You have 26 constants, labeled A through Z. Let A equal 1. The other constants have values equal to the letter’s position in the alphabet, raised to the power of the previous constant. That means that for B (the second letter)

$$B = 2^A = 2^1 = 2,$$

for C (the third letter)

$$C = 3^B = 3^2 = 9,$$

and so on. Find the exact numerical value for this expression:

$$(X - A) \cdot (X - B) \cdot (X - C) \cdots (X - Y) \cdot (X - Z)$$

(from W. Poundstone, How Would You Move Mount Fuji?)