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Abstract. This work presents a set of methods to improve the un-
derstandability of process models. Traditionally, simplification methods
trade off quality metrics, such as fitness or precision. Conversely, the
methods proposed in this paper produce simplified models while preserv-
ing or even increasing fidelity metrics. The first problem addressed in the
paper is the discovery of duplicate tasks. A new method is proposed that
avoids overfitting by working on the transition system generated by the
log. The method is able to discover duplicate tasks even in the presence
of concurrency and choice. The second problem is the structural simpli-
fication of the model by identifying optional and repetitive tasks. The
tasks are substituted by annotated events that allow the removal of silent
tasks and reduce the complexity of the model. An important feature of
the methods proposed in this paper is that they are independent from
the actual miner used for process discovery.

1 Introduction

Many factors can reduce the usefulness of a process model. Good quality models
need to find a balance between all the common metrics by which a model can
be evaluated against a log: fitness, precision, simplicity and generalization [1].
For example, an open problem in process mining is finding a middle point be-
tween overfitting and underfitting models [2]. Overfitting models only allow the
behavior that has been observed, and thus may trade off simplicity and general-
ization, while underfitting models allow for more behavior, sacrificing precision.
An unnecessarily overfit model may prevent the user from distilling more insight
about the behavior of the process.

This paper presents a set of techniques to explore the trade off between
simplicity and precision. More specifically, by introducing a small number of new
elements, the proposed techniques result in tangible improvements in precision.
They can work in combination with any existing discovery (mining) algorithm.
While some of the techniques can be applied to different formal models, this
work will focus on Petri nets.

The first technique enables the discovery of duplicate tasks in process models.
Duplicate tasks allow several nodes to refer to the same activity in the event log.
While this is not a new concept in Process Mining [3,4,5,6], our proposal is
novel in that the splitting criteria is based on properties of Labeled Transition
Systems, thus allowing more precision than other existing techniques.

The second technique performs structural simplifications that do not modify
the semantics of the model, thus preserving the quality metrics. We introduce
extensions to the formalism that allow single nodes to represent more complex
control-flow structures, such as loops or optional tasks.
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(b) Model discovered by the Inductive Miner.
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Fig. 1: Applying the method presented in this paper to a sample model discovered by
the Inductive Miner.

1.1 Motivating example

Figure 1 will be used to illustrate the main contributions of this paper. We start
from a simple log, a subset of which is shown in Fig. 1a. Figure 1b shows the
model discovered by the Inductive Miner [7]. This model is highly imprecise
(50%): while it is not a pure flower model, almost all the words are recognized.

The reason many discovery algorithms generate such a low-precision model is
the presence of duplicate tasks in the original process. These may be introduced
if, for example, different tasks have been improperly tagged with the same label.

Figure 1c shows the process model after the discovery of some duplicate tasks.
The original process had two different tasks for each of the labels a, b, and e.
This information is discovered automatically using the methods proposed in this
work. Duplicate tasks also allow the discovery of more precise models. In this
particular case, the new model has a precision of 90% and the workflow structure
is clearer. However, the model has increased the total number of components,
including silent transitions, which unnecessarily increase cognitive load.



Many of the silent transitions in Fig. 1c can be removed without affecting
the semantics of the model, as shown in Fig. 1d. A method to remove silent
transitions will also be presented in this work.

By applying some structural transformations to Fig. 1d, further reductions
on the structure of the Petri net can be achieved. In this work, the alphabet of
labels is enhanced to incorporate meta-transitions, which represent control flow
patterns. For example, an e? meta-transition can replace a choice between e and
a silent transition, as in Fig. 1d. Similarly, a meta-transition b∗ can sometimes re-
place a self-loop transition with label b. In this particular model, meta-transitions
allow the removal of all silent transitions without altering its behavior.

The rest of this paper is structured as follows. Section 2 introduces the re-
quired background of this work. Section 3 describes the first proposed technique:
a method to discover discover duplicate tasks. The second technique, a set of
structural transformations to simplify a Petri net, is shown in Section 4. Both
techniques are evaluated in Section 5. Finally, Section 6 discusses the related
work, and Section 7 presents the conclusions.

2 Preliminaries

2.1 Process Mining

Let Σ be an alphabet of events. A trace is a word σ ∈ Σ∗ that represents a
finite sequence of events. An event log L ∈ B(Σ∗) is a multiset of traces1. Event
logs are the starting point to apply process mining techniques, guided towards
the discovery, analysis or extension of process models. Process discovery is an
important discipline in process mining, concerned with learning a process model
(e.g., a Petri net) from a log. Several discovery techniques are summarized in [1].

Process models are usually evaluated in four quality dimensions: replay fit-
ness, simplicity, precision, and generalization [1]. A model with perfect replay
fitness can replay all the traces in the log. On the other hand, a precise model
does not replay any trace other than those contained in the log.

Among the different formalisms for process models, Petri nets are perhaps
the most popular, due to its well-defined semantics. This paper focuses on Petri
nets, although the work may be adapted to other formalisms.

2.2 Petri Nets

A labeled Petri Net [8] is a tuple N = 〈P,Σ, T,L,F ,m0〉, where P is the set
of places, Σ is the alphabet of labels (corresponding to events), T is the set
of transitions, L : T → Σ ∪ {τ} assigns a label (or the empty label τ) to every
transition, F : (P × T ) ∪ (T × P )→ {0, 1} is the flow relation, and m0 is the
initial marking. A marking m : P 7→ N is an assignment of a non-negative
integer to each place. If m(p) = k, we say that p is marked with k tokens. Given
a node x ∈ P ∪T , its pre-set and post-set are denoted by •x and x• respectively.

1 B(A) denotes the set of all multisets over A.



A transition t is enabled in a marking m when all places in •t are marked.
When t is enabled, it can fire by removing a token from each place in •t and
putting a token to each place in t•. A marking m′ is reachable from m if
there is a sequence of firings t1t2 . . . tn that transforms m into m′, denoted by
m[t1t2 . . . tn〉m′. A sequence t1t2 . . . tn is feasible if it is firable from m0. A trace
σ fits N if there exists a feasible sequence in N with the same labels.

A transition labeled with the empty label τ is called a silent transition. A
duplicate task is a transition with the same label as some other transitions in N .

2.3 Transition Systems

A finite labeled transition system is a tuple A = (S,Σ, T, s0) where S is a finite
set of states, Σ is the alphabet of labels, T ∈ S × Σ × S are the transition
relations between states, labeled with Σ, and s0 is the initial state.

We use s
e−→ s′ as a shorthand for the arc (s, e, s′) ∈ T . A trace σ = e1e2 . . . en

fits A if there exists s1, s2, . . . , sn ∈ S with s0
e1−→ s1

...−→ sn−1
en−→ sn. An event

e ∈ Σ is enabled in a state s1 ∈ S if there exists s2 ∈ S with s1
e−→ s2.

Given two states s1 and s2 with s1
e−→ s2 ∈ T , we say e triggers another

event f iff f is enabled in s2, but not in s1. In a sense, e triggering f implies a
causality relation between the two events.

Excitation sets. For a given LTS A = (S,Σ, T, s0) and event e ∈ Σ, we
define the Excitation Set of e as the set of states in which e is enabled, i.e.,
ES(e) = {s ∈ S | ∃s′ ∈ S : s

e−→ s′}.
Figure 2b shows an LTS constructed from the process in Fig. 2a. Notice how

ES(a) contains the states in which the three duplicate tasks of a are enabled.
The concept of local excitation set distinguishes each such instance of a:

Definition 1 (Local excitation set). Given LTS A = (S,Σ, T, s0) and event
e ∈ Σ, the local excitation sets of e, LES(e)1, . . . ,LES(e)k are the maximally

connected subsets of ES(e) such that, ∀s1
e−→ s2 ∈ A, if s1 ∈ LES(e)i and

s2 ∈ LES(e)j, then i 6= j.
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Fig. 2: Calculation of Local Excitation Sets.

Notice that the definition does not allow both the source and target states
of a transition with label e to be in the same LES(e)i. The set of LES of
an event can be efficiently computed with a simple algorithm, illustrated in
Fig. 2c for event a. The algorithm has the following steps: (1) calculate ES(a),
(2) remove the transitions with label a from the LTS, (3) identify all LES(a) as
the maximally connected subsets of ES(a) after the removal of the a-transitions.



3 Discovering duplicate tasks

This section introduces a method that automatically discovers which events from
an event log correspond most likely to duplicate tasks, i.e. should be represented
by more than one task in order to enhance the quality of the model. The tech-
nique works with the LTS constructed from a log and can be combined with
any discovery algorithm. By adding new tasks, the method slightly increases the
element count of the model but results in tangible improvements in precision.

Given a log L, the goal of this procedure is to generate, for every activity
a ∈ L, a partition of all the events in L referring to a. When mining a process
model, every different partition will be represented by a different task. We will
generally refer to each task by a1, a2, . . . , an. A partition that, for every activity
a, maps all events into a single task a1 results in a model with no duplicate
tasks. Figure 3b shows an example partition for the log in Fig. 1a.

An overview of the proposed method is shown in Fig. 3a. At the core of
the proposal lies a clustering process that generates a small set of candidate
partitions. An existing mining algorithm is used to generate a process model for
each of these partitions, and the best model is selected out of these discovered
models. This way, the method adapts to the subtleties of the different mining
algorithms. Even for miners that automatically discover duplicate tasks, the
proposed method may help improving the results.

The clustering method uses a bottom-up (agglomerative) approach: starting
from the trivial partition which maps every event to a different task, the proce-
dure iteratively selects pairs of similar events, grouping them into the same task.
To find similar events, the algorithm uses causality relationships between events
as discovered in a LTS, instead of using log information directly (e.g. direct
predecessors or successors of an event). An LTS can be built from the log with
a variety of methods [2]. Section 3.1 describes how the procedure finds similar
events in the LTS, while Section 3.2 details the actual clustering algorithm.

Clustering

Log

... Candidate splits

Log preprocessor

construction

Miner

... Candidate models

Select best Final model

LTS

LTS

(a) Overview of the flow.
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(b) Split version of the log from Fig. 1a.

Fig. 3: Summary of the duplicate task discovery process.



3.1 Partitioning based on Excitation Sets

A significant difference between this proposal and previous approaches to du-
plicate tasks is that the proposed method works at the Transition System level.
The log is firstly converted into an LTS, and the clustering procedure generates
a partition based on causality relationships between excitation sets in this LTS,
rather than directly using the preceding and successor events in the log. Because
of this, the approach is resilient to processes where duplicate tasks are combined
with concurrency and choice. The use of clustering-based methods [9] and simi-
larity metrics rather than looking for exact matches also allow the proposed flow
to gracefully handle noise and incompleteness in the log.

Let us use an example to show the benefits of using ESs. Figure 4a shows
the LTS constructed from the log in Fig. 1a, with no duplicate task detection
performed. For simplicity, loops have been removed (allowing one iteration only).
As per the definition of LES, there are 3 LESs for activity b, shown in Fig. 4a.
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(a) Constructed LTS,
highlighting all LES(b).
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(b) Excitation set graph
of the LTS in (a).
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b1 {e} ∅
b2 {a} {c}
b3 {a} {c}
c1 {b, d} {a}
c2 {b, d} {e}

(c) Trigger relations between
LES.

Fig. 4: Example excitation set graph of a subset of Fig. 1a (loops removed).

Notice how the LESs of b provide an intuitive view of the correct partition
for activity b (as shown in Fig. 3b): LES(b)1 corresponds to the events of task b1,
while LES(b)2 ∪ LES(b)3 would correspond to b2. Our proposal classifies these
LES by their relationships with other LES. The excitation set graph represents
all the LES of a TS as well as the causality relationships between those:

Definition 2 (Excitation Set Graph). Given a Labeled Transition System
A = (S,Σ, T, s0), the excitation set graph of A is a graph ESG(A) where:

– The set of vertices V (ESG(A)) corresponds to the set of LES of A.
– For every pair (LES(a)i,LES(b)j) of A, with a, b ∈ Σ, there is an edge

(LES(a)i,LES(b)j) ∈ E(ESG(A)) iff for any s1 ∈ LES(a)i and s2 ∈ LES(b)j,

s1
a−→ s2 triggers b.



Figure 4b shows the corresponding excitation set graph of the example LTS,
while 4c summarizes the immediate trigger relations. Notice how this information
allows us to trivially distinguish between LES(b)1 and {LES(b)2,LES(b)3}, since
LES(b)1 triggers a different set of events.

Compare this to using predecessor and successor information from the log
directly, without constructing an LTS first. It is difficult to distinguish events of
b by looking at the immediately following event. For example, an event b followed
by e may indicate an instance of task b1 as discovered in the previous section,
but it may also be caused by an instance of b2, since it is concurrent with e.
Thus, using log information only, it would be difficult to construct an accurate
partition for b. The use of excitation sets avoids this problem.

Even when using excitation sets, the combination of choice, loops and/or
incomplete logs may introduce LES that have related but slightly different sets
of predecessors/successors, yet should be mapped to the same task. For this
reason, the proposed flow includes a clustering method that combines similar
LES. This method is described in the following section.

3.2 Hierarchical clustering algorithm

This section describes the method used by our proposal to classify local excita-
tion sets into groups with similar causality relationships. The described cluster-
ing method is agglomerative [9], discovering clusters using a bottom up approach:
the algorithm starts by assuming every that, for every activity a, every LES(a)i
belongs to its own cluster. In this initial solution, each LES maps to its own
duplicate task. Then, the algorithm considers the pairwise similarity of all the
LES, and combines the two closest (LES(a)i,LES(a)j) (of the same activity a)
into the same task ai. The entire process iterates until no further clustering can
be performed. On every iteration, the algorithm explores a solution with exactly
one duplicate task less than the previous solution.

Algorithm 1 Discovery flow with duplicate tasks

1: function DuplicateTaskDiscovery(L,M)
. L is the input log, M is a miner algorithm.

2: A← ConstructLTS(L)
3: G← ESG(A)
4: R← M(Li) . Stores the best result (process model) discovered so far
5: while |V (G)| > |Activities(A)| do . While there is some duplicate task
6: vi, vj ← FindMostSimilarNodes(G)
7: merge vi, vj into single node in G
8: Li ← TagLog(L,G) . Tag events in the log according to current partition
9: Ni ← M(Li) . Discover a temporary model for evaluation

10: if Ni is better than R then
11: R← Ni

12: return R

The full discovery algorithm can be seen in Algorithm 1. The input is a log
L. A is an LTS constructed from L (for example using the methods described in
[2]), while G is the initial ESG, constructed using the rules seen in Definition 2.
The output R is a process model with duplicate tasks.



In every iteration, procedure FindMostSimilarNodes selects two vertices
of G with the most similar context vectors, a numeric way to represent their
causality relations which will be explained in the following section. The selected
vertices are then merged into a single new vertex, representing the new cluster,
which inherits the causality relationships of the merged vertices. Note that only
vertices with the same activity label will be selected. The loop ends when there
is only vertex in G for every activity, i.e. there are no duplicate tasks.

To select which partition of tasks will be returned by our procedure, we
construct a temporary process model Ni at every iteration. The provided miner
is called using a log where events have been tagged according to the currently
evaluated partition. The details of how models are compared will be described
in a later section. Note that the total maximum number of models to evaluate
(i.e. the number of iterations in the procedure) is limited by the number of
excitation sets in the LTS. However, most processes contain only a few duplicate
tasks. Limiting to 4 or 5 tasks per activity reduces the number of models that
need to be evaluated to a few, depending on the number of different activities.

a1 a2 a3 b1 b2 b3 c1 c2 d1 d2 e1 e2 e3

Dup. tasks |P |+ |T | Precision

0 17 0.53

1 24 0.60

2 25 0.65

3 22 0.95

4 23 0.86

5 26 0.88

6 33 0.88

7 36 0.95

8 38 0.95

←

Fig. 5: Dendogram showing clustering of LTS in Fig. 4a.

Figure 5 visualizes the clustering procedure. The initial solution, where every
LES is partitioned into its own duplicate task, is shown at the bottom row. The
following row represents one iteration of the clustering process, in which a2, a3

were the most similar LES and were merged. Thus, the number of duplicate
tasks, in the first column, is reduced by 1. The top row shows the result after all
nodes have been merged and thus there are no duplicate tasks left. Columns 2
and 3 show sample metrics of the evaluation model for each row: Petri net size
and precision. The selected model has the best precision and smallest size.

Representing excitation set relations in vector space. In order to find the
closest two groups of LES, a distance metric capable of evaluating the similarity
of the relationships of two LES is required. For this, we will first provide a way
to represent, as a numeric vector, the causality relationships of a given vertex
(representing a LES or cluster of LES) in a ESG.



This representation needs to satisfy several requirements: a) it needs to be
normalized, allowing meaningful comparisons between different vertices, b) it
needs to distinguish vertices by their immediate predecessors/successors, but
also more distant neighbors. Otherwise, duplicate tasks sharing the same set
of immediate predecessors or successors would not be distinguishable. However,
similarity of closer neighbors should have more weight than distant neighbors.

Definition 3 (Context vector). Given LTS A, ESG(A), and a vertex v ∈
ESG(A), the forward context vector of v,

−→
Cv, is a function E 7→ R that maps

an activity e ∈ Σ to

−→
Cv(e) =

|Succ(v, e)|
2|Succ(v)|

+

∑
v′∈Succ(v)

−→
Cv′(e)

4|Succ(v)|

where Succ(v) is the set of immediate successors of v and Succ(v, e) is the set of
immediate successors of v of activities with label e. Similarly, we can define the

backwards context vector,
←−
Cv, using predecessors instead of successors.

For a given vertex v and event e, the value of
−→
Cv(e) depends on the number

of e-successors of v relative to the total number of successors of v. Notice the
function gives decreasing weight to more distant successors using the pattern
1
2 + 1

4 + 1
8 + . . .. Thus, the function is normalized between [0 . . . 1), allowing for

numeric comparisons between different vectors.
Imposing a limit k to the recursion depth, context vectors are easy to compute

with a single pass over the graph. As the weight of successors decreases with
distance, this limit does not impact the quality of the metric. An example list
of context vectors for the graph in Fig. 4b is shown in Table 1, assuming k = 2.

Table 1: Context vectors for the ESG in Fig. 4b.
Forward Backward

LES a b c d e a b c d e
a1 0 1/8 1/2 1/8 0 0 0 0 0 0
a2 0 0 0 0 0 0 1/4 0 1/8 + 1/8 1/4
a3 0 0 0 0 0 0 1/4 0 1/8 + 1/8 1/4
b1 0 0 1/4 0 1/2 0 0 0 0 0
b2 1/2 0 0 0 0 1/4 0 1/2 0 0
b3 1/2 0 0 0 0 0 0 1/2 0 1/4
c1 1/16 + 2/16 1/4 0 1/4 1/16 1/2 0 0 0 0
c2 1/16 + 2/16 1/4 0 1/4 1/16 0 1/4 0 0 1/2

Distance function. To measure the similarity (distance) between two vertices
v1, v2 ∈ ESG(A), the following formula is used, where d is the Euclidean distance:

dist(v1, v2) = min(d(
−→
Cv1 ,
−→
Cv2),d(

←−
Cv1 ,
←−
Cv2))

Using the minimal distance between the forward and backward vectors allows
proper detection of duplicate tasks in the first and last iterations of loops. For



tasks in a loop, several LESs may exist in the LTS for different iterations of the
same task. The causality relations of the LESs corresponding to the first and last
iterations will be different of those from inner iterations. For example, only the
LES corresponding to the last iteration will not trigger other LESs of the same
task. By centering on either the backward or forward context vector, depending
on which pair is the closest, these LESs will still be clustered into a single task.

Comparing candidate models. Traditional hierarchical clustering algorithms
use various criteria to determine which clustering solution is more suited to the
data, such as for example the elbow criteria [10]. However, the flow proposed in
this work produces more than one candidate model, allowing the exploration of
the trade-off between precision and simplicity. By limiting the maximum num-
ber of allowed duplicate tasks, the set of candidate models can be kept under
manageable sizes. Therefore, conventional conformance checking strategies may
be used to accurately compare the candidate models, e.g. measuring fitness, pre-
cision, generalization or simplicity. Generally, a combination of these parameters
will be used, depending on user preference. For example, maximizing precision
while constraining the simplicity to a minimum threshold value.

Figure 5 shows that the precision increases with every duplicate task until
95% with 3 duplicate tasks, and then decreases, revealing that more duplicate
tasks introduce unnecessary choices and are not necessary for this process. The
result, with 3 duplicate tasks, exactly matches the model shown in Fig. 1c.

4 Structural simplification

This section introduces the structural simplifications proposed in this work: sub-
stituting common control flow patterns with special meta-tasks that represent
optional or iterative behavior.

The simplifications are especially suitable for Petri nets. They reduce the
complexity of the net while still allowing the expressiveness of Petri nets. In ad-
dition, the proposed simplifications exactly preserve the semantics of the models,
and thus, conformance metrics such as fitness and precision.

The simplifications center on two aspects. First, the removal of unnecessary
silent transitions. While silent transitions are a useful construct, many mining
algorithms or conversions from other modeling languages often generate silent
transitions that may be unnecessary [11]. Second, we introduce a series of meta-
transitions which extend the language of Petri nets and represent simple flow
control operations such as optional or iterative behavior.

Removal of silent transitions. Our proposal removes unnecessary silent tran-
sitions by following the transformations shown in Fig. 6. The objective of these
transformations is to eliminate as many silent transitions as possible without im-
pacting the semantics of the Petri net, so that the set of traces fitting the original
net is identical to the traces fitting the transformed Petri net. The transforma-
tions proposed are similar to the liveness and safeness-preserving transformations
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Fig. 7: Rules for transformation using meta-transitions.

proposed in [8], that have been already used in previous work [11,12] also with
the goal of removing silent transitions. However, the existing set of transforma-
tions is not exhaustive. For example, it is not possible to remove all the silent
transitions from the model in Fig. 1c using only the rules defined in [8].

By centering on a commonly used structural type of Petri nets, sound work-
flow nets [13], we are able to introduce additional transformations covering the
removal of more silent transitions. For example, Fig. 6b proposes that fusion of
serial places can be performed even if the first place has other outgoing arcs.
However, this transformation does not fully preserve the behavior of general
Petri nets, as it may remove deadlocks present in the original Petri net. Full
preservation of behavior, including liveness, is only guaranteed in the case of live
Petri nets or nets with deadlocks only on specific states, such as sound workflow
nets. For the former subtype of Petri nets, deadlocks only appear in states where
the output sink place is marked [13], and the output place will never be modified
by the transformation rule.



Meta-transitions. A meta-transition replaces common a Petri net substruc-
ture (e.g., a self-loop) with a single transition that is defined to have identical
behavior. By transforming a Petri net, replacing instances of these structures by
meta-transitions, the element count of a Petri net can be reduced while com-
pletely preserving its behavior. The transformed net will fit exactly the same
traces as the original net. In addition, the transformation may open the door to
further simplifications such as removal of additional silent transitions.

In Figure 7 we show the proposed new meta-transitions, as well as the be-
havior represented by each meta-transition. These specific patterns have been
selected because of their high frequency in real-life processes. In addition, the
well-known regular expression-like syntax used in the meta-transitions makes
their meaning familiar.

The first meta-transition, a?, models an optional event: it is equivalent to a
choice between the empty label τ and trace a. The other two meta-transitions
represent iterative behavior. a∗ is equivalent to a self-loop. Thus, it fits the empty
trace, but also {a, aa, aaa, . . .}. Meta-transition a+ similarly represents a loop
of a, but requires at least one iteration.

5 Experimental evaluation

The algorithms described in this work have been implemented using PMLAB [14].
To construct an LTS from the input log, the multiset abstraction from [2] is used.
Our implementation of the clustering procedure uses the centroid linkage func-
tionality of [10] to avoid recomputing context vectors on every iteration.

For a set of benchmarks, we compare the quality metrics of the models ob-
tained with and without the proposed duplicate task discovery algorithm, as
well as the reduction in complexity after the structural simplifications and use
of meta-transitions. All benchmarks are available at http://www.cs.upc.edu/

~jspedro/pnsimpl/. In order to demonstrate the ability of the proposal to work
with multiple miners, two different miners will be used: Inductive Miner [7] (IM)
and Petrify [15]. While the current version of the Inductive Miner does not
support duplicate tasks, Petrify contains some support for automatic discovery
of duplicate tasks [4]. Thus, models discovered by Petrify may already contain
duplicate task before the clustering method proposed in this article takes place.

Precision and generalization are measured using the available ProM plugins
[16,17]. To measure complexity, we will show the size of the Petri nets. For
non-workflow Petri nets, such as those generated by Petrify, we will also use
a complexity metric closely related to the concept of planarity: the minimal
number of crossings required to embed the graph on a plane. This number is
estimated using GraphViz [18].

The method used to select a model from the list of candidates produced by
the duplicate task discovery method depends on the miner used. When using
the IM, the smallest model (in terms of places and transitions) out of all models
with highest precision will be selected. When using Petrify, the model with lowest
number of crossings, out of those with highest precision, is used instead.

http://www.cs.upc.edu/~jspedro/pnsimpl/
http://www.cs.upc.edu/~jspedro/pnsimpl/


Artificial benchmarks. To evaluate our duplicate task discovery workflow and
compare to the results presented by previous work, we reuse an existing dataset
comprising a combination of logs [19,6,5] whose source processes are well-known
and reproduce behavior commonly found in real-life. Because these benchmarks
have no noise, the miners were configured to generate perfectly fitting models.

Table 2: Comparison using artificial benchmarks.
Inductive Miner With duplicate tasks After simpl.
|P | |T | |τ | Prec. Gen. |P | |T | |τ | Prec. Gen. |P | |T | |τ |

alpha 11 17 6 68% 100% 11 16 4 70% 100% † 9 13 1
betaSimpl 14 21 8 62% 86% 14 16 1 94% 73% 14 15 0
Fig5p19 9 14 6 67% 89% 12 14 5 85% 76% 12 12 3
Fig5p1AND 9 8 3 83% 28% 10 8 2 100% 0% 9 7 1
Fig5p1OR 5 6 1 70% 33% 6 6 0 100% 0% 6 6 0
Fig6p10 15 24 13 63% 100% 19 25 10 77% 100% 18 19 4
Fig6p25 22 35 14 76% 100% 24 35 12 84% 100% 23 27 4
Fig6p31 6 10 1 63% 72% 9 11 0 100% 42% 9 11 0
Fig6p33 7 11 1 67% 70% 10 12 0 100% 38% 10 12 0
Fig6p34 17 24 12 58% 100% 19 20 4 93% 100% 17 18 2
Fig6p38 13 11 4 62% 84% 12 14 6 66% 87% 11 11 3
Fig6p39 12 12 5 90% 94% 12 12 5 90% 94% † 10 9 2
Fig6p42 7 18 4 23% 100% 26 32 12 75% 96% † 24 29 9
Fig6p9 10 15 8 67% 82% 9 12 3 83% 72% 9 9 0
flightCar 10 14 4 67% 64% 10 14 4 67% 64% † 11 9 1
RelProc 21 28 12 71% 100% 21 28 11 74% 100% † 19 21 4

Petrify With duplicate tasks After simpl.
|P | |T | Cros. Prec. Gen. |P | |T | Cros. Prec. Gen. |P | |T | Cros.

alpha 13 11 11 92% 100% 12 12 1 92% 100% † 12 12 1
betaSimpl 11 13 1 80% 77% 14 15 0 97% 39% 15 15 0
Fig5p19 8 8 2 100% 74% 9 9 1 100% 58% 9 9 1
Fig5p1AND 8 5 0 100% 0% 7 6 0 100% 0% 7 6 0
Fig5p1OR 5 5 3 100% 0% 5 6 0 100% 0% 5 6 0
Fig6p10 7 11 1 39% 100% 13 15 1 91% 100% 13 15 1
Fig6p25 14 21 6 80% 100% 14 23 0 80% 100% 18 23 0
Fig6p31 7 9 12 100% 42% 8 11 0 100% 42% 8 11 0
Fig6p33 8 10 7 100% 38% 9 12 0 100% 38% 9 12 0
Fig6p34 9 12 4 39% 100% 14 16 0 89% 100% 14 16 0
Fig6p38 8 7 0 71% 85% 10 8 0 100% 64% 10 8 0
Fig6p39 6 7 0 72% 98% 7 8 1 86% 86% † 8 8 0
Fig6p42 11 14 20 37% 98% 21 23 3 96% 94% † 21 23 3
Fig6p9 9 7 9 100% 54% 8 9 0 100% 54% 8 9 0
flightCar 6 8 0 58% 72% 6 8 0 58% 72% † 7 8 0
RelProc 16 16 11 87% 100% 15 17 2 87% 100% † 15 17 2

Table 2 summarizes the results. For every benchmark, there are three different
runs: in the first one, the log is mined with the default miner configuration. In
the second run, the flow with duplicate task discovery as presented in this work
is used. In the third result, we apply structural simplifications (silent transition
elimination and meta-transitions) on top of the model discovered on the second
run. For each run, we evaluate the size of the model (number of places, transitions
and silent (τ) transitions) as well as its precision and generalization.

The proposed method significantly increases the precision on all the bench-
marks. In some examples, generalization is reduced, yet still shows that the
method results in models that are not overfitting. In tests with the Inductive
Miner, using duplicate tasks allows removing most of the silent transitions, and
thus the overall complexity of the model decreases. Using meta-transitions, ad-
ditional silent tasks can be removed. On the other hand, when combining our
discovery flow with Petrify, the discovery of duplicate tasks allows for models



with fewer crossings. However, results after simplification are not as remarkable
as with the IM, since Petrify does not discover silent transitions.

For the majority of benchmarks, the partition of tasks discovered by the
proposed flow exactly matched the duplicate tasks in the original process. The
exceptions are marked with †. These cases are usually situations where, e.g., du-
plicate tasks are concurrent with themselves. Despite the fact that the partition
is not exactly correct, the increase in quality metrics is still significant.

Logs with noise. An additional experiment shows the resilience of the proposed
method to noise. We used Process Log Generator (PLG) [20] to generate a set of
3 random processes using a process depth of 3 and uniform probabilities for all
control flow operators. Then, for each of these processes, we generated 10 logs
containing 1000 traces each. In each log a different amount of random control-
flow noise was injected using PLG, ranging from 0% to 10%.
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Fig. 8: Resilience of duplicate task discovery to different artificial noise levels.

Figure 8 compares the precision of the models obtained using the Inductive
Miner – infrequent [7] (IMi) miner, configured with a 20% threshold, with the
models obtained by the combination of our duplicate task discovery flow and
the IMi. For the 3 evaluated processes, our flow can discover duplicate tasks and
thus increase the precision even when confronted with noise. The differences in
fitness were always smaller than 5% between both versions.

On a Intel Core i5-2520m, our implementation of the clustering procedure
is able to provide a set of candidate partitions in less than 4 seconds, even
for the largest of these logs. The runtime of the miner, required to evaluate
each candidate, is usually much larger than the clustering process. However, the
number of candidates to be evaluated can be limited by setting an upper bound
to the number of allowed duplicate tasks per label.

6 Related work

Several methods already exist for duplicate task detection. In [6], a set of heuris-
tics creates a candidate set of duplicate tasks, which is then explored by a lo-
cal search procedure working in tandem with an arbitrary mining algorithm.



The method produces high-quality results in combination with advanced min-
ers. However, since the miner influences the direction of the search, it is difficult
to predict the runtime of the discovery process. In this work, the miner algorithm
is only used to evaluate the set of candidate results. The number of results is
exactly bounded by the maximum number of allowed duplicate tasks per event.
The work in [5] proposes a clustering approach based on the context of events
similar to the one described in this work. Analogously, finding repeating patterns
in the log [21] may be used to discover potential duplicate tasks. However, our
work uses excitation sets to identify the context of events, which allows for more
accurate detection that using the log directly.

A different family of methods to perform duplicate task detection are tied
to specific mining technologies. For example, Fodina [22], Genetic Miner [3],
AGNEs [23], InWoLvE [19], region theory [4], α∗-algorithm [24]. The proposal
in this work works with any mining algorithm, and does not require e.g. workflow
nets or other specific process models.

For the second proposal in this work, structural simplifications, a poten-
tial comparable work is the use of other process modeling notations, such as
BPMN [1]. The formalisms presented in this paper still allow the expressiveness
of Petri nets, yet hide the complexity of common flow control operators. Other
methods to simplify Petri nets do so at the cost of accuracy [25,26].

7 Conclusions

This work has presented methods for simplification of process models that im-
prove the quality of discovered models, in both simplicity and precision, while
using different mining algorithms.

As future work, we envision methods that work even in the presence of con-
current duplicate tasks, which are currently handled with unsatisfactory results.
In addition, the language of structural tasks can be extended, for example, to
allow simple regular expressions in nodes, e.g., (a|bc)∗.
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