Sorting vectors

Jordi Cortadella
Department of Computer Science

Sorting

- Let T be a type with a \leq operation, which is a total order.
- A vector $<T>$ v is sorted in ascending order if

 $$\text{for all } i, \text{ with } 0 \leq i < v\text{.size()-1}: \ v[i] \leq v[i+1]$$

- A fundamental, very common problem: sort v
- Usually, sorting is done in-place (on the same vector)

• We will look at three sorting algorithms:
 - Selection Sort
 - Insertion Sort
 - Merge Sort

 - Insertion and Selection Sort make a number of operations proportional to n^2
 - Merge Sort is proportional to $n \cdot \log_2 n$ (faster except for very small vectors)

• Another common task: sort $v[\text{a..b}]$

Introduction to Programming © Dept. CS, UPC

Sorting

A vector $<T>$ v is sorted in ascending order if

$$\text{for all } i, \text{ with } 0 \leq i < v\text{.size()-1}: \ v[i] \leq v[i+1]$$

A fundamental, very common problem: sort v

Usually, sorting is done in-place (on the same vector)

• We will look at three sorting algorithms:
 - Selection Sort
 - Insertion Sort
 - Merge Sort

Let us consider a vector v of n elems ($n = v\text{.size()}$)

- Insertion and Selection Sort make a number of operations proportional to n^2

 - Merge Sort is proportional to $n \cdot \log_2 n$
 (faster except for very small vectors)
Selection Sort

- Observation: in the sorted vector, v[0] is the smallest element in v
- The second smallest element in v must go to v[1]...
- ... and so on
- At the i-th iteration, select the i-th smallest element and place it in v[i]

Selection sort uses this invariant:

```cpp
void selection_sort(vector<elem>& v) {
    int last = v.size() - 1;
    for (int i = 0; i < last; ++i) {
        int k = pos_min(v, i, last);
        swap(v[k], v[i]);
    }
}
```

// Post: v is sorted in ascending order

// Invariant: v[0..i-1] is sorted and
// if a < i <= b then v[a] <= v[b]

Note: when i=v.size()-1, v[i] is necessarily the largest element. Nothing to do.
Selection Sort

// Pre: 0 <= left <= right < v.size()
// Returns pos such that left <= pos <= right
// and v[pos] is smallest in v[left..right]

int pos_min(const vector<elem>& v, int left, int right) {
 int pos = left;
 for (int i = left + 1; i <= right; ++i) {
 if (v[i] < v[pos]) pos = i;
 }
 return pos;
}

Selection Sort

• At the i-th iteration, Selection Sort makes
 – up to v.size()-1-i comparisons between elements
 – 1 swap (3 assignments) per iteration

• The total number of comparisons for a vector
 of size n is:
 \((n-1)+(n-2)+\ldots+1= n(n-1)/2 \approx n^2/2\)

• The total number of assignments is 3(n-1).

Insertion Sort

• Insert x=v[n-1] in the right place in v[0..n-1]

• Two ways:
 - Find the right place, then shift the elements
 - Shift the elements to the right until one ≤ x is found
Insertion Sort

- Insertion sort uses this invariant:

\[
\begin{array}{cccccccc}
 \text{-7} & \text{-3} & \text{0} & \text{1} & \text{4} & \text{9} & \text{?} & \text{?} & \text{?} & \text{?} & \text{?} & \text{?} \\
\end{array}
\]

From http://en.wikipedia.org/wiki/Insertion_sort

```cpp
// Post: v is sorted in ascending order
void insertion_sort(vector<elem>& v) {
    for (int i = 1; i < v.size(); ++i) {
        elem x = v[i];
        int j = i;
        while (j > 0 and v[j - 1] > x) {
            v[j] = v[j - 1];
            --j;
        }
        v[j] = x;
    }
}

// Invariant: v[0..i-1] is sorted in ascending order
```

- At the i-th iteration, Insertion Sort makes up to i comparisons and up to i+2 assignments

- The total number of comparisons for a vector of size n is, at most:

\[
1 + 2 + \ldots + (n-1) = \frac{n(n-1)}{2} \approx \frac{n^2}{2}
\]

- At most, \(\frac{n^2}{2}\) assignments

- But about \(\frac{n^2}{4}\) in typical cases
Selection Sort vs. Insertion Sort

<table>
<thead>
<tr>
<th>2</th>
<th>-1</th>
<th>5</th>
<th>0</th>
<th>-3</th>
<th>9</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

Introduction to Programming © Dept. CS, UPC

Evaluation of complex conditions

```cpp
void insertion_sort(vector<elem>& v) {
    for (int i = 1; i < v.size(); ++i) {
        elem x = v[i];
        int j = i;
        while (j > 0 and v[j - 1] > x) {
            v[j] = v[j - 1];
            --j;
        }
        v[j] = x;
    }
}
```

• How about: `while (v[j - 1] > x and j > 0)`?

• Consider the case for `j = 0` → evaluation of `v[-1]` (error !)

• How are complex conditions really evaluated?

• Many languages (C, C++, Java, PHP, Python) use the *short-circuit evaluation* (also called *minimal* or *lazy* evaluation) for Boolean operators.

• For the evaluation of the Boolean expression

  ```
  expr1 op expr2
  ```

 `expr2` is only evaluated if `expr1` does not suffice to determine the value of the expression.

• Example: `(j > 0 and v[j-1] > x)`

 `v[j-1]` is only evaluated when `j>0`
Evaluation of complex conditions

• In the following examples:

 \[n \neq 0 \quad \text{and} \quad \frac{\text{sum}}{n} > \text{avg} \]

 \[n = 0 \quad \text{or} \quad \frac{\text{sum}}{n} > \text{avg} \]

 \(\text{sum/n} \) will never execute a division by zero.

• Not all languages have short-circuit evaluation. Some of them have **eager evaluation** (all the operands are evaluated) and some of them have both.

• The previous examples could potentially generate a runtime error (division by zero) when eager evaluation is used.

• Tip: short-circuit evaluation helps us to write more efficient programs, but cannot be used in all programming languages.

Merge Sort

• Recall our inductive reasoning for Insertion Sort:

 – suppose we can sort vectors of size \(n-1 \),

 – can we now sort vectors of size \(n \)?

• How about the following:

 – suppose we can sort vectors of size \(n/2 \),

 – can we now sort vectors of size \(n \)?

From http://en.wikipedia.org/wiki/Merge_sort
Merge Sort

- We have seen almost what we need!

\[
\text{vector<elem> merge(const vector<elem>& A, } \\
\text{ const vector<elem>& B);}\\
\]

- Now, \(v[0..n/2-1]\) and \(v[n/2..n-1]\) are sorted in ascending order.

- Merge them into an auxiliary vector of size \(n\), then copy back to \(v\).

Merge Sort

```cpp
void merge_sort(vector<elem>& v, int left, int right) {  
    if (left < right) {  
        int m = (left + right)/2;  
        merge_sort(v, left, m);  
        merge_sort(v, m + 1, right);  
        merge(v, left, m, right);  
    }
}
```

Merge Sort – merge procedure

```cpp
void merge(vector<elem>& v, int left, int mid, int right) {  
    int n = right - left + 1;  
    vector<elem> aux(n);  
    int i = left;  
    int j = mid + 1;  
    int k = 0;  
    while (i <= mid and j <= right) {  
        if (v[i] <= v[j]) { aux[k] = v[i]; ++i; }  
        else { aux[k] = v[j]; ++j; }  
        ++k;  
    }  
    while (i <= mid) { aux[k] = v[i]; ++i; }  
    while (j <= right) { aux[k] = v[j]; ++k; ++j; }  
    for (k = 0; k < n; ++k) v[left+k] = aux[k];  
}
```
Merge Sort

• How many comparisons does Merge Sort do?
 – Say v.size() is n, a power of 2
 – merge(v,L,M,R) makes k comparisons if k=R-L+1
 – We call merge \(\frac{n}{2^i} \) times with R-L=2^i
 – The total number of comparisons is

\[
\sum_{i=1}^{\log_2 n} \frac{n}{2^i} \cdot 2^i = n \cdot \log_2 n
\]

The total number of assignments is \(2n \cdot \log_2 n\)

Comparison of sorting algorithms

• Approximate number of comparisons:

<table>
<thead>
<tr>
<th></th>
<th>n = v.size()</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion and Selection Sort ((=n^2/2))</td>
<td>50</td>
<td>5,000</td>
<td>500,000</td>
<td>50,000,000</td>
<td>5,000,000,000</td>
<td></td>
</tr>
<tr>
<td>Merge Sort ((=n \cdot \log_2 n))</td>
<td>67</td>
<td>1,350</td>
<td>20,000</td>
<td>266,000</td>
<td>3,322,000</td>
<td></td>
</tr>
</tbody>
</table>

• Note: it is known that every general sorting algorithm must do at least \(n \cdot \log_2 n\) comparisons.
Comparison of sorting algorithms

Other sorting algorithms

• There are many other sorting algorithms.

• The most efficient algorithm for general sorting is quick sort (C.A.R. Hoare).
 – The worst case is proportional to \(n^2 \)
 – The average case is proportional to \(n \cdot \log_2 n \), but it usually runs faster than all the other algorithms
 – It does not use any auxiliary vectors

• Quick sort will not be covered in this course.
Sorting with the C++ library

• A sorting procedure is available in the C++ library

• It probably uses a quicksort algorithm

• To use it, include:

 \texttt{#include <algorithm>}

• To increasingly sort a vector \(v \) (of int’s, double’s, string’s, etc.), call:

 \texttt{sort(v.begin(), v.end());}

• To sort with a different comparison criteria, call

 \texttt{sort(v.begin(), v.end(), \textit{comp});}

• For example, to sort int’s \texttt{decreasingly}, define:

 \begin{verbatim}
 bool \textit{comp}(int \ a, int \ b) {
 return a > b;
 }
 \end{verbatim}

• To sort people by age, then by name:

 \begin{verbatim}
 \textbf{bool} \textit{comp}(\textbf{const} \textit{Person} \& \ a, \textbf{const} \textit{Person} \& \ b) {
 \textbf{\textbf{\textbf{\textbf{\textbf{if}} (a.age == b.age) return a.name < b.name;}}}
 \textbf{else return a.age < b.age;}
 }
 \end{verbatim}

Sorting is not always a good idea...

• \textbf{Example:} to find the min value of a vector

 \begin{itemize}
 \item \texttt{min = v[0];}
 \item \texttt{for (int \ i=1; \ i < v.size(); ++i)} \texttt{\{ } \item \texttt{\quad if (v[i] < min) \texttt{min = v[i];} \}}
 \end{itemize}

\begin{align}
\text{sort}(v); \\
\text{min = v[0];}
\end{align}

• \textbf{Efficiency analysis:}
 \begin{itemize}
 \item \textbf{Option (1):} \(n \) iterations (visit all elements).
 \item \textbf{Option (2):} \(2n \cdot \log_2 n \) moves with a good sorting algorithm (e.g., merge sort)
 \end{itemize}

Summary

• Sorting is a fundamental operation in Computer Science.

• Sorted data structures enable efficient searching algorithms in different application domains.

• Efficiency analysis:
 \begin{itemize}
 \item \textbf{Option (1):} \(n \) iterations (visit all elements).
 \item \textbf{Option (2):} \(2n \cdot \log_2 n \) moves with a good sorting algorithm (e.g., merge sort)
 \end{itemize}

• Efficient sorting algorithms run in \(O(n \ \log n) \) time.

• Sorting is an operation implemented in many libraries. The user usually has to provide the comparison function.