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ABSTRACT
Restructuring techniques for And-Inverter Graphs (AIG),
such as rewriting and refactoring, are powerful, scalable and
fast, achieving highly optimized AIGs after few iterations.
However, these techniques are biased by the original AIG
structure and limited by single output optimizations. This
paper investigates AIG optimization for area, exploring how
far Boolean methods can reduce AIG nodes through local
optimization. Boolean division is applied for multi-output
functions using two-literal divisors and Boolean decomposi-
tion is introduced as a method for AIG optimization. Multi-
output blocks are extracted from the AIG and optimized,
achieving a further AIG node reduction of 7.76% on average
for ITC99 and MCNC benchmarks.
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1. INTRODUCTION
Logic synthesis is a key process in design automation, gen-

erating an optimized netlist of logic gates from an RTL rep-
resentation, and it is often divided in two classes: technol-
ogy independent and technology dependent [6]. Recently,
technology independent algorithms using AIGs have been
proposed, enabling efficient and scalable optimizations [10].

Restructuring methods such as refactoring [10], rewrit-
ing [13], and balancing [5] are powerful, obtaining highly op-
timized AIGs after few iterations. Still, these techniques are
usually constrained by single output transformations, and
iterations with technology mapping [7,12] are often used to
improve structurally biased results.

AIG rewriting and refactoring perform local transforma-
tions, extracting the local context with K-cuts [16], windows
or maximum fanout-free cones (MFFCs). K-cuts can be con-
sidered a superior method to extract local context compared
to windowing [7, 10], as it is possible to control the support
of the Boolean functions to be optimized, while identifying
a region of the circuit that depends on this support.
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Figure 1: Decomposition using two-literal Boolean divisors.

Algorithms based on K-cut enumeration have been pro-
posed, such as factor cuts [4] and priority cuts [14], reducing
the search space and enabling cuts with more nodes and
inputs. Also, multi-output blocks based on K-cuts were pre-
sented [8, 9], which extract the complete local context.

This paper studies technology-independent transforma-
tions that reduce the AIG size by exploring the use of Boolean
decomposition. This is done by expanding the idea of two-
literal divisors [15] to multi-output functions (see Fig. 1).
The principle is as follows. A multi-output function

(y1, . . . , ym) = F (x1, . . . , xn)

can be decomposed into another multi-output function

(y1, . . . , ym) = G(x1, . . . , xn, z)

with z being a two-literal divisor (z = xi � xj) and � being
a Boolean operator (such as an AIG node). G is supposed
to be a simpler function than F , which can be obtained by
Boolean division. A multi-output Boolean function can be
recursively decomposed using this paradigm, and the result
can be represented as an AIG network.

The main purpose of this paper is to explore how far
Boolean decomposition can go beyond the existing AIG rewrit-
ing methods. Unfortunately, scalability is an important is-
sue when dealing with Boolean methods. Obviously, collaps-
ing large networks into one-node functions and then decom-
posing is not computationally affordable.

This paper takes a significant leap forward regarding [15]:
• Boolean decomposition with two-literal divisors is gen-

eralized to be applicable to netlists with multiple out-
puts, instead of individual single-output functions.
• The selection of divisors is customized to increase the

logic shared among multiple outputs.
• A set of filters to reduce the search space is presented.
• Scalability is addressed by iteratively applying Boolean

decomposition to KL-cuts [9] of the AIG (see Fig. 2).
Note that a KL-cut represents a portion of the circuit that

depends on the same set of variables. The key idea is to use
this property of KL-cuts to identify divisors that are useful
for several functions, sharing more logic and reducing area.

In [11], a resynthesis method that uses Boolean decompo-
sition is performed on netlists of FPGA LUTs, by identifying
and decomposing MFFCs. However, [11] does not perform
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Figure 2: Iterative rewriting of AIG cuts.

a complete Boolean decomposition, as it is limited to a sim-
plified version of Disjoint Support Decomposition. In [17],
windows are enumerated and don’t cares identified in the
network are used to simplify these windows, while in [18]
the algebraic decomposition method is improved by assign-
ing previously calculated don’t cares using a set of rules. In
this work, there is neither search nor previous calculation of
don’t care conditions, as the optimization using don’t cares
occurs solely inside the KL-cut logic.

The results reported in the paper have been often ob-
tained by applying computationally intensive methods (e.g.,
many divisors, many cuts). Bear in mind that our goal now
is to establish the bounds potentially reachable by future
work that could use smart oracles to drive the search. Some
preliminary criteria are discussed in the paper. Still, the
method proposed in this paper can be interesting for highly
repetitive structures or area-critical components.

2. MULTI-OUTPUT DECOMPOSITION
Boolean decomposition is known to obtain good-quality

results at the expense of a high computational cost. Find-
ing good divisors is the most challenging task. Different
approaches can be proposed to prune the search, e.g., use
two-literal divisors [15], consider polarity information to ig-
nore unpromising divisions, or reuse algebraic factored forms
to select divisors. Considering all these simplifications, is it
still possible to obtain good results?

To illustrate the method, consider the set of functions and
its DC-set in (1). Any combination of two literals of F can
be selected as a Boolean divisor. The number of literals is
defined as the cost function, therefore the cost of F is 12.

F =


f1 = b · x + c̄ · x̄
f2 = a · x + d · x̄
f3 = a · x + b · e

DC = ā ·b ·x+a · b̄ ·x+a ·b · x̄ (1)

A reduction of 3 literals is achieved by performing a multi-
output Boolean division using the divisor y = a·b, generating
the new set of functions and DC-set in (2). Note that this
divisor is not easily extracted from the set of functions F :
f1 does not have the variable a and f2 does not have the
variable b. Still, all functions are reduced in 1 literal due to
the effective use of the DC-set.

Fnew =


f ′
1 = y + c̄ · x̄
f ′
2 = y + d · x̄
f ′
3 = y + b · e

DCnew = DC + (y ⊕ (a · b)) (2)

For further decomposition steps, it is possible to perform a
DC-set projection, removing variables from the DC-set that
are not in the support of F , and decreasing the computa-
tional effort of the Boolean division. By projecting DCnew

to the support of Fnew, DCproj = b̄ · y is generated.

2.1 AIG optimization example
In order to demonstrate the potential benefits of the ap-

proach introduced in this paper, the circuit b06 of ITC99
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Figure 3: Optimization flow using different methods for b06.

benchmarks suite [1] is used. The optimization flow and the
results for the different solutions are depicted in Fig. 3.

The input circuit is a Boolean network represented in a
BLIF file. An AIG with 42 nodes is obtained after decom-
posing the Boolean network with algebraic factorization and
structural hashing (strash command in ABC [3]). After it-
eratively applying algebraic transformations using dc2 com-
mand in ABC, the number of nodes is reduced to 35.

An alternative approach would start by collapsing the ini-
tial network, which results in a Boolean network with one
node for each output. Decomposing these nodes results in a
larger AIG with 47 nodes, but applying iterative algebraic
transformations reduces it to 31 nodes.

The method proposed in this paper applies Boolean de-
composition on top of the collapsed network using an ap-
proach inspired by [15]. In this work, multi-output decom-
position is used by iteratively selecting the Boolean divisor
that minimizes the literals of the functions factored forms [2].
This approach is able to achieve a better logic sharing, ob-
taining an AIG with only 24 nodes.

Also, a set of filters is applied to reduce the search space of
divisors. By reducing the amount of two-level minimizations
compared to [15], runtime is reduced 40 times on average,
without sacrificing the quality of the results. Note that the
results in this work cannot be directly compared with [15],
which only presents the decomposition of single-output func-
tions and it is not applied for circuit optimization.

3. BACKGROUND
3.1 Functions, unateness and containment

A completely specified Boolean function f is a mapping
from an n-dimensional (n ≥ 0) into a 1-dimensional Boolean
space: {0, 1}n → {0, 1}. The positive (negative) cofactor
f |x=1 (f |x=0) of f with respect to the variable x is a function
obtained by assigning x to one (zero) in f .

A Boolean function f is positive (negative) unate in the
variable x if f |x=1 ⊇ f |x=0 (f |x=0 ⊇ f |x=1), where ⊇ is
the set operation for inclusion. Otherwise, f is considered
binate in x. This is the concept of unateness [6], intended
for completely specified functions.

An incompletely specified function (ISF) g is a mapping
from an n-dimensional (n ≥ 0) into a 1-dimensional Boolean
space: {0, 1}n → {0, 1, ∗}, where ∗ denotes a don’t care value.
The subdomains of g that evaluate to 1, 0 and ∗ are the
ON-set, OFF-set and DC-set, and can be represented by
the completely specified functions gon, goff and gdc.

Containment [19] is a generalization of the concept of
unateness for ISFs. The variable x in the positive polar-
ity is contained in g if

(gdc|x=1 ∪ gon|x=1) ⊇ gon|x=0

and in the negative polarity if
(gdc|x=0 ∪ gon|x=0) ⊇ gon|x=1,

where the operators ∪ and ⊇ are the set operations of union
and inclusion, respectively.
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Figure 4: Example of KL-cut computation.

3.2 And-Inverter Graphs and K-cuts
An And-Inverter Graph is a directed acyclic graph where

each node has either 0 incoming edges - the primary inputs
(PI) - or 2 incoming edges - the AND nodes. Each edge
can be negated or not. Some nodes are also primary outputs
(PO). Sequential elements are considered as PI/PO pairs.
An AIG example is depicted in Fig. 4. The dotted lines are
negated edges, the circles are AND nodes, the rectangles at
the bottom are PIs and at the top are POs.

A cut of a node n in a graph G is a set of nodes c such
that every path between a PI and n contains a node in c.
A cut is said to be irredundant if no subset of it is also a
cut. A K-cut [16] of a graph G is an irredundant cut of K
or fewer nodes. Consider the two sets of cuts A and B and
the auxiliary set operation ./ described in (3).

A ./ B ≡ {a ∪ b | a ∈ A, b ∈ B, | a ∪ b |< K} (3)

The ./ set operation removes the redundant cuts, and it
is commutative, as the union set operation ∪ is also com-
mutative. Let ΦK(n) to be the set of K-cuts of n ∈ G and,
if n is an AND node, let n1 and n2 to be its inputs. Then,
ΦK(n) is defined recursively [4], as described in (4).

ΦK(n) =

{
{{n}}, n is a PI

{{n}} ∪ {ΦK(n1) ./ ΦK(n2)}, otherwise
(4)

3.3 KL-cuts
K-cuts can be an efficient way to represent a graph region

regarding a single output. However, several K-cuts may be
necessary to cover regions with multiple outputs, duplicating
logic. A KL-cut [8,9] identifies a multi-output region in order
to overcome this issue. A KL-cut is a sub-graph GKL of a
graph G with K inputs and L outputs. It is represented as
two sets of nodes: the inputs GK , and the outputs GL.

If a node n belongs to a path between nK ∈ GK and
nL ∈ GL, being n /∈ GK , then n is contained in GKL. Notice
that all nodes in GL are contained in GKL, and GKL does
not contain any node of GK . In this work, the number of
outputs is not restricted in KL-cuts enumeration. Therefore,
for every K-cut of a node n, there is a unique KL-cut GKL.

The nodes that are part of GKL are identified by travers-
ing forward the graph G from GK . A node n is part of GKL

if at least one of the K-cuts of n is a subset of or equal to
GK . A node of GKL is contained in GL if it is also a PO,
or if it has a fanout to a node not contained in GKL.
KL-cut enumeration example: Figure 4 depicts GK =
{3, 4, 5, 6, 10, 13} with its nodes in light gray, which is one
of the K-cuts at node 31, in dark gray. The KL-cut GKL

Table 1: Results obtained through AIG transformations.

Name
Initial (a) After dc2

(b) After
collapse + dc2

Diff nodes
(a) and (b)

N LV N LV N LV
b04 546 24 487 21 871 16 78.85%
b05 830 54 459 23 4095 19 792.16%
b06 42 5 35 4 31 5 -11.43%
b07 365 27 331 22 566 22 71.00%
b08 155 20 131 15 119 9 -9.16%
b09 136 12 123 10 197 12 60.16%
b10 180 11 162 9 175 8 8.02%
b11 611 28 452 21 1085 18 140.04%
b12 1002 17 947 14 1399 13 47.73%
b13 261 12 220 11 224 10 1.82%
b14 6069 60 3924 100 - - -
b15 8432 65 7030 95 - - -
alu4 2654 14 1573 15 625 14 -60.27%
apex2 2960 17 991 17 142 14 -85.67%
bigkey 3081 10 2847 10 3302 10 15.98%
clma 11938 40 4842 38 527 16 -89.12%
diffeq 2575 40 2137 41 - - -
ex1010 7681 17 4664 15 2337 14 -49.89%
ex5p 1731 15 928 19 204 8 -78.02%
i10 3675 50 1637 36 - - -
misex3 2454 13 1267 15 754 14 -40.49%
pdc 7757 19 3219 19 1717 18 -46.66%
seq 2780 14 1373 13 1516 16 10.42%
spla 6660 19 2298 16 525 14 -77.15%
tseng 1927 47 1763 41 - - -
Mean I 1391.64 21.26 921.52 19.48 - - -
Ratio 1 1.00 1.00 0.65 0.92 - - -
Mean II 1090.95 17.03 698.38 14.93 550.87 12.78 -
Ratio 2 1.00 1.00 0.64 0.88 0.50 0.75 -
Ratio 3 - - 1.00 1.00 0.79 0.86 -

is obtained by traversing the AIG forward from GK , iden-
tifying the sub-graph hatched in Fig. 4. Nodes 31 and 40
are also POs, and nodes 12 and 33 have fanout to nodes not
contained in GKL, therefore GL = {12, 31, 33, 40} is defined.
Note that the logic of GL nodes can be described as Boolean
functions that depend on the same support: the GK nodes.

3.4 Boolean division
Given the Boolean functions f and d, if it is possible to

express f as f = q · d + r, where · and + represent the
Boolean AND and OR operators respectively, then f can be
divided by d, with q and r being the quotient and remainder
of the division, respectively. This division operation can be
performed by algebraic or Boolean methods.

A common approach to perform Boolean division is using
two-level minimizers that accept don’t care information [6].
A new variable x is added and the division is performed by
adding the satisfiability don’t care (SDC) expression x⊕d to
the DC-set of f , where ⊕ represent the Boolean exclusive-
OR operator, followed by a two-level minimization.
Example: Consider the function f = ā · b · c + d · (a + b)
represented as a 6-literal factored form. It is possible to
rewrite f as f = ā · b · c+ d · x by performing algebraic divi-
sion with the divisor x = a+b. Boolean division can be per-
formed by incorporating x⊕ (a+ b) in the DC-set and doing
a two-level minimization results in f = ā·c·x+d·x, that can
be represented as the 4-literal factored form f = (ā·c+d)·x.

4. AIG TRANSFORMATIONS RESULTS
This section presents the AIG size reduction achieved by

AIG transformations for a set of ITC99 and MCNC bench-
marks [1]. Each benchmark is read and tranformed into an
AIG through algebraic factorization. Then structural hash-
ing is performed, obtaining the number of AIG nodes (N)
and levels (LV) shown in column “Initial” of Table 1.
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1: procedure booleanDecompositionAIG(AIG, cutParams)
Input: An AIG network, and parameters to enumerate KL-cuts

2: for each node N in AIG in topological order do
3: for each kcut C of node N from kcut enumeration do
4: obtain the klcut from C in AIG
5: if the klcut is accepted based on cutParams then
6: F = set of klcut functions
7: DC = ∅ /* DC-set of F functions */
8: divisors = boolDecompose(F , DC)
9: if size of divisors < size of klcut then
10: new klcut = AIG network of divisors
11: replace klcut by new klcut in AIG
12: restart kcut enumeration

Figure 5: AIG optimization using Boolean decomposition.

In order to obtain a highly optimized AIG, the dc2 com-
mand is executed iteratively until no changes are observed.
This reduces the number of nodes for the majority of cases,
as seen in column “After dc2”. The number of levels is usu-
ally reduced, but not for all cases. Geometric mean I and
the ratio 1 refer to the complete set of benchmarks.

An alternative experiment is performed by first collapsing
the netlist, just after reading the input file. The collaps-
ing operation cannot finish for all benchmarks due to its
complexity. In the cases it can finish, the AIGs are ob-
tained through algebraic factorization and structural hash-
ing. Then, the dc2 command is run iteratively until no
changes are observed, generating the results shown in col-
umn“After collapse + dc2”. Geometric mean II and the cor-
responding ratios 2 and 3 refer to the benchmarks in which
collapsing could finish.

The final number of nodes varies from a 89% reduction
(clma) to a 792% increase (b05 ). Collapsing the netlist may
result in a larger AIG (see Sect. 2), and the AIG transforma-
tions may not obtain the same results as before collapsing, as
these modifications are biased by the AIG structure. In the
b05 benchmark, the initial description has very good logic
sharing between outputs, which is lost after collapsing. The
shared logic is not recovered due to local optimization limi-
tations, as some of the benchmark outputs depend in a large
set of inputs. For other cases, collapsing enables significant
AIG reduction by removing redundant logic.

5. AIG OPTIMIZATION APPROACH
This section introduces a new AIG optimization approach,

based on Boolean decomposition with two-literal divisors [15].
Boolean methods are known to be inefficient and not scal-
able, but also to obtain better results when compared with
algebraic methods. In this work, the Boolean decomposi-
tion method [15] is applied to multi-output functions and
runtime is improved without losing quality of results. Still,
the algorithm is not scalable for large circuits, and therefore
applied via local optimization.

5.1 AIG local optimization using KL-cuts
A pseudo-code of the AIG optimization strategy is shown

in Fig. 5. The procedure booleanDecompositionAIG receives
the AIG and the parameters to enumerate the KL-cuts,
which define the number of nodes and inputs, for example.

From the outputs to the inputs, each node is visited (line 2),
and for each node all K-cuts enumerated based on the pa-
rameters are tried (line 3). In line 4, the KL-cut is obtained
from the K-cut, and if accepted based on the parameters
(line 5), the Boolean decomposition is performed on top of
the KL-cut Boolean functions (line 8).

If the Boolean decomposition result is smaller than the

1: function boolDecompose(F , DC)
Input: A set of functions F and their DC-set
Return: A set of divisors that form an AIG
/* Each recursive call generates one divisor */

2: /* Step (I) - If all functions are decomposed, return */
3: if all functions f ∈ F are trivial then return

4:
5: /* Step (II) - Generate the candidate Boolean divisors */
6: numLiterals = 0 /* Number of literals of all functions */
7: D = ∅ /* Set of generated divisors */
8: for each non-trivial f ∈ F do
9: a = algebraic factored form of f
10: numLiterals += number of literals in a
11: D = D ∪ {two-literal leaves of a}
12:
13: /* Step (III) - Perform Boolean division for each divisor */
14: x = new variable /* Variable of the new divisor */
15: bestDivisor = ∅
16: for each divisor d ∈ D do
17: divLiterals = 0 /* Number of literals after division */
18: for each non-trivial f ∈ F do
19: /* DC(f) is the DC-set of f */
20: DCproj = DC(f) projection onto f and d support
21: DCdiv = DCproj + (x⊕ d)
22: Flits, Rlits = number of literals in f factored form
23: if d is accepted based on f vars polarities then
24: /* R(f) is the result of the division of f by d */
25: R(f) = twoLevelMinimization(f , DCdiv)
26: Rlits = literals in R(f) factored form

27: if Rlits > Flits then
28: /* If R(f) has more literals, or division was not
29: performed, select f as part of the solution */
30: R(f) = f ; divLiterals += Flits
31: else
32: divLiterals += Rlits

33: /* If division reduced literals, update best result */
34: if divLiterals < numLiterals then
35: for each non-trivial f ∈ F do
36: bestR(f) = R(f)

37: bestDivisor = d; numLiterals = divLiterals

38:
39: /* Step (IV) - Set the functions for next recursive call */
40: for each non-trivial f ∈ F do
41: newF(f) = bestR(f)
42: newDC(f) = DC(f) + (x⊕ bestDivisor)

43: /* Return the best divisor and make a new recursive call */
44: return {bestDivisor} ∪ boolDecompose(newF, newDC )

Figure 6: Boolean decomposition procedure.

number of nodes of the KL-cut, it replaces the logic in the
AIG (line 11). Note that boolDecompose returns the set of
divisors used to decompose the KL-cut functions, which can
be easily translated to an AIG network. Also, since the AIG
is changed when there is a KL-cut replacement, the previous
K-cut enumeration has to be restarted (line 12).

5.2 Boolean decomposition
The algorithm for boolDecompose is presented in Fig. 6,

which recursively performs the Boolean decomposition on a
set of functions F . The algorithm is divided into four steps:
(I) detection of trivial cases, (II) generation of candidate
Boolean divisors and definition of the cost function, (III)
selection of the best divisor via Boolean division, and (IV)
preparation of the next recursive call.

At line 3, detection of trivial cases (I) is performed, iden-
tifying when all functions in F are decomposed. The algo-
rithm is executed recursively until this condition is satisfied.

Step (II) starts by obtaining the algebraic factored form
for each function in F (line 9). The cost function to be
minimized is defined as the sum of literals of all functions in
factored form (numLiterals, line 10). Then, the two-literal
leaves of the factored form trees are generated as candidate
divisors for each function in F (see Fig. 7).
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Figure 7: Factored form trees from b06 benchmark.

Boolean division is performed for all functions in F using
each divisor in D, in order to calculate the cost function for
all divisors. The best divisor (III) is the one that achieves
the largest reduction in number of literals.

As seen in Sect. 3.4, Boolean division is performed by
adding the SDC of a divisor to the DC-set of a function and
running two-level minimization. As the DC-set may contain
variables not relevant to the division, a DC-set projection
is performed to the support of the function f and divisor
d (line 20). The projected DC-set is accumulated with the
SDC generated by the evaluated divisor (line 21), generating
the DC-set used in the two-level minimization (DCdiv).

The division may be filtered due to the polarities of the
variables (see Sect. 5.3). If the division is filtered or if the
number of literals in the division result R(f) is greater than
in f (line 27), then f is used as part of the current solution
(line 30). If the number of literals is reduced after a division
(line 34), the best solution is updated: the division result
(line 35), the divisor and the number of literals (line 37).

The next iteration is prepared at step (IV). The ON-set
(line 41) and the DC-set (line 42) obtained by the best di-
visor are used in the next recursive call (line 44).

Note that the two-level minimization could be performed
as a multi-output function. However, running single output
two-level minimizations is preferred as it is more efficient,
divisions can be filtered based on the variables polarities
and the divisions that increase literals can be discarded for
each output individually.

5.3 Filters to reduce runtime
Select divisors from factored forms. In comparison
to [15], only pairs of literals obtained from the leaf nodes
of the factored form trees are selected as potential divisors,
instead of trying all possible pairs of variables and polarities.
The divisors are selected from all output functions of the
KL-cut. For the benchmarks analyzed with our method,
the quality of results was not affected by applying this filter,
while the optimization runtime was significantly improved.

To illustrate the divisor selection, factored form trees ob-
tained from b06 functions are depicted in Fig. 7. The two-
literal leaves highlighted in Fig. 7 are the divisors selected.
Notice that only one polarity is investigated, e.g., if the di-
visor c + ē is chosen, its negated version c̄ · e is disregarded.
Use variable polarity information. This filter is used
to avoid exploring divisions with unpromising polarities be-
tween the divisor and the divided function. Table 2 describes
the divisors that are accepted based on its support and the
polarities of the variables in the divided function. A total of
849 Boolean divisions are performed during the Boolean de-
composition of b06 when using this filter versus 943 without
it (and 13829 divisions would be done without any filter).

The polarity of the variables can be obtained using the
concept of unateness, which is defined for completely speci-

Table 2: Divisors accepted based on the divided function f .
Divisor variables a and b w.r.t. f Divisors accepted
a /∈ f support or b /∈ f support None

a is binate or b is binate (a · b), (a · b), (a · b), (a · b)
a and b have the same polarity (a · b), (a · b)
a and b have different polarities (a · b), (a · b)

Table 3: AIG results of Boolean decomposition.

Name
Initial

(a) ABC
smallest

(b) Boolean
Decomp.

Runtime
(s)

Diff.
nodes (a)
and (b)N LV N LV N LV

b04 546 24 487 21 442 21 222 -9.24%
b05 830 54 459 23 409 29 140 -10.89%
b06 42 5 31 5 23 9 0.55 -25.81%
b07 365 27 331 22 320 27 125 -3.32%
b08 155 20 119 9 113 10 2 -5.04%
b09 136 12 123 10 117 11 4 -4.88%
b10 180 11 162 9 156 10 14 -3.70%
b11 611 28 452 21 427 24 178 -5.53%
b12 1002 17 947 14 920 15 212 -2.85%
b13 261 12 220 11 207 12 3 -5.91%
b14 6069 60 3924 100 3810 120 14421 -2.91%
b15 8432 65 7030 95 6656 107 14592 -5.32%
alu4 2654 14 625 14 570 16 268 -8.80%
apex2 1960 17 142 14 128 15 5 -9.86%
bigkey 3081 10 2847 10 2396 15 2209 -15.84%
clma 11938 40 527 16 449 17 46 -14.80%
diffeq 2575 40 2137 41 2015 51 407 -5.71%
ex1010 7681 17 2337 14 2306 15 2004 -1.33%
ex5p 1731 15 204 8 197 8 127 -3.43%
i10 3675 50 1637 36 1530 37 882 -6.54%
misex3 2454 13 754 14 731 14 288 -3.05%
pdc 7757 19 1717 18 1543 18 1371 -10.13%
seq 2780 14 1373 13 1320 16 626 -3.86%
spla 6660 19 525 14 436 15 211 -16.95%
tseng 1927 47 1763 41 1696 42 445 -3.80%
Mean 1391.5 21.2 614.4 17.5 566.7 19.9 147.4 -7.76%
Ratio 1 1.000 1.000 0.442 0.826 0.407 0.939 - -
Ratio 2 - - 1.000 1.000 0.922 1.137 - -

fied functions. Unateness can only be used in the first iter-
ation of Boolean decomposition, when the DC-set is empty.
After the first iteration, the DC-set contains the SDCs of
the previously selected divisors, and the concept of contain-
ment [19] must be used (see Sect. 3.1).

6. EXPERIMENTAL RESULTS
Table 3 shows the AIGs metrics (N: nodes, LV: levels)

before and after Boolean Decomposition. Column Initial
reports the metrics of the AIGs after input and structural
hashing, and column ABC smallest reports the AIGs with
least number of nodes from Table 1.

The AIG optimization via Boolean decomposition is ap-
plied on top of the AIGs of column ABC smallest. KL-cuts
with K=8 and unbounded L are enumerated in order to
obtain smaller parts of the AIG with complete local con-
text. Also, the number of nodes of the KL-cuts is restricted
to 30, therefore having a very limited scope of optimiza-
tion. Boolean decomposition is performed on top of the
KL-cut outputs functions, only replacing the KL-cut logic if
the number of nodes is reduced. The experiments were run
on an Intel Core i7 processor with 4GB of RAM. All AIGs
passed formal verification using ABC command cec.

The column “Boolean Decomp.” reports the results ob-
tained after performing two iterations of the Boolean de-
composition method. By using Boolean decomposition, it
was possible to reduce the number of AIG nodes further by
7.76% on average, with important results such as 25.81%
(b06 ), 16.95% (spla), 15.84% (bigkey) and 14.8% (clma).

Our approach is able to identify a better logic sharing,
therefore increasing the number of levels, which is not con-
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Table 4: Technology mapping results.

Name
FPGA (LUT4) Standard cell (µm2, ns)

(a) ABC (b) Bool. Dec. (a) ABC (b) Bool. Dec.
N LV N LV Area Delay Area Delay

b04 183 7 177 8 14041 1879 12735 1833
b05 222 9 201 11 14350 2057 12687 2545
b06 17 2 17 2 1191.9 567 993 754
b07 145 8 146 8 9828 1949 9645 2205
b08 55 4 50 5 3659 873 3460 934
b09 55 4 53 5 3554 876 3716 1060
b10 73 5 75 5 5076 881 4893 957
b11 179 7 175 8 13215 1916 12551 2086
b12 452 6 455 6 28188 1322 27922 1409
b13 95 4 94 4 6890 975 6482 1046
b14 1608 33 1544 37 112586 8639 112277 10068
b15 3021 33 2922 33 204689 8110 195332 9398
alu4 293 7 277 7 18114 1308 16446 1450
apex2 65 6 61 6 4218 1300 3884 1398
bigkey 1254 3 921 4 81867 901 73250 1327
clma 277 6 249 6 15934 1446 13968 1512
diffeq 824 14 754 14 61892 3658 57616 4129
ex1010 1132 7 1118 7 66649 1314 65849 1415
ex5p 129 3 122 4 6356 784 6090 789
i10 724 14 688 14 47974 3222 45120.5 3187
misex3 363 6 363 6 21716 1222.7 21162.1 1218
pdc 904 7 821 7 50301 1585 45429 1592
seq 716 6 673 7 40718 1232 38957 1438
spla 262 5 222 6 15108 1218 12991 1303
tseng 758 13 741 13 50583 3598 49251 3561
Mean 284.35 6.84 268.64 7.39 18356 1607 17217 1859
Ratio 1.000 1.000 0.945 1.081 1.000 1.000 0.938 1.157

trolled by our method. Still, there is an increase of up to 1
level for 15 out of 25 benchmarks evaluated. Also, the aver-
age number of levels is still smaller than the Initial results.

Table 4 shows technology mapping performed for FPGAs
and standard cells using the AIGs from Table 3. Area re-
duction was observed simply by changing the input with
smaller AIGs. Mapping to LUT4s was performed with the
ABC command “if -K 4”, obtaining 5.5% area reduction on
average. Mapping to standard cells was performed with the
ABC command “map” using the library “GSCLib 3.0.lib” of
[1], obtaining 6.2% area reduction on average.

7. CONCLUSIONS
This paper introduced an approach to explore the poten-

tial use of Boolean decomposition in the optimization of
AIGs. The experiments show promising results, with an
average reduction of 7.76% in AIG nodes. Scalability is one
of the aspects that requires more investigation. We envi-
sion a synthesis system in which smart oracles could guide
the search for divisors based on simple correlation metrics
between functions and divisors.

As future work, there are some directions that could be
explored. For example, different types of cuts and more com-
binations of divisors could be studied. Using other models of
flexibility (Boolean relations) could also be considered. De-
lay is another important aspect that is not considered in this
work, but could be incorporated, controlling the number of
levels and reducing the resulting circuit delay.
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