
Synthesis of All-Digital Delay Lines

Alberto Moreno and Jordi Cortadella
Department of Computer Science, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.

Abstract—The synthesis of delay lines (DLs) is a core task during the
generation of matched delays, ring oscillator clocks or delay monitors.
The main figure of merit of a DL is the fidelity to track variability.
Unfortunately, complex systems have a great diversity of timing paths that
exhibit different sensitivities to static and dynamic variations. Designing
DLs that capture this diversity is an ardous task. This paper proposes
an algorithmic approach for the synthesis of DLs that can be integrated
in a conventional design flow. The algorithm uses heuristics to perform a
combinatorial search in a vast space of solutions that combine different
types of gates and wire lengths. The synthesized DLs are (1) all digital, i.e.,
built of conventional standard cells, (2) accurate in tracking variability
and (3) configurable at runtime. Experimental results with a commercial
standard cell library confirm the quality of the DLs that only exhibit
delay mismatches of about 1% on average over all PVT corners.

I. INTRODUCTION

Delay lines (DLs) have been used in different contexts to track

the increasing variability of integrated circuits as CMOS advances to

smaller technology nodes. The main goal of a variability-tracking DL

is to have a circuit that generates a delay highly correlated with the

longest timing path of the system. DLs are often used for post-silicon

tuning [1]–[4], thus enabling the reduction of guardband margins.

One of the potential uses for DLs is in bundled-data (BD) asyn-

chronous circuits [5] where DLs are inserted in the paths of the

handshake signals (req/ack) that synchronize different modules of

the system. For a correct operation, delays need to be longer than

the critical path yet as small as possible to prevent performance

degradation.

The notion of Representative Critical Path (RCP) is used in [1] for

the synthesis of a DL highly correlated with the circuit delay. Two

algorithms are proposed for designing RCPs based statistical static

timing models for variability rather than using the more conventional

static timing analysis (STA).

Delay monitors, such as canary paths, are also built with DLs [6].

In [7], a comprehensive survey can be found. An algorithmic tech-

nique is also introduced for designing Ring Oscillators (RO) for

circuit performance monitoring. The approach of [7] simplifies the

design of DLs by considering only blocks of identical gates and

specific interconnect lengths as the basic building element. This

allows to ignore variations in slew propagation and capacitance

between blocks. With this simplification, the problem can be modeled

by an integer linear program, at the cost of losing flexibility and

precision.

DLs can be used for the design of Ring Oscillator Clocks

(ROCs) [8]. An ROC is a ring oscillator used as clock generator and

with a variability highly correlated to the critical paths of the circuit.

ROCs are proposed as a substitute of the classical Phase-Locked Loop

(PLL). This allows a significant reduction of guardband margins.

In particular, it provides a robust scheme for instantly adapting to

voltage droops without the need of introducing large margins.

∗This work has been partially supported by funds from the Spanish Ministry
for Economy and Competitiveness and the European Union (FEDER funds)
under grant TIN2013-46181-C2-1-R, the Generalitat de Catalunya (2014 SGR
1034 and FI-DGR 2015).

Fig. 1. Several timing paths and delay line at different PVT corners.

DLs can also benefit from post-silicon tuning to reduce margins

after chip manufacturing by adjusting the delays. There are several

ways of accomplishing this, including analog and digital techniques.

On the analog side, voltage-controlled delay elements are typically

used [9]–[11]. Digitally-controlled delay elements are also possible,

for example, by interleaving multiplexers in the DL [4], [12].

All these schemes share the need to accurately match the delay

of a DL with timing paths that exhibit PVT variability. Using the

terminology of STA, we can say that different timing paths may have

different criticality at different PVT corners. Therefore, designing a

DL by simply replicating a timing path of the circuit is not always

a good approach for delay matching.

A typical situation of time criticality is depicted in Fig. 1. The

histogram shows the delay of three different paths (Path 1-3) at five

different PVT corners (Corner 1-5). Due to the different sensitivities

to PVT variations, none of them can be taken as a representative of

the time criticality of the circuit.

In general, the number of critical paths (with small slack) tends

to be extremely large. The main reason is that physical design tools

amortize the available time slacks to reduce power by undersizing

non-critical gates. In this context, synthesizing a DL that is, at

the same time, reliable and accurate at all corners is a challenging

problem. The figure also illustrates the desirable properties for a DL:

• It must be longer than the longest delay at any corner (within a

certain guardband margin).

• It must be as short as possible to minimize performance degra-

dation.

It is also desirable that DLs can be synthesized and analyzed using

conventional standard cell libraries and design automation flows. In

this way, the use of DLs can be leveraged in a broader spectrum of

application domains.

All the previous requirements pose a challenge for the design of

DLs that must address several aspects:

• How to extract the timing characteristics of a circuit at all PVT

corners without enumerating all critical paths?

• How to build a chain of heterogeneous standard cells that

mimic the timing behavior of the circuit under different PVT

conditions?

2017 23rd IEEE International Symposium on Asynchronous Circuits and Systems

978-1-5386-2749-5/17 $31.00 © 2017 IEEE

DOI 10.1109/ASYNC.2017.10

75

• How to take into account the variations introduced by the

interconnect components (wires)?

• How to make the DL configurable?

This paper proposes algorithmic techniques for the synthesis of

all-digital DLs with the following characteristics:

• The DLs only contain cells from a standard cell library. No

custom cells or analog components are used.

• The timing of the DLs is analyzed by conventional STA tools

using library corners and derating factors to model PVT vari-

ability.

• The design of DLs includes physical synthesis. In particular, an

algorithm for cell placement and derivation of routing constraints

for interconnects is proposed.

• The DLs include configurable delays for post-silicon tuning.

The area and power consumption of the DLs can be considered

negligible when used for coarse-grain control, e.g., large clock

domains or complex functional units.

A. Relevance of the problem

Fig. 2 illustrates the importance of designing DLs with a mixed

combination of gates and wires to accurately track variability at

different operating conditions. The algorithm proposed in this paper

was used to generate DLs for the ITC99 benchmarks [13]. For the

selection of the DL cells, three scenarios were considered: (1) only

using one type of inverter (i.e. all the cells are identical), (2) using a

mix of inverters of different size and (3) using a mix of combinational

cells in the standard cell library. The algorithm tried to find the best

match for each scenario.

A commercial 65nm library was used to map all reported circuits.

Variability was modeled by considering 22 different PVT corners

with temperatures in the interval [−40oC, 125oC], power supply in

the range [0.9V, 1.32V] and process parameters including SS, TT

and FF models for transistors. The RCmin and RCmax corners were

used to model the variability of the interconnect layers.

The figure depicts the average discrepancy (mismatch %) of the

DLs with regard to the delay of the ITC99 circuits [13] mapped onto

the library. The average was calculated over the delays reported by

STA (Synopsys PrimeTime [14]) at all available corners of the library

(more details in Sect. VI).

It can be observed that matching delays with only one type of

inverter may result in a large mismatch (e.g., 20% for b13). Using

a mix of inverters with different size may mitigate the mismatch

significantly (6% for b13). Finally, the use of a mix of gates with

large diversity may contribute to have a good match at all corners

(1% on average for b13).

Table I also reports the usage of each cell type in the DLs when

any type of cell was used for synthesis. We can observe that more

than half of the gates are not inverters. It is precisely this diversity

what allows a better matching at different operating conditions. It

is important to emphasize that the DLs do not only select a mix of

gates, but also a mix of wire lengths between neighboring cells to

account for interconnect variability. The details will be described in

the paper.

Fig. 3 depicts an example of DL synthesized to match the delay of

one of the experimental circuits (b05). The picture shows the diversity

of gates and sizes used in the DL that contribute to mimic the delay

of the circuit more accurately at different operating conditions1.

1The numbers inside the gates indicate the size of the cells.

TABLE I
GATE TYPE USAGE IN DELAY LINES

Gate Usage Gate Usage Gate Usage

INV 42.2% CKND2 4.1% AO221 0.4%

NAND3 18.6% NAND4 1.9% XNOR2 0.4%

NOR2B1 13.5% NOR2 1.0% OAI222 0.4%

CKINV 6.6% NAND2B1 0.6% OA211 0.3%

NAND2 4.9% AOI21B20 0.5% Others 4.6%

TABLE II
DELAY LINE STAGE PARAMETERS

c Corner from the set of CORNERS

dc,i Delay of stage i at corner c

Cc,i Output capacitance of stage i at corner c

Sc,i Input slew of stage i at corner c

wc,i Wire delay of stage i at corner c

II. NOMENCLATURE, PROBLEM STATEMENT AND OVERVIEW

The problem we want to solve is the synthesis of a DL that matches

the delay of a circuit under any potential operating conditions. In

our context, variability is modeled using the same PVT corners

and derating factors used during conventional STA to model global

variability and on-chip variability (OCV)2.

Using STA, the delay of the most critical path at each corner is

obtained. However, any information about the particular critical path

that generates the longest delay is disregarded, bearing in mind that

each corner may exhibit different critical paths and the particular

structure of each critical path is irrelevant. We will call Dmaxc the

longest delay at corner c.

With this information, and the use of OCV derating factors, a set

of target delays T is derived. This set contains, for each corner c,

the ideal delay τc ∈ T of the DL for that corner. Formally:

τc = δ · Dmaxc. (1)

with δ > 1 being the OCV derating factor3.

Fig. 4 shows a representation of a DL, which is a sequence of

gates and wires. Each pair gate/wire will be referred to as a stage

of the DL. Each stage i has an output capacitance Ci, an input slew

Si and a delay di. For the sake of simplicity in the nomenclature

and the description of the algorithm, we will not distinguish between

falling and rising delays. However, they are considered in the actual

algorithms and results reported in the paper.

Each stage i is characterized by the parameters defined in Table II,

where c represents the PVT corner at which the parameters are

measured. The delay for stage i is computed as the sum of the gate

and wire delays. The gate delay and the output slew are functions of

the input slew and output capacitance:

dc,i = GateDelayc(Sc,i, Cc,i) + wc,i; Sc,i+1 = Slewc(Sc,i, Cc,i).

The output capacitance for stage i is the sum of the input capacitance

for stage i+ 1 and the wire capacitance of stage i.

2An in-depth discussion about derating factors for DLs can be found in [15].
3For simplicity, we assume a unique δ for all corners. However the proposed

approach can be easily extended to different values of δ for each corner.

76

b01 b02 b03 b04 b05 b06 b07 b08 b09 b10 b11 b12 b13 b14 b14_1 b15 b15_1 b17 b17_1 b18 b18_1 b19 b19_1 b20 b20_1 b21 b21_1 b22 b22_1
0

5

10

15

20

M
is
m
a
tc
h
(%

)

DL with any cell

DL with inverters of any size

DL with only one type of inverter

Fig. 2. Accuracy of a DL when using only inverters or any cell in the library. The Y-axis represents average mismatch.

1 0
0

1
0

1

1

0
0

0
1

0

1
11

1
1

0

16 3 2
8

6 2

16

2888

IN

OUT

Fig. 3. DL obtained for matching the delay of b05.

IN
OUT

Si
Ci

wi

i i+1 i+2 n

1
0
0

1
0
0

Fig. 4. Stages of a delay line.

The delay of a DL of n stages at corner c is obtained by adding

the delays of all stages:

delayc(DL) =

n∑

i=1

dc,i

Given a set of target delays {τc}, we can define the delay mismatch
of a DL at each corner c:

Mismatchc(DL) = delayc(DL)− τc.

It is important to notice that the mismatch is computed on a delay

that has already been derated to take into account on-chip variability

(equation (1)). For the algorithm, it is also convenient to define a

normalized version of the mismtch:

NormMismatchc(DL) =
Mismatchc(DL)

τc
. (2)

Delay constraint: For a DL to be correct, it should be always longer

than the target delay. Therefore, the following property must hold for

any valid DL:

∀c ∈ CORNERS : Mismatchc(DL) > 0. (3)

Cost function: A cost function is needed to guide the exploration

of the DL structure during the execution of the synthesis algorithm.

The cost function is responsible for reducing the mismatch between

the DL and the delay of the circuit at different corners. Depending

on the context, various cost functions may be considered. Here we

present a generalized formulation that can be customized for different

application domains:

Cost(DL) =
∑

c∈CORNERS

ωc · NormMismatchc(DL)α (4)

with ωc being a set of weights associated to each corner and α being

a constant to control the mismatch diversity. For example, if the

designer would prefer to minimize the mismatch at the typical corner,

at the expense of having more mismatch at other corners, then the

weight ωtyp should be increased. If α has a small value (e.g., α = 1),

then the cost function will guide the exploration towards minimizing

the average mismatch over all corners. Instead, if a large value is

used (e.g., α = 3), the cost function will guide towards minimizing

the maximum mismatch over all corners.

The algorithm presented in this paper is independent of the cost

function used for optimization. Therefore, the designer can propose

her/his own customized cost function.

Problem statement: The synthesis problem consists of finding a

sequence of gates and wires to build a DL with the following goal:

minimize: Cost(DL)
subject to: Constraint (3)

Exploration space: The space of potential configurations for a DL

is determined by the number of gates in the library (G) and the set of

wire configurations for each stage (W). Unfortunately, W is infinite:

any sequence of segments of different length using different layers

could be potentially used to connect two consecutive gates. To prune

the search space, only a small subset of wire configurations is defined

a priori to cover a reasonable spectrum of wire lengths.

As an example, the results presented in this paper have been

obtained by considering wires with length 5, 12, 25, 50 and 100μm
(the height of a standard cell is 1.8μm). More details about the gate

and wire delay models will be given in Sect. III-A.

Still, with G and W being finite, the possible set of configurations

of a DL with N stages is (|G|× |W |)N , which makes an exhaustive

exploration impractical, bearing in mind that N is unknown and can

potentially be a large number (e.g., N > 50 in some of the examples

reported in Sect. VI).

Overview of the DL synthesis flow: The algorithmic strategy to

generate a DL is decomposed into four steps:

1) Selection of gates and wire lengths that will constitute the DL

(algorithm presented in Sect. III).

2) Physical placement of the gates (Sect. IV).

3) Routing of wires using conventional EDA tools.

4) Timing sign-off with STA tools. If some timing violation is

produced, the target delay is slightly adjusted and steps 1-4 are

executed again until no violation occurs.

Steps 1 and 2, described later in this paper, use simplified delay

models to synthesized the DLs. Step 4 ensures that DLs will always

meet constraint (3) using the same timing models as the STA tools.

III. ALGORITHM FOR GATE AND WIRE SELECTION

The synthesis of a DL is a combinatorial optimization problem.

In this paper we present a heuristic algorithm based on the Beam
Search paradigm [16]. Beam Search is based on a constant parameter

β (beam width) and explores a search tree by keeping β partial

77

......

......

......

i

i+1

i+2

i+3

Fig. 5. Beam Search with β = 2 showing the search levels i . . . i+ 3. The
selected candidates are shadowed.

solutions at each level selected from all the solutions generated from

the previous level. A heuristic cost function is used to select the β
best solutions. Fig. 5 shows a search example with β = 2.

For the synthesis of DLs, each tree level i stores partial solutions

with i gates. When all the generated solutions meet constraint (3),

the search is aborted and the best solution is delivered.

For the details of the algorithm, it is important to define two new

concepts:

• Partial delay line (PDL): any DL with zero or more stages.

• Final delay line (FDL): any PDL that meets constraint (3).

Algorithm 1 shows the main loop of the synthesis algorithm.

Initially, the set of PDLs is initialized with a 0-stage DL (level 0

of the search tree) and the set of FDLs is empty. At each iteration

of the main loop, each element in PDL is extended by one stage

and the β best solutions are stored, according to the cost function

described later in Algorithm 3. The extension is performed by the

function EXTENDDELAYLINES, described in detail by Algorithm 2.

Algorithm 1: BEAMSEARCH(β)

begin
dl = DL with 0 stages

FDL = ∅ // Set of FDLs
PDL = {dl} // Set of PDLs
while not Empty(PDL) do

// Generate next level of DLs
PDL, FDL = EXTENDDELAYLINES(PDL, FDL)

PDL = select the β best DLs from PDL
return the best DL in FDL

The function EXTENDDELAYLINES generates the next level of the

search tree by adding a new gate g and a wire w to the PDLs gen-

erated in the previous level. Wires contains a discrete variety of wire

lengths. The number of new solutions is |PDL| × |Gates| × |Wires|,
from which the Beam Search algorithm will select the β best

solutions. If any of the new solutions meets constraint (3), it is stored

in the set of final solutions (FDL).

Finally, Algorithm 3 shows the function that computes the cost of

each PDL. The function estimates the accuracy of a PDL if the current

delays would be scaled linearly to meet constraint (3). First, a scaling

factor s is calculated that corresponds to the smallest factor required

to meet constraint (3) at each corner. Next, the normalized mismatch

is computed for each corner using the scaled delays. Finally, the cost

of the DL is estimated using the scaled mismatches and the cost

function (4).

A. Gate and wire delay models

The models used during the synthesis of DLs are identical to the

ones used for STA. Each library uses one or more delay models (e.g.,

Algorithm 2: EXTENDDELAYLINES(PDL, FDL)

input : A set of PDLs and FDLs stored in PDL and FDL,

respectively

begin
newPDL= ∅ // Stores next level of the tree
foreach dl ∈ PDL do

foreach g ∈ Gates do
foreach w ∈ Wires do

dl’ = addStage(dl, g, w)

if dl’ meets constraint (3) then
FDL = FDL ∪ {dl’}

else
newPDL = newPDL ∪ dl’

return newPDL, FDL

Algorithm 3: COST(dl)

begin
// s′ is a vector of scaling factors
foreach c ∈ CORNERS do

s′[c] = τc/delayc(dl)

s = max(s′) // scale factor
// Vector of scaled normalized mismatches
foreach c ∈ CORNERS do

NormMismatch[c] = (s · delayc(dl)− τc)/τc

// Apply the cost function (4)
return CostFunction(NormMismatch)

NLDM, CCS, ECSM). One of the simplest is NLDM, which is the

one used in this paper for the experiments. However, the delay model

is only used in the evaluation of the cost function and the heuristic

exploration can easily adopt any other model.

For NLDM, each timing arc defines, for each transition direction,

a transition time (slew) and a delay table. These tables are indexed

by the output capacitance and input slew. The delay and output slew

are calculated by a bilinear interpolation.

Libraries also include wire models. The main parameters that affect

wire delays are capacitance, resistance and crosstalk. For a set of

technological parameters (e.g., resistance/capacitance per unit length),

resistance mainly depends on wire length, whereas capacitance and

crosstalk are heavily influenced by surrounding wires.

DLs have three interesting properties that simplify delay analysis:

(1) the nets do not have glitches, (2) the time windows of the nets do

not overlap, and (3) all nets have single fanout4. In this way, simple

delay models can be used and crosstalk can be ignored by simply

isolating or shielding the DL.

In order to simplify the analysis of interconnect delays, the

following routing constraints for the DLs are defined:

• Only a small set of metal layers is used. This limits the range

of resistivity coefficients and increases the correlation between

delay and wire length, regardless the layers used during routing.

In our experiments, only three layers were used.

• All the wires must have the same width.

4Property (3) is not fully complied when synthesizing configurable DLs
with muxes (see section V).

78

Fig. 6. Linear regression to estimate capacitance as a function of wire length.

• Large spacing rules between wires are defined. This dramatically

reduces coupling capacitance.

• The DL must be isolated from the rest of the circuit, preventing

crosstalk.

• The routing algorithm must minimize length. This is important

for predicting wire length during placement.

With the previous constraints, wire delays mostly depends on wire

length. Thus, simple delay models can be generated by randomly

synthesizing DLs and learning a simple statistical prediction model.

Fig. 6 shows a linear regression to estimate capacitance from a set of

wires extracted from synthesized DLs, where each point represents

a net. A high correlation between capacitance and wire length can

be observed (R2 = 0.98). A similar correlation is observed for wire

delay predictions.

B. Implementation details

In the previous sections, it was assumed that the gate delay of a

stage only depends on the input slew and output capacitance. In a

real scenario, delay also depends on the transition direction (rising or

falling). The previous algorithm can be easily extended to take into

account the delays in both directions and select the most convenient.

Each combinational gate may also have multiple input pins and

each one may be eligible for the connection with the previous

stage. Each input pin and transition direction corresponds to a

different timing arc in the gate with different characteristics in slew,

capacitance and delay.

The search algorithm can be easily extended to explore any input

pin of each combinational gate with both transitions, rising and

falling. In fact, any library gate could be considered as a family

of gates in which a different pin and transition is selected for the

exploration.

The non-selected input pins must be connected to constant values in

such a way that the selected input pin is sensitized (e.g., the remaining

pins of a NAND gate must be connected to 1).

The DL is treated as a black box during physical design. Therefore,

space for the DL must reserved a priori and used for placing its cells,

as explained in Section IV.

Finally, the algorithm for DL synthesis assumes that the driver of

the first gate and the output capacitance of the last gate are known in

advance. For example, if the DL implements a delay monitor, there

will be flip-flops at the input/output of the DL. In handshake circuits,

there might be C-elements.

IV. CELL PLACEMENT

The last step for the synthesis of DLs is physical synthesis

(placement and routing). Routing is delegated to the existing routing

tool in the design flow, but imposing the constraints described in

Sect. III-A.

0

1

2

3

4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C

R

W

H

x

y

g0

g1

g2g2

g3

Fig. 7. Placement area for a delay line discretized into a grid.

This section proposes a SAT formulation for the placement step.

The SAT formula is guided by the wire lengths of each stage selected

during the synthesis step (see Algorithm 2).

Given the routing constraints defined for the wires, that push for

the minimization of wire length, it is reasonable to assume that the

nets will have a length close the half-perimeter of their bounding

boxes. Therefore, the half-perimeter wire length (HPWL) model can

be used as a good estimator.

The input of the placement formulation is a DL:

g1
l1−→ g2

l2−→ · · · li−1−→ gi
li−→ gi+1 · · · ln−1−→ gn (5)

where gi represents the gate at stage i and li represents the required

wire length from gi to gi+1.

The gates must be placed in an pre-defined area of the circuit. Fig. 7

depicts a placement area with width x and height y, divided in R
rows and C columns. The height of each row is H and corresponds

to the height of the standard cells. The width of each column is W
and must be a multiple of the minimum routing granularity specified

in the cell library. Hence,

R = y/H C = x/W.

Placement problem statement: Given a DL as defined in (5), place

the gates g1 . . . gn in a gridded area such that:

∀i ∈ {1, . . . , n− 1} : |MANH(gi, gi+1)− li| < m (6)

where MANH(gi, gi+1) represents the Manhattan distance between

gi and gi+1, and m is a tolerance factor between the actual distances

and the required distances (ideally, m should be small).

Given that the number of gates is relatively small (few dozens at

most), finding an optimal solution may be affordable. We first propose

an iterative approximation based on the fact that a SAT formulation

can be built for a given value m. The SAT formula is satisfied for

all placement solutions for which (6) holds.

Main algorithm:
1) A small margin m is defined.

2) A SAT formulation is generated for m.

3) The formula is solved by a SAT solver.

4) If not satisfiable, increase m and go to 2)

The model that satisfies the SAT formula determines the location

of each gate.

A. SAT formulation of the placement problem

We next define the set of variables and clauses of the SAT formula.

We assume that each gate g occupies a set of adjacent slots in the

grid. We call size(g) the number of slots occupied by g (for example,

gate g2 occupies 5 slots in Fig. 7).

79

Fig. 8. Valid positions for a gate connected to the one in the middle, as
represented by the shadowed boxes.

Variables: For every gate g, every row r and every column c, the

variable P g
r,c indicates the fact that the leftmost slot of gate g is

placed at the grid location (r, c).

Clauses: For simplicity in the representation, a number of definitions

follow before describing the clauses.

• The function Overlap(g, c) returns, for gate g and column c,

the set of columns occupied by g if placed at column c. More

specifically:

Overlap(g, c) = {c′ : c ≤ c′ < c+ size(g)}
• The function MANH(r1, c1, r2, c2) returns the Manhattan dis-

tance between the grid cells (r1, c1) and (r2, c2).
• The predicate validDist(l, r1, c1, r2, c2) is true when

|MANH(r1, c1, r2, c2)− l| < m

This predicate is useful to describe all the grid cells that are at

a certain distance from another cell. As an example, the darkest

cell in the center of Fig. 8 represents the location of a gate gi.
The shadowed halo around it represents the set of valid locations

for gate gi+1 assuming that the required wire length is li. The

width of the halo is determined by the tolerance factor m.

We next describe the set of clauses of the SAT formula:

• Every gate must be placed: A clause for each gate g with the

disjunction of all the possible grid locations, ensuring that it is

placed at least in one of them:

∀g :
∨

r,c

P g
r,c.

• Every gate can only be placed in one location at most:

∀g, r1, c1, r2, c2 s.t. (r1, c1) �= (r2, c2) : P g
r1,c1 ⇒ ¬P g

r2,c2

• Gates cannot overlap:

∀g, g′, r, c, c′ s.t. g �= g′, c′ ∈ Overlap(g,c) : P g
r,c ⇒ ¬P g′

r,c′

• Valid distance for consecutive gates: For any pair of consec-

utive gates, gi and gi+1, the Manhattan distance between them

must be close to li (within the tolerance factor m), i.e.,

∀gi, gi+1, r, c, r
′, c′ s.t. ¬validDist(li, r, c, r′, c′) :

P gi
r,c ⇒ ¬P gi+1

r′,c′

It is interesting to realize that all clauses have two literals except

those that enforce every gate to be placed. The proliferation of

2-literal clauses implies that a lot of decisions are taken without

branching (unit propagation). This aspect makes SAT solving more

computationally efficient.

(a) (b)

Fig. 9. Mux-based configurable RO architectures.

1
0

1
0

1
0

m2 m1 m0

D2

D2 � 2xD1 � 4xD0

D1 D0

Fig. 10. Distribution of delays in a configurable DL with 3 muxes.

V. CONFIGURABLE DELAY LINES

Delay models are just approximations of the reality used during

synthesis and verification. But reality is only known after manufac-

turing. Therefore, post-silicon calibration is essential to adjust DLs

to the actual delays of the circuit.

Various techniques exist for calibration such as current starved

inverters or voltage-controlled delay elements. In our work we

propose all-digital solutions that use multiplexers (muxes) that can

be found in the cell library. Calibration is performed by a set of

codewords that control the muxes. It is desirable that the different

configurable delays are uniformly distributed across codewords.

Fig. 9 depicts two possible schemes for configurable DLs. Each

of them has a minimum delay shared by all possible configurations.

The one in Fig. 9b is more area efficient but gives less flexibility

in synthesizing the delay for each configuration. Another interesting

and area-efficient solution commonly used for delay lines is shown

in Fig. 10 (e.g., [4]). For N codewords, this scheme requires

M =
log2 N� 2-input muxes.

For the synthesis of configurable DLs, two new parameters are

introduced:

• The number of codewords (N), usually a power of two.

• The configuration interval, CI = (CImin,CImax), that defines

the range of configurable delays as coefficients over the target

delay τc at each corner c. For example, CI = (0.9, 1.1) indicates

that N different delays must be configured in the interval

(0.9 · τc, 1.1 · τc).
In this paper we will focus on the scheme shown in Fig. 10 as it

is the smallest of the three schemes. The synthesis for other schemes

requires simple modifications with regard to this one.

The configuration step Δ of the DL is the expected delay difference

between two adjacent codewords for a uniform delay distribution.

Hence,

Δc =
τc · (CImax − CImin)

N − 1
, for each c ∈ CORNERS

and the delay Di associated to each mux with control signal mi is:

Di,c = Δc · 2i, for i ∈ {0, . . . ,M − 1}, c ∈ CORNERS

The process of synthesizing a configurable DL is as follows:

• Synthesize a regular DL with target delay CImin · τc, for each

corner c, in which M cells are enforced to be 2-input muxes. To

mitigate the impact of slew propagation, it is also enforced that

there are at least 5 gates between muxes (see the discusison

about slew problem at the end of this section). This DL is

80

represented by the shadowed components in Fig. 10. After this

step, D0, D1 and D2 are simply wires.

• The two inputs of each mux cell are connected to the output of

the previous cell. One of the inputs will be selected to implement

the delay Di, whereas the other will remain intact.

• Implement each delay Di as a DL using the same algorithm for

a conventional DL. Insert the delay in front of one of the inputs

of the mux.

The synthesis of configurable DLs requires small modifications

of the SAT formulation of the placement problem that will not be

discussed in the paper.

The slew problem. Using muxes introduces a new problem in the

synthesis of DLs. The output slew of a mux depends on which input

is selected. This effect is multiplicative, as the number of potential

slew values at the output of a chain of muxes grows exponentially

with the number of muxes.

This problem can be solved using the following property: for a

sufficiently long path of gates, the output slew at the last gate is

independent from the input slew at the first gate. Typically, and for

reasonable slew values, a chain of 5 gates is sufficient to make the

output slew virtually independent from the input slew [7].

The synthesis algorithm for configurable DLs guarantees that a

minimum number of gates is inserted between two adjacent mux

stages, as shown in Fig. 10. The delay of these gates is accounted

within the minimum delay of the DL.

VI. EXPERIMENTAL RESULTS FOR RING OSCILLATORS

DLs have multiple uses, including matched delays for bundled-data

asynchronous circuits, canary paths or Ring Oscillators (ROs). This

section will focus on using DLs to implement ROs, which implies

some particular modifications on the algorithms previously described.

A direct application of ROs is in the generation of Ring Oscillator

Clocks (ROCs) [8].

An RO is a DL connected in a feedback loop. Few aspects must

be considered for the synthesis of an RO:

• A new constraint for the DL algorithm is needed to ensure an

odd number of inversions.

• The RO period consists of two oscillations, one for the rising

and another for the falling transition. Thus, the period is the sum

of the rising and falling delays at each stage.

• The output capacitance of the last cell is the input capacitance

of the first cell. Similarly, the input slew of the first cell is the

output slew of the last cell.

The experiments have been performed by synthesizing

ROCs for several circuits. All the circuits have been

implemented in a 65nm commercial library with 22 corners:

11 PVT corners × 2 interconnect corners (RCmax and RCmin).

Timing results have been obtained by Synopsys PrimeTime [14].

The ITC99 benchmark suite [13] has been selected for the experi-

ments. Circuits have been divided into two categories: small circuits

(b01-b13), with size up to a thousand gates, and processors (b14-

b22) with size up to a few hundred thousand gates [13].

The methodology for the experiments has been as follows:

• Layout synthesis has been performed using Synopsys EDA flow.

• PrimeTime has been used to calculate the target period (τc) at

each corner.

• ROCs have been generated by running the synthesis algorithms

for DLs presented in this paper.

• The reported results have been obtained after layout synthesis

using PrimeTime.

TABLE III
RING OSCILLATOR DELAY MISMATCH (%), NO MUXES.

Circuit Size Max Avg Typ Circuit Size Max Avg Typ

b01 5 2.70 1.13 1.01 b15 27 3.90 1.29 1.65

b02 5 2.23 1.11 1.09 b15 1 26 3.56 1.12 0.85

b03 5 4.50 1.86 0.75 b17 33 2.68 0.98 0.32

b04 20 0.98 0.45 0.40 b17 1 32 2.21 0.94 0.92

b05 12 1.37 0.66 0.70 b18 49 2.77 1.12 0.55

b06 5 2.00 1.13 1.51 b18 1 54 1.69 0.75 0.98

b07 8 1.71 0.97 0.64 b19 79 2.02 1.11 0.92

b08 9 1.22 0.79 0.78 b19 1 65 2.51 1.17 0.62

b09 6 1.86 1.08 0.97 b20 44 1.63 0.94 0.54

b10 6 2.38 1.31 1.81 b20 1 64 0.95 0.47 0.31

b11 13 2.69 1.34 0.88 b21 47 1.62 0.76 0.54

b12 13 2.61 0.99 0.86 b21 1 56 1.04 0.61 0.97

b13 8 1.86 1.27 1.27 b22 46 1.24 0.57 0.32

b14 41 1.60 0.66 0.66 b22 1 59 0.58 0.30 0.40

b14 1 49 1.95 0.74 0.39 Aver 30.55 2.07 0.95 0.81

The values reported at the tables and charts in this section corre-

spond to the normalized mismatch (in percentage) of the ROC with

regard to the target delay of the circuit at each corner (τc), as defined

in equality (2). In the case of configurable ROCs, the mismatch has

been calculated for each possible configuration of the delay.

Table III shows the results for ROCs without muxes. The column

Size indicates the number of gates of the ROC. Column Max reports

the maximum mismatch for all corners, whereas Avg reports the

average mismatch across the 22 corners. Typ shows the mismatch

at the typical PVT corner, bearing in mind that most dies will fall

around this corner after manufacturing. The method guarantees that

the mismatch is never negative.

The maximum mismatch is usually below 3% while the average

mismatch is around 1% in most cases. This shows that a single DL

can track circuit variability very accurately.

Fig. 11 gives more detailed information about the one shown in

Fig. 2. It can be observed that, when restricting the set of gates used

in the DLs, the capability of tracking variability is highly degraded.

When only using one type of inverter, the average and maximum

mistmatches can go up to 20% and 30%, respectively (see b09, b12

and b13). The inverter used in this experiment corresponds to the

most used cell in all synthesized DLs. Even when using all inverters

in the library, the mismatch is still substantially larger than when

allowing all cells.

Table IV reports results for configurable ROCs with 1, 2 and 3

muxes (M), respectively. In this case, the maximum mismatch corre-

sponds to the one achieved with any of the possible configurations.

The average mismatch is the one over all configurations and corners.

The mismatch at typical is the average over all the configurations at

the typical PVT corner. Only circuits with DLs longer than 25 gates

have been synthesized for this case. Small circuits are not appropriate

for configurability given that the delay of a single gate is often longer

than the minimum configuration step Δ. The configuration intervals

used in the experiments were as follows:

CImin CImax

M=1 0.975 1.025

M=2 0.925 1.075

M=3 0.825 1.175

81

b01 b02 b03 b04 b05 b06 b07 b08 b09 b10 b11 b12 b13 b14 b14_1 b15 b15_1 b17 b17_1 b18 b18_1 b19 b19_1 b20 b20_1 b21 b21_1 b22 b22_1
0

5

10

15

20

25

30

M
is
m
a
tc
h
(%

)

Average Mismatch

Max Mismatch

Fig. 11. Accuracy of DLs synthesized with any cell in the library (left bar), inverters of any size (middle bar) and inverters of one size (right bar).

TABLE IV
RING OSCILLATOR DELAY MISMATCH (%) WITH 1, 2 AND 3 MUXES.

Max mismatch Avg mismatch Mismatch @typ

Circuit M=1 M=2 M=3 M=1 M=2 M=3 M=1 M=2 M=3

b14 2.06 2.46 3.44 1.04 1.19 2.03 1.00 1.14 1.99

b14 1 2.38 2.03 2.93 1.23 0.92 1.20 0.72 0.56 0.88

b15 3.27 4.82 6.30 1.56 2.50 3.38 1.19 2.02 3.37

b15 1 3.58 4.89 6.85 1.10 1.76 2.96 0.73 1.42 2.53

b17 2.46 4.32 4.94 0.88 2.31 1.97 0.40 1.92 1.78

b17 1 2.77 2.91 2.73 1.46 1.55 1.27 1.40 1.41 1.15

b18 3.73 3.05 4.55 1.81 1.22 1.80 1.42 0.73 1.20

b18 1 1.87 2.26 3.04 0.96 1.02 1.48 1.15 1.09 1.69

b19 2.90 3.65 3.93 1.54 2.25 2.18 1.01 1.80 1.48

b19 1 2.45 2.92 3.53 1.05 1.24 1.78 0.63 0.77 1.29

b20 1.39 1.73 2.04 0.75 0.85 1.08 0.44 0.50 0.77

b20 1 1.55 1.88 2.35 0.70 1.00 1.17 0.39 0.72 0.90

b21 2.14 3.31 3.04 0.96 1.51 1.47 0.81 1.29 1.33

b21 1 1.40 2.09 2.93 0.65 1.13 1.85 0.87 1.25 2.18

b22 2.01 2.54 3.05 1.09 1.49 1.92 0.78 1.04 1.55

b22 1 1.88 2.33 3.60 1.03 1.02 1.71 1.03 0.84 1.64

Aver 2.36 2.97 3.70 1.11 1.44 1.83 0.87 1.16 1.61

The results are reported in Table IV. As expected, the mismatch

increases with the addition of muxes, since the requirement for

introducing muxes reduces the flexibility to find gates that properly

track the variability for all configurations. Still, the average mismatch

is maintained around 1-2% in most cases, which is a remarkable

achievement. This confirms the effectiveness of the synthesis algo-

rithms to find very accurate mixtures of gates even with a large

number of configurations.

As an example, Fig. 3 shows the DL generated for b05 according

to the results shown in Table III. In this particular case, an ROC was

constructed by connecting the input and the output of the DL.

VII. CONCLUSIONS

The synthesis of DLs for tracking variability is one of the emergent

topics as technologies move towards nanometric dimensions. For a

widespread use of DLs, it is necessary to provide design automation

and schemes that can use the components of the cell libraries.

This paper has presented algorithmic techniques to tackle the

synthesis of DLs, both at the logic and physical level. Using a variety

of gates and wires in the same DL has proved to be essential for an

accurate tracking of delays under the presence of variability.

We expect the incorporation of DLs, either playing the role of

sensors or clock generators, to be a growing trend in the future. DLs

can be used to monitor the potential fluctuations of delays at runtime

and adapt the circuit to the varying operation conditions without

requiring conservative guardband margins.

REFERENCES

[1] Q. Liu and S. S. Sapatnekar, “Synthesizing a representative critical path
for post-silicon delay prediction,” in Proc. International Symposium on
Physical Design (ISPD), Apr. 2009, pp. 183–190.

[2] G. D. Carpenter, A. J. Drake, H. S. Deogun, M. S. Floyd, N. K.
James, R. M. Senger et al., “Circuit for dynamic circuit timing synthesis
and monitoring of critical paths and environmental conditions of an
integrated circuit,” US Patent 7,576,569, Aug., 2009.

[3] L. Xie and A. Davoodi, “Representative path selection for post-silicon
timing prediction under variability,” in Proc. ACM/IEEE Design Automa-
tion Conference, 2010, pp. 386–391.

[4] A. Singhvi, M. T. Moreira, R. N. Tadros, N. L. V. Calazans, and P. A.
Beerel, “A fine-grained, uniform, energy-efficient delay element for FD-
SOI technologies,” in 2015 IEEE Computer Society Annual Symposium
on VLSI, Jul. 2015, pp. 27–32.

[5] G. Heck, L. S. Heck, A. Singhvi, M. T. Moreira, P. A. Beerel, and
N. L. V. Calazans, “Analysis and optimization of programmable delay
elements for 2-phase bundled-data circuits.” in VLSI Design, 2015, pp.
321–326.

[6] M. Bhushan, A. Gattiker, M. B. Ketchen, and K. K. Das, “Ring
oscillators for CMOS process tuning and variability control,” IEEE
Transactions on Semiconductor Manufacturing, vol. 19, no. 1, pp. 10–
18, Feb. 2006.

[7] T. B. Chan, P. Gupta, A. B. Kahng, and L. Lai, “DDRO: A novel
performance monitoring methodology based on design-dependent ring
oscillators,” in Thirteenth International Symposium on Quality Electronic
Design (ISQED), Mar. 2012, pp. 633–640.

[8] J. Cortadella, L. Lavagno, P. López, M. Lupon, A. Moreno, A. Roca,
and S. S. Sapatnekar, “Reactive clocks with variability-tracking jitter,”
in Proc. International Conf. Computer Design (ICCD), Oct. 2015, pp.
540–547.

[9] M. Maymandi-Nejad and M. Sachdev, “A digitally programmable delay
element: design and analysis,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 11, no. 5, pp. 871–878, Oct. 2003.

[10] W. Hua, R. N. Tadros, and P. Beerel, “2 ps resolution, fine-grained delay
element in 28 nm FDSOI,” Electronics Letters, vol. 51, no. 23, pp. 1848–
1850, 2015.

[11] N. R. Mahapatra, S. V. Garimella, and A. Tareen, “An empirical and an-
alytical comparison of delay elements and a new delay element design,”
in IEEE Computer Society Workshop on VLSI, 2000. Proceedings, 2000,
pp. 81–86.

[12] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and V. De,
“Tunable replica circuits and adaptive voltage-frequency techniques for
dynamic voltage, temperature, and aging variation tolerance,” in 2009
Symposium on VLSI Circuits, Jun. 2009, pp. 112–113.

[13] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” IEEE Design Test of Computers, vol. 17, no. 3,
pp. 44–53, Jul. 2000.

[14] Synopsys, “Synopsys PrimeTime,” http://www.synopsys.com/Tools/
Implementation/SignOff/Pages/PrimeTime.aspx.

[15] J. Cortadella, M. Lupon, A. Moreno, A. Roca, and S. S. Sapatnekar,
“Ring oscillator clocks and margins,” in Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, 2016.

[16] R. Bisiani, “Beam search,” in Encyclopedia of Artificial Intelligence,
S. Shapiro, Ed. John Wiley & Sons, 1987, pp. 56–58.

82

