Sorting vectors

Jordi Cortadella
Department of Computer Science

Sorting

• Let T be a type with a \leq operation, which is a total order.

• A vector $<T>$ v is sorted in ascending order if

$$\text{for all } i, \text{ with } 0 \leq i < v.size()-1: \quad v[i] \leq v[i+1]$$

• A fundamental, very common problem: sort v

• Usually, sorting is done in-place (on the same vector)

Another common task: sort $v[a..b]$

• We will look at three sorting algorithms:
 – Selection Sort
 – Insertion Sort
 – Merge Sort

 – Insertion and Selection Sort perform a number of operations proportional to n^2

 – Merge Sort is proportional to $n \cdot \log_2 n$ (faster except for very small vectors)
Selection Sort

• Observation: in the sorted vector, v[0] is the smallest element in v

• The second smallest element in v must go to v[1]...

• ... and so on

• At the i-th iteration, select the i-th smallest element and place it in v[i]

Introduction to Programming © Dept. CS, UPC

Selection Sort

• Selection sort uses this invariant:

```
// Post: v is sorted in ascending order
void selection_sort(vector<elem>& v) {
    int last = v.size() - 1;
    for (int i = 0; i < last; ++i) {
        int k = pos_min(v, i, last);
        swap(v[k], v[i]);
    }
}
```

// Invariant: v[0..i-1] is sorted and
// if a < i <= b then v[a] <= v[b]

Note: when i=v.size()-1, v[i] is necessarily the largest element. Nothing to do.
Selection Sort

int pos_min(const vector<elem>& v, int left, int right) {
 int pos = left;
 for (int i = left + 1; i <= right; ++i) {
 if (v[i] < v[pos]) pos = i;
 }
 return pos;
}

Selection Sort

• At the i-th iteration, Selection Sort makes
 – up to v.size()-1-i comparisons between elements
 – 1 swap (3 assignments) per iteration

• The total number of comparisons for a vector
 of size n is:
 \[(n-1)+(n-2)+\ldots+1= n(n-1)/2 \approx n^2/2\]

• The total number of assignments is 3(n-1).

Insertion Sort

• Insert x=v[n-1] in the right place in v[0..n-1]

• Two ways:
 - Find the right place, then shift the elements
 - Shift the elements to the right until one ≤ x is found

Insertion Sort

• Let us use inductive reasoning:
 – If we know how to sort arrays of size n-1,
 – do we know how to sort arrays of size n?

\[
\begin{array}{cccccccccccc}
0 & 9 & -7 & 0 & 1 & -3 & 4 & 3 & 8 & -6 & 8 & 6 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
-7 & -6 & -3 & 0 & 1 & 3 & 4 & 6 & 8 & 8 & 9 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
-7 & -6 & -3 & 0 & 1 & 2 & 3 & 4 & 6 & 8 & 8 & 9 \\
\end{array}
\]
• Insertion sort uses this invariant:

\[
\begin{array}{cccccccccc}
\end{array}
\]

This is sorted

This may not be sorted and we have no idea of what may be here

// Post: v is sorted in ascending order

```cpp
void insertion_sort(vector<elem>& v) {
  for (int i = 1; i < v.size(); ++i) {
    elem x = v[i];
    int j = i;
    while (j > 0 and v[j - 1] > x) {
      v[j] = v[j - 1];
      --j;
    }
    v[j] = x;
  }
}
```

// Invariant: v[0..i-1] is sorted in ascending order

- At the i-th iteration, Insertion Sort makes up to i comparisons and up to i+2 assignments

- The total number of comparisons for a vector of size n is, at most:
 \[
 1 + 2 + \ldots + (n-1) = n(n-1)/2 \approx n^2/2
 \]

- At most, \(n^2/2\) assignments

- But about \(n^2/4\) in typical cases
Selection Sort vs. Insertion Sort

Evaluation of complex conditions

```c
void insertion_sort(vector<elem>& v) {
    for (int i = 1; i < v.size(); ++i) {
        elem x = v[i];
        int j = i;
        while (j > 0 and v[j - 1] > x) {
            v[j] = v[j - 1];
            --j;
        }
        v[j] = x;
    }
}
```

- How about: `while (v[j - 1] > x and j > 0)`?
- Consider the case for `j = 0` → evaluation of `v[-1]` (error !)
- How are complex conditions really evaluated?

• Many languages (C, C++, Java, PHP, Python) use the short-circuit evaluation (also called minimal or lazy evaluation) for Boolean operators.

• For the evaluation of the Boolean expression

 `expr1 op expr2`

 `expr2` is only evaluated if `expr1` does not suffice to determine the value of the expression.

• Example: `(j > 0 and v[j-1] > x)`

 `v[j-1]` is only evaluated when `j>0`
Evaluation of complex conditions

• In the following examples:
 \[n \neq 0 \text{ and } \frac{\text{sum}}{n} > \text{avg} \]
 \[n == 0 \text{ or } \frac{\text{sum}}{n} > \text{avg} \]

sum/n will never execute a division by zero.

• Not all languages have short-circuit evaluation. Some of them have
 \textit{eager evaluation} (all the operands are evaluated) and some of them have both.

• The previous examples could potentially generate a runtime error
 (division by zero) when eager evaluation is used.

• Tip: short-circuit evaluation helps us to write more efficient
 programs, but cannot be used in all programming languages.

Merge Sort

• Recall our inductive reasoning for Insertion Sort:
 – suppose we can sort vectors of size \(n-1 \),
 – can we now sort vectors of size \(n \)?

• How about the following:
 – suppose we can sort vectors of size \(n/2 \),
 – can we now sort vectors of size \(n \)?

From http://en.wikipedia.org/wiki/Merge_sort
Merge Sort

- We have seen almost what we need!

```cpp
vector<elem> merge(const vector<elem>& A, const vector<elem>& B);
```

- Now, \(v[0..n/2-1]\) and \(v[n/2..n-1]\) are sorted in ascending order.

- Merge them into an auxiliary vector of size \(n\), then copy back to \(v\).

Merge Sort – merge procedure

```cpp
void merge(vector<elem>& v, int left, int mid, int right) {
    int n = right - left + 1;
    vector<elem> aux(n);
    int i = left;
    int j = mid + 1;
    int k = 0;
    while (i <= mid and j <= right) {
        if (v[i] <= v[j]) { aux[k] = v[i]; ++i; }
        else { aux[k] = v[j]; ++j; }
        ++k;
    }
    while (i <= mid) { aux[k] = v[i]; ++i; }
    while (j <= right) { aux[k] = v[j]; ++j; }
    for (k = 0; k < n; ++k) v[left+k] = aux[k];
}
```
Merge Sort

How many comparisons does Merge Sort do?
- Say v.size() is n, a power of 2
- merge(v,L,M,R) makes k comparisons if k=R-L+1
- We call merge \(n \) times with R-L=2^i
- The total number of comparisons is
 \[
 \sum_{i=1}^{\log_2 n} \frac{n}{2^i} \cdot 2^i = n \cdot \log_2 n
 \]

The total number of assignments is \(2n \cdot \log_2 n \)

Comparison of sorting algorithms

<table>
<thead>
<tr>
<th></th>
<th>Selection</th>
<th>Insertion</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.size()</td>
<td>(\approx n^2/2)</td>
<td>(\approx n \cdot \log_2 n)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>100</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>100,000</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

- **Note**: it is known that every general sorting algorithm must do at least \(n \cdot \log_2 n \) comparisons.
Other sorting algorithms

• There are many other sorting algorithms.

• The most efficient algorithm for general sorting is *quick sort* (C.A.R. Hoare).
 – The worst case is proportional to n^2
 – The average case is proportional to $n \cdot \log_2 n$, but it usually runs faster than all the other algorithms
 – It does not use any auxiliary vectors

• Quick sort will not be covered in this course.
Sorting with the C++ library

• A sorting procedure is available in the C++ library

• It probably uses a quicksort algorithm

• To use it, include:

  ```
  #include <algorithm>
  ```

• To increasingly sort a vector v (of int’s, double’s, string’s, etc.), call:

  ```
  sort(v.begin(), v.end());
  ```

• To sort with a different comparison criteria, call:

  ```
  sort(v.begin(), v.end(), comp);
  ```

• For example, to sort int’s decreasingly, define:

  ```
  bool comp(int a, int b) {
    return a > b;
  }
  ```

• To sort people by age, then by name:

  ```
  bool comp(const Person& a, const Person& b) {
    if (a.age == b.age) return a.name < b.name;
    else return a.age < b.age;
  }
  ```

• To find the min value of a vector

  ```
  min = v[0];
  for (int i=1; i < v.size(); ++i) {
    if (v[i] < min) min = v[i];
  }
  ```

• Efficiency analysis:

 – Option (1): \(n \) iterations (visit all elements).
 – Option (2): \(2n \cdot \log_2 n \) moves with a good sorting algorithm (e.g., merge sort)

Summary

• Sorting is a fundamental operation in Computer Science.

• Sorted data structures enable efficient searching algorithms in different application domains.

• Efficient sorting algorithms run in \(O(n \log n) \) time.

• Sorting is an operation implemented in many libraries. The user usually has to provide the comparison function.