Complexity Analysis of Algorithms

Jordi Cortadella
Department of Computer Science

Estimating runtime

• What is the runtime of \(g(n) \)?

\[
\text{Runtime}(g(n)) \approx n \cdot \text{Runtime}(f())
\]

\[
\text{Runtime}(g(n)) \approx n^2 \cdot \text{Runtime}(f())
\]

Complexity analysis

• A technique to characterize the execution time of an algorithm independently from the machine, the language and the compiler.

• Useful for:
 - evaluating the variations of execution time with regard to the input data
 - comparing algorithms

• We are typically interested in the execution time of large instances of a problem, e.g., when \(n \to \infty \), (asymptotic complexity).
• A method to characterize the execution time of an algorithm:
 – Adding two square matrices is $O(n^2)$
 – Searching in a dictionary is $O(\log n)$
 – Sorting a vector is $O(n \log n)$
 – Solving Towers of Hanoi is $O(2^n)$
 – Multiplying two square matrices is $O(n^3)$
 – …

• The O notation only uses the dominating terms of the execution time. Constants are disregarded.

Big O: formal definition

Let $T(n)$ be the execution time of an algorithm with input data n.

$T(n)$ is $O(f(n))$ if there are positive constants c and n_0 such that $T(n) \leq c \cdot f(n)$ when $n \geq n_0$.

Big O: example

Let $T(n) = 3n^2 + 100n + 5$, then $T(n) = O(n^2)$

• Proof:
 – Let $c = 4$ and $n_0 = 100.05$
 – For $n \geq 100.05$, we have that $4n^2 \geq 3n^2 + 100n + 5$

• $T(n)$ is also $O(n^3)$, $O(n^4)$, etc.
 Typically, the smallest complexity is used.

Big O: examples

<table>
<thead>
<tr>
<th>$T(n)$</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5n^3 + 200n^2 + 15$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>$3n^2 + 2^{300}$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$5 \log_2 n + 15 \ln n$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>$2 \log n^3$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>$4n + \log n$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>2^{64}</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>$\log n^{10} + 2\sqrt{n}$</td>
<td>$O(\sqrt{n})$</td>
</tr>
<tr>
<td>$2^n + n^{1000}$</td>
<td>$O(2^n)$</td>
</tr>
</tbody>
</table>
Complexity ranking

<table>
<thead>
<tr>
<th>Function</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n!)</td>
<td>factorial</td>
</tr>
<tr>
<td>(2^n)</td>
<td>exponential</td>
</tr>
<tr>
<td>(n^d, d > 3)</td>
<td>polynomial</td>
</tr>
<tr>
<td>(n^3)</td>
<td>cubic</td>
</tr>
<tr>
<td>(n^2)</td>
<td>quadratic</td>
</tr>
<tr>
<td>(n\sqrt{n})</td>
<td>quasi-linear</td>
</tr>
<tr>
<td>(n \log n)</td>
<td>linear</td>
</tr>
<tr>
<td>(\sqrt{n})</td>
<td>root - (n)</td>
</tr>
<tr>
<td>(\log n)</td>
<td>logarithmic</td>
</tr>
<tr>
<td>1</td>
<td>constant</td>
</tr>
</tbody>
</table>

Complexity analysis: examples

Let us assume that \(f() \) has complexity \(O(1) \)

\[
\text{for (int } i = 0; i < n; ++i) f(); \\
\rightarrow O(n)
\]

\[
\text{for (int } i = 0; i < n; ++i) \\
\quad \text{for (int } j = 0; j < n; ++j) f(); \\
\rightarrow O(n^2)
\]

\[
\text{for (int } i = 0; i < n; ++i) \\
\quad \text{for (int } j = 0; j < i; ++j) f(); \\
\rightarrow O(n^2)
\]

\[
\text{for (int } i = 0; i < n; ++i) \\
\quad \text{for (int } j = 0; j < n; ++j) \\
\quad \text{for (int } k = 0; k < n; ++k) f(); \\
\rightarrow O(n^3)
\]

\[
\text{for (int } i = 0; i < m; ++i) \\
\quad \text{for (int } j = 0; j < n; ++j) \\
\quad \text{for (int } k = 0; k < p; ++k) f(); \\
\rightarrow O(mnp)
\]

Complexity analysis: recursion

void f(int n) {
\begin{align*}
\text{if (n > 0) {
DoSomething(n); // O(n)
\quad f(n/2);
}} \\
\}
\end{align*}

\[
T(n) = n + T(n/2)
\]

\[
T(n) = n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \cdots + 2 + 1
\]

\[
2 \cdot T(n) = 2n + n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \cdots + 4 + 2
\]

\[
2 \cdot T(n) - T(n) = T(n) = 2n - 1
\]

\(T(n) \) is \(O(n) \)
void f(int n) {
 if (n > 0) {
 DoSomething(n); // O(n)
f(n-1);
 }
}

\[
T(n) = n + T(n-1) \\
T(n) = n + (n - 1) + (n - 2) + \cdots + 2 + 1 \\
T(n) = \frac{n^2 + n}{2}
\]

\[T(n) \text{ is } O(n^2)\]

Asymptotic complexity (small values)

Asymptotic complexity (larger values)
Let us consider that every operation can be executed in 1 ns (10^{-9} s).

<table>
<thead>
<tr>
<th>Function</th>
<th>$n = 10^3$</th>
<th>$n = 10^4$</th>
<th>$n = 10^5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_2 n$</td>
<td>10 ns</td>
<td>13.3 ns</td>
<td>16.6 ns</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>31.6 ns</td>
<td>100 ns</td>
<td>316 ns</td>
</tr>
<tr>
<td>n</td>
<td>1 μs</td>
<td>10 μs</td>
<td>100 μs</td>
</tr>
<tr>
<td>$n \log_2 n$</td>
<td>10 μs</td>
<td>133 μs</td>
<td>1.7 ms</td>
</tr>
<tr>
<td>n^2</td>
<td>1 ms</td>
<td>100 ms</td>
<td>10 s</td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 min</td>
<td>11.6 days</td>
</tr>
<tr>
<td>n^4</td>
<td>16.7 min</td>
<td>116 days</td>
<td>3171 yr</td>
</tr>
<tr>
<td>2^n</td>
<td>$3.4 \cdot 10^{284}$ yr</td>
<td>$6.3 \cdot 10^{2993}$ yr</td>
<td>$3.2 \cdot 10^{30086}$ yr</td>
</tr>
</tbody>
</table>

Summary

- Complexity analysis is a technique to analyze and compare algorithms (not programs).

- It helps to have preliminary back-of-the-envelope estimations of runtime (milliseconds, seconds, minutes, days, years?).

- Worst-case analysis is sometimes overly pessimistic. Average case is also interesting (not covered in this course).

- In many application domains (e.g., big data) quadratic complexity, $O(n^2)$, is not acceptable.

- Recommendation: avoid last-minute surprises by doing complexity analysis before writing code.