Reasoning with invariants

Jordi Cortadella
Department of Computer Science

General reasoning for loops

Initialization;

// Invariant: a proposition that holds
// * at the beginning of the loop
// * at the beginning of each iteration
// * at the end of the loop

while (condition) {
 // Invariant \land condition
 Body of the loop;
 // Invariant
}

// Invariant \land \neg condition

Example with invariants

- Given \(n \geq 0 \), calculate \(n! \)

- Definition of factorial:
 \[
 n! = 1 \times 2 \times 3 \times \ldots \times (n-1) \times n
 \]
 (particular case: \(0! = 1 \))

- Let’s pick an invariant:
 - At each iteration we will calculate \(f = i! \)
 - We also know that \(i \leq n \) at all iterations

Invariants

- Invariants help to …
 - Define how variables must be initialized before a loop
 - Define the necessary condition to reach the post-condition
 - Define the body of the loop
 - Detect whether a loop terminates

- It is crucial, but not always easy, to choose a good invariant.

- Recommendation:
 - Use invariant-based reasoning for all loops (possibly in an informal way)
 - Use formal invariant-based reasoning for non-trivial loops
Calculating n!

// Pre: n ≥ 0
// Returns n!
int factorial(int n) {
 int i = 0;
 int f = 1;
 // Invariant: f = i! and i ≤ n
 while (i != n) {
 // f = i! and i < n
 i = i + 1;
 f = f*i;
 // f = i! and i ≤ n
 }
 // f = i! and i ≤ n and i ≠ n
 // f = n!
 return f;
}

Reversing digits

// Pre: n ≥ 0
// Returns n with reversed digits (base 10)
int reverse_digits(int n) {
 int r = 0;
 // Invariant (graphical):
 while (n != 0) {
 r = 10*r + n%10;
 n = n/10;
 }
 return r;
}

Palindrome vector

// Pre: n ≥ 0
// Returns n with reversed digits (base 10)

- Write a function that reverses the digits of a number (representation in base 10)

- Examples:

 - 35276 → 67253
 - 19 → 91
 - 3 → 3
 - 0 → 0

- Design a function that checks whether a vector is a palindrome (the reverse of the vector is the same as the vector). For example:

 - 9 -7 0 1 -3 4 -3 1 0 -7 9

 is a palindrome.
// Returns true if A is a palindrome, and false otherwise.
bool palindrome(const vector<int>& A);

Invariant:
The fragments A[0..i-1] and A[k+1..A.size()-1] are reversed.

Classify elements
• We have a vector of elements V and an interval [x,y] (x ≤ y).
 Classify the elements of the vector by putting those smaller than x in
 the left part of the vector, those larger than y in the right part and those
 inside the interval in the middle. The elements do not need to be ordered.
• Example: interval [6,9]

Palindromic vector

Palindromic vector
// Returns true if A is a palindrome, and false otherwise.
bool palindrome(const vector<int>& A) {
 int i = 0;
 int k = A.size() - 1;
 while (i < k) {
 if (A[i] != A[k]) return false;
 else {
 i = i + 1;
 k = k - 1;
 }
 }
 return true;
}
Classify elements

// Pre: x <= y
// Post: the elements of V have been classified moving those
// smaller than x to the left, those larger than y to the
// right and the rest in the middle.

void classify(vector<int>& V, int x, int y) {
 int left = 0;
 int mid = 0;
 int right = V.size() - 1;

 // Invariant: see the previous slide
 while (mid <= right) {
 if (V[mid] < x) {
 // Move to the left part
 swap(V[mid], V[left]);
 left = left + 1;
 mid = mid + 1;
 } else if (V[mid] > y) {
 // Move to the right part
 swap(V[mid], V[right]);
 right = right - 1;
 } else mid = mid + 1; // Keep in the middle
 }
}

Vector fusion

// Pre: A and B are sorted in ascending order.
// Returns the sorted fusion of A and B.
vector<int> fusion(const vector<int>& A, const vector<int>& B) {
 vector<int> C;
 int i = 0, j = 0;
 while (i < A.size() and j < B.size()) {
 if (A[i] <= B[j]) {
 C.push_back(A[i]);
 i = i + 1;
 } else {
 C.push_back(B[j]);
 j = j + 1;
 }
 }
 while (i < A.size()) {
 C.push_back(A[i]);
 i = i + 1;
 }
 while (j < B.size()) {
 C.push_back(B[j]);
 j = j + 1;
 }
 return C;
}
Summary

• Using invariants is a powerful methodology to derive correct and efficient iterative algorithms.

• Recommendation to find a good invariant for a loop:
 – Consider the iterative progress of the algorithm.
 – Try to describe the state of the program at the beginning of an iteration (this is the invariant!).
 – Declare the variables required to describe the invariant.
 – Derive the condition, loop body and initialization of the variables of the loop (the order is not important)