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Elasticity is a paradigm that tolerates the variations in computation and communication delays. By ap-
plying elastic transformations that allow varying the original timing, circuits can be optimized beyond the
conventional rigid transformations that do not modify the external timing.

Pipelining is one of the classical techniques to improve the throughput of a circuit. This article reveals
how elasticity can be effectively and practically used to derive pipelined circuits by using correct-by-
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1. INTRODUCTION

The increasing complexity of VLSI systems has stimulated an intense effort in design
automation to make circuit production scalable and economically viable. In the front-
end flow, logic synthesis has been the area in which designers have delegated most
of the responsibility for circuit optimization to EDA tools. But logic synthesis works
under a very strict behavioral constraint: keeping cycle-accurate equivalence.

Circuits can be further optimized when cycle-accuracy can be transgressed. This
is the case of pipelining that has been one of the fundamental techniques for increas-
ing the throughput of microprocessors for several decades. While the advantages of
pipelining are clear, they come with the cost of certain disadvantages that affect the
complexity and correctness of the circuits.
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Fig. 1. (a) Original circuit; (b) Equivalent elastic circuit.

Pipelining requires additional memory components to store the temporary in-flight
information involved in multiple concurrent operations executed simultaneously. The
existence of causal dependencies between operations requires extra control to avoid
hazards that could produce incorrect results. Forwarding and stalling are different
techniques to guarantee correctness in pipelined circuits.

The design of a pipeline is a difficult and error-prone task. Defining the number
of stages, the location of the extra memory, the control for stalling the circuit, the
forwarding paths to avoid data hazards, and so on, are essential decisions that have a
direct impact on the performance and complexity of the circuit.

Even though some academic work has been done in the last few years, optimizations
transgressing the observable cycle accuracy are not handled by the mainstream EDA
flows. These optimizations are explored manually by the designers at microarchitec-
tural level.

1.1. Elasticity

Elastic circuits [Carmona et al. 2009] have emerged as a paradigm to relax the cy-
cle accuracy constraints in the design of digital circuits. The concept of elasticity has
been largely used in asynchronous circuits. For example, the term micropipeline was
proposed [Sutherland 1989] to denote event-driven elastic pipelines.

When elasticity was discretized to work with synchronous systems, the term La-
tency Insensitivity was coined [Carloni et al. 1999]. In these systems, the handshaking
is produced at the level of a cycle with events that are synchronized with the clock. Dif-
ferent variants of synchronous elasticity were proposed later [Cortadella et al. 2006a;
Jacobson et al. 2002; Vijayaraghavan and Arvind 2009].

With elasticity, the sequences of valid data items are observed and preserved as if
one had inserted FIFOs with nondeterministic delays in the communication channels
between modules.

Figure 1 shows an example of transforming a circuit into an elastic form. The in-
sertion of FIFOs must be done in such a way that the functionality of the system is
not affected. This goal is achieved by using an elastic protocol that synchronizes the
read/write operations of the FIFOs and preserves the order of the transferred valid
data in every channel regardless of the computation time of the components.

The reader is referred to Carmona et al. [2009] for an extended discussion on differ-
ent forms of elasticity, either synchronous or asynchronous.

1.2. Elasticity and Pipelining: A Quick Overview

The primary goal of pipelining is to increase performance. This article will show how
elasticity can contribute to exploration of different pipelines at a microarchitectural
level by applying behavior-preserving transformations. More interestingly, this explo-
ration can be automated.

A fundamental transformation for pipelining is memory bypassing1 [Kogge 1981].
When bypassing is combined with retiming in the presence of elasticity, the forward

1In this context, register files are considered a particular case of memories.
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paths for avoiding data hazards are implicitly created. Early evaluation is essential
to automatically generate the control for the forward paths with an elegant solution
based on the concept of antitoken. Elasticity allows inserting bubbles (registers with
no valid data) to reduce the cycle time when long combinational paths appear.

All the previous transformations can be automatically explored by using advanced
heuristics [Galceran-Oms et al. 2010] and mathematical models to perform retiming
and recycling with early evaluation [Bufistov et al. 2009].

To get an initial idea of the power of elasticity in improving the throughput of the
system, the reader may look at Figure 8, where an unpipelined circuit is progressively
transformed into a pipelined one by introducing elastic transformations. Another no-
torious example is the DLX microprocessor, showing how the initial circuit (Figure 11)
can be transformed into a pipelined microprocessor (Figure 12), in which the classical
load-store buffer for memory is automatically inferred. The details will be discussed
in their corresponding sections.

1.3. Organization of the Article

This article reviews the basic concepts of elasticity and the behavior-preserving trans-
formations using elasticity that have been proposed in the literature (Section 2). The
article also gives a general view of the transformations, extending them to various
forms of elasticity (Section 3). Even though the examples selected in the article are
synchronous, the transformations are equally applicable for asynchronous versions of
the same circuits obtained by desynchronization [Carmona et al. 2009; Cortadella et al.
2006b].

Section 4 discusses how different pipelines can be automatically explored by sys-
tematically applying elastic transformations. Section 5 presents a complete design ex-
periment to evaluate the effectiveness of the elastic transformations. Finally, Section 6
discusses advanced transformations that can be automated in future design flows.

2. ELASTIC SYSTEMS

An elastic system is a collection of elastic modules and elastic channels. Elastic chan-
nels contain FIFOs that store the data being transferred between the sending and the
receiving modules. The FIFOs are controlled by an elastic protocol that keeps track
of the availability of data (e.g., FIFO not empty) and the ability to receive more data
(e.g., FIFO not full). The simplest protocol needs two handshake signals that are typi-
cally called valid (in the forward direction) and stop (in the backward direction). When
elasticity is asynchronous, these signals are usually called request and acknowledge.

The stop signal is the one that controls the back-pressure and prevents a global stall
when any of the modules cannot accept input data. The storage provided by the input
FIFOs and the handshake protocol allow distributing the stall conditions along the
elastic channels [Carloni 2006].

2.1. Elastic Buffers

Elastic channels must have a minimum storage of two items to achieve the maximum
throughput of the system, assuming that the forward and backward latencies of the
elastic channels are one clock cycle [Carloni et al. 1999]. This is a necessary condition,
but not sufficient. In some cases, the capacity needs to be increased to achieve the
optimal throughput [Lu and Koh 2003].

Various schemes have been proposed to implement elastic channels. In Carloni
et al. [1999], relay stations based on flip-flops were initially proposed. In asynchronous
design, latch-based designs have been typically used (e.g., as in Micropipelines
[Sutherland 1989]). Based on these schemes, latch-based implementations were also
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Fig. 2. (a) Elastic buffer; (b) Coarse-level control of functional blocks.

Fig. 3. Graphical representation of EBs: (a) with token, (b) without token (bubble).

proposed for synchronous elasticity [Cortadella et al. 2006a; Jacobson et al. 2002].
In this article, we will generically refer to the storage components used in elastic
channels as Elastic Buffers (EB), regardless the specific details of their implementation.

At a fine level of granularity, EBs can be implemented by substituting flip-flops for
pairs of latches (master/slave) with independent control. This is the strategy also pro-
posed to desynchronize circuits [Cortadella et al. 2006b]. Figure 2(a) depicts a block
diagram of an EB with two latches. This scheme is valid either for synchronous or
asynchronous elasticity, depending on whether the events of the handshake signals
are synchronized with the clock.

At a coarse level of granularity (see Figure 2(b)) elasticity can be implemented by
simply adding one latch for each of the inputs of an elastic module. As in the previous
case, the input latch plays the role of master and handles the back-pressure, whereas
the internal registers play the role of slaves. With this scheme, the handshake pro-
tocol is identical and the modules are not touched. This is a practical approach to
incorporate elasticity without modifying any of the existing IPs in the system.

In the initial state, every EB may have either one valid data item (representing the
initial value of the register in a nonelastic system) or no valid data (empty). We will
call these configurations token and bubble respectively, as illustrated in Figure 3. For
simplicity, every EB will only be represented as one box with token or bubble depending
on its initial state. Note that EBs can have at most one token in their initial state. The
storage of more tokens will only occur dynamically as the result of handling back-
pressure from the receiving module.

2.2. Early Evaluation

The execution model of conventional elastic systems is based on strict evaluation: a
computation is initiated only when all input data are available. This requirement
can be relaxed if early evaluation is used. Consider a 2-input multiplexor that can be
modeled using the following statement.

z = if s then a else b .
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Fig. 4. Movement of tokens and antitokens for early evaluation.

If s is available and its value is true, there is no need to wait for the arrival of b . Then,
the result can be produced as soon as a arrives. A similar situation occurs when s is
false and b arrives.

Early evaluation contributes to increasing the performance of elastic systems at the
expense of additional control for guaranteeing the correct execution. In particular, the
spurious enabling of functional units must be prevented when the late inputs arrive
after the completion of the computation. These late inputs must be ignored.

One of the mechanisms to discard late inputs is the use of negative tokens, also
called antitokens. Each time an early evaluation occurs, an antitoken is generated at
every non-required input in such a way that it annihilates when it meets a valid data
item (positive token [Cortadella and Kishinevsky 2007]).

Figure 4(a) depicts a circuit in which early evaluation contributes to improving per-
formance. The circuit contains valid data in all registers with token (•). The 0-input of
the multiplexor has no valid data, however the control signal indicates that the 1-input
must be selected. In this situation, there is no need to wait for the late data produced
by the ALU.

Figure 4(b) shows that the 1-input has been sent to the output of the multiplexor.
Additionally, an antitoken (�) has been sent backward to the 0-input to annihilate
the pending data from the ALU. When the result from the ALU arrives, as shown in
Figure 4(c), the valid data and the antitoken meet (�• ) and cancel each other, thus
disregarding the nonrequired data, as shown in Figure 4(d).

Early evaluation is an essential mechanism to generate a correct control for bypass-
ing schemes or to implement speculation techniques (e.g., branch prediction). Even
though the concept of early evaluation can be applied to general combinational logic,
it becomes useful mainly in multiplexors.

The idea of antitokens was initially used in Kishinevsky et al. [1994] to handle
OR causality in Petri nets. Various implementations exist both in synchronous (e.g.,
Casu and Macchiarulo [2007]) and asynchronous (e.g., Reese et al. [2005]) circuits.
Among the different implementations of antitokens, two main classes have been dis-
tinguished: passive antitokens, that statically wait for the arrival of tokens, and active
antitokens, that move backward to meet tokens. Hybrid approaches combining active
and passive antitokens are also possible.

Our experience demonstrates that a good practical choice is to use passive antito-
kens as a default design option, because the controller becomes simpler, and to use
active antitoken locally in the regions of the system where passive antitokens become
a bottleneck—a very rare case. In most design examples we have observed that the
performance gain by using active antitokens is not significant, even though a syn-
thetic counterexample can always be constructed. A choice of the type of antitokens
can be done during fine-tuning of the microarchitecture.

3. BASIC TRANSFORMATIONS

One of the major features of synchronous elastic systems is their tolerance to latency
changes. Such tolerance can be used to introduce novel correct-by-construction trans-
formations enabling the exploration of new microarchitectural trade-offs [Kam et al.
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Fig. 5. Correct-by-construction transformations [Kam et al. 2008].

Fig. 6. Design after, (a) retiming, (b) retiming and recycling, (c) early evaluation, (d) antitoken insertion.

2008]. In some cases, the cycle time of the system can be reduced by increasing the la-
tency of some operations. By properly balancing cycle time and throughput, the system
with the optimal effective cycle time can be achieved.2

This section presents a set of transformations that can modify the latency of the
communications and computations of an elastic system (see Figure 5). Verification us-
ing model checking shows that they preserve system functionality, i.e., the system after
applying each of the transformations is latency equivalent [Krstić et al. 2006] to the
original one.

3.1. Latency-Preserving Transformations

This section presents two transformations that do not change the latency of the com-
putations and preserve the functionality of the design: bypassing and retiming.

At a certain level of abstraction, a register file or a memory can be represented by
a monolithic memory element and additional logic to write (W) and read (R) data (see
Figure 5(a)). The channels wd and rd represent data, whereas the channels wa and ra
represent addresses.

Bypasses have been widely used since the late 50s [Bloch 1959], to resolve data
hazards in processors [Hennessy and Patterson 1990]. Figure 5(a) shows a memory
after a bypass transformation. An EB postpones the write operation by one cycle, and a
forwarding path is added so that if the read address is equal to the write address of the
previous operation (RAW dependency), the correct data value can be propagated. In an
elastic system, the multiplexor selecting between the forwarded data and the memory
data can be implemented with early evaluation. Multiple bypass transformations can
be recursively applied to the same memory in order to create a bypass network.

Retiming [Leiserson and Saxe 1991] (see Figure 5(b)) is a traditional technique for
sequential area and delay optimization. Figure 6(a) shows an example after an optimal

2The effective cycle time is a performance measure similar to the time-per-instruction, TPI, in CPU design.
It captures how much time is required to process one token of information—the smaller the better.
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retiming. The combinational nodes (shown as circles) are labeled with their delays.
The boxes (labeled with dots) represent the elastic buffers with tokens of information
(registers with valid data). The cycle time of this design is 17 time units.

3.2. Recycling

It is always possible to insert and remove an empty EB (a bubble) on any channel of
an elastic system (for a formal proof see Krstić et al. [2006]). This transformation is
shown in Figure 5(d). Bubble insertion is also known as recycling, and was initially
introduced in Carloni and Sangiovanni-Vincentelli [2000]. The concept of inserting
empty buffers for optimizing system performance was long known in asynchronous
design [Manohar and Martin 1998; Williams 1994].

Figure 6(b) shows an optimal configuration combining retiming and recycling for the
example from Figure 6(a). The cycle time has been reduced to 11 units. The throughput
is determined by the slowest cycle. The token/register ratios for each cycle are 1, 4/5,
and 2/3. Therefore, the throughput is 2/3, and the average number of cycles to process
a token is 3/2. This provides an effective cycle time of 16.5 time units (16.5 = 11 · 3/2).
It means that a new token is processed on average every 16.5 time units—an improve-
ment compared to the 17 units of the optimally retimed design.

Early evaluation can be used to further optimize an elastic system. Figure 6(c)
shows the example from Figure 6(b) after applying early evaluation to the node, with
delay 1, and adding a bubble on one of the input channels of the multiplexor. Each
data input of the multiplexor has been assigned the probability of being selected by
the control input, to enable throughput analysis. The example from Figure 6(c) has a
cycle time of 10 time units, which is lower than the 11 units in Figure 6(b). Without
early evaluation, its throughput would be 0.5, as determined by the slowest cycle.
Then, the effective cycle time would be 20 units—worse than the 16.5 units obtained
for the previous configuration. However, when early evaluation is introduced, the cycle
with the worse throughput is only selected by the multiplexor in 10% of the cases. If
the system is simulated using the given probabilities, the obtained throughput is 0.79.
Thus, in this example, early evaluation allows one to reduce the effective cycle time to
12.65 units (10/0.79).

3.3. Antitoken Insertion

Antitokens are used to cancel spurious computations in early-evaluation nodes, but
they can also be used to enable new retiming configurations. An empty EB is equivalent
to an EB with one token of information followed by an antitoken injector with one
antitoken (drawn as a pentagon), as shown in Figure 5(e). Antitoken counters can be
retimed (as in Figure 5(c)) and grouped (as in Figure 5(g)). When retiming antitokens,
care must be taken with the initial values of the registers so that functionality does
not change.

Antitoken insertion can be often applied to enable retiming of EBs that initially
contain a different number of tokens (e.g., a bubble with an elastic buffer that contains
one token). Figure 6(d) shows a system where antitoken insertion has been applied to
the dashed channel. Then, the new EB can be retimed through the multiplexor. This
new configuration has a cycle time of 11 units, but its throughput is very high, 0.918,
since there is only one cycle with a bubble (a sum of a token and an antitoken is equal
to zero) as compared to Figure 6(c), where two out of the three cycles have bubbles.
The resulting effective cycle time, which can only be achieved by using the antitoken
insertion transformation, is 11.98 units.
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Fig. 7. (a) Pipeline with two functional blocks, F and G, (b) separation of Little Cares (LC) from Critical
Core (CC), (c) optimization of the Critical Core branch, (d) insertion of bubbles into the Little Cares branch.

3.4. Variable-Latency Units

Variable-latency units (VLUs) can be handled in a natural way in synchronous elastic
systems. A handshake with the datapath unit is required so that the control can keep
track of the status of operation, as shown in Cortadella et al. [2006a].

For example, an ALU may spend one clock cycle to compute frequent operations with
small operands (operands with few significant digits), and spend two clock cycles for
rare operations involving larger operands. This is a typical example of a telescopic unit
[Benini et al. 1999; Su et al. 2007]. VLUs can improve the performance by decreasing
the overall cycle time, and they can also improve the area of the design by reducing
the number of logic gates per cycle of operation.

In the example from Figure 6(d), the critical cycle is determined by the dashed node
with delay 9 followed by the node with delay 2. Assume we can replace the dashed
node with a variable-latency node that has a typical delay of 7 time units at the cost
of spending an extra cycle (14 time units) in rare cases. Then, the cycle time of the
system will drop from 11 to 9 units. Let us assume that the short operation can be
applied 95% of the time. Then, the throughput of the system is 0.881, as estimated by
simulating the controller. The resulting effective cycle time is 10.216 units (9/0.881),
compared to the previous 11.98. Overall, correct-by-construction transformations have
provided a 66% improvement in performance for this example.

3.5. Buffer Capacities

While buffer insertion in Figure 5(d) is formulated for the elastic buffer with capacity
two, it holds for the elastic buffer of any capacity k ≥ 0. Moreover, if the latency of the
buffer is equal to 0 (implementable as a FIFO with a bypass), the performance of the
design as measured by the throughput cannot decrease. The rhombus in Figure 5(f)
stands for a 0-latency buffer (also called skid buffer) with capacity k.

3.6. Little Cares

VLUs illustrate a general principle of optimizing circuit performance for those cases
that are expected to appear most frequently during computation. Due to their single
server semantics, VLUs are most efficient for relatively small blocks, e.g. individual
arithmetic units, pipeline stages, and so on. However, the idea of variable latency
can be extended to larger design components containing entire pipelines, memories,
finite-state machines, and so on.

Consider a simple example of two pipeline stages in a loop in Figure 7(a). Suppose
that the functional blocks F and G have a delay of 100 time units each. Effective cycle
time (ECT) of the system would then be 100.
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Suppose that there are two types of tokens flowing through the pipeline. Tokens of
the first type occur with high probability, α, and tokens of the second type occur with
low probability, 1 − α. To improve the effective cycle time we can replace F and G with
equivalent VLUs optimized for tokens of the first type. Note however that introduc-
tion of VLUs is done locally within each stage, while both types of tokens continue to
share the same pipeline. Alternatively, we can completely decouple implementation of
frequent and rare behaviors by separating the pipeline into two branches, as shown in
Figure 7(b). We will informally refer to the frequent behaviors, induced by tokens of
the first type, as the Critical Core (CC); and to the rare behaviors, induced by tokens
of the second type, as the Little Cares (LC).

After the separation, we can optimize CC and LC pipelines independently using any
applicable transformations. In practice, LC behaviors include many complex corner
cases, which can now be ignored while addressing the performance-critical part of the
circuit (CC). To obtain the pipeline in Figure 7(c), we focus on the CC branch and
reduce timing of the functional blocks from 100 to 50 time units. Note that we can
apply any sequential transformations like retiming, speculation, bypassing, and so on,
which may be inefficient for the pipeline in Figure 7(a), but become practical for the
CC branch (for concrete examples see Section 5). To take advantage of the optimized
CC part, we need to reduce the cycle time of the LC branch, which is done by inserting
empty elastic buffers into its timing-critical paths (see Figure 7(d)). The final circuit
is effectively a pipelined variable-latency unit. Its effective cycle time depends on the
value of probability α. For α = 0.0, there is no speedup, because all computations are
carried out by the slow LC branch. Maximum speedup of 2× occurs at α = 1.0. In the
more realistic case of α = 0.9, effective cycle time is improved by approximately 1.67×.

3.7. A Simple Pipelining Example

Starting with a functional specification graph of a design, it is possible to obtain a
pipelined design by using the elastic transformations presented in this section.

Bypasses with early-evaluation multiplexors are essential for pipelining, since they
introduce new EBs that can be retimed backwards. In order to pipeline a design, by-
passes must be inserted around register files and memories of the functional model.
Then, the graph is modified to enable forwarding to the bypass multiplexors. Finally,
the system can be pipelined by retiming the EBs inserted with the bypasses and using
other transformations such as recycling or antitoken insertion.

Figure 8(a) shows a specification of a simple design. The register file RF is the
only state-holding block. IFD fetches instructions and decodes the opcode and register
addresses. ALU and M are arithmetic units. The results are selected by the multi-
plexor for RF write-back. M has been divided into three nodes. The breaking up of
logic to allow pipelining is a design decision that is typically considered in concert with
pipelining decisions. Thus, the user may try to divide a functional block into several
nodes and let the optimization algorithm decide the best channels to place the EBs.

In Figure 8(b), the bypass transform has been applied three times on RF to build a
bypass network. Node DD receives all previous write addresses and the current read
address in order to detect any dependencies and determine which of the inputs of the
bypass multiplexor must be selected. The conventional use of bypasses is to forward
data already computed to the read port of the bypassed memory element. In addition,
this bypass network can be used as a data hazard controller, taking advantage of the
underlying elastic handshake protocol with early evaluation to handle stalls.

The right-most multiplexor and the bypass EBs must be duplicated to feed each
bypass path independently, enabling new forwarding paths, as shown in Figure 8(c).
Once the forwarding paths have been created, the design can be pipelined by applying
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Fig. 8. (a) Graph model of a simple design, (b) after 3 bypasses, (c) duplicate multiplexor, enable forwarding,
(d) final pipeline after transformations.

retiming and antitoken insertion, achieving the system in Figure 8(d). The final
elastic pipeline is optimal in the sense that its distributed elastic controller inserts
the minimum number of stalls. Furthermore the pipeline structure is not redundant,
since there are no duplicated nodes. Therefore, this is as good as a manually designed
pipeline.

Fast instructions that require few cycles to compute, like ALU in this example, use
the bypass network to forward data avoiding extra stalls, while long instructions use
the bypass network as a stall structure that handles data hazards. In this example, the
only possible stalls occur when the paths with antitoken counters are selected by the
early-evaluation multiplexors. This situation corresponds to a read-after-write (RAW)
dependency involving a result computed by M, which needs three cycles to complete.

4. AUTOMATIC EXPLORATION OF PIPELINES

The example in the previous section is small enough to allow a manual exploration.
However, manual exploration becomes complicated and error-prone for larger microar-
chitectural graphs. This section shows how pipeline exploration can be automated. A
DLX pipeline is used to illustrate the proposed method.

To enable a quick analysis of the throughput of an elastic system, probabilities must
be assigned to each of the data inputs of the early-evaluation multiplexors. Further-
more, it must be determined how often a data dependency can occur in order to map
these probabilities to the bypass early-evaluation multiplexors. Such probabilities
should be derived from profiling the benchmarks expected to be run on the microar-
chitecture. There are no known exact methods for the efficient throughput analysis of
elastic systems with early evaluation. The method in Júlvez et al. [2010] returns an
upper bound of the throughput using linear programming.

4.1. Retiming and Recycling Optimization

The retiming and recycling transformations can be combined in an optimization prob-
lem, as initially presented in Carloni and Sangiovanni-Vincentelli [2003]. This method
can be extended to handle early evaluation and antitoken transformations [Bufistov
et al. 2009]. The problem is formulated as a mixed integer linear programming prob-
lem, and it is solved by finding a set of designs that are Pareto points with respect to
the cycle time, τ , and the throughput, �, of the design. The metric to optimize is the
effective cycle time of the elastic system, ξ = τ/�. Thus, the designs found by retiming
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Fig. 9. Example with three nondominated Pareto-point configurations found by retiming and recycling.
Their performance metrics are (a) τ = 1,� = 0.5, ξ = 2, (b) τ = 2,� = 0.66, ξ = 3, (c) τ = 3,� = 1, ξ = 3. τ :
cycle time, �: throughput, ξ = τ/�: effective cycle time.

Fig. 10. Space of bypass configurations for three memories and navigation from the origin to find an optimal
number of bypasses.

and recycling, RR, provide different trade-offs between the latency of the computations
and the achievable cycle time for each of these latencies.

For example, Figure 9 shows an example that has three Pareto-point configurations.
The first design is the optimal one, since its effective cycle time is 2, compared to
3 for the other two configurations. If the early-evaluation multiplexor had different
probabilities at the inputs, the configurations might be different, or they might be the
same with a different optimum in terms of effective cycle time. RR typically achieves
better results when the system contains early-evaluation nodes.3

4.2. Exploration Algorithm

Capacity sizing and the number of bypasses to apply to each memory element are
the only transformations that are not explored by the retiming and recycling algo-
rithm. We now present an approach to automatically explore these parameters and
find an optimal pipelined configuration of the system. During the exploration, it can
be assumed that all buffers have enough capacity to maximize the throughput of the
system. The optimal capacity for each elastic buffer and whether to add skid-buffers
in any channel can be determined at the end of the exploration by running an ILP
problem [Bufistov et al. 2008; Lu and Koh 2003].

The main question to answer now is: what is the minimal number of bypasses that
must be included in each memory to achieve a maximum throughput? To illustrate the
exploration strategy, we will use Figure 10, which represents the space of configura-
tions that can be obtained for a system with three memories. Each point corresponds
to a particular number of bypasses applied to each memory. The origin represents the
configuration without any bypass.

We next present the sketch of a heuristic algorithm that explores a trajectory in
this space for finding the optimal pipelining of the system. The algorithm iteratively
adds bypasses to the memories and applies retiming and recycling until no further
improvement is observed in the estimated effective cycle time.

Algorithm 1 shows a sketch of the procedure to find a set of interesting pipelines.
At each iteration, a new bypass is added to a subset of memories of the design. The
memory subset is chosen by a heuristic rule (see Galceran-Oms et al. [2010] for more

3See Bufistov et al. [2009] for a table of results that validates this statement.
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ALGORITHM 1: Exploration for automatic pipelining
exploredPipelines := ∅ (Set of interesting pipelines found during the exploration)
ξmin := ∞ (Best effective cycle time found so far)
improvement := true
while improvement do

M := SelectSubsetMemories(G)
for m ∈ M do

G.bypass(m) (Add one bypass and forwarding paths to memory m)
end
newPipelines := RetimingRecycling(G) (Retiming and recycling optimization)
exploredPipelines := exploredPipelines ∪ newPipelines
ξbest := BestEffectiveCycleTime(newPipelines)
if ξbest ≥ ξmin then improvement := false else ξmin := ξbest

end
for P ∈ exploredPipelines do

Simulate(P) (Estimate the actual throughput by simulation)
end
return exploredPipelines

Fig. 11. DLX initial graph.

details). This corresponds to jumping to a new point in Figure 10. The resulting design
has a certain number of bypasses and forwarding paths in each memory (e.g., the one in
Figure 8(c)). Next, retiming and recycling is applied and a set of Pareto-point pipelines
are returned (such as the one in Figure 8(d)). Since the throughput estimated by the
retiming and recycling algorithm may not be exact, a set of promising designs is kept
in a list during the exploration (exploredPipelines). The algorithm iterates as long as
better pipelines are found. At the end of the exploration, the most promising designs
stored in exploredPipelines are simulated to obtain a more accurate estimation of
the throughput. Finally, a set of Pareto points with different area/performance/power
values are delivered.

4.3. DLX Pipeline

Let us illustrate automatic exploration of pipelines on a simple microarchitecture sim-
ilar to DLX, as shown in Figure 11 before pipelining. The execution part of the pipeline
has an integer ALU and a long operation F. The instruction decoder ID produces the
opcode, oc, that goes to the write-back multiplexor and a target instruction address,
ja, that is taken from the previous ALU operation, as stored in the register BR. Table I
shows approximate delays, latency, and area of the functional blocks of the example,
taking NAND2 with fanout 3 as unit delay and unit area. In order to obtain these
parameters, some of the blocks have been synthesized in a 65 nm technology library
using commercial tools (ALU, RF, mux2, EB, and +4), and the rest of the values have
been estimated. EB and mux2 delay and area numbers were taken for single bit units.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 4, Article 18, Publication date: December 2011.



Microarchitectural Transformations Using Elasticity 18:13

Table I.

Block Delay (δ) Area Lat. Block Delay (δ) Area Lat.

mux2 1.5 1.5 1 EB 3.15 4.5 1

ID 6.0 72 1 +4 3.75 24 1
ALU 13.0 1600 1 F 80.0 8000 1

RF W 6 6000 1 RF R 11 - 1
MEM W - - 1 MEM R - - 10

The delay of bit-vector multiplexors and EBs is assumed to be the one shown in the ta-
ble, while area is scaled linearly with respect to the number of bits. Multiplexors with
a fan-in larger than two are assumed to be formed by a tree of 2-input multiplexors.

Even though a conventional DLX pipeline does not typically include this feature, F
is considered to be a floating point unit. Its total delay is set to 80, around 5 times
the expected cycle time of the design. Then, it may be partitioned in several stages to
allow pipelining. It is assumed that the delay of each stage is 80/D. It is possible to
provide several possible partitions and perform design exploration on each one, thus
determining the optimal pipeline depth.

The register file is 64 bits wide, with 16 entries, 1 write, and 2 read ports. The total
footprint of the RF is 6000 units, (including both cell and wire areas). To account for
wiring of other blocks, we assume that 40% of the space is reserved for it. Furthermore,
we also need to consider the area overhead of elastic controllers. Based on experiments
with multiple design points, a 5% area is reserved for the controllers. Given that
AreaBlocks is the area of the different combinational blocks plus the area of all the EBs,
the total area of the design is AreaRF + (AreaBlocks ∗ 1.05)/0.6). The area of the initial
nonpipelined design shown in Figure 11 is 23284 units.

The area of the memory subsystem is not taken into account (as it is roughly con-
stant regardless of pipelining). It has a parameterized latency of L MEM cycles for the
read instruction, which is set to 10 in Table I. A latency of 10 clock cycles for read
instructions is realistic if we consider it the latency of the L2 cache access. Read op-
erations are considered to be nonblocking, i.e., a new token can be accepted even if
the previous one is still in flight. Other parameters of the microarchitecture are the
data dependency probability in both the register file and the memory (γ RF, γ MEM), the
probability of a branch to be taken (pTBR), and the probability of each instruction to be
executed (pALU + pF + p LOAD + pSTORE + pBR = 1). These probabilities are mapped to the
early-evaluation multiplexors of the graph.

4.3.1. Pipelined Example. Figure 12 shows one of the best design points found auto-
matically under the following design parameters: the F unit has been divided into
three blocks, the memory data dependency probability is 0.5 (γ MEM = 0.5), and register
file data dependency probability is 0.2 (γ RF = 0.2). The instruction probabilities are:
(pALU = 0.35, pF = 0.2, p LOAD = 0.25, pSTORE = 0.075, pBR = 0.125). Finally, the probability
of a branch taken is 0.5. These values are based on the experiments found in Hennessy
and Patterson [1990].

In Figure 12, the cycle time is 29.817 time units, due to the F1, F2, and F3 func-
tional blocks. Three bypasses have been applied to RF and then EBs have been retimed
to pipeline F. Note that an extra bubble has been inserted at the output of F3. The
reduction in the throughput due to this bubble, is compensated by a larger improve-
ment in the cycle time (without this bubble the critical path would include the delay
of the multiplexors after F3). If the F operation had a higher probability, the design
without this bubble might be better, since the bubble would have a higher impact
on the throughput degradation. Such decisions are made automatically based on the
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Fig. 12. Pipelined DLX graph (F divided into 3 blocks. RF has three bypasses and M 9).

Fig. 13. Effective cycle time and area of the best pipelined design for different depths of F. (x,y) and (x,y,z)
tuples represent the depth of F, the number of bypasses applied to RF and to MEM (z = 9 if omitted).

expected frequencies of instructions and data dependencies. An alternative way to
avoid the bubble after F3 is to add an extra bypass to RF. An extra bypass is indeed
the optimal way to pipeline the design for this particular instance of the parameters.
It might not be the case if the data hazard probability was higher.

The bypasses in the memory MEM are used to hide the memory latency via a load-
store buffer, as shown in Figure 12. Such a structure can be substituted by a more
efficient implementation: an associative memory. The need for a load-store buffer and
its optimal size are detected automatically.

4.3.2. Optimal Depth. Figure 13 shows the effective cycle time and area of the best
design points found on different partitions of F, forming a Pareto-point curve. The delay
of F is the largest one, and as the number of nodes in which it is partitioned increases,
the maximum node delay decreases, and so does the best possible cycle time in the
graph. In the best design for the graph in which F is not partitioned (depth(F) = 1),
the effective cycle time is 87.99, the area is 32791, 2 bypasses have been applied to
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RF and 8 bypasses have been applied to MEM. The cycle time of this first point is
83.15 (δ(F) + δ(EB)), and the throughput is 0.94. Only back-to-back data dependencies
involving F instructions require stalling of the pipeline.

As depth(F) increases, more bypasses are needed on the register file. The area of
the design increases with more bypasses. For depth(F) = 2, the cycle time is 43.15, the
throughput is 0.86 and the effective cycle time is 49.77. Until depth(F) = 6, the cycle
time keeps decreasing because of the deeper pipeline (43.15, 29.81, 23.15, 19.26, 16.48),
and so does the throughput because more data hazards must be handled. Overall, the
effective cycle time improves with a deeper pipeline until 6 stages are reached.

For depth(F) = 7, the delay of each stage of F becomes lower than the delay of the
ALU (δ(Fi) = 80/7 = 11.4), and the cycle time cannot be further improved by increasing
the depth of F. Thus, the best effective cycle time is achieved with F divided into 6
stages, 8 bypasses applied to RF and 9 to MEM. Design points (4,5) and (3,4) (circled in
the figure) for 4 and 3 stages are simpler and may deliver a better design compromise.

Different parameters lead to different optimal design points. For example, when
γ RF = 0.5, bypasses can be used more often, and deeper pipelines perform better. Then,
the optimal depth of F becomes 7 instead of 6. If the microarchitecture issues ALU
instructions most of the time, the throughput is close to 1, since data dependencies
can always use forwarding in order to avoid stalls. Besides, since F operations are
never selected, fewer bypasses are applied and recycling is used in order to pipeline
F. Because of the store buffer added by bypasses on MEM, memory operations can
also be performed with a high throughput. In contrast, if F instructions are the most
common ones, the throughput degrades faster, as this instruction always needs to stall
the pipeline when a data dependency occurs.

5. DESIGN EXPERIMENT: H.264 CABAC DECODER

To study how elasticity can help optimizing nontrivial designs we conducted an ex-
periment with the H.264 CABAC decoder used in Intel consumer electronics system
on chip. Instead of designing an elastic decoder from scratch, we elasticized and op-
timized an existing design, which provided a clear point of comparison and permitted
reuse of the validation environment and collaterals. In our studies we often relied on
separation of Little Cares (see Section 3.6). It proved to be a useful practical tool for
optimization and managing design complexity.

5.1. Video Coding with H.264 CABAC

CABAC, which stands for context adaptive binary arithmetic coding [Marpe et al.
2003], is an entropy codec used for lossless video compression in H.264 standard [H.264
2003]. It is also a performance bottleneck of H.264 decoding algorithm. As shown in
Figure 14, the CABAC decoder receives a stream of encoded bits and decodes it into a
stream of bins. Bins are sent to debinarizers, where they are translated into video sym-
bols, like motion vector differences or discrete cosine transform coefficients. CABAC
is an extension of binary arithmetic coding, which relies on context-based predictions
to adapt to the statistical structure of the decoded video stream and achieve better
compression ratios. For every decoded bin, the CABAC algorithm predicts the most
probable symbol (MPS), i.e., whether the current bin is more likely to be 0 or 1,
and the probability of MPS. The probability is encoded with a 6 bit integer state,
which corresponds to a value in the [0.5, 1.0] range as specified by H.264 [2003]. The
prediction varies at every cycle of decoding, based on the correctness of the previous
prediction and the current context. The H.264 standard defines 449 different contexts
based on the type of video symbol that is currently under decode, and the position of
the current bin within the video symbol. A complete prediction information (a 7-bit
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Fig. 14. Simplified microarchitecture of the CABAC engine.

state containing one MPS bit and 6 bits of the probability state) is represented as a
word inside the context memory. The memory contains 449 words and is implemented
as a register file with one write and one read port. Debinarizers compute current
context identified by a number of context indices, which are then translated into
addresses for the context memory.

The design of the CABAC decoder has several timing-critical paths including loops
through the address, write, and read logic of the context memory, two lookup tables
and the arithmetic decoding loop. Subsequent iterations of the decoding loop are inter-
dependent as the value of the current bin determines the next context. Probability to
correctly predict the next bin value is not always high. Therefore unrolling the loops to
compute multiple bins in one cycle requires significant area overhead without reliable
increase improvement in the performance. We explored a different avenue, based on
case analysis following the design optimization flow explained in the next sections.

5.2. Divide and Conquer with Little Cares

Separation of Littles Cares (see Section 3.6), is a central part of our approach to opti-
mization of the CABAC decoder. As shown in Figure 15, we start with profiling of the
available models (e.g. functional model, performance model, or RTL). We systemati-
cally identify performance-critical computations (CC) and optimize them in isolation
by ignoring all corner cases. The computations, which are not critical for performance
(LC), are recycled to match the cycle time of the critical core. Finally, CC and LC
branches are merged in a variable-latency unit in a provably correct way based on the
elastic controller with early evaluation. The process is iteratively applied to different
parts of the design and at different levels of granularity.

5.3. Elastic Redesign Flow

We created a design flow for converting existing RTL into elastic form and further opti-
mizing it with transformations. In fact we found that most of the transformations can
be faithfully modeled and evaluated directly in the original RTL before its elasticiza-
tion. To check how transformations influence timing, area, and power of the design,
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Fig. 15. Divide and conquer strategy using Little Cares.

we run a commercial synthesis flow. Synthesis checks provide measurable feedback
to decide which transformations should be accepted and which should be considered
next. After the desired timing/area/power trade-off is achieved on the original RTL
we elasticize it by replacing registers with elastic buffers and adding an elastic con-
troller.4 The complete elastic RTL is again synthesized and compared with metrics of
the original design. Finally, the new RTL is validated.

The design flow is partly automated and follows the steps described in the following.

(1) Components of the original RTL are grouped into elastic islands. Elasticity is pre-
served between the islands, but not within the islands. An automatic tool can take
a description of groups provided by the user and generate a microarchitectural
graph of the design. This step is not fully automated, as understanding of the
design is critical for optimal partitioning. Based on performance analysis of the
constructed microarchitectural graph we also decide which of the multiplexors (or
other nodes) should be implemented with early evaluation.

(2) The microarchitectural graph of the partitioned design is used to perform quick
experiments by applying the transformations described in Section 3. After perfor-
mance analysis (done analytically or through simulation of the elastic controller)
demonstrates sufficient progress, we reproduce the changes in RTL, such as insert-
ing elastic buffers for pipelining or bubble insertion.

(3) Verilog RTL of the elastic controller is generated from the microarchitectural
graph. The controller is merged with the transformed RTL, and the complete de-
sign is used for validation and synthesis.

Along with the Verilog of the elastic controller, we also generate a NuSMV model
[Cimatti et al. 2002] for the verification of safety and liveness properties. While all
elastic controllers are formally verified to be correct, it is still necessary to perform
validation of the final RTL because formal verification abstracts away the reset phase;
also (more importantly) manual changes that have been done to the original RTL can
introduce errors.

We developed a practical method for dynamic validation of elasticized RTL. Note
that testbenches available for the original synchronous block cannot be directly used

4In the case of the CABAC decoder, the elastic controller has very low overhead. The design can be parti-
tioned into large islands of logic; each island contributes only a few latches to the controller, increasing total
area and power by a small fraction. We expect the same to be true for other designs dominated by data
processing. See also Casu [2011] for a discussion on the area and power overhead of elastic controllers.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 4, Article 18, Publication date: December 2011.



18:18 M. Galceran-Oms et al.

with an elastic design due to the loss of synchronization. At the first step, we enforce
static scheduling by removing all empty EBs. This is sufficient to eliminate all stalling
cycles, because our design doesn’t contain VLUs (we always use Little Cares to intro-
duce variable latency). The simplified RTL can be simulated with original testbenches,
which is useful for initial debugging of manual RTL transformations. At the second
step, we simulate elastic design on a fast clock. The elastic design is fast forwarded rel-
ative to the original synchronous design, so that every large cycle of the synchronous
design contains exactly n small cycles of the elastic design. At the edge of every large
cycle we send new inputs to the elastic design and read back the results from the pre-
vious iteration, which can be directly compared with their synchronous counterparts.
During the cycle, we assert all output stop signals and disassert all input valid signals.
We will always succeed in sending input tokens and receiving output tokens, provided
that the elastic design can completely process one batch of data in n or less small cy-
cles. Note that such number n can always be found, because worst case performance
of an elastic design is bounded by its most stringent cycle [Júlvez et al. 2010]. For
CABAC, we determined n empirically. We applied this validation method to root-cause
manually introduced bugs and obtained a high degree of confidence by testing on long
video streams from the original regression suite.

5.4. Statistics of the H.264 Video Stream

Profiling of H.264 functional model on several video streams revealed significant im-
balance between frequencies of different types of video symbols. The video stream data
is dominated by ResCoeff symbols (blocks of residual DCT coefficients) followed by
MVD symbols (motion vector differences). These elements occupy more than 90% of
the encoded stream. Typically, the fraction of MVD symbols is below 5%, except for
streams with heavy motion, for which it can go up to 30–40%. Video symbols of the
other 9 types occur rarely and can be classified as Little Cares. According to the di-
vide and conquer strategy described in Section 5.2, logic required for LC behaviors
(including all debinarizers for symbols other than ResCoeff and MVD) is isolated and
disregarded during optimization.

5.5. Design Transformations

Improvement in CABAC decoder performance is a combined result of a series of de-
sign transformations. We used multiple elastic (early evaluation, LC separation, and
bubble insertion) and standard design transformations (register retiming, multiplexor
retiming, bypassing, and precomputation). We discovered that sometimes a nonelas-
tic transformation, although impossible to perform at the outset, might be enabled by
an elastic transformation and vice versa. It is important to note that our optimizations
cannot be repeated with the same results if the first step of identifying and isolating lit-
tle cares is omitted. In this section we briefly mention some of the key transformations.

Synthesis of the CABAC decoder RTL highlighted multiple timing-critical paths to
and from the context memory register file (see Figure 14). As a first transformation,
we isolated the write logic of the register file by a single bypass, effectively removing
it from the critical path. Contexts for different video symbols are located in different
regions of the context memory. Hence every debinarizer needs to access only a por-
tion of the corresponding register file. Since profiling showed that only ResCoeff and
MVD occur often, a large portion of the register file is owned by the LC debinarizers.
Therefore, the initial LC separation of debinarizers can be taken one step further by
partitioning the context memory into LC and CC parts and subsequently isolating the
LC part from the critical paths by inserting bubbles (empty EBs). Regions allocated for
ResCoeff and MVD can also be separated from each other and connected directly to the
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Fig. 16. Area-performance trade-off of the original and the optimized decoders.

corresponding debinarizers without intermediate multiplexing logic. As a result of this
partitioning, delays in the second stage of the context memory read (R2 in Figure 14)
were reduced, providing 10% reduction in the cycle time of the critical core.

The critical path that appeared after the register file partitioning, starts in the
second stage of context memory read (R2), goes through the range table lookup and
ends at a register in the arithmetic decoding cycle. Logic in the arithmetic cycle is
well-balanced and optimized for delay, which makes it hard to improve. However, it
is possible to remove the range table lookup from the critical path by precomputing
the memory address (produced at debinarizer output) one cycle ahead [Hassoun and
Ebeling 1996]. Then data can be read from memory one cycle earlier and range ta-
ble lookup can be isolated from the arithmetic cycle by a retimed register. Potential
correctness issue, with data loss due to late memory-write can be solved by adding
another memory bypass or stalling reads for a cycle on the rare occurrence of data
dependency of depth 2. Since context address depends on the value of the current bin,
the precomputation can be done by reading two values from the CC portion of the reg-
ister file (which requires an additional read port) and multiplexing the results after
the second read stage when the actual bin value becomes available. This transforma-
tion corresponds to multiplexor retiming through the read logic of the register file and
reduces cycle time of the critical core by another 10%.

The renormalization stage of decoding [Marpe et al. 2003] shifts two 9-bit vectors
by a variable amount of bits. While the shift length can be in the range between 0 and
7, profiling demonstrated that long shifts by 3–7 bits are required in less than 5% of
cases. This can be used for optimizing the shifting logic by deploying LC case splitting
with two versions of renormalizers: a fast shifter by 0–2 bits (CC portion) and a slower
shifter by 3–7 bits (LC portion). By applying the technique described in Figure 7, the
slow shifter can be isolated with a bubble (an empty EB) removing it from all critical
paths. This transformation reduced the overall delay of the arithmetic cycle by 15%.

Performance-area trade-off curves for the original (synchronous) and the optimized
CABAC decoders are shown in Figure 16 with a cycle time shown along the X-axis
and a total cell area along the Y-axis. The results are collected by sweeping different
target cycle times of the designs. Each point in the graph represents normalized cycle
time and total cell area after a run of the synthesis tool using a 32 nm library. Area
and cycle time of 1.0 correspond to the minimal area and the cycle time of the original
design. Figure 16 demonstrates up to 40% improvement in cycle time with equal area.

After evaluating probabilities at all early evaluation multiplexors in the optimized
CABAC design, we ran a random simulation testbench, which produced a throughput
estimate of 0.91, meaning that on the average, optimized CABAC outputs 91 data
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Fig. 17. (a) Logical view of a shared unit; F is considered a variable-latency unit, (b) physical view of a
shared unit; the scheduler of the shared unit grants access to one of the channels. (c) branching subgraph
in a simple microarchitecture, (d) same subgraph after applying speculation.

tokens in 100 clock cycles. Together with cycle time improvement from Figure 16, it
gives up to 35% improvement in effective cycle time with equal area, compared to the
original design (depending on the desired clock cycle point).

6. ADVANCED TRANSFORMATIONS

This section briefly discusses how some widely used microarchitectural techniques
may be integrated in elastic systems. Resource sharing, speculation and multithread-
ing are inherently elastic; they modify the latency of the computations and communi-
cations and require a control unit that alters and stalls the data flow. Furthermore,
they may be added in an elastic system by applying correct-by-construction transfor-
mations. First, sharing and speculation are reviewed, and finally, as a further re-
search topic, some possible strategies to implement multithreaded elastic pipelines are
proposed.

6.1. Sharing of Functional Units

When a system includes early evaluation, the output of some computations is not al-
ways required, and hence, they can be delayed with no performance penalty or even
canceled. As a result the actual utilization of some units can be way below 100%.

Different modules with the same behavior (e.g., two adders in the design) can be
merged into a single module, which is then shared by the input channels competing
for this resource. Sharing may provide a reduction of area and power, possibly with
low (or zero) performance degradation. Using a shared module is like using a module
followed by a buffer with unbounded but finite latency, since each data token may have
to wait for a certain number of cycles until it is allowed to use the shared module.

In Galceran-Oms et al. [2009], a possible implementation of module sharing in an
elastic system is proposed. A local scheduler decides, at each clock cycle, which input
channel can use the shared resource. The performance variation compared to using
unshared resources depends on whether the scheduler can distribute the load accu-
rately among the different users. For better performance, the scheduler should take
into account the elastic protocol: an invalid or a stalled channel cannot use the shared
unit even if selected. For correctness, a scheduler should be fair and avoid starva-
tion: every token that reaches the shared module must eventually be allowed to use it
unless it is canceled by an antitoken.

For example, Figure 17(a) shows two channels, each one using a unit F, which com-
pute exactly the same function. If both Fs are shared in a single physical entity, the
logical view remains the same, although the latency of F becomes variable. Physically,
a scheduler selects which channel can use F every clock cycle, as shown in Figure 17(b).

6.2. Speculative Execution

Sharing of functional units can be used to implement correct-by-construction specu-
lative execution [Galceran-Oms et al. 2009]. Consider the example from Figure 17(c)
showing a possible branch instruction in a microarchitectural graph. Each time a new
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Fig. 18. Possible implementation for elastic multithreading support. Grey boxes are shared units.

instruction address must be generated, it is chosen from among the previous one plus
a constant, the lower input in the multiplexors, or an address coming from the instruc-
tion decoder (ID). The selection depends on the value generated by the node named BR,
which may look at some register in the ALU or may perform some operation indicated
by the decoder stage.

Let us assume that ID and BR cannot be executed within one clock cycle because
their total delay is too large. In Figure 17(c), the only way to cut this path is to add the
bubble between ID and BR drawn with a dotted line. However, BR, ID, and one of the
multiplexors form a cycle, and hence, adding this bubble limits the throughput of the
design to 0.5. Early evaluation cannot help increasing the throughput in this example.

Given a multiplexor with several inputs, it is possible to move a functional block
from the output of the multiplexor to its inputs using Shannon decomposition (viewed
also as a multiplexor retiming) [Soviani et al. 2006]. The example from Figure 17(c)
can be transformed into the design in Figure 17(d) by using multiplexor retiming and
register retiming. In this second design, there is no critical cycle going through the
control of the multiplexor, and the only combinational path going through two units is
the one formed by BR going to the upper multiplexor and then to the adder. If this path
became critical, multiplexor retiming could also be applied to the upper multiplexor.

The performance gain of Figure 17(d) comes at a cost of duplicating the ID stage,
with the resulting area overhead. At this point, speculation comes into play. The two
ID nodes can be merged into a single one shared by the two inputs of the multiplexor.
Hence, each clock cycle the scheduler of the shared ID module must perform a branch
prediction and decide which of the tokens arriving to the ID stage should be granted
access to the unit so that the throughput is maximized. The scheduler can implement
any state-of-the-art branch prediction algorithm, enhanced to understand the elastic
protocol.

Misprediction and correction are handled naturally by the handshake between the
shared module and the multiplexor. If the multiplexor requires a channel, and the
scheduler predicted the other one, the scheduler will see back-pressure coming from
the predicted channel and will be able to correct the misprediction.

This speculation framework can also be used to efficiently integrate into elastic
systems, telescopic units and error correction and detection protocols [Galceran-Oms
et al. 2009]. Using speculation and antitoken insertion, precomputation [Hassoun and
Ebeling 1996] can also be added to the set of possible transformations.

6.3. Multithreading

Elastic systems implement in-order single-threaded pipelines. This section outlines
some possible research directions to extend elastic systems in order to support multi-
threading.

There are few studies on automatic pipelining with multithreading. In Dimond
et al. [2006], a multithreaded pipeline can be generated from a parameterized in-order
pipelining template. In Nurvitadhi et al. [2010], a more general multithreaded pipelin-
ing approach is proposed, starting from an initial transactional specification.
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The advantage of elastic systems is that they can be modeled using marked graphs
amenable to formal performance analysis and optimization. The natural extension in
order to support multithreading is to use colored Petri nets [Jensen 1997], where each
token is assigned a color (i.e., a thread). Token order must be preserved only for the
tokens that belong to the same color. Current analysis and optimization methods of
elastic circuits should be extended to support multiple colors.

In the simplest implementation of a multithreaded elastic system, each thread
would own a copy of an automatically generated pipeline. Next, the independent copies
can be merged using the sharing transformation. Each clock cycle, the scheduler of a
shared block would decide which thread can use it. Figure 18 shows a simple pipeline
with two threads. Each thread has its own register file, and the functional units F1
and F2 are shared by the threads.

This approach is simple and allows total thread scheduling freedom. However, it
also has a large area overhead, since each EB and the whole elastic controller is repli-
cated once per thread. New transformations such as sharing of EBs may alleviate this
overhead. A more efficient implementation can be obtained by adding a color identifi-
cation to the handshake protocol of elastic controllers. All the control primitives should
be extended and verified accordingly. In particular, different versions of EBs are possi-
ble depending on whether they allow reordering of tokens with different colors (better
performance), or they behave strictly as FIFOs (simpler and smaller in area).

7. CONCLUSIONS

Elasticity offers a new set of transformations that can be systematically applied to
improve the performance of systems. These transformations are capable of modeling
well-known techniques for pipelining. Thus, the data and control logic structures as-
sociated with high-throughput pipelines can be automatically generated and design
frameworks for microarchitectural exploration can be conceived.

The use of early evaluation and antitokens is a novel paradigm in pipelining, which
can contribute to new design methods based on the optimization of the most frequent
operations. We believe that automating the design of pipelines is an essential step to
confront the complexity of high-speed circuits.
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