-

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp7+

sp6-

dtack-

dsr+

sp8+

sp7-

sp10-

sp3+

sp2-

d+

sp4+

sp3-

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp7+

sp6-

dtack-

dsr+

sp8+

sp7-

lds+

ldtack+

sp2+

sp8-

sp10-sp3+

ldtack+

lds+

Figure ���� Greedy removal of signals sp�� sp�� and sp��

�	� CHAPTER �� SYNTHESIS OF ASYNCHRONOUS CIRCUITS

d+

sp4+

sp3-

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp7+

sp6-

dtack-

dsr+

sp8+

sp7-

sp10-sp3+

ldtack+

lds+

sp8-

d+

sp4+

ldtack+

lds+

dtack+

dsr-

sp5+

sp4-

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp7+

sp6-

dtack-

dsr+

sp8+

(5.1) infeasible

sp7-

sp10-

sp8-

dtack+

dsr-

sp5+

ldtack+

lds+

d+

sp9+ sp6+

sp5-

d-

sp10+

sp9-

lds-

ldtack-

sp7+

sp6-

dtack-

dsr+

sp8+ sp10-
sp8-

sp7-

ldtack+

lds+

d+

dtack+

dsr-sp7+

sp6-

dtack-

dsr+

sp8+

sp10+

sp9-

lds-

ldtack-

sp10-

sp9+ sp6+

sp8-

Remove sp5, model
(5.1) infeasible

Remove sp4, model
(5.1) infeasible

d-

sp7-

Remove sp3, model

Figure ���� Greedy removal of signals sp�� sp� and sp�

��	� SYNTHESIS EXAMPLES �	

sp7+

sp6-

dtack-

dsr+

sp8+

ldtack+

lds+

d+

dtack+

dsr- sp10+

sp9-

lds-

ldtack-

sp10-

sp9+ sp6+

sp8-

d-

sp7-

dtack-

dsr+

sp8+

d-

sp7-

ldtack+

lds+

d+

dtack+

dsr- sp10+

sp9-

lds-

ldtack-

sp10-
sp8-

sp7+

sp9+

Remove sp10, model

dtack-

dsr+

d-

ldtack+

lds+

d+

dtack+

dsr- sp10+

sp9-

lds-

ldtack-

sp10-

sp7+

sp9+

sp7-

(5.1) infeasible
Remove sp6, model

d-

ldtack+

lds+

d+

dtack+

dsr- sp10+

sp9-

lds-

ldtack-

sp9+

dtack-

dsr+

sp10-

(5.1) infeasible
Remove sp7, model

(5.1) infeasible
Remove sp8, model

(5.1) feasible
Remove sp9, model

(5.1) feasible

Figure ���� Greedy removal of signals sp�� sp� and sp
�

�	� CHAPTER �� SYNTHESIS OF ASYNCHRONOUS CIRCUITS

dtack+

d+

d-

dtack-

{ldtack, sp9, sp10, d}
CSC-support for d:

{sp10, sp9, dsr, lds}
CSC-support for lds:

d+

d-

dsr- sp10+

sp9-

sp9+

sp10-

dsr+

{dsr, d, sp10, sp9}
CSC-support for sp9:

ldtack+

d+

sp10-

sp10+

sp9-

ldtack-

d-

sp9+

lds+

sp10-

sp10+

sp9-

lds-dsr+

dsr-

sp9+

ldtack+

d+

d-

ldtack+

lds+

d+

dtack+

dsr- sp10+

sp9-

lds-

ldtack-

sp9+

dtack-

dsr+

sp10-

CSC-support for dtack:
{d, dtack}

{ldtack, d, sp9, sp10}
CSC-support for sp10:

sp10+

sp9+

d-

sp9-

ldtack-
sp10-

Figure ��� CSC support computation and projection for the VME Bus
Controller example�

From the �nal STG shown in Figure ���� neither signal sp� nor signal
sp�� can be removed without introducing encoding con�icts� This �nishes
the process of greedy removal of signals�

Once the reduced STG is reached� it must be computed the CSC support
for each non�input signal� applying the algorithm CSC Support� which is
presented in Section ����� Afterwards the projection of the STG into the
CSC support of each non�input signal is performed� This is illustrated in
Figure ���

And �nally� a speed�independent synthesis of each projection is per�
formed� Figure ��� presents the synthesis for the �ve non�input signals re�
maining in the STG� Provided the small size of the projections� state�based
techniques can be applied for performing the synthesis�

��	� SYNTHESIS EXAMPLES �	�

sp10+

sp9-

lds-dsr+

dsr-

sp9+

d+

d-

dsr- sp10+

sp9-

sp9+

sp10-

dsr+

ldtack+

d+

sp10-

sp10+

sp9-

ldtack-

d-

sp9+

dtack+

d+

d-

dtack-sp10+

d-

sp9-

ldtack-

ldtack+

d+

sp9+

sp10-

lds
sp9

dsr

d

sp10

IMPLEMENTATION

dsr

IMPLEMENTATION

sp10

IMPLEMENTATION

sp9

d

ldtack

sp10

sp9

IMPLEMENTATION

dtack

d

sp10

sp9

ldtack

lds+

sp10-

dtack

IMPLEMENTATION

Figure ���� Speed�independent synthesis of the VME Bus Controller�

��	 CHAPTER �� SYNTHESIS OF ASYNCHRONOUS CIRCUITS

In the example the tool petrify has been used for the synthesis� using the
�complex gates� architecture�

When synthesizing the projection for each non�input signal a� every sig�
nal in the projection but a is considered as an input signal� This prevents
the logic synthesis to try to solve possible con�icts for the rest of signals�

����� Synthesis of the PPARBCSC���� Example

If each step of the design �ow presented in this chapter must be performed�
its application is limited to STGs with underlying FCLSPNs� However� if the
initial speci�cation has a correct encoding� the design �ow can be applied
independently of the class of the underlying Petri net� provided that the
projections preserve trace equivalence�

In this section we present the synthesis of the PPARBCSC����� example�
shown in Figure ��� It is a non�free choice speci�cation� which has a correct
encoding� The example models a ��pipeline synchronized� with arbitration
between some of the output signals� We focus on the synthesis of one of the
pipelines� represented by the signals x�� x�� x�� x�� x and z� The synthesis
of the remaining pipeline is symmetrical�

Provided that the initial STG has a correct encoding� the �rst two steps
of the design �ow �i�e�� encoding and greedy removal of signals� are not
applied� The CSC support computation and projection for signals x�� x��
x�� and for signals x�� x and z is shown in Figures ��
 and ���� respectively�
The CPU time for computing the support and performing the projection is
negligible for such a tiny example�

From each projection� the speed�independent synthesis is performed us�
ing the tool petrify� Figures ��� and ���	 depict the �nal implementation for
signals x�� x�� x�� and for signals x�� x and z� respectively� The �technol�
ogy mapping� option of petrify has been chosen� in order to realize that C�
elements can be used for the implementation of some signals in the pipeline�
Apart for the synthesis of signal x�� where a ��way OR gate and a ��way
AND gate are needed for its implementation� the rest of signals can be
synthesized with ��way gates�

��� Experimental Results

Experiments have been performed on some of the benchmarks described in
the previous chapter� Table ��� shows experiments on synthesis to check the
quality of the generated circuits� The column �Lit� reports the number of
literals� in factored form� of the netlist� The results are compared with the
circuits obtained by petrify ����� a state�based synthesis tool� on the same
controllers� From the reported CPU time� the time needed for computing a
support and for projection was negligible when compared to the time needed
for deriving logic equations�

���� CONCLUSION ���

z+

z-

x1+ x2+

x2- x1-

CSC-support for x1:
{x2, x1}

CSC-support for x3:
{x2, x4, x3}

CSC-support for x2:
{x1, x3, x2}

x1+ x2+ x3+

x1- x2- x3-
x2+ x3+ x4+

x2- x3- x4-

x1+ x2+ x3+ x4+ z+ x5+

x1- x2- x3- x4- z-

x5-

y5+ y4+ y3+ y2+ y1+

y1-y2-y3-y4-

y5-

Figure ��
� CSC support computation and projection for PPARBCSC�����
example� signals x�� x�� x��

Table ��� shows that the quality of the circuits obtained by the ILP�
based technique is comparable to that of the circuits obtained by petrify�
Moreover it is clear that our approach can deal with larger speci�cations�

TheTangramCsc��� �� example� shown in Figure �� illustrates the
suitability of our approach for the synthesis of speci�cations generated from
a HDL� According to ���� the cost of implementing the handshake compo�
nents is the following��

Component C�elements ��input gates literals

��way sequencer ��� � �
��way parallelizer �jj� � � ��
��way mixer �M� � � ��

The circuit in Fig� � has � sequencers� � parallelizers and � mixers� ���
literals� This would be the cost obtained by a syntax	directed translation�
The cost obtained by logic synthesis methods is signi�cantly smaller�

��� Conclusion

In this chapter we have presented a new design �ow for the synthesis of
asynchronous circuits� In the approach proposed� all but the last step are

�A C�element is assumed to cost � literals� c � ab� c�a� b��

��� CHAPTER �� SYNTHESIS OF ASYNCHRONOUS CIRCUITS

z+

z-

CSC-support for x4: CSC-support for x5:

z+ z+

z-z-z-z-

{x3, x5, y4, z, x4} {x4, z, x5}

x1+ x2+ x3+ z+ x5+

x1- x2- x3- x4- z-

x5-

y5+ y4+ y3+ y2+ y1+

y1-y2-y3-y4-

y5-

x4+ z+ x5+

x4-

x5-

y4-

y4+

x5-

x5+z+

x4-x3-

x4+x3+

x4+

z-

z+

CSC-support for z:
{x4, x5, y4, y5, z}

x4+ z+ x5+

x4- z-

x5-

y5+

y5-

y4-

y4+

Figure ���� CSC support computation and projection for PPARBCSC�����
example� signals x�� x� z�

structural� This allows to deal with speci�cations that are impossible to
synthesize with state�based methods� In the last step� i�e� when the logic
synthesis is performed� state�based methods can be applied because the
projections are typically small�

We have measured the quality of the resulting circuits by means of count�

���� CONCLUSION ���

x4+

x3-

x2+

x1+ x2+

x1-x2-

x2 x1

IMPLEMENTATION

x3+

x2
x1
x3

C

x2-
IMPLEMENTATION

C
x4 x3
x2

x3-

x1+ x2+ x3+

x2-x1-

IMPLEMENTATION

x4-

Figure ���� Speed�independent synthesis of the PPARBCSC����� example� sig�
nals x�� x�� x��

ing the number of literals� This measure shows that the circuits synthesized
by our approach are comparable to those obtained by global optimization
techniques� As a future work� it would be interesting to have other parame�
ters for measuring the quality of the synthesized circuits� and to be able to
guide the projection and synthesis by these measures�

Moreover� it would also be interesting to do a deep comparison of the
method presented in this work with respect to some alternative methods for
synthesizing AFSMs� For instance� in ����� algorithms are proposed for this
purpose� which are able to synthesize speci�cations where speed�independent
synthesis tools like petrify fail� However� it should be mentioned that the
methods proposed there restrict the type speci�cations to synthesize �no
input�output concurrency is allowed�� while neither petrify nor the approach

��� CHAPTER �� SYNTHESIS OF ASYNCHRONOUS CIRCUITS

IMPLEMENTATION

z

x3
x4

z+

z-

z+

z-

z+

z-

x4+ z+ x5+

x4- z-

z
x3

x5

x4

x5-

x4

y5-

z

y5+

y4-

y4+

x3+ x4+ z+ x5+

y5
x5

x3- x4- z-

x5-

y4-

y4+

x4+ z+

x4-

x5+

x5
x4

z

x4
y4

C

IMPLEMENTATION

IMPLEMENTATION

x5-

z-

Figure ���	� Speed�independent synthesis of the PPARBCSC����� example�
signals x�� x� z�

presented here do this type of restriction� As an example� the VME Bus
controller speci�cation used in several chapters of this book can not be
synthesized by the methods presented in �����

���� CONCLUSION ��

benchmark states jP j jT j j�j Lit� CPU

Pfy ILP Pfy ILP

PPWKCSC����	 ���
� �� �� �� �� � �

PPWKCSC����	 ��
�� �� � �� � �
� �

PPWKCSC����	 ���� ��� ��� �� � � ��� mem �

PPWKCSC�����	 ���� ���� �
� �
 �� � ��� time �

PPARBCSC����	 ��

� �� �� �� �� �� �� �

PPARBCSC����	 ���� ��� ��� �� �� ��� ��� �� ��

PPARBCSC����	 ���� ��� ��� �� �
 ��� ��� ����� ��

PPARBCSC�����	 ���� ���� ��� ��
� � ��� time ��

TANGRAMCSC����	
�� �
� �� � �� ��� �� �
�

TANGRAMCSC�
��	 ��� ��� ��� � � �
� mem � h

Table ���� Support computation� projection and synthesis compared to
state�based approach�

��� CHAPTER �� SYNTHESIS OF ASYNCHRONOUS CIRCUITS

Chapter �

Conclusions

The development of formal methods for the synthesis of concurrent systems
was the main goal of this work� Structural methods was the tool to imple�
ment our goal�

Despite their simplicity� asynchronous circuits are di�cult to design and
verify� Provided that they are the simplest type of concurrent systems� we
focused our attention on this type of systems� Several problems appear in the
synthesis of asynchronous circuits� The reason is that� given that there is no
global clock synchronizing each component of the circuit� the introduction of
errors in the early stages of the speci�cation happens very often� One of the
necessary conditions for a speci�cation to be implementable is the encoding
condition� When the speci�cation has a correct encoding� the circuit knows
which signal must generate and when� Therefore� to guarantee a correct
encoding is a crucial problem in the synthesis of asynchronous circuits�

The problem of encoding was the �rst one that we faced in this work�
Assuming that the speci�cation was given as an interpreted Petri net� we
developed a structural encoding technique that guarantees a correct encod�
ing in the transformed net� The technique� described in Chapter �� is based
on the insertion of signals into the original Petri net� To the best of our
knowledge� it is the �rst technique that guarantees an encoding for the class
of STGs with underlying FCLSPN�

The encoding technique developed brought us to a new problem� if we
transform the initial speci�cation� do we have to transform also the environ�
ment in order to guarantee that both� the speci�cation and the environment�
will understand each other & The question is in fact more general� and can
be asked for any type of reactive system� what are the conditions needed
to guarantee that two reactive systems can interact without having errors
or deadlocks & The answer can be found in Chapter �� where the reactive
systems are speci�ed as an automaton and the notion is called I�O Com�
patibility� We also developed a polynomial time procedure to verify I�O
Compatibility� and provided su�cient conditions when some facts of the

��

��� CHAPTER � CONCLUSIONS

systems are known� like observational equivalence�
We developed a kit of transformation rules� applied to a Petri net spec�

ifying a reactive system� that preserve the I�O Compatibility between the
system and its environment� and adapted the encoding technique to pre�
serve I�O Compatibility� This provides to the designer of a reactive system
some freedom to change the initial speci�cation� while preserving its correct
functioning on the environment where the system is supposed to work� The
theory is described in the �rst part of Chapter ��

Afterwards we realized that the design �ow that we had in mind needed
e�cient ways of verifying whether the initial speci�cation has a correct en�
coding� This would help� for instance� to prevent the application of the
encoding technique when the speci�cation already has a correct encoding�
Using the marking equation of the Petri net� we have developed ILP mod�
els for a fast veri�cation of either USC or CSC� The experimental results
show a signi�cant �orders of magnitude� speed�up with respect to existing
methods� Moreover� ILP models were introduced for supporting the de�
composition �projection� of the initial speci�cation into smaller ones while
preserving the implementability conditions� This crucial step allowed us to
use� in the �nal stage of our design �ow� state�based algorithms because the
resulting projections were typically small� The models were introduced in
Chapter �

Finally we merged all the theory developed into a full design �ow for
the synthesis of asynchronous circuits� Consequently we implemented it
as the moebius tool� Our approach for synthesis� presented in Chapter ��
provided a considerable speed�up with respect to existing approaches� When
compared to state�based methods� which can perform global optimization
techniques� the tool proved to obtain circuits with similar area� However�
the tool needed considerably less time to perform the synthesis� Very often
it happened that our approach was able to synthesize speci�cations not
implementable by state�based methods� due to the state explosion problem�

For each one of the problems faced in this work� more work is expected
to be done in the future� First� we are interested in extending the encoding
technique to bigger classes than the FCLSPN� This will allow to apply the
full design �ow to more speci�cations�

Second� extending also the kit of synthesis rules presented in Chapter �
will allow to o�er more situations where the system can be changed� Three
dimensions can be considered for extension� i� to add new rules to the ex�
isting kit� ii� to weaken the conditions under which the rules can be applied�
and iii� to extend the class of Petri nets where the rules can be applied�

Third� it is interesting to adapt the I�O Compatibility to more complex
models� Some work has been doing for adapting I�O Compatibility to the
model of Team Automata ����� Team automata is a formal framework for
the speci�cation and analysis of Computer Supported Cooperative Work
�CSCW�� In a team automata� the type of synchronization between subsys�

���

tems is also a variable of the model� Several concepts change when trying
to adapt the I�O Compatibility notion to team automaton� the concept
of deadlock� for instance� is strongly related to the type of synchronization
that the components must follow� and therefore� depending on the type of
synchronization established� a system can be considered deadlocked or not�

As a fourth research direction� we are interested in the study of the com�
plexity of the encoding problem for general marked graphs� More speci��
cally� we want to �nd ILP models where the integrality constraint can be
avoided and the model� provided that the marking equation characterizes
reachability for marked graphs� still characterizes the problem of the encod�
ing but only has polynomial complexity�

Finally it is also interesting to study techniques that alleviate the com�
plexity of the ILP models introduced in Chapter � One way of alleviating
the complexity is reducing the incidence matrix of the problem� The prob�
lem that we want to study is how to reduce the incidence matrix in a way
that no spurious solutions are introduced when using the marking equation�
to approximate the reachability graph� We have developed some models
that� using an SM�cover of the Petri net� reduce drastically the size of the
matrix but still some work must be done to guarantee that no new spurious
solutions are introduced�

��	 CHAPTER � CONCLUSIONS

Bibliography

��� SIAM Journal on Optimization�

��� A� Arnold� Finite Transition Systems� Prentice Hall� �����

��� International Semiconductor Industry Association� International tech�
nology roadmap for semiconductors� Technical report�

��� Peter A� Beerel� CAD Tools for the Synthesis� Veri�cation� and Testa	
bility of Robust Asynchronous Circuits� PhD thesis� Stanford University�
�����

�� C� H� �Kees� van Berkel� Mark B� Josephs� and Steven M� Nowick� Scan�
ning the technology� Applications of asynchronous circuits� Proceedings
of the IEEE� �
������������ February �����

��� Kees van Berkel� Handshake Circuits� an Asynchronous Architecture
for VLSI Programming� volume of International Series on Parallel
Computation� Cambridge University Press� �����

�
� G� Berthelot� Checking Properties of Nets Using Transformations� In
G� Rozenberg� editor� Advances in Petri Nets ����� volume ��� of Lec	
ture Notes in Computer Science� pages ����	� Springer�Verlag� �����

��� I� Blunno� A� Bystrov� J� Carmona� J� Cortadella� L� Lavagno� and
A� Yakovlev� Direct synthesis of large�scale asynchronous controllers
using a petri�net based approach� In Handouts of the Asynchronous
Circuits Design �ACiD� Workshop� Grenoble� France� January �			�

��� Ivan Blunno and Luciano Lavagno� Automated synthesis of micro�
pipelines from behavioral Verilog HDL� In Proc� International Sym	
posium on Advanced Research in Asynchronous Circuits and Systems�
pages ������ IEEE Computer Society Press� April �			�

��	� Randal Bryant� Graph�based algorithms for boolean function manipu�
lation� IEEE Transactions on Computer	Aided Design� ������

�����
�����

���

��� BIBLIOGRAPHY

���� Janusz A� Brzozowski and Carl�Johan H� Seger� Asynchronous Circuits�
Springer�Verlag� ����

���� J� Carmona and J� Cortadella� On the realization of reactive systems�
Report LSI�	�����R� Universitat Polit�ecnica de Catalunya� May �		��

���� J� Carmona and J� Cortadella� Input�Output Compatibility of Reactive
Systems� In Fourth International Conference on Formal Methods in
Computer	Aided Design �FMCAD�� Portland� Oregon� USA� November
�		�� Springer�Verlag�

���� J� Carmona and J� Cortadella� ILP Models for the Synthesis of Asyn�
chronous Control Circuits� In Proc� International Conf� Computer	
Aided Design �ICCAD�� San Jose� California� USA� November �		��

��� J� Carmona� J� Cortadella� and E� Pastor� A structural encoding tech�
nique for the synthesis of asynchronous circuits� In Int� Conf� on Ap	
plication of Concurrency to System Design� pages �
����� Newcastle
Upon Tyne� United Kingdom� June �		��

���� J� Carmona� J� Cortadella� and E� Pastor� A structural encoding tech�
nique for the synthesis of asynchronous circuits� Fundamenta Informat	
icae� pages ������ April �		��

��
� J� Carmona� J� Cortadella� and E� Pastor� Synthesis of reactive sys�
tems� application to asynchronous circuit design� In J� Cortadella�
A� Yakovlev� and G� Rozenberg� editors� Advances in Concurrency and
Hardware Design �ACHD�� volume ���� Springer�Verlag� �		��

���� Tiberiu Chelcea� Andrew Bardsley� Doug Edwards� and Steven M� Now�
ick� A burst�mode oriented back�end for the Balsa synthesis system� In
Proc� Design� Automation and Test in Europe �DATE�� pages ��	���
�
March �		��

���� Tiberiu Chelcea and Steven M� Nowick� Resynthesis and peephole
transformations for the optimization of large�scale asynchronous sys�
tems� In Proc� ACM�IEEE Design Automation Conference� June �		��

��	� Tam�Anh Chu� Synthesis of Self	Timed VLSI Circuits from Graph	
Theoretic Speci�cations� PhD thesis� MIT Laboratory for Computer
Science� June ���
�

���� Edmund M� Clarke� Jeannette M� Wing� Rajeev Alur� Rance Cleave�
land� David Dill� Allen Emerson� Stephen Garland� Steven German�
John Guttag� Anthony Hall� Thomas Henzinger� Gerard Holzmann�
Cli� Jones� Robert Kurshan� Nancy Leveson� Kenneth McMillan�
J� Moore� Doron Peled� Amir Pnueli� John Rushby� Natarajan Shankar�

BIBLIOGRAPHY ���

Joseph Sifakis� Prasad Sistla� Bernhard Ste�en� Pierre Wolper� Jim
Woodcock� and Pamela Zave� Formal methods� state of the art and
future directions� ACM Computing Surveys� �������������� �����

���� J� Cortadella� M� Kishinevsky� A� Kondratyev� L� Lavagno� and
A� Yakovlev� Logic synthesis of asynchronous controllers and inter	
faces� Springer�Verlag� �		��

���� Ren(e David� Modular design of asynchronous circuits de�ned by graphs�
IEEE Transactions on Computers� ������
�
�
�
� August ��

�

���� R� de Nicola and M� C� B� Hennessy� Testing Equivalences for Processes�
Theoretical Computer Science� ��������������� November �����

��� J� Desel and J� Esparza� Reachability in cyclic extended free�choice
systems� TCS ��
� Elsevier Science Publishers B�V�� �����

���� J� Desel and J� Esparza� Free Choice Petri Nets� Cambridge University
Press� Cambridge� Great Britain� ����

��
� David L� Dill� Trace Theory for Automatic Hierarchical Veri�cation
of Speed	Independent Circuits� ACM Distinguished Dissertations� MIT
Press� �����

���� Doug Edwards and Andrew Bardsley� Balsa� An asynchronous hard�
ware synthesis language� The Computer Journal� ����������� �		��

���� Clarence A� Ellis� Team automata for groupware systems� In Proceed	
ings of the International ACM SIGGROUP Conference on Supporting
Group Work� The Integration Challenge� pages ������� ���
�

��	� Clarence A� Ellis� Simon J� Gibbs� and Gail Rein� Groupware� some is�
sues and experiences� Communications of the ACM� ����������� �����

���� Joost Engelfriet�� Determinacy � �observation equivalence � trace equiv�
alence�� Theoretical Computer Science� �������� ����

���� R� M� Fuhrer� S� M� Nowick� M� Theobald� N� K� Jha� B� Lin� and
L� Plana� Minimalist� An environment for the synthesis� veri�cation
and testability of burst�mode asynchronous machines� Technical Report
TR CUCS�	�	���� Columbia University� NY� July �����

���� Claude Girault and Rudiger Valk� Petri Nets for Systems Engineering�
A Guide to Modeling� Veri�cation and Applications� Springer� �		��

���� G�J� Milne� CIRCAL� A calculus for circuit descriptions� Integration�
the VLSI Journal� �������������	� October �����

��� BIBLIOGRAPHY

��� M� Hack� Analysis of production schemata by Petri nets� M�s� thesis�
MIT� February ��
��

���� D� Harel and A� Pnueli� On the development of reactive systems� In
Krzystof R� Apt� editor� Logic and Model of Concurrent Systems� vol�
ume �� of NATO ASI� pages �

����� Springer�Verlag� October �����

��
� David Harel� Statecharts� A visual formalism for complex systems�
Science of Computer Programming� ����������
�� June ���
�

���� Scott Hauck� Asynchronous design methodologies� An overview� Pro	
ceedings of the IEEE� ������������ January ����

���� C� A� R� Hoare� Communicating Sequential Processes� Prentice Hall
International Series in Computer Science� ����

��	� B� Jonsson� Compositional veri�cation of distributed systems� ACM
Transactions on Programming Languages and Systems� ����������	��
�����

���� Mark B� Josephs� A state�based approach to communicating processes�
Distributed Computing� ������� �����

���� V� Khomenko� M� Koutny� and A� Yakovlev� Detecting state coding
con�icts in STG unfoldings using SAT� Technical report� Department of
Computer Science� Newcastle Upon Tyne� United Kingdom� September
�		��

���� V� Khomenko� M� Koutny� and A� Yakovlev� Detecting state coding
con�icts in STG unfoldings using SAT� In Int� Conf� on Application of
Concurrency to System Design� June �		��

���� Victor Khomenko� Maciej Koutny� and Alex Yakovlev� Detecting state
coding con�icts in stgs using integer programming� In Proc� Design�
Automation and Test in Europe �DATE�� pages ������� �		��

��� Michael Kishinevsky� Alex Kondratyev� Alexander Taubin� and Victor
Varshavsky� Concurrent Hardware� The Theory and Practice of Self	
Timed Design� Series in Parallel Computing� John Wiley) Sons� �����

���� A� Kondratyev� M� Kishinevsky� A� Taubin� J� Cortadella� and
L� Lavagno� The use of Petri nets for the design and veri�cation of
asynchronous circuits and systems� Journal of Circuits Systems and
Computers� ������
����� �����

��
� A� V� Kovalyov� On complete reducibility of some classes of Petri nets�
In Proceedings of the ��th International Conference on Applications and
Theory of Petri Nets� pages ������� Paris� June ���	�

BIBLIOGRAPHY ��

���� Leslie Lamport� The temporal logic of actions� ACM Transactions on
Programming Languages and Systems� �������
������ May �����

���� Luciano Lavagno and Alberto Sangiovanni�Vincentelli� Algorithms for
Synthesis and Testing of Asynchronous Circuits� Kluwer Academic
Publishers� �����

�	� Nancy A� Lynch and Mark R� Tuttle� Hierarchical correctness proofs for
distributed algorithms� In Sixth Annual ACM Symposium on Principles
of Distributed Computing� pages ��
���� Vancouver� British Columbia�
Canada� August ���
�

��� Nancy A� Lynch and Mark R� Tuttle� An introduction to input�output
automata� In CWI	Quarterly� volume �� pages �������� Centrum voor
Wiskunde en Informatica� Amsterdam� The Netherlands� September
�����

��� Alain J� Martin� The limitations to delay�insensitivity in asynchronous
circuits� In William J� Dally� editor� Advanced Research in VLSI� pages
�����
�� MIT Press� ���	�

��� E� W� Mayr� An algorithm for the general petri net reachability prob�
lem� SIAM Journal on Computing� ���������	� �����

��� Kenneth McMillan� Using unfoldings to avoid the state explosion prob�
lem in the veri�cation of asynchronous circuits� In G� v� Bochman
and D� K� Probst� editors� Proc� International Workshop on Computer
Aided Veri�cation� volume ��� of Lecture Notes in Computer Science�
pages �����

� Springer�Verlag� �����

�� R� Milner� A Calculus for Communicating Processes� volume �� of
Lecture Notes in Computer Science� Springer Verlag� ���	�

��� David E� Muller andW� S� Bartky� A theory of asynchronous circuits� In
Proceedings of an International Symposium on the Theory of Switching�
pages �	������ Harvard University Press� April ����

�
� Tadao Murata� Petri nets� Properties� analysis and applications� Pro	
ceedings of the IEEE�

�������
�� April �����

��� Jens Muttersbach� Thomas Villiger� and Wolfgang Fichtner� Practical
design of globally�asynchronous locally�synchronous systems� In Proc�
International Symposium on Advanced Research in Asynchronous Cir	
cuits and Systems� pages ���� April �			�

��� Chris J� Myers� Computer	Aided Synthesis and Veri�cation of Gate	
Level Timed Circuits� PhD thesis� Dept� of Elec� Eng�� Stanford Uni�
versity� October ����

��� BIBLIOGRAPHY

��	� Radu Negulescu� Process Spaces and Formal Veri�cation of Asyn	
chronous Circuits� PhD thesis� Department of Computer Science� Uni�
versity of Waterloo� Waterloo� Ontario� Canada� August �����

���� G�L� Nemhauser and L�A� Wolsey� Integer and Combinatorial Opti	
mization� John Wiley) Sons� �����

���� Steven M� Nowick� Automatic Synthesis of Burst	Mode Asynchronous
Controllers� PhD thesis� Stanford University� Department of Computer
Science� �����

���� E� Pastor� J� Cortadella� A� Kondratyev� and O� Roig� Structural meth�
ods for the synthesis of speed�independent circuits� IEEE Transactions
on Computer	Aided Design� �
�������	������� November �����

���� Enric Pastor and Jordi Cortadella� An e�cient unique state coding
algorithm for signal transition graphs� In Proc� International Conf�
Computer Design �ICCD�� pages �
���

� October �����

��� M� A� Pe*na and J� Cortadella� Combining process algebras and Petri
nets for the speci�cation and synthesis of asynchronous circuits� In
Proc� International Symposium on Advanced Research in Asynchronous
Circuits and Systems� IEEE Computer Society Press� March �����

���� James L� Peterson� Petri Net Theory and the Modeling of Systems�
Prentice�Hall� �����

��
� C� A� Petri� Kommunikation mit Automaten� PhD thesis� Bonn� Institut
f+ur Instrumentelle Mathematik� ����� �technical report Schriften des
IIM Nr� ���

���� Oriol Roig� Formal Veri�cation and Testing of Asynchronous Circuits�
PhD thesis� Univsitat Polit�ecnia de Catalunya� May ���
�

���� L� Y� Rosenblum and A� V� Yakovlev� Signal graphs� from self�timed to
timed ones� In Proceedings of International Workshop on Timed Petri
Nets� pages �����	
� Torino� Italy� July ���� IEEE Computer Society
Press�

�
	� A� Schrijver� Theory of Linear and Integer Programming� John Wiley
) Sons� �����

�
�� Alex Semenov� Alexandre Yakovlev� Enric Pastor� Marco Pe na� and
Jordi Cortadella� Synthesis of speed�independent circuits from STG�
unfolding segment� In Proc� ACM�IEEE Design Automation Confer	
ence� pages ������ ���
�

BIBLIOGRAPHY ��

�
�� Manuel Silva� Enrique Teruel� and Jos(e Manuel Colom� Linear algebraic
and linear programming techniques for the analysis of place�transition
net systems� Lecture Notes in Computer Science� Lectures on Petri
Nets I� Basic Models� ������	���
�� �����

�
�� Jens Spars, and Steve Furber� editors� Principles of Asynchronous
Circuit Design� A Systems Perspective� Kluwer Academic Publishers�
�		��

�
�� A� Valmari� A stubborn attack on state explosion� Formal Methods in
System Design� �������
����� �����

�
� Peter Vanbekbergen� Synthesis of Asynchronous Control Circuits from
Graph	Theoretic Speci�cations� PhD thesis� Catholic University of Leu�
ven� �����

�
�� Victor I� Varshavsky� editor� Self	Timed Control of Concurrent Pro	
cesses� The Design of Aperiodic Logical Circuits in Computers and Dis	
crete Systems� Kluwer Academic Publishers� Dordrecht� The Nether�
lands� ���	�

�

� Tom Verhoe�� Analyzing speci�cations for delay�insensitive circuits� In
Proc� International Symposium on Advanced Research in Asynchronous
Circuits and Systems� pages �
������ �����

�
�� A� V� Yakovlev and A� M� Koelmans� Petri nets and digital hardware
design� In Lectures on Petri Nets II� Applications� Advances in Petri
Nets� volume ���� of Lecture Notes in Computer Science� pages ���
���� �����

�
�� Alex Yakovlev� Is the die cast for the token game& In Lecture Notes
in Computer Science� ��rd International Conference on Applications
and Theory of Petri Nets� Adelaide� Australia� June �
	��� ���� � J�
Esparza� C� Lakos �Eds��� volume ���	� pages ��
	pp� Springer Verlag�
June �		��

��	� Chantal Ykman�Couvreur� Bill Lin� and Hugo de Man� Assassin� A
synthesis system for asynchronous control circuits� Technical report�
IMEC� September ����� User and Tutorial manual�

���� Chantal Ykman�Couvreur� Bill Lin� Gert Goossens� and Hugo De Man�
Synthesis and optimization of asynchronous controllers based on ex�
tended lock graph theory� In Proc� European Conference on Design
Automation �EDAC�� pages ����
� IEEE Computer Society Press�
February �����

��� BIBLIOGRAPHY

���� M� Yoeli and A� Ginzburg� Lotos�cadp�based veri�cation of asyn�
chronous circuits� Report CS��		��	���		�� Technion � Computer Sci�
ence Department� September �		��

���� Kenneth Y� Yun and David L� Dill� Automatic synthesis of extended
burst�mode circuits� Part ii �automatic synthesis�� IEEE Transactions
on Computer	Aided Design� �������������� February �����

List of Figures

��� Comparison for area of the synthesized circuits� � � � � � � � � �

��� Comparison for CPU time for synthesizing every benchmark� ��

��� �a� Transition System� �b� Petri net� � � � � � � � � � � � � � � ��

��� Petri net� ��

��� Non�free choice net� �

��� An MG�cover �MG��MG�� and an SM�cover �SM��SM�� of
PN from Figure ���� �

�� �a� Petri net� �b� Spurious solution m � �			�	�T � �c� Poten�
tial reachability graph� ��

��� �a� Interface� �b� Timing Diagram� � � � � � � � � � � � � � � � ��

��
 Transition System specifying the bus controller� � � � � � � � � �

��� �a� Partition induced by signal lds� �b� State graph of the
read cycle� States are encoded with the vector �dsr� dtack�
ldtack� d� lds�� �

��� Signal Transition Graph specifying the bus controller� � � � � ��

���	 Unbounded and unconsistent STG� � � � � � � � � � � � � � � � �

���� Example abcd� �a� Signal Transition Graph� �b� State Graph �	

���� Complex gate implementation for the abcd example � � � � � � ��

��� Connection between di�erent reactive systems �the su�xes �
and � are used to denote input and output events� respectively�� ��

��� Conditions ��a� and ��a� from the proof of Theorem ����� � � �

��� Conditions ��a� and ��b� from the proof of Theorem ����� � � �

��� Relation between observational equivalence� input�properness
and I�O compatibility� �

�� Two I�O compatible systems that are not input�proper� � � � �

��� �a� Connection between system and environment� �b� mir�
rored implementation of a concurrent system� �c� valid im�
plementation with concurrency reduction� �d� invalid imple�
mentation� �

��� Distributor built from David cells ���� � � � � � � � � � � � � � �	

��� Encoding rule applied to the VME Bus Controller example� � ��

���

��	 LIST OF FIGURES

��� Di�erent possibilities for reducing concurrency� � � � � � � � � �

�� Conditions ��a� from the proof of Theorem ������ � � � � � � � ��

��� Transformation rule for each transition t � T � � � � � � � � � � ��

��
 Encoding for places q and qi� � � � � � � � � � � � � � � � � � �
	

��� Place encoding to guarantee USC� � � � � � � � � � � � � � � � �
�

��� Initial situation for proof of Lemma ������ � � � � � � � � � � �
�

���	 In the center the initial STG fragment� Enc�S�� technique of
the previous section� IO�Enc�S�� technique presented in this
section to preserve I�O compatibility� � � � � � � � � � � � � � �
�

���� Transformation rule for non�input signals to preserve the I�O
Compatibility�

���� simple join condition to ensure a correct encoding in the mod�
i�ed encoding technique�
�

���� �a� Alloc	Outbound example� �b� IO�Enc�Alloc�Outbound� has
CSC� It has not USC due to the complementary sequence �in
boldface� between two di�erent markings� � � � � � � � � � � �

���� Situation where two markings can have the same code� � � � �
�

��� �a� Modi�ed Alloc	Outbound example� �b� Applying the en�
coding technique to preserve I�O compatibility does not solves
the CSC con�icts �
�

�� �a� STG� �b� STG with CSC� �c� Projection for signal d� �d�
Circuit implementing d� ��

�� PPARBCSC����� �	

�� Projection of example PPARBCSC����� onto signal x
� � � � � � ��

�� Art�m�n�� ��

� Netlist of handshake components from a Tangram program� � �

�� Tangram program from which the structure of Figure � can
be obtained� as the parallel composition of P� and P�� � � � � �

�
 STG for a sequencer in a Tangram program� � � � � � � � � � � ��

�� STG for a parallelizer in a Tangram program� � � � � � � � � � ��

�� STG for a mixer in a Tangram program� � � � � � � � � � � � � �

��� Synthesis of asynchronous circuits� � � � � � � � � � � � � � � � �	�

��� Greedy removal of signals sp�� sp�� and sp�� � � � � � � � � � �	

��� Greedy removal of signals sp�� sp� and sp� � � � � � � � � � � �	�

��� Greedy removal of signals sp�� sp� and sp
� � � � � � � � � � � �	

�� CSC support computation and projection for the VME Bus
Controller example� �	�

��� Speed�independent synthesis of the VME Bus Controller� � � �	�

��
 CSC support computation and projection for PPARBCSC�����
example� signals x�� x�� x�� ���

��� CSC support computation and projection for PPARBCSC�����
example� signals x�� x� z� ���

LIST OF FIGURES ���

��� Speed�independent synthesis of the PPARBCSC����� example�
signals x�� x�� x�� ���

���	 Speed�independent synthesis of the PPARBCSC����� example�
signals x�� x� z� ���

��� LIST OF FIGURES

List of Tables

�� CSC detection for well�structured STGs� � � � � � � � � � � � � ��
�� USC detection for well�structured STGs� � � � � � � � � � � � � ��

��� Support computation� projection and synthesis compared to
state�based approach� ��

���

��� LIST OF TABLES

List of symbols

General symbols Page

Q rational numbers �	
Z integer numbers �	
N natural numbers �	
B binary numbers �	
x � y product of vectors x and y �	
vjP projection of the vector v into the index set P �	
� null vector �	

Sequences

� empty sequence ��
� � concatenation of sequences � and � ��
���� x� number of occurrences of symbol x in the sequence � ��
�jX projection of sequence � into the set X ��

Transition systems

s
�
	 s� a sequence � that leads from s to s� ��

En�s� e� event e enabled at state s ��
L�A� language of the TS A ��
A�B synchronous product of TSs A and B ��

��

��� LIST OF TABLES

Petri nets Page

�x pre�set of the node x �
x� post�set of the node x �
m� initial marking ��
m��im� marking m� is reachable from marking m �

m�
�
	 m �ring sequence �

�mi set of reachable markings from marking m �
RG�N� reachability graph of Petri net N �
FCLSPN Free choice� live and safe Petri net �

Linear algebra

N incidence matrix of the net N �	

� Parikh vector of sequence � ��

Asynchronous circuits

��s� state encoding function at state s �
� silent event �
ER�x�� excitation region of transition signal x� ��
QR�x�� quiescent region of transition signal x� ��
ON�x� on�set of signal x �	
OFF�x� o��set of signal x �	

Reactive systems

A � B RTS A is observational equivalent to RTS B 	
A� B RTS A is I�O compatible to RTS B �

�r transformation for concurrency reduction ��
�i transformation for increase of concurrency ��
�e transformation for transition elimination ��

Index

asynchronous circuits

bounded�delay� ��
control circuits� ��

delay�insensitive� ��
speed�independent� ��

complete state coding� ��

conformation� �
consistency� ��

cycle� �

David cells� �	

design �ow� �	�
disabling� ��

encoding technique
Enc� ��

I�O automata� ��

I�O compatibility
checking� ��

de�nition� �

structural� �

ILP
model CSC� ��

model USC� �

model support� ��

input�properness� ��

linear programming problem

complexity� �	
de�nition� �	

integer� �	

livelock� ��

observational equivalence� 	

output persistency� ��

path� �

Petri net

boundedness� ��
de�nition� ��

disabling� ��

�ring rule� �

free�choice� ��
home marking� ��

incidence matrix� ��

liveness� ��

marked graph� ��
marking equation� ��

Parikh vector� ��

post�set� �

pre�set� �
reachability� �

reactive� ��

redundant place� ��

reversibility� ��
simple join net�

state machine� ��

triggering� ��

product
cartesian� �	

vectors� �	

reactive

mirror� ��
system� ��

transition system� ��

region

excitacion� ��
quiescent� ��

rule

�e� ��

�i� ��

��

��� INDEX

�r� ��

sequence
concatenation� ��
de�nition� ��
empty� ��

signal transition graph� ��
state graph� �
support� ��
synthesis problem� ��

tangram
handshake components� �
mixer� �

parallelizer� ��
program� �
sequencer� ��

Team automata� ���
trace structure� �
transition system

de�nition� ��
deterministic� ��
language� ��
reachability relation� ��
synchronous product� ��

unique state coding� ��

VME Bus example� ��

