
UNIVERSITAT POLITÈCNICA DE CATALUNYA
DEPARTAMENT DE LLENGUATGES I SISTEMES INFORMÀTICS
MÀSTER EN COMPUTACIÓ

TESI DE MÀSTER

CLUSTERING FOR THE OPTIMISATION

OF ASYNCHRONOUS CONTROLLERS

ESTUDIANT: Jonàs Casanova
DIRECTOR: Jordi Cortadella

DATA: 25 de Juny de 2008

Preface

This master’s thesis is on the field of computer science applied on electronics.
The miniaturisation of integrated circuits is bringing new problems in terms of power
consumption, speed, and variability tolerance. The current synchronous designs
are struggling to cope with these problems, and in consequence new optimisations
or paradigms are being studied.

The study of this thesis are the optimisations like clock skew for synchronous
circuits and asynchronous circuits as an alternative paradigm. The performance
analysis of both cases are equivalent and algorithms on graph theory for cycles
have been implemented to calculate the optimum speed.

Asynchronous controllers are essential for a good asynchronous design. To
create a connectivity structure of controllers it is necessary to group the memory
elements (registers) of the circuit into clusters. Clustering registers affects power
consumption, performance, area, and variability tolerance. To produce a good clus-
tering is a hard job because of the high number of registers and for the trade-offs
of optimising all these characteristics.

An initial problem in clustering of controllers is to decide how many controllers
we want. A design with one cluster give us the same problems of a synchronous de-
sign, high power consumption and too much sensible on variability of temperature,
voltage, manufacturing errors, etc. On the other hand, having as many controllers
as registers will produce too much overhead in area for all the new logic and wires
that needs to be added.

It is important to have clusters as less connected as possible to design simple
controllers and to minimise the impact on area. We know from benchmarks and
industrial designs that the register graph is highly connected, and the controllers
graph is almost complete. A variation of Min-Cut can give us a solution to optimise
this property.

The clustering will have an impact on performance. Grouping registers implies
a lost of freedom, and optimisations like clock skew or the asynchronous circuit will
be affected by this lost as a handicap to reach the maximum speed.

From the placement point of view we need to have clusters where their registers
are close to minimise the clock tree. The ideal solution is a partition of the space.
The worst solution is to have the registers spared around.

The contribution of this thesis are two clustering algorithms; A local search
solution to minimise the number of connections, and a k-means implementation that
combines the minimisation of the clock trees and the maximisation of performance,
by using parameters to balance it.

These algorithms have been implemented in the Elastix EDA tool and executed
on ISCAS benchmarks and SUN Microsystems OpenSparc processor.

Acknowledgements

Several people has helped me making this thesis possible. I would like to thank
Prof. Jordi Cortadella to give me the opportunity to work on this project, and to
guide me from earlier years of my degree to here; Ferran Martorell to introduce me
into the electronic design world and make me feel safe on it; and my family and
friends to support me and made my life easy these months.

This research was supported by a grant from Elastix Corporation, thanks to an
agreement with Universitat Politècnica de Catalunya. I would like to specially thank
Elastix Corporation for the resources that had put on me to make this project.

Jonàs Casanova Bachs

1

Contents

1 Introduction 4

1.1 Microelectronics . 4

1.2 Synchronous circuits . 5

1.3 Asynchronous circuits . 6

1.4 De-synchronisation . 6

1.5 Performance . 7

1.6 Statement of the Problem . 10

1.7 Description of the Chapters . 12

2 Optimal period with clock skew 13

2.1 Delay Graph . 13

2.2 Clock Skew Optimisation . 14

2.3 Maximum Mean Cycle . 15

2.4 Maximum Mean Cycle algorithms 17

2.4.1 Parametric shortest path . 17

2.4.2 Howard’s algorithm . 17

2.5 Constraint Graph . 17

2.6 Improved Bellman-Ford algorithm 20

2.7 Binary search to find the optimal period 21

2.8 Slack Graph . 24

2.9 Distributed Slack Graph . 24

3 Clustering algorithms 27

3.1 Local Search to minimise the number of connections 27

3.1.1 Cost Function . 27

3.1.2 Cluster graph adjacency matrix 28

3.1.3 Local Search algorithm . 29

3.1.4 Example . 29

3.2 K-means by position and skew . 32

3.2.1 K-means . 33

3.2.2 Evaluation . 33

2

4 Results 35

4.1 Execution environment . 35

4.2 Number of connections . 35

4.3 Performance . 38

4.3.1 ISCAS . 38

4.3.2 OpenSparc . 39

4.4 Performance vs Placement . 43

4.4.1 A 5-cluster solution for OpenSparc 43

4.4.2 OpenSparc skew-placement space 47

5 Conclusions 54

3

Chapter 1

Introduction

This chapter starts with some history and current status of microelectronics and
introduces generic concepts like synchronous and asynchronous circuits. It also
introduce concepts about circuit performance that will be required to describe the
statement of the problem.

1.1 Microelectronics

Integrated circuits experimented a revolution since VLSI (Very-large-scale integra-
tion) came in the 70’s. This technology allowed to design complex circuits on a
single chip with hundreds of millions of transistors. This revolution is compared
to Industrial revolutions (steam machines first and electricity later) in a way that it
speeds up the things we can do and introduce new possibilities such as commu-
nications, computations, sensors, information systems, etc This technology came
with Computer Aided Design (CAD) tools that made all this possible.

Electronic Design Automation (EDA) tools aid engineers in all abstraction levels
of the design. From high level specification to the physical implementation. From
the computer science point of view all these steps are related to computational
problems:

Microarchitecture gives a description of all differnet components of the circuit.
For example, microprocessors have typically the Von Neumann architecture
with: memory, control unit and arithmetic logic unit.

Logic synthesis transforms combinational logic expressions into implementation
logic gates. This is specified by Register Transfer Level (RTL) description for
synchronous circuits. It is the typical input for an EDA tool.

Verification tools are proof systems in several areas. In logic synthesis it is used
to ensure that the implementation is consistent with the specification, and it
can be used to verify the specification itself.

4

Static Timing Analysis (STA) estimates the delay of the circuit and detects pos-
sible timing errors. This information determine the speed of the circuit and it
can be used for optimisations in the logic synthesis process.

Placement is the step where the circuit is described as a collection of components
from a physical library, and it needs to set the postion of all these components
on the die. This is an optimisation problem that tries to place close elements
hat are logically connected.

Routing is one of the final steps and it comes after placement. Placement produce
the position of each component on a die, but this components are connected
with metal wires in several layers. The total wire length needs to be minimised
with a fix number of layers depending on the technology used.

This thesis falls into the STA phase of the process, but having in mind the synthesis
of physical layout (placement and routing) process that comes after. The next sec-
tions describe important concepts for the STA phase and presents the statement of
the problem.

1.2 Synchronous circuits

Synchronous circuits are those in which the registers that separate combinational
logic are controlled by a clock signal. Typically, these combinational blocks are de-
scribed using a high-level language for hardware specification like Verilog or VHDL.
This high-level description (RTL) will be transformed by an EDA tool to a low-level
implementation using logic gates from a desired technology. At this point, it is pos-
sible to analyse the maximum and minimum delay that these logic will take to sta-
bilise the result. Combinational blocks have a different delay to stabilise the result
depending on the inputs. For example, a simple adder can take longer depending
if it needs to propagate the carry or not. All registers store the computed value
simultaneously guided by a clock signal. For the circuit to work correctly it requires
that the clock signal arrives after the computation has stabilised the result. Figure
1.1 shows an example of a synchronous circuit.

CLK CLKi j

CLK

max

min

Figure 1.1: Synchronous circuit with a global clock. Showing min and max delays
of the combinational blocks.

5

1.3 Asynchronous circuits

Synchronous systems had been chosen as a main design because of its simplicity
to understand, verify and implement, compared to asynchronous systems. The fact
of having a clock signal that synchronise all registers allows to work with discrete
time units, and most of the EDA tools use this assumption to simplify the STA. The
current high level of miniaturisation, 65nm and beyond, is making the industry to
re-think old decisions and find solutions for new problems to keep improving perfor-
mance. Things like power usage, speed, delay variability, Electromagnetic interfer-
ence (EMI),. . . are becoming crucial. Asynchronous systems [1] are less attractive
from the engineering point of view, but has solutions to all these new problems that
high miniaturisation is bringing. Asynchronous designs can consume less power
because of its natural way of to work just if there is something to do. The lack of
a clock signal impacts on EMI positively. The system is more tolerant to tempera-
ture or voltage variation, thanks to the distributed control system (compared to the
synchronous global clock signal)

In asynchronous systems combinational blocks are controlled by protocols. These
protocols uses requests signals to initiate a computation and the corresponding
acknowledgements to signal completion of that computation. The protocol knows
the delay of the action from the timing analysis, and it can implement the signals to
match the same delay. These signal delays can be implemented by counting dis-
crete periods provided by a clock (used in the first dataflow computer, DDM1 [2]).
This delay can also be implemented by a delay element as an inverter chain, which
behave under the same conditions under variability. All conditions that may affect
the computational delay of the combinational block it also affects the delay element.
These are variations such as temperature, voltage, manufacturing precision, etc.

This protocol is implemented by controllers with some combinational logic and
some delay elements. These controllers adds an extra complexity into asynchronous
circuits compare to synchronous ones, where everything is controlled by a clock
signal.

Figure 1.2 shows an example of an asynchronous circuit, with no global clock sig-
nal.

1.4 De-synchronisation

Going from synchronous into asynchronous implies changes on the design pro-
cess. There are already EDA tools to design asynchronous circuits but the ac-
ceptance in the industry is low because it changes completely the EDA flow and
it makes harder the specification phase. Recently, a new concept has appeared
called De-synchronisation [3] that mixes both paradigms. The design process can
be done on the synchronous world, using current synchronous EDA flow, and trans-
form it into an asynchronous design automatically.

On that process the clock signal is removed and all registers will be assigned to
handshake controllers. These controllers “know” the delay of the logic and send

6

acknowledge and request signals to their neighbour controllers.

The verification process is not affected because De-synchronisation does not affect
the combinational logic, and the same techniques used for synchronous circuits can
be applied for de-synchronised ones.

Figure 1.2 shows the de-synchronisation of the circuit of Figure 1.1. In this trans-
formation, the controller Ci sends the request for computation complete req signal
to Cj . This signal is delayed to match the computation time. Once Cj has received
the req signal, it can send the acknowledge signal back while it is saving the result
to be used for the next register. This is just a simplification of the transformation, a
real de-synchronisation involves a more complex protocols for the controllers.

max

min

ack

req

ack

req

ack

req

C Ci j

Figure 1.2: De-synchronisation of the circuit from Figure 1.1.

1.5 Performance

There are many ways to measure the performance of a circuit. From the architec-
tural point of view there are metrics to measure performance like IPC: Instructions
Per Cycle or FLOPS: FLoating point Operations Per Second. These metrics are
used to compare different architectures. The study of this thesis is not based on
the architectural point of view, it is based on the static timing analysis (STA).

Synchronous circuits uses memory components called registers like flip-flops and
latches to synchronise all combinational paths. These paths determine the delay of
the circuit, and the performance of a circuit is given by the minimum period of this
synchronisation signal.

Asynchronous circuits cannot be studied as a collection of paths because there
is no synchronisation signal. STA needs to evaluate all cycles to determine the
maximum mean cycle.

Retiming

Retiming [4] is a period optimisation technique for synchronous circuits. It moves
registers across the logic to minimise the maximum delay between registers. It can
reduce the minimal period while keeping the same sequential behaviour.

7

Figure 1.3 shows a circuit where the register X is retimed to reduce the delay
between A and X. The resulting circuit has a maximum delay between registers of
2 time units, instead of the original 3 time units. The retiming process can introduce
new registers as in the example like X1 and X2. These new registers increase the
area of the circuit and the power consumption. However, on this example it is
possible to apply retiming on the register Y and get the same number of registers
back and keeping the optimum delay of 2 time units (Y and X1 will be storing the
same information). Notice how the output of register R will not change.

2 1 1

A

B

X

Y

R

2 1 1

A

B

X

Y

R

X

1

2

Figure 1.3: Retiming example for register X.

Retiming is not used on this thesis, clock skew optimisation is used instead because
its implicit application on De-synchronisation.

Clock Skew Optimisation

Clock Skew is defined as the delay that occurs from the source of the clock signal to
the final register. The clock signal is propagated via wires and gates forming a tree,
mesh, or other structures, and it implies some delay. Traditionally this has been
seen as a problem. The delay of distributing the clock had to be minimised and the
period had to be augmented to cope with this margin of time between registers.

Clock Skew Optimisation is a technique to improve the period for synchronous cir-
cuits introduced by Fishburn [5] from the basic idea that registers can give or borrow
time to neighbours to minimise the clock period. In this new design, the clock signal
of each register can be delayed to match the timing requirements of the logic. This
delay can be inserted on the clock line before the register like in Figure 1.1. This
optimisation extends the timing analysis including hold and setup constraints for all
paths.

8

Having a period P , any connected registers i and j with skews Xi and Xj , and the
minimum and maximum delay between i and j as MINij and MAXij :

Setup Constraints make sure that any two connected registers have enough time
to stabilise the result before j stores the result.

Setup Constraint : MAXij ≤ P +Xj −Xi = Setup time

Hold constraints avoid that the next cycle of i will overwrite the data of the current
one which j still has to store.

Hold Constraint : MINij ≥ Xj −Xi = Hold time

Figure 1.4 shows a timing diagram were Setup Constraint and Hold Constraint
can be graphically interpreted. A Setup Constraint shows how the max delay can
be longer than the period thanks the skew applied on register j. A Hold Constraint
shows how themin delay cannot arrive before the second rise edge of j, otherwise
it will overwrite the value of the fist wave (max delay). Notice how the logic is
processing 2 waves at the same time.

Skew

CLK

CLK

max delay

min delay

Setup Time

Hold Time

2nd wavei

j

Figure 1.4: Clock diagram of two registers i and j. Showing max delay <

Setup time and min delay > Hold time.

Joy D.A [6] introduced Logic Signal Separation Constraints, these constraints adds
relations between all predecessor nodes for any node. One predecessor can over-
write data from another predecessor depending on the min delay that share. To
avoid this problem Joy adds new constraints similar to Hold Constraints between
these nodes.

The problem of minimising the clock period of a circuit by optimising clock skews
can be solved using Linear Programming [5, 6, 7]. Having a collection of Setup
Constraints and Hold Constraints where the Period has to be minimised. It also
can be solved using a binary search [8, 9, 10, 11]. This thesis uses the binary
search approach in Chapter 2 Section 2.7.

9

Clock Skew and Retiming

Retiming and Clock Skew are both continuous and discrete optimisations with the
same effect. This fact was already observed in [5]. However, these two techniques
can be combined to obtain better results.

Retiming can be used as a post process of Clock Skew Optimisation to reduce the
skew difference between registers [12]. The idea is to find the optimum period and
assign skews with an small difference between the minimal skew and the maximal
skew (Using the same algorithm as in Chapter 2 Section 2.7). In a second phase,
it minimise the skew difference by applying retiming. It is important to start from a
solution with small differences between clock skews because less retimings will be
needed to reduce the time difference.

Clock Skew and Retiming can be used in combination to improve the clock period
[13]. This paper shows how the combination can do better than both techniques
separately. The idea is that Retiming can help to fix hold constraints and the period
of Clock Skew Optimisation can be improved. The problem is solved by a mixed-
integer linear programming formulation and an heuristic. Chapter 2 describes the
implications of using hold constraints or not, and Chapter 4 shows some results of
these differences.

1.6 Statement of the Problem

This thesis is situated on the STA phase of the design flow. The motivation comes
from the necessity to clusterise registers on the De-synchronisation process. The
interest from the industry reflects the importance of the problem. This thesis uses
graph theory to analyse circuit performance assuming clock skew optimisation or
asynchronous circuits. The contributions of this thesis are algorithms for the clus-
terisation of registers for synchronous and asynchronous systems. All algorithms
had been designed and integrated in the De-synchronisation flow of Elastix Corpo-
ration EDA tool.

There are several cluster properties that will be studied and optimised. The next
paragraphs describes what is a cluster and the properties.

Clustering

The circuit is the starting point and it is represented by a Register Graph where
each node represents a register and directed edges represent combinational blocks.
R is the number of nodes of this graph.

A Cluster is a Set of registers. In an asynchronous circuit, it can represent the
nodes under the same controller, and in a synchronous circuit it can represent
nodes that have the same skew as in [14].

A Cluster Graph is constructed from the Register Graph in a way that nodes on
the Cluster Graph represent partitions of the Register Graph. Two clusters are
connected in the Cluster Graph if any of their registers are connected.

10

A Clustering can vary from 1 partition solution toR partitions (one for each register).
A Clustering solution has several properties with a high design impact. Clustering
based on Connections, Performance, and Placement are studied on this thesis and
described on the next sections.

Connections

The number of connections is defined as the number of edges on the cluster graph.
It is important to minimise this number to reduce the complexity of the controllers.
Having many connections implies to increase the number of delay lines, logic, and
metal wires to connect controllers. This may have consequences on area usage as
well.

From the point of view of cluster connection, it does not matter if there is one or
more registers connected between clusters, it only matters connections at cluster
level. It is not the same minimising the number of connections on the Cluster Graph
than minimising the number of registers connected to different clusters.

The problem of minimising the number of registers connecting differnet clusters can
be seen as the MIN-CUT problem of the Register Graph. hMetis [15] is a multilevel
partitioning algorithm that performs very well for this problem.

A local search solution is presented on the Chapter 3 Section 3.1 that minimise
the number of cluster connections and it can be easily extended with other cost
functions (Future work).

Performance

Performance analysis of a cluster solution can be seen as a synchronous circuit
with clock skew optimisation where only few skews can be applied. Each skew
represents a cluster. Having the Cluster Graph with maximum and minimum delay
annotated on the edges, performance is determined as the minimum period can be
calculated using the same algorithm that the one used for the Register Graph.

Finding the best performance for a given number of clusters is the same problem as
Multi-domain clock skew scheduling [14] solved using a branch-and-bound search
using a SAT solver. According to the authors this algorithm takes 20 hours for an
industrial design of 250737 edges. This thesis expects to work with circuits of 400k
edges and much more. A better heuristic is required to deal with bigger circuits.

A clustering solution that optimise performance based on k-means [16, 17, 18]
clustering (combined with placement) is presented on the Chapter 3 Section 3.2.

Placement

Clustering in terms of placement groups registers using their position information
on the die. The goal is to minimise the cost of connecting all registers of the same
cluster. The problem of calculating the cost for a given cluster can be seen as

11

calculating the Steiner tree [19] of these nodes. A Steiner tree connects all nodes
and it can introduce extra connection points to minimise the total length. This is an
NP-complete problem, but Spanning trees simplifies Steiner trees because no extra
connection points can be added. Two traditional algorithms to calculate spanning
trees are Prim [20] and Kruskal [21]. Both of them are linear and are a good
approximation compared to the Steiner tree NP cost. Another typical metric is the
half perimeter wire length (HPWL) calculated as the half perimeter of the bounding
box that include ll registers of the cluster. HPWL is very fast to calculate but the
error committed can be huge compared to trees methods.

A clustering solution that optimise placement based on k-means [16, 17, 18] (com-
bined with performance) is presented on the Chapter 3 Section 3.2

Tradeoff

A good clustering algorithm needs to face the tradeoff between optimising one or
the others properties. A perfect clustering for performance could be a total disaster
in terms of placement and become an impossible design to implement due to the
routing overhead. A perfect clustering for placement could probably become a
difficult design to optimise with clock skew.

This thesis presents a clustering algorithm that combines performance and place-
ment to generate an implementable design with good properties.

1.7 Description of the Chapters

Chapter 2 reviews a solution to calculate the period of a circuit and describes how
it has been implemented on Elastix Corporation EDA tool.

Chapter 3 presents the main contribution of this thesis: the algorithm for clustering
that optimises the number of connections, and the algorithm for clustering optimis-
ing placement and performance.

Chapter 4 presents results of several experiments using ISCAS benchmarks and
SUN’s OpenSparc processor.

Chapter 5 presents the conclusions of this thesis and future work.

12

Chapter 2

Optimal period with clock
skew

The next sections will explain how to calculate the period of a sequential circuit and
how to improve it using clock skew optimisation. The chapter uses the same circuit
example (Figure 2.1) to introduce concepts and apply optimisations.

1A

B

C D

1

4 4

1
min: 1

max: 4

min: 1

max: 4

clk

clk

clk clk

Figure 2.1: Basic circuit example with minimum and maximum delays on combina-
torial paths.

2.1 Delay Graph

The data structure used to describe a circuit is a graph. A Delay Graph is a repre-
sentation of the combinational blocks of the circuit with timing information annotated
on the edges.

• Nodes in the Delay Graph are Inputs, Outpus, or Registers.

13

• Directed edges in the Delay Graph are combinational paths between nodes
through logic gates. Each edge has the minimum and maximum delay of the
combinatorial logic that represents.

This data structure can be used for the Static Timing Analysis (STA) to calculate
the optimum period of the system. For example, the delay graph of the example
circuit of Figure 2.1 can be seen in Figure 2.2. In a simple synchronous circuit
all registers are synchronised by a clock signal. The period of that clock will be
determined by the maximum delay. In this example, the maximum delay is 4 and
if no optimisations are applied, the corresponding synchronous circuit will have a
Period of 4.

Next sections will improve this period by applying some optimisations on the clock
signal.

A C

B

D

max: 4

min : 1

max: 4

min : 1

max: 1

min : 1

max: 1

min : 1

max: 1 min: 1

Figure 2.2: Delay graph example with min/max delay

2.2 Clock Skew Optimisation

Clock Skew Optimisation [5] (Introduced on Chapter 1 Section 1.5) is a technique
that can improve the period of a circuit by applying a delay on the clock signal of
each register. It basically defines a set of Setup and Hold Constraints that need to
be satisfied.

Having a period P , any connected registers i and j with skews Xi and Xj , and the
minimum and maximum delay between i and j as MINij and MAXij :

Setup Constraints make sure that any two connected registers have enough time
to stabilise the result before j stores the result.

Setup Constraint : MAXij ≤ P +Xj −Xi = Setup time

Hold constraints avoid that the next cycle of i will overwrite the data of the current
one which j still has to store.

Hold Constraint : MINij ≥ Xj −Xi = Hold time

14

One possible simplification of the clock skew optimisation is to eliminate the Hold
Constraints. Assuming that it is possible to add delays on the minimum paths to fix
all hold violations without increasing the maximum delay path. This new problem
with just Setup Constraints is equivalent to calculate the Maximum Mean Cycle
(MMC) of the graph using the max delays.

2.3 Maximum Mean Cycle

Having a directed Graph G = (V,E) with max delays annotated on the edges. Let
C be a cycle in G, where |C| is the number of edges and w(C) is the weight of the
cycle (sum of maximum delays of the cycle edges):

Maximum Mean Cycle = max
C∈G

{
w(C)
|C|

}
On Figure 2.2, 2 cycles exist:

Mean Cycle(A→ B → C → D → A) =
4 + 4 + 1 + 1

4
= 2.5

Mean Cycle(A→ C → D → A) =
1 + 1 + 1

3
= 1

Maximum Mean Cycle = max(2.5, 1) = 2.5

The maximum period without using clock skew of the circuit in Figure 2.1 is 4 (max
delay). Figure 2.3 shows the same circuit but applying clock skew to achieve a
period of 2.5 (ignoring hold constraints). The register B has been delayed 1.5
time units to be able to compute the maximum time between A and B. The same
situation happens on register C, it need an extra 1.5 units to have enough setup
time to compute the maximum delay. The registers B and C can borrow 1.5 time
units from C → D and D → A, and give it to A → B and B → C because they
need it to compute the max delay (2.5 + 1.5 = 4).

Figure 2.4 shows a timeline for a period of 2.5 with the following observations:

• It shows 2 complete waves through the cycle. Each cycle takes 4 periods,
and thanks to clock skew all 10 time units can be accommodated. All com-
binatorial blocks finish their computation before the rising edge of the ending
register.

• The min delay of A → B and B → C needs to be increased to not override
the previous wave.

• The min and max delay ofA→ C needs to be increased a significant amount
of time. This example shows the extreme case of having a clock skew bigger
than the period, and how a small edge can be affected.

• This example shows how it is possible to reduce the period by adding delays.

15

1A

B

C D

1

4 4

1
min: 1

max: 4

min: 1

max: 4

1.5

3
clk

clk

clk clk

1.5

Figure 2.3: Basic circuit with clock skews ignoring hold constraints. Period of 2.5.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

A

B,D

C

P=2.5

A − B B − C

A − C

C − D D − A

1.5

3

A − B B − C

A − C

C − D D − A

firs

second

hold violation hold violation

6

overwriting

valid data

Figure 2.4: Timeline for a period of 2.5, showing hold violations that can be fixed
by incrementing the delays.

16

2.4 Maximum Mean Cycle algorithms

There are several algorithms to compute the MMC. The most popular algorithms
are Krap’s algorithm [22], Lawler’s algorithm [23], Burns’ algorithm [24], and an
improved version of Howard’s algorithm [25]. A report [26] compares all of them in
which Howard’s algorithm appears to be the fastest one.

All of them are based on a parametric shortest path problem. Burns’ algorithm uses
linear programming but with a similar idea.

2.4.1 Parametric shortest path

The parametric shortest path problem is a generalisation of the single-source short-
est path problem in which some of the edges have a parameter subtracted from
them. The problem is to generate a shortest path tree with the maximum value of
that parameter without generating any negative cycle. This problem is related to
the maximum mean cycle problem because the value of this parameter is the MMC
if the parameter is subtracted from all edges. It represents the maximum value it
can be subtracted from all cycles until a cycle has a weight equals to 0.

An improved version of Krap’s algorithm by Young,Tarjan,Orlin [27] shows how the
parametric shortest path problem can be used to compute the maximum mean
cycle as well as the minimum balance problem (used in Section 2.9).

This thesis uses Howard’s algorithm to compute the MMC of the max delays of the
circuit.

2.4.2 Howard’s algorithm

All shortest path algorithms require a graph with a weight annotated on the edges,
and it uses a distance property dist for nodes to set the shortest distance from the
reference node.

Howard’s algorithm uses the idea of the parametric shortest path problem but on
the opposite way of the other algorithms. It starts with a parameter λ = ∞ and
decreases the λ value until the graph is valid and no negative cycle exist. The
algorithm maintains a policy graph which is a subgraph where each node has a
out degree of one. This graph represents a current “shortest path tree”. At each
iteration, a shortest path is found using a breadth-first search (BFS) algorithm. If a
valid path is found, λ is valid and it can be returned, or λ needs to be updated as
well as all edges and the policy graph.

2.5 Constraint Graph

The problem of assigning valid skews to registers for a given period with Setup and
Hold Constraints (and determines if the period is valid) can be solved by linear pro-
gramming [5, 6, 7]. In fact, it belongs to the subclass difference constraints problem

17

Algorithm 1 Howard’s Minimum Mean Cycle algorithm
Require: A strongly connected graph G(V,E), weight(e)
Ensure: The minimum cycle mean λ∗ of G

1: for all u ∈ V do
2: d(u)← +∞
3: end for
4: for all (u→ v) ∈ E do
5: if weight(u→ v) < dist(u) then
6: dist(u)← weight(u→ v); π(u)← v {π is the policy}
7: end if
8: end for
9: while true do

10: Eπ ← (u→ π(u)) ∈ E { Find the set of Eπ of policy arcs}
11: Examine every cycle in Gπ = (V,Eπ)
12: Let C be the cycle with the smallest mean in Gπ
13: λ← weight(C)/ | C |
14: Select an arbitrary node s ∈ C
15: { Compute the node distances using the revers BFS}
16: if there is a path from v to s in Gπ then
17: dist(v)← dist(π(v)) + weight(v → π(v))− λ
18: end if
19: {Improve the node distances}
20: improved← false

21: for all (u→ v) ∈ E do
22: δ(u)← dist(u)− (dist(v) + weight(u→ v)− λ)
23: if δ(u) > 0 then
24: if δ(u) > ε then
25: improved← true

26: end if
27: δ(u)← dist(v) + weight(u→ v)− λ)
28: π(u)← v

29: end if
30: end for
31: if NOT improved then
32: return λ
33: end if
34: end while

18

and it can be easily solved using a difference constraints graph. For example, this
graph representation is used in [11] to minimise clock skews.

Difference Constraints Graph

Having a difference constraints problem where y and x are variables, and K are
constants :

y1 − x1 ≤ K1

y2 − x2 ≤ K2

. . .

This inequality system can be transformed into a graph such that each node repre-
sents a variable x1, y1, x2, y2,. . . and for each related variables a directed edge is
created with the corresponding weight as: x1

K1−−→ y1. If the resulting graph is not
strongly connected and extra node v0 needs to be added that connects to all nodes
with weight 0.

An interesting property of Constraint Graphs is that the system is consistent if no
negative cycle exists. It is possible to assign values to nodes that satisfy all con-
straints. This problem can be solved using a shortest path algorithm like Bellman-
Ford[28, 29, 30]. This algorithm assigns values to the nodes that satisfy the system
(if it is consistent) with complexity O(N × E).

Circuit Constraints Graph

It is possible to use a Difference Constraints Graph to check if a given period is
consistent with all setup and hold constraints. Re-arranging the inequalities:

Setup Constraint : MAXij ≤ P +Xj −Xi

Xi −Xj ≤ P −MAXij

Hold Constraint : MINij ≥ Xj −Xi

Xj −Xi ≤MINij

A circuit constraint graph is build using these inequalities. There is no need to add
the extra v0 node because the resulting graph is strongly connected. If the register
graph has just one component, the constraint graph will be strongly connected be-
cause hold and setup constraints adds edges in both directions for any connected
registers.

After running a shortest path algorithm like Bellman-Ford, all nodes will have a
distance assigned. This distance can be interpreted as a valid skew for the period
P.

19

This graph can be complemented with other timing constraints. Logic Signal Sep-
aration Constraints introduced by Joy D.A [6] are constraints between all prede-
cessor nodes for any node. Joy proved by simulation than one predecessor can
interfere with another one . These constraints can be included on the graph as
extra edges.

Figure 2.5 shows a constraint graph with setup and hold constraints of the basic
example with an invalid period of 2.5, Figure 2.6 for an invalid period of 3, and
Figure 2.7 for a valid period of 3.5.

2.6 Improved Bellman-Ford algorithm

Bellman-Ford algorithm [28, 29, 30] can be used to solve a Circuit Constraints
Graph. It determines if a given period is valid and assigns skews to registers. An
improved version from Tarjan [31] with negative cycle detection has shown very
good results [32] and it has been implemented on this thesis.

The classical Bellman-Ford (Algorithm 2) has no special mechanism to detect a
negative cycle in advance. Having a GraphG = (V,E), Bellman-Ford iterates n×e
times, where n and e are the number of vertexes and edges. After all iterations it
has to check if there is any negative cycle. The check is done by exploring all
edges to see if there is any shortcut. As all possible paths up to size n − 1 have
been explored at that point and it is not possible to have a short path with a length
higher or equal than n. There is a negative cycle if such path exists.

Algorithm 2 BellmanFord
Require: Graph G(V,E),dist(v),weight(e)
Ensure: Updated dist(v) such that ∀(u→v)∈Edist(v)− dist(u) ≤ weight(u→ v)

1: for i = 1 to size(V)− 1 do
2: for all (u→ v) ∈ E do
3: if dist(v) > dist(u) + weight(u→ v) then
4: dist(v)← dist(u) + weight(u→ v)
5: end if
6: end for
7: end for
8: for all (u→ v) ∈ E do
9: {Negative cycle check}

10: if dist(v) > dist(u) + weight(u→ v) then
11: return G contains a negative cycle
12: end if
13: end for

The classical Bellman-Ford behaves badly when a negative cycle exist because it
needs to compute all n × e operations. It checks for a negative cycle at the end.
However, it is possible to do the check at the same time that it is searching for short-
cuts. Bellman-Ford can maintain a shortest path tree by updating the predecessor
on the tree each time that it finds a shortcut. A technique called Walk to the root

20

uses this tree each time that a shortcut has been found. The algorithm needs to
check if this new path is forming a cycle on the tree. This walk increases the com-
plexity of the algorithm because the “walk” to the root costs O(n) and increases the
bellman-Ford complexity to O(n2e) because is done at each iteration.

The Improved Bellman-Ford (Algorithm 3) uses the negative cycle detection sub-
tree disassembly introduced by Tarjan [31]. This improvement is based from the
Walk to the root technique but it amortise the cost of traversing the tree over the
work to building it. The idea is to “forget” the new shortpath and mark the new node
as unreached (line 17). In conclusion: the Improved Bellman-Ford algorithm has a
complexity of O(ne) and detects for negative cycles much sooner.

Algorithm 3 ImprovedBellmanFord
Require: Graph G(V,E),dist(v),weight(e)
Ensure: Updated dist(v) such that ∀(u→v)∈Edist(v)− dist(u) ≤ weight(u→ v)

1: Q1← ∅, Q2← ∅
2: for all e ∈ E do
3: if dist(v) > dist(u) + weight(u→ v) then
4: append u to Q1
5: end if
6: end for
7: while Q1 not empty do
8: u← pop(Q1)
9: for all v adjacent to u in G do

10: if dist(v) > dist(u) + weight(u→ v) then
11: delete subtree rooted at v
12: if u was in the subtree deleted above then
13: return negative cycle detected
14: else
15: dist(v)← dist(u) + weight(u→ v)
16: make v a child of u {constructing subtree}
17: append v to Q2
18: end if
19: end if
20: end for
21: if Q2 is empty then
22: return completed: dist satisfies constraints
23: else
24: Q1← Q2, Q2← ∅
25: end if
26: end while

2.7 Binary search to find the optimal period

It is possible to find the optimal period with hold and setup constraints by Linear
Programming as in [5, 6, 7], or by binary search [8, 9, 10, 11]. The binary search

21

approach has been chosen in this thesis.

An upper bound of the period is the maximum max delay (the period of the circuit
without clock skew). A lower bound is the Maximum Mean Cycle explained on the
previous section were Howard’s [25] algorithm responds quasi linear on average
case.

The binary search builds a constraint graph for a target period and uses the Im-
proved Bellman-Ford (Algorithm 3) to test if that period is valid. It is important to
use the improved version because the binary search expects to test invalid periods,
and an invalid period is generating a constraint graph with a negative cycle.

Next Figures will show some periods between the lower and the upper bounds of
the example.

• Upper bound is maxe∈EMAXe = 4

• Lower bound is MMC = 2.5

Figure 2.5 shows how the lower bound, a period of 2.5, is not a valid period using
Hold Constraints. There are several negative cycles, for example: A → C →
B → A with weight -2. It is not possible to assign skews to nodes that satisfy all
constrains. This period is also used on the timeline of Figure 2.4 where violations
can be interpreted.

A C

B

D

1 1

1

11

−1.5 −1.5

1.51.5

1.5

Hold Constraint

Setup Constraint

Figure 2.5: Constraint graph for period 2.5 . Negative cycle A → B → A with
weight -0.5 , B → C → B with weight -0.5, and A→ C → B → A with weight -2

Figure 2.6 shows how a period of 3, is not a valid period using Hold Constraints.
There is a negative cycle A → C → B → A with weight -1. It is not possible to
assign skews to nodes that satisfy all constrains, but it is possible to view how to
fix this negative cycle. Increasing the min delay of one Hold Constraint A → C or
decrease the delay of any of the Setup Constraints C → B or B → A.

Figure 2.7 shows the constraint graph of the same example using a period of 3.5. In
this case 3.5 is a valid period. This Figure shows the values calculated by Bellman-
Ford algorithm starting from A.

22

A C

B

D

1 1

1

11

−1 −1

22

2

Hold Constraint

Setup Constraint

Figure 2.6: Constraint graph for period 3. Negative cycle A → C → B → A with
weight -1

A C

B

D

1 1

1

11

−0.5 −0.5

2.52.5

2.5

Hold Constraint

Setup Constraint

0

0.5

1

2

Figure 2.7: Constraint graph for period 3.5 with Bellman-Ford distances (skews).

23

2.8 Slack Graph

The slack graph is isomorphic to the constraint graph with different information on
the edges. Once the skew has been assigned to all nodes, the slack is the maxi-
mum time the nodes can still differ from each other without breaking any constrain.

The slack of an edge between i and j is Sij = Xi+W−Xj and it is always positive
if the assigned skews are valid.

Figure 2.8 shows the example with slack values for the 35 Period solution. Notice
how the critical cycle A→ C → B → A has 0 accumulated slack.

A C

B

D

0.5 0.5

0

03

0 0

3.5 0.5

3.5

Hold Slack

Setup Slack

0

0.5

1

2

Figure 2.8: Slack graph with Bellman-Ford distances for period 3.5. From the con-
straint graph of Figure 2.7.

2.9 Distributed Slack Graph

The slack of an edge gives the criticality of that edge depending on the assigned
skews of its source and destination registers. This slack depends on how the skews
where assigned and it cannot be used to determine the real criticality of that edge
on a global context. However, it is possible to distribute this slack around the cycle
in a way that all edges get the corresponding global slack.

A Distributed Slack Graph is an Slack Graph where for each node the minimum
input slack is the same as the minimum output slack. The skew assignment that
has this property is unique. This problem is also called minimum balanced problem
and Young,Tarjan,Orlin [27] solve it using a parametric shortest path algorithm that
can be used to calculate the maximum mean cycle and the minimum balanced
graph. This new slacks can be assigned to registers and become a node property
instead of an edge property that measures criticality of the node.

A simple algorithm that distribute pairs of nodes and iterates until there is no more
unbalanced pairs has been tested and performs very well for big circuits. The fact
that all edges have a similar delay by design makes this algorithm to perform few
iterations.

24

Figure 2.9 shows the example with a period of 3.5 with distributed slacks. Nodes
(Table 2.1) and edges (Table 2.2) can be sorted by criticality. This information can
be used by engineers to optimise the circuit at these points.

A C

B

D

0.5 0.5

0

1.51.5

0 0

22

3.5

Hold Slack

Setup Slack

0

0.5

1

3.5

Figure 2.9: Distributed slack graph for period 3.5

Node Distributed Slack
A 0
B 0
C 0
D 1.5

Table 2.1: Top critical nodes by distributed Slack

25

Edge Distributed Slack
A→ C 0
C → B 0
B → A 0
A→ B 0.5
B → C 0.5
C → D 1.5
D → A 1.5
A→ D 2
D → C 2
C → A 3.5

Table 2.2: Top critical edges by distributed slack

26

Chapter 3

Clustering algorithms

This chapter presents two algorithms to cluster registers: the algorithm of Section
3.1 minimises the number of connections of the cluster graph, and the algorithm of
Section 3.2 minimises the global period and the cluster placement.

3.1 Local Search to minimise the number of connec-
tions

The local search algorithm to minimise number of connections of the cluster graph
starts from an initial clustering configuration and iteratively tries to move nodes from
one cluster to any other that increase the global cost function. Not all movements
are valid, since there are minimum and maximum size constraints on the clusters. It
is not possible to move a node into a cluster which already has the maximum size,
and it is not possible to move a node out of a cluster which has the minimum size.
The initial clustering configuration is based on a topological order. The algorithm
will try to move nodes until there is no node that can increase the cost function.

3.1.1 Cost Function

A Cost function gives a numeric quantification of how good a cluster configuration
is. Having a register graph G and a Cluster graph CG, the set of register edges
(links) between two clusters and the total cost are defined as:

links(c1, c2) = (u, v) ∈ G | u ∈ c1 ∧ v ∈ c2

TotalCost =
∑

c1,c2∈CG

1
| links(c1, c2) | +1

The cost function TotalCost is a multiplicative inverse function. It is designed to
reward movements that lead to a solution with few cluster edges by decreasing the

27

edges with less links. It is a better to decrease an edge with fewer links (the solution
is closer to 0 links) than and edge with much more links (clusters will be connected
anyway). For example, it is better to decrease the number of links from 5 to 4 than
from 50 to 49. The local search is going to the solution where the edge with 5 to 4
links will become 0.

The TotalCost function has a range of values depending on the register graph and
the number of clusters. The maximum and minimum cost are studied by construct-
ing the best and worst case as follows:

Maximum total cost

For N nodes in C clusters the maximum cost of the function is from a clustering
with no links between clusters. Two different expressions are shown depending
on if self loops are minimised or ignored. The cost of not being connected to all
clusters is the total number of possible edges C2 (or without self loops: C×(C−1)
) times the cost of the edge 1

1 .

MaximumCostself loops = C2 × 1
1

= C2

MaximumCostno self loops = C × (C − 1)× 1
1

= C2 − C

Minimum total cost

For N nodes in C balanced clusters the minimum cost of the function is from a
clustering with all possible edges between clusters. Two different expressions are
shown depending on if self loops are minimised or ignored. A complete register
graph with N

C links between clusters has a total cost of the number of edges C2 (or
without self loops: C × (C − 1)) times the cost of each edge 1

N
C +1

.

MinimumCostself loops = C2 × 1
N
C + 1

=
C2

N
C + 1

MinimumCostno self loops = C × (C − 1)× 1
N
C + 1

=
C2 − C
N
C + 1

3.1.2 Cluster graph adjacency matrix

A function that calculates the cost function of a cluster edge needs to know the
number of links of that edge. It needs to count how many register edges are be-
tween the clusters. As the number of clusters is expected to be small, it is affordable
to store C2 costs. A cluster graph adjacency matrix is a C × C matrix storing the

28

number of links for each cluster edge. This data structure is used by the algorithm
in Section 3.1 to have constant access to the number of links for a given cluster
edge, and to update the cost of a cluster edge incrementally when moving one
node from one cluster to another.

3.1.3 Local Search algorithm

The LocalSearch Algorithm 4 tries to move one node at each iteration until no node
can be moved. The key of the algorithm is at the computation of the increment on
the cost function when moving one node needs to be cheap. The same node can
be moved several times because the configuration is constantly changing. Nodes
need to be visited again every time the configuration has been changed because
this change can make the movement possible.

Algorithm 4 LocalSearch
Require: list is a List of all nodes; all nodes are assigned to clusters.
Ensure: There is no node movement that can improve the cost function.

1: while noimprove_counter < list.length() do
2: node← list.next()
3: improvement ← Move(node) {Tries to move node to another cluster, im-

proving the cost function.}
4: if improvement > 0 then
5: noimprove_counter ← 0
6: else
7: noimprove_counter ← noimprove_counter + 1
8: end if
9: end while

A node can be moved (Algorithm 5) to another cluster if the origin cluster is big-
ger than the minimum cluster size and the destination cluster is smaller than the
maximum cluster size. Moreover, a node is moved if it increase the total cost. The
Move function calculates the cost of the matrix before moving the node, and the
cost after moving it to all possible destinations. The MoveNode function change
the assignation of the node to the new cluster and only needs to go through all
predecessors and successors to calculate how the links will be affected on the ad-
jacency matrix. Thanks to this matrix there is no need to go through all nodes and
edges of the register graph to calculate the TotalCost value. At the end it moves
the node to the best destination, if it increase the cost.

3.1.4 Example

This section shows an example of one iteration of the LocalSearch algorithm. Hav-
ing an initial clustering configuration of 9 nodes and 3 clusters as in Figure 3.1, a
cost increment of moving the node u to cluster C or B will be calculated.

The range of TotalCost (ignoring self loops) in this example will be:

29

Algorithm 5 Move
Require: node is the node to be moved;current_cluster is the current cluster of

node; configuration is the current clustering solution.
Ensure: The node is moved to a better cluster configuration with higher cost value;

configuration is updated according to the movement; returns the cost incre-
ment.

1: current_cost← TotalCost(configuration)
2: increment← 0
3: if current_cluster.size() > MIN_SIZE then
4: for all cluster do
5: if cluster.size() < MAX_SIZE then
6: new_configuration ← MoveNode(node, cluster, configuration)

{Moves the node into cluster cluster for a cluster configuration, re-
turns the new configuration }

7: cost ← TotalCost(new_configuration) {MoveNode can calculate
the increment of cost at the same time that is generating the new con-
figuration.}

8: if cost > current_cost then
9: increment← increment+ cost− current_cost

10: current_cost← cost

11: configuration← new_configuration
12: end if
13: end if
14: end for
15: end if
16: return increment

30

• Minimum :
C2 − C
N
C + 1

=
9− 3
9
3 + 1

= 1.5

• Maximum : C2 − C = 6

The cost of a given configuration is calculated from the adjacency matrix (in this
example self loops are ignored). Notice how to update the matrix when a node is
moved depends only on the predecessors and successors of that node. The initial
configuration cost and the improvements of moving the node u are the following:

Initial Configuration Figure 3.1 has a TotalCost = 1
2 + 1

2 + 1
2 + 1

4 + 1
1 + 1

1 = 3.75.

Moving u to C Figure 3.2 has a TotalCost = 1
2 + 1

2 + 1
1 + 1

5 + 1
1 + 1

1 = 4.20. It
increments the cost with 0.45.

Moving u to B Figure 3.3 has a TotalCost = 1
3 + 1

1 + 1
1 + 1

5 + 1
1 + 1

1 = 4.53.
It increments the cost with 0.78. The node u will be moved into cluster B
because it maximises the cost more than moving it to C.

1 1

1 3

0 0

A B C

A

B

C

B

A C

u

Figure 3.1: Cluster configuration with node u in cluster A

1 1

0 4

0 0

A B C

A

B

C

B

A C

u

Figure 3.2: Cluster configuration with node u in cluster C

31

2 0

0 4

0 0

A B C

A

B

C

B

A C

u

Figure 3.3: Cluster configuration with node u in cluster B

3.2 K-means by position and skew

The algorithm of this section faces the clustering tradeoff between placement and
performance. It is important to have compact clusters to minimise the total cost
of distributing the clock signal to registers, as well as other benefits in terms of
variability. Performance of the clustered solution is obviously also important. To
be able to cope with the placement vs performance tradeoff the algorithm uses a
parameter to tune the balance.

The algorithm uses K-means [16, 17, 18] to group registers that are closer in dis-
tance. For placement, Manhattan distances gives a better approximation of the final
routing cost than euclidean distances because of the physical grid implementation.
From the performance point of view the distance of skews is used as an heuristic
to optimise the period. The heuristic comes from the idea that two registers with
a similar skew, when grouped together, the lost of performance will be minimum.
When grouping two registers with diffrent skew, the maximum period that could be
lost is the difference of skews.

If two registers i and j with skews Xi and Xj are grouped together implies that
both will share the same skew and Xi = Xj .

No Hold Constraint can be violated when two registers are grouped because the
minimum delay is always greather than 0.

Hold Constraint : MINij ≥ Xj −Xi before

MINij ≥ 0 after

Let P1 be the period before grouping the 2 registers, and P2 the period after group-
ing them. P2 can be increased as much as (Xj −Xi) compared to P1.

Setup Constraint : MAXij ≤ P1 + (Xj −Xi) before

MAXij ≤ P2 + 0 after

P1 ≤ P2 ≤ P1 + (Xj −Xi)

32

A global distance function is defined by composing the placement distance plus the
skew distance using α and β parameters to balance them. Forming a 3D space
(skew-placement) for K-means.

Distance(r1, r2) =α×DistanceP lacement(r1, r2)+

β ×DistanceSkew(r1, r2)

DistanceP lacement(r1, r2) =abs(r1.x− r2.x) + abs(r1.y − r2.y)

DistanceSkew(r1, r2) =abs(r1.skew − r2.skew)

The coordinates on the layout are provided by a placement algorithm, but there are
many possible valid solutions to assign skews. It is possible to minimise the total
skew [11], or distribute the slacks to classify registers and edges by criticality like in
Chapter 2 Section 2.9 which sets skews far from the interval extremes (more robust
to timing errors).

One good property that can be used in combination with placement is to have all
non-critical registers in one big cluster, and small clusters for the critical registers
to improve the period. After this clustering the big none-critical cluster can be re-
clustered by placement without affecting performance.

The used skews are calculated by setting 0 to all registers and applying Bellman-
Ford on the Slack Graph. Bellman-Ford will update just the registers that have a
negative slack edge (a shortcut) and keep skew 0 to the none critical ones.

3.2.1 K-means

The K-means algorithm creates initial centroids spared on the skew-placement
space. Each iteration of the algorithm assigns each node to the closest centroid,
and it recalculates the new positions of the centroids as the mean position for each
dimension (x, y, skew). K-means stops iterating when no node jumps from one
centroid to another. On the Results Section 4.4.2 (Page 47) there are some figures
that show the dimensions on a 3D plot.

3.2.2 Evaluation

To evaluate a clustering solution needs to be done from the performance point of
view and from the placement point of view. The evaluation of the clustering in terms
of performance is simply the period of the Cluster Graph. Described in Chapter 2.
The evaluation in terms of placement is done by calculating spanning trees using
Prim’s algorithm [20].

Prim’s algorithm starts from a node and builds the spanning tree by adding the
closest node to the tree at each iteration. This algorithm has a computational cost
of Θ(n2) because the distance graph is complete.

Spanning trees can be hard to calculate for huge amount of nodes. For big circuits
a “fast” option has been implemented that simplifies the space by dividing the area

33

Algorithm 6 K-means
1: movement← true

2: while movement do
3: movement← false

4: for all register r do
5: new_cluster ← SearchClosestCluster(r)
6: if new_cluster 6= r.cluster then
7: r.cluster ← new_cluster
8: movement← true

9: end if
10: end for
11: RecalculateCentroids()
12: end while

into a grid and calculates the spanning tree of each cell area plus the global span-
ning tree using representants of each cell to connect all nodes. The computational
cost remains the same Θ(n2) but it is divided by the size of the grid.

34

Chapter 4

Results

This Chapter presents some results of executing the two algorithms of Chapter 3.
The first section describes the execution environment, the second runs the algo-
rithm to minimise the number of connections, the third study the performance using
ISCAS benchmark and OpenSparc, the forth section uses the algorithm that com-
bines performance with placement to study the tradeoff. Some illustrative plots are
presented to show the skew-placement space of OpenSparc design.

4.1 Execution environment

The algorithms were implemented on the de-synchronisation flow of Elastix EDA
tool. The synthesis and placement of the designs have been obtained from an
industrial tool.

Elastix EDA tool with both algorithms have been executed on an Intel Core Duo 2
processor at 2.13GHz with 4MB cache and 4GB of RAM running linux 2.6.23.

ISCAS benchmark and OpenSparc are the tested designs in this section. The
OpenSparc design from Sun Microsystems is an open source multi-processor and
multi-thread design. A single processor has been used on these experiments which
has: 190 inputs, 132 outputs, 15527 registers, and 480325 paths.

4.2 Number of connections

The LocalSearch algorithm presented on Chapter 3 Section 3.1 has been tested
on the practical design OpenSparc because of its big size. Table 4.1 and the corre-
sponding plot on Figure 4.1 show the results of 10 register clusters. Each execution
for 10 clusters toke about 10 seconds.

The worst case scenario for 10 register clusters, plus 1 cluster for inputs, and 1
cluster for outputs is: 10 connections from inputs to register clusters, 10 from reg-

35

isters to output, and a complete connected graph of registers 102. This worst case
gives a 120 connections. The best case scenario is a pipe line with 11 edges.

The relation between nodes (15849) and edges (480325) is about 30 edges per
node. This big relation could mean that if the clustering is not aware of connections
could easily generate a strongly connected cluster graph. For example a clustering
of the k-means algorithm based on placement gives 113 connections, and based on
performance 110. These two clustering examples prove how close to the worst case
scenario a clustering algorithm can be without taking into account the connections.

Figure 4.1 shows the evolution of the algorithm when increasing the balance fac-
tor. The balance factor allows the algorithm to build clusters of different sizes. A
balance factor of 0.2 means that a cluster can be 0.2 times bigger or smaller than
the mean size.The plot uses the standard deviation as a real measure instead of
the balance factor that just provides limits on the cluster sizes. Notice how the evo-
lution is not monotonic: the solution with balance 0.5 is worst than the solution of
0.4. This behaviour happens because the algorithm implements a heuristic and the
optimal solution is not guaranteed. The results can be improved by running the al-
gorithm several times adding some in-determinism and changing the initial solution
(currently based on topological order).

Balance #edges std
0.001 108 5.100

0.1 93 152.491
0.2 87 302.920
0.3 86 406.967
0.4 84 573.358
0.5 85 693.251
0.6 79 800.991
0.7 77 905.689
0.8 78 1072.582
0.9 74 1157.232
1.0 64 1258.712
1.5 59 1579.163
2.0 48 1904.196

Table 4.1: Number of edges on the cluster graph. For 10 cluster solution on
OpenSparc.

36

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

#e
dg

es

std

Cluster Graph Connections

connections
placement

performance

Figure 4.1: Local search solution minimising number of connections for 10 clusters
on Sparc. Showing the solution based on placement, and the solution based on
performance.

37

4.3 Performance

This section studies how the algorithm behave in terms of performance. Optimum
periods are calculated with several cluster solutions using ISCAS benchmarks and
OpenSparc circuit.

4.3.1 ISCAS

To evaluate the performance of ISCAS benchmark the k-means algorithm with
100% on skew has been run it. Table 4.2 and 4.3 show some of ISCAS circuits.
These tables show the name of the circuit, the total number of nodes (including
inputs outputs and registers), the total number of edges, and the optimum period.
Table 4.2 shows the values for Hold&Setup period and Table 4.3 for just Setup pe-
riod. The period with Hold&Setup constraints is calculated by the binary search
(Chapter 2 Section 2.7), and the period with only Setup Constraints is given by the
maximum mean cycle (Chapter 2 Section 2.3). The optimum period (P_opt) is the
period of having as many clusters as registers has the circuit, plus one cluster for
inputs and another for outputs.

These tables compare 1,3, and 5 cluster solutions with the optimum period. The
1-cluster solution represents the period of the circuit without appling clock skew
optimisation because all registers are synchronised (have the same clock signal).
The periods are printed using normalised values to appreciate the relative value of
the period compared to the optimum one.

Some important results are described on the next items:

• Both tables represent the same clusters but the skews used by k-means al-
gorithm have been calculated by using just Setup Constraints. The algorithm
will behave better on optimising Setup period than Setup&Hold period, but
it can not be conclude that the average values for Setup period are better
than the values of Setup&Hold just because of this. Adding Hold constraints
change completely the instance of the problem.

• Some circuits are acyclic (s1196 and s1238) and no setup period exist be-
cause there are no cycles. The period in this case can be defined as 0
because it is possible to assign infinite skews to registers without braking any
setup constraint. However, there is always a Hold&Setup period because
these two constraints are creating cycles by construction.

• The Setup Period is always smaller than the Hold&Setup because the sec-
ond has all the extra Hold constraints to satisfy. Hold&Setup Period can be
improved up to the Setup Period by fixing all violations on Hold constraints.
This can be done by adding delays on some min delay paths. The Setup
period is the reference to use because it can be achieved.

• It is important to compare the optimum period (P_opt) with the worst one (1
cluster) to understand the possible margin that is possible to improve by using
clock skew. Notice that the proportion between them is just 1.223 (22.3%)

38

for Hold&Setup and 1.291 (29.1%) for Setup. This difference represents the
maximum gain achievable by using clock skew. Notice how circuit s35932
(Table 4.3) has the same Setup Optimum Period and 1-cluster period, which
means that the maximum delay is on the critical cycle and it can not borrow
time from any other register.

• The expected improvement from 1 cluster to 3 and 5 clusters can be easily
seen with the average values. For Setup&Hold Period: starting from the
worst case of 1-cluster with 1.223 of the optimal, can be improved to 1.120
with 3 clusters and to 1.105 with 5 clusters. This means that on average, the
5-cluster solution is at 10.5% closer to the optimum period. For just Setup
Period: 1-cluster is at 1.291 of the optimal, 3 clusters at 1.097 and 5 clusters
at 1.042 (4.2% of the optimum period). A closer evolution of the period by
increasing the number of clusters is studied with the OpenSparc circuit on
Section 4.3.2.

• The best results with Setup period and 3 clusters are obtained on circuits:
s35932 (100% even for 1 cluster), s510, and s832. The circuits s641 and
s713 also achieve the optimal period with 5 clusters.

• The period of 5 clusters is always better than the period for 3 clusters. It
is desirable that the period decreases monotonically when the number of
clusters increases. This behaviour is not guaranteed by the algorithm as it
can be seen on the next section with OpenSparc.

• All executions are really fast. For example, the execution time for clustering
the circuit s38417 toke only 0.822s for 3 clusters and 0.74s for 5 clusters.

4.3.2 OpenSparc

To evaluate the evolution of the period by increasing the number of clusters, the
k-means algorithm with 100% skew has been run it on OpenSparc. The Table 4.4
shows the period from the worst case solution (1 register cluster, 1 input cluster,
and 1 output cluster) to the best possible period (as many clusters as registers).
Figure 4.2 shows how the progression is not monotonic. For example, the heuristic
is giving better period for 3 clusters than for 4, and it is possible to get same period
as 3 clusters just by splitting one of them.

The execution time to clusterise is small compared to the time to calculate the
skews. For example, the 3 cluster solution toke 25.7s to find the optimal period and
calculate the skews, and 7.26s to clusterise it.

39

Circuit Normalised Setup&Hold Period
name nodes edges P_opt P_opt 1 cluster 3 clusters 5 clusters
s1196 46 387 1.571 1 1.1814 1.1222 1.1222
s1238 46 379 1.332 1 1.1096 1.0901 1.0901

s13207 429 1445 0.946 1 1.1776 1.0264 1.0148
s1423 96 2235 2.193 1 1.2312 1.0461 1.0461

s15850 203 919 0.997 1 1.3159 1.0602 1.0251
s298 23 86 0.706 1 1.3994 1.1331 1.0822

s35932 1795 7051 1.832 1 1.2604 1.2598 1.2587
s38417 1698 33731 2.335 1 1.1375 1.0385 1.0385
s38584 1410 12058 1.545 1 1.3631 1.3003 1.2867

s386 20 129 0.828 1 1.1594 1.0060 1.0060
s400 30 175 0.725 1 1.4166 1.1931 1.1931
s444 30 175 0.779 1 1.1964 1.0205 1.0077
s510 32 103 1.023 1 1.0137 1.0000 1.0000
s526 30 167 0.828 1 1.1969 1.1316 1.0000

s5378 244 2180 1.096 1 1.4772 1.4352 1.4142
s641 77 486 1.120 1 1.2571 1.2500 1.2500
s713 77 486 1.151 1 1.1911 1.1616 1.1616
s820 42 213 1.164 1 1.0713 1.0043 1.0043
s832 42 213 1.186 1 1.0902 1.0000 1.0000

Average: 1 1.223 1.120 1.105

Table 4.2: ISCAS benchmark with periods for Setup&Hold constraints. Showing
cluster variations of 1, 3, and 5 clusters compared to the optimum period.

40

Circuit Normalised Setup Period
name nodes edges P_opt P_opt 1 cluster 3 clusters 5 clusters
s1196 46 387 - - - - -
s1238 46 379 - - - - -

s13207 429 1445 0.946 1 1.1776 1.0264 1.0148
s1423 96 2235 2.008 1 1.3446 1.0478 1.0478

s15850 203 919 0.997 1 1.3159 1.0602 1.0251
s298 23 86 0.706 1 1.3994 1.1331 1.0113

s35932 1795 7051 1.259 1 1.0000 1.0000 1.0000
s38417 1698 33731 2.335 1 1.1375 1.0210 1.0158
s38584 1410 12058 0.979 1 2.0031 1.4188 1.2462

s386 20 129 0.827 1 1.1608 1.0073 1.0073
s400 30 175 0.694 1 1.4798 1.1383 1.0605
s444 30 175 0.752 1 1.2394 1.0519 1.0332
s510 32 103 1.023 1 1.0137 1.0000 1.0000
s526 30 167 0.694 1 1.4280 1.3501 1.1268

s5378 244 2180 1.021 1 1.5857 1.2968 1.1175
s641 77 486 1.059 1 1.2937 1.0085 1.0000
s713 77 486 1.144 1 1.1984 1.0804 1.0000
s820 42 213 1.164 1 1.0713 1.0034 1.0034
s832 42 213 1.186 1 1.0902 1.0000 1.0000

Average: 1 1.291 1.097 1.042

Table 4.3: ISCAS benchmark with periods for Setup constraints. Showing cluster
variations of 1, 3, and 5 clusters compared to the optimum period.

41

Clusters Setup Period (ns) % to P_opt
1 1.659 81.01
2 1.603 83.84
3 1.451 92.63
4 1.471 91.37
5 1.421 94.58
6 1.409 95.39
7 1.390 96.69
8 1.380 97.39
9 1.380 97.39

10 1.371 98.03
11 1.377 97.60
12 1.369 98.17
14 1.371 98.03
15 1.363 98.61
16 1.364 98.53
17 1.361 98.75
19 1.358 98.97

P_opt 1.344 100.00

Table 4.4: Sparc Performance depending on the number of clusters

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 0 2 4 6 8 10 12 14 16 18 20

P
er

io
d

in
 n

an
os

ec
on

ds

Number of clusers

Performance vs. Period

Figure 4.2: Sparc clusters vs Period. Optimum period: 1.344, Optimum period with
hold constraints: 1.565, Max Delay: 1.659

42

4.4 Performance vs Placement

This section studies the relation between placement and performance. OpenSparc
has been choose because of its size (compared to ISCAS benchmark). First, a
5-cluster solution is explored in detail by balancing placement vs performance, and
after some plots of the 3D space is showed to analyse how the k-means works.

4.4.1 A 5-cluster solution for OpenSparc

The k-means solution combining placement and performance is explored on OpenSparc
design. Table 4.5 shows the Setup period and the spanning tree cost evolution
from the 100% skew and 0% placement to the 0% skew and 100% placement. The
period is given by the maximum mean cycle with Howard’s algorithm (Chapter 2
Section 2.4) and the Spanning Tree column represents the sum of spanning trees
of each cluster (using Prim’s algorithm). Figure 4.3 shows the evolution of the pe-
riod and Figure 4.4 shows it for placement. Figure 4.5 plots the trade-off between
having a good clustering in terms of performance or in terms of placement. The en-
gineer can choose the solution that fits better the requirements. The solution with
40% skew and 60%placement appears to be a good balanced solution. Notice how
extreme solutions behave irregular because of the noise from the other parameter
(the small percentage noise).

Skew % Placement % Period (ns) Spanning Tree (µm)
100 0 1.421 107070

90 10 1.421 106951
80 20 1.413 106751
70 30 1.413 106614
60 40 1.411 106344
50 50 1.471 103587
40 60 1.471 100282
30 70 1.659 94746
20 80 1.659 93239
10 90 1.659 93020
0 100 1.648 92972

Table 4.5: Sparc 5-cluster Performance vs Placement: Balance percentage, Setup
Period, and sum of all 5 spanning trees.

43

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 0 20 40 60 80 100

P
er

io
d

in
 n

an
os

ec
on

ds

% of skew

Period vs % of skew

5 clusters

Figure 4.3: Sparc with 5 clusters. Using K-means balancing skew and placement
by increments of 10%

44

 92000

 94000

 96000

 98000

 100000

 102000

 104000

 106000

 108000

 0 20 40 60 80 100

S
pa

nn
in

g
tr

ee
 in

 m
ic

ro
m

et
er

s

% of placement

Spanning tree vs % of placement

5 clusters

Figure 4.4: Sparc with 5 clusters. Using K-means balancing skew and placement
by increments of 10%

45

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 92000 94000 96000 98000 100000 102000 104000 106000 108000

P
er

io
d

in
 n

an
os

ec
on

ds

Spanning trees in micrometers

Wire Length vs. Performance

5 clusters

Figure 4.5: Sparc with 5 clusters. Total wire length vs Period

46

4.4.2 OpenSparc skew-placement space

To show how k-means is grouping by distance on the skew-placement space the
OpenSparc has been used with 5 clusters.

Figures 4.6 , 4.7 , 4.8, 4.9, 4.10, and 4.11, are a list of plots to illustrate 3 solutions.
The 2d and 3d space of solutions with 0%-100%, 100%-0%, and 50%-50% are
printed.

100% placement Figure 4.7 shows how the area is perfectly partitioned into 5
clusters and Figure 4.6 shows how skews are grouped by columns. This
solution gives the worst possible period because it is grouping nodes that
need some skew difference to get the optimal period.

100% skew Figure 4.8 shows how clusters are based on layers of the skew di-
mension. It produce one big cluster for skew 0 and other small clusters for
different levels. regs1 is the big cluster that can be re-clustered by placement
if desired. The skew of the cluster is annotated on the right side of the plot
and shows the common skew for all nodes of the cluster. Figure 4.9 shows
how regs2 and regs3 are spared around all the surface and overlapping their
areas. The nodes of cluster regs4 are not badly grouped from the point of
view of the spanning tree because nodes are spared but in compact blocs.
Finally, the cluster regs5 is compact on all dimensions.

50% - 50% Figure 4.10 compared to Figure 4.8 shows how giving 50% to place-
ment the k-means algorithm is able to fix clusters regs2 and regs3 by group-
ing them in terms of placement. Cluster skews are annotated on the right side
showing small differences comparing with the 100% skew solution. Changing
the skew of a cluster pulls other clusters as it happens for regs4 and regs5
when regs2 and regs3 skews are reduced.

47

 0
 200

 400
 600

 800
 1000

 1200
 1400 0

 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

Skew

Clusters 0% Skew 100% Placement

regs1
regs2
regs3
regs4
regs5

X

Y

Skew

Figure 4.6: 3D Sparc with 5 clusters. K-means with 100% placement

48

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200 1400

Y

X

Placement Clusters 0% Skew 100% Placement

regs1
regs2
regs3
regs4
regs5

Figure 4.7: 2D Sparc with 5 clusters. K-means with 100% placement

49

 0
 200

 400
 600

 800
 1000

 1200
 1400 0

 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

Skew

Clusters 100% Skew 0% Placement

regs1 0.00
regs2 0.06

regs3 0.14

regs4 0.24

regs5 0.33

regs1
regs2
regs3
regs4
regs5

X

Y

Skew

Figure 4.8: 3D Sparc with 5 clusters. K-means with 100% skew

50

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200 1400

Y

X

Placement Clusters 100% Skew 0% Placement

regs1
regs2
regs3
regs4
regs5

Figure 4.9: 2D Sparc with 5 clusters. K-means with 100% skew

51

 0
 200

 400
 600

 800
 1000

 1200
 1400 0

 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

Skew

Clusters 50% Skew 50% Placement

regs1 0.00

regs2 0.08
regs3 0.11

regs4 0.19

regs5 0.32

regs1
regs2
regs3
regs4
regs5

X

Y

Skew

Figure 4.10: 3D Sparc with 5 clusters. K-means with 50% skew 50% placement

52

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200 1400

Y

X

Placement Clusters 50% Skew 50% Placement

regs1
regs2
regs3
regs4
regs5

Figure 4.11: 2D Sparc with 5 clusters. K-means with 50% skew 50% placement

53

Chapter 5

Conclusions

Optimisation algorithms for clustering of circuit registers belongs to the heuristic
world. The size of circuits is too big for algorithms that behave slower than lin-
ear. Moreover, algorithms needs to optimise several tradeoff properties like per-
formance, placement, connections, etc. The presented algorithm for connections
minimisation gives good results and it can be easily extended to optimise other
properties. The K-means algorithm can provide good performance combined with
a good placement. Both algorithms can be used incrementally. It is possible to re-
cluster a subset of nodes. For example the engineer can start with an initial cluster
based on performance and recluster the non critical clusters based on connections
or placemet to minimise other properties as area or wire length.

The binary search to find the optimal period and the two clustering algorithms have
been implemented on Elastix Corporation EDA tool. These algorithms are currently
used on the De-synchronisation flow of that tool. Algorithms have been tested with
public ISCAS benchmark and OpenSparc processor on the Results section.

Future Work

Some improvements can be done to the current local search algorithm. It is pos-
sible to add layout positions, skew, and slack to the cost function and be able to
combine connections, placement and performance tradeoff on the same algorithm.
The idea of combining everything can result into an algorithm that gives bad results
for each characteristic, but it needs to be explored. The current local search is fast
and it can be improved by converting it into an Iterative Local Search Algorithm,
adding some perturbations to be able to find a better solution.

K-means algorithm is also very fast, some computation can be added to improve
the quality:

• The distance function can be improved by adding the distributed slack infor-
mation to know how flexible is a register.

54

• Refine the process by reassigning skews to registers according to the current
cluster solution and checking if any register is better placed in another cluster.

• The critical cycles are known since the beginning and they can be used to
add constraints between registers. Two registers can not be on the same
cluster if they belong to a critical cycle with different skew. This has been
explored during the thesis but it did not give better results. It needs a second
chance.

It has been noticed that exists a critical core of registers. Other algorithms based
on linear programming or SAT can be designed to solve the critical core of the
problem, and assign the non critical ones with other heuristics.

55

Bibliography

[1] A. Davis and S.M. Nowick. An introduction to asynchronous circuit design.
The Encyclopedia of Computer Science and Technology, 38.

[2] AL Davis. The architecture and system method of DDM1: A recursively struc-
tured Data Driven Machine. Proceedings of the 5th annual symposium on
Computer architecture, pages 210–215, 1978.

[3] Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, and Christos Sotiriou.
Desynchronization: Synthesis of asynchronous circuits from synchronous
specifications. IEEE Transactions on Computer-Aided Design, 25(10):1904–
1921, October 2006.

[4] C.E. Leiserson and J.B. Saxe. Retiming synchronous circuitry. Algorithmica,
6(1):5–35, 1991.

[5] J.P. Fishburn. Clock Skew Optimization. IEEE Transactions on Computers,
39(7):945–951, 1990.

[6] D.A. Joy and M.J. Ciesielski. Clock period minimization with wave pipelining.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, 12(4):461–472, Apr 1993.

[7] KA Sakallah, TN Mudge, and OA Olukotun. CheckT c and minT c: timing ver-
ification andoptimal clocking of synchronous digital circuits. Computer-Aided
Design, 1990. ICCAD-90. Digest of Technical Papers., 1990 IEEE Interna-
tional Conference on, pages 552–555, 1990.

[8] N. Shenoy, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Graph algorithms
for clock schedule optimization. Proceedings of the 1992 IEEE/ACM interna-
tional conference on Computer-aided design, pages 132–136, 1992.

[9] TG Szymanski. Computing optimal clock schedules. Proceedings of the 29th
ACM/IEEE conference on Design automation, pages 399–404, 1992.

[10] T.G. Szymanski and N. Shenoy. Verifying clock schedules. Proceedings of the
1992 IEEE/ACM international conference on Computer-aided design, pages
124–131, 1992.

[11] RB Deokar and SS Sapatnekar. A graph-theoretic approach to clock skew
optimization. Circuits and Systems, 1994. ISCAS’94., 1994 IEEE International
Symposium on, 1.

56

[12] Rahul B. Deokar and Sachin S. Sapatnekar. A fresh look at retiming via clock
skew optimization. In DAC ’95: Proceedings of the 32nd ACM/IEEE confer-
ence on Design automation, pages 310–315, New York, NY, USA, 1995. ACM.

[13] Xun Liu, Marios C. Papaefthymiou, and Eby G. Friedman. Maximizing perfor-
mance by retiming and clock skew scheduling. In DAC ’99: Proceedings of
the 36th ACM/IEEE conference on Design automation, pages 231–236, New
York, NY, USA, 1999. ACM.

[14] K. Ravindran, A. Kuehlmann, and E. Sentovich. Multi-domain clock skew
scheduling. Computer Aided Design, 2003. ICCAD-2003. International Con-
ference on, pages 801–808, 2003.

[15] George Karypis and Vipin Kumar. Multilevel algorithms for multi-constraint
graph partitioning. In Supercomputing ’98: Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM), pages 1–13, Washing-
ton, DC, USA, 1998. IEEE Computer Society.

[16] J.B. MacQueen. SOME METHODS FOR CLASSIFICATION AND ANALYSIS
OF MULTIVARIATE OBSERVATIONS. 1966.

[17] J.A. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc. New York, NY,
USA, 1975.

[18] JA Hartigan and MA Wong. A K-means clustering algorithm. JR Stat. Soc.,
Ser. C, 28:100–108, 1979.

[19] MR Garey and D.S. Johnson. The Rectilinear Steiner Tree Problem in NP
Complete. SIAM Journal of Applied Mathematics, 32(4):826–834, 1977.

[20] R.C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36(6):1389–1401, 1957.

[21] J.B. Kruskal Jr. On the Shortest Spanning Subtree of a Graph and the Travel-
ing Salesman Problem. Proceedings of the American Mathematical Society,
7(1):48–50, 1956.

[22] R.M. Karp. A characterization of the minimum cycle mean in a digraph. Dis-
crete Mathematics, 23(3):309–311, 1978.

[23] E.L. Lawler. Combinatorial optimization. Holt, Rinehart and Winston New
York, 1976.

[24] S.M. Burns. Performance analysis and optimization of asynchronous circuits.
PhD thesis, California Institute of Technology, 1991.

[25] J. Cochet-Terrasson, G. Cohen, and S. Gaubert. Numerical computation of
spectral elements in max-plus algebra. IFAC Conference on System Structure
and Control, 1998.

[26] Ali Dasdan, Sandy Irani, and Rajesh K. Gupta. Efficient algorithms for opti-
mum cycle mean and optimum cost to time ratio problems. In Design Automa-
tion Conference, pages 37–42, 1999.

57

[27] N. E. Young, Robert E. Tarjan, and J. B. Orlin. Faster parametric shortest path
and minimum-balance algorithms. Networks, 21:205–221, 1991.

[28] R. Bellman. ON A ROUTING PROBLEM. 1956.

[29] LR Ford Jr. NETWORK FLOW THEORY. 1956.

[30] E.F. Moore. The shortest path through a maze. Proceedings of the Interna-
tional Symposium on the Theory of Switching, pages 285–292, 1959.

[31] R.E. Tarjan. Shortest paths. Technical report, AT&T Bell Laboratories, 1981.

[32] B.V. Cherkassky and A.V. Goldberg. Negative-cycle detection algorithms.
Mathematical Programming, 85(2):277–311, 1999.

58

	Introduction
	Microelectronics
	Synchronous circuits
	Asynchronous circuits
	De-synchronisation
	Performance
	Statement of the Problem
	Description of the Chapters

	Optimal period with clock skew
	Delay Graph
	Clock Skew Optimisation
	Maximum Mean Cycle
	Maximum Mean Cycle algorithms
	Parametric shortest path
	Howard's algorithm

	Constraint Graph
	Improved Bellman-Ford algorithm
	Binary search to find the optimal period
	Slack Graph
	Distributed Slack Graph

	Clustering algorithms
	Local Search to minimise the number of connections
	Cost Function
	Cluster graph adjacency matrix
	Local Search algorithm
	Example

	K-means by position and skew
	K-means
	Evaluation

	Results
	Execution environment
	Number of connections
	Performance
	ISCAS
	OpenSparc

	Performance vs Placement
	A 5-cluster solution for OpenSparc
	OpenSparc skew-placement space

	Conclusions

