Living with floating-point numbers

- **Standard normalized representation (sign + fraction + exponent):**

 \[0.15625_{10} = 0.001012 = 1.01 \times 2^{-3}\]

- **Ranges of values:**

<table>
<thead>
<tr>
<th>Representation</th>
<th>Bits</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>single precision (float)</td>
<td>32</td>
<td>±1.18 × 10^{-38}</td>
<td>±3.4 × 10^{-38}</td>
</tr>
<tr>
<td>double precision (double)</td>
<td>64</td>
<td>±2.23 × 10^{-308}</td>
<td>±1.80 × 10^{308}</td>
</tr>
</tbody>
</table>

Representations for: \(-\infty, +\infty, +0, -0, NaN\) (not a number)

- Be careful when operating with real numbers:

  ```
  double x, y;
  cin >> x >> y;  // 1.1  3.1
  cout.precision(20);
  cout << x + y << endl;  // 4.2000000000000001776
  ```

Comparing floating-point numbers

- **Comparisons:**
  ```
  a = b + c;
  if (a - b == c) …  // may be false
  ```

- Allow certain tolerance for equality comparisons:
  ```
  if (expr1 == expr2) …  // Wrong !
  ```
  ```
  if (abs(expr1 - expr2) < 0.000001) …  // Ok !
  ```

Root of a continuous function

- **Bolzano’s theorem:**

 Let \(f\) be a real-valued continuous function. Let \(a\) and \(b\) be two values such that \(a < b\) and \(f(a) \cdot f(b) < 0\). Then, there is a value \(c \in [a, b]\) such that \(f(c)=0\).
Design a function that finds a root of a continuous function \(f \) in the interval \([a, b] \) assuming the conditions of Bolzano’s theorem are fulfilled. Given a precision \(\epsilon \), the function must return a value \(c \) such that the root of \(f \) is in the interval \([c, c+\epsilon] \).

Strategy: narrow the interval \([a, b] \) by half, checking whether the value of \(f \) in the middle of the interval is positive or negative. Iterate until the width of the interval is smaller \(\epsilon \).

```cpp
double root(double a, double b, double epsilon) {
    while (b - a > epsilon) {
        double c = (a + b)/2;
        if (f(a)*f(c) <= 0) b = c;
        else a = c;
    }
    return a;
}
```

// Pre: f is continuous, a < b and f(a)*f(b) < 0.
// Returns c \(\in [a, b] \) such that a root exists in the
// interval \([c, c+\epsilon] \).

// Invariant: a root of f exists in the interval [a,b]
// A recursive version

double root(double a, double b, double epsilon) {
 if (b - a <= epsilon) return a;
 double c = (a + b)/2;
 if (f(a)*f(c) <= 0) return root(a,c,epsilon);
 else return root(c,b,epsilon);
}

The Newton-Raphson method

A method for finding successively approximations to the roots of a real-valued function. The function must be differentiable.

source: http://en.wikipedia.org/wiki/Newton's_method
Square root (using Newton-Raphson)

• Calculate \(x = \sqrt{a} \)

• Find the zero of the following function:
\[
 f(x) = x^2 - a
\]
where \(f'(x) = 2x \)

• Recurrence:
\[
x_{i+1} = x_i - \frac{x_i^2 - a}{2x_i} = \frac{1}{2} \left(x_i + \frac{a}{x_i} \right)
\]

// Pre: \(a \geq 0 \)
// Returns \(x \) such that \(|x^2 - a| < \varepsilon \)

double square_root(double a) {
 double x = 1.0; // Makes an initial guess
 // Iterates using the Newton-Raphson recurrence
 while (abs(x*x - a) >= epsilon) x = 0.5*(x + a/x);
 return x;
}

Approximating definite integrals

• There are various methods to approximate a definite integral:
\[
 \int_a^b f(x)\,dx.
\]

• The trapezoidal method approximates the area with a trapezoid:
\[
 \int_a^b f(x)\,dx \approx (b - a) \left(\frac{f(a) + f(b)}{2} \right)
\]
Approximating definite integrals

• The approximation is better if several intervals are used:

\[
\int_{a}^{b} f(x) \, dx
\]

\[
\approx \frac{h}{2} \left [f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(a_i) \right]
\]

Monte Carlo methods

• Algorithms that use repeated generation of random numbers to perform numerical computations.

\[
S = \sum_{i=0}^{n-1} h \cdot \frac{f(a_i) + f(a_{i+1})}{2}
\]

\[
= \frac{h}{2} \left (f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(a_i) \right)
\]

// Pre: b >= a, n > 0
// Returns an approximation of the definite integral of f
// between a and b using n intervals.

double integral(double a, double b, int n) {
 double h = (b - a)/n;
 double s = 0;
 for (int i = 1; i < n; ++i) s = s + f(a + i*h);
 return (f(a) + f(b) + 2*s)*h/2;
}
Approximating \(\pi \)

- Let us pick a random point within the unit square.
- Q: What is the probability for the point to be inside the circle?
- A: The probability is \(\pi/4 \)

Algorithm:
- Generate \(n \) random points in the unit square
- Count the number of points inside the circle (\(n_{in} \))
- Approximate \(\pi/4 \approx n_{in}/n \)

```c
#include <cstdlib>

// Pre: n is the number of generated points
// Returns an approximation of \( \pi \) using n random points

double approx_pi(int n) {
    int nin = 0;
    double randmax = double(RAND_MAX);
    for (int i = 0; i < n; ++i) {
        double x = rand()/randmax;
        double y = rand()/randmax;
        if (x*x + y*y < 1.0) nin = nin + 1;
    }
    return 4.0*nin/n;
}
```

Approximating \(\pi \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3.200000</td>
</tr>
<tr>
<td>100</td>
<td>3.120000</td>
</tr>
<tr>
<td>1,000</td>
<td>3.132000</td>
</tr>
<tr>
<td>10,000</td>
<td>3.171200</td>
</tr>
<tr>
<td>100,000</td>
<td>3.141520</td>
</tr>
<tr>
<td>1,000,000</td>
<td>3.141664</td>
</tr>
<tr>
<td>10,000,000</td>
<td>3.141130</td>
</tr>
<tr>
<td>100,000,000</td>
<td>3.141692</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>3.141604</td>
</tr>
</tbody>
</table>

Generating random numbers in an interval

Assume `rand()` generates a random natural number \(r \) in the interval \([0, R)\).

<table>
<thead>
<tr>
<th>Domain</th>
<th>Interval</th>
<th>Random number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>[0,1)</td>
<td>(r/R)</td>
</tr>
<tr>
<td>(R)</td>
<td>[0, a)</td>
<td>(ar/R)</td>
</tr>
<tr>
<td>(R)</td>
<td>[a, b)</td>
<td>(a + (b - a)r/R)</td>
</tr>
<tr>
<td>(Z)</td>
<td>[0, a)</td>
<td>(r \mod a)</td>
</tr>
<tr>
<td>(Z)</td>
<td>[a, b)</td>
<td>(a + r \mod (b - a))</td>
</tr>
</tbody>
</table>

Note: Be careful with integer divisions when delivering real numbers (enforce real division).
Monte Carlo applications: examples

• Determine the approximate number of lattice points in a sphere of radius r centered in the origin.

• Determine the volume of a 3D region R defined as follows: A point $P = (x, y, z)$ is in R if and only if $x^2 + y^2 + 2z^2 \leq 100$ and $3x^2 + y^2 + z^2 \leq 150$.

• The volume of the cuboid is:

$$\text{Volume}(C) = (2 \cdot \sqrt{50}) \cdot (2 \cdot 10) \cdot (2 \cdot \sqrt{50}) = 4000$$

Example: intersection of two bodies

// Returns an estimation of the volume of the intersection of two bodies with n random samples.

double volume_intersection(int n) {
 int nin = 0;
 double s50 = sqrt(50)/RAND_MAX; // scaling for numbers in [0,sqrt(50))
 double s10 = 10.0/RAND_MAX; // scaling for numbers in [0,10)

 // Generate n random samples
 for (int i = 0; i < n; ++i) {
 // Generate a random point inside the cuboid
 double x = s50*rand();
 double y = s10*rand();
 double z = s50*rand();

 // Check whether the point is inside the intersection
 if (x*x + y*y + 2*z*z <= 100 and 3*x*x + y*y + z*z <= 150) ++nin;
 }

 return 4000.0*jin/n;
}
Summary

- Approximate computations is a resort when no exact solutions can be found numerically.

- Intervals of tolerance are often used to define the level of accuracy of the computation.

- Random sampling methods can be used to statistically estimate the result of some complex problems.