Sorting vectors

Jordi Cortadella
Department of Computer Science
Sorting

• Let \(T \) be a type with a \(\leq \) operation, which is a total order.

• A vector\(<T> v\) is sorted in ascending order if

\[
\text{for all } i, \text{ with } 0 \leq i < v.\text{size}()-1: \quad v[i] \leq v[i+1]
\]

• A fundamental, very common problem: \textbf{sort } v

• Usually, sorting is done in-place (on the same vector)
Another common task: \textit{sort} \(v[a..b]\)
• We will look at three sorting algorithms:
 – Selection Sort
 – Insertion Sort
 – Merge Sort

• Let us consider a vector \(v \) of \(n \) elems \((n = v\text{.size}()) \)
 – Insertion and Selection Sort perform a number of operations proportional to \(n^2 \)
 – Merge Sort is proportional to \(n\cdot\log_2 n \) (faster except for very small vectors)
Selection Sort

• Observation: in the sorted vector, \(v[0] \) is the smallest element in \(v \)

• The second smallest element in \(v \) must go to \(v[1] \)...

• ... and so on

• At the \(i \)-th iteration, select the \(i \)-th smallest element and place it in \(v[i] \)
Selection Sort

From http://en.wikipedia.org/wiki/Selection_sort
• Selection sort uses this invariant:

```
-7  -3  0  1  4  9  ?  ?  ?  ?  ?  ?  ?
```

- this is sorted and contains the i-1 smallest elements
- this may not be sorted... but all elements here are larger than or equal to the elements in the sorted part
Selection Sort

// Post: v is sorted in ascending order

void selection_sort(vector<elem>& v) {
 int last = v.size() - 1;
 for (int i = 0; i < last; ++i) {
 int k = pos_min(v, i, last);
 swap(v[k], v[i]);
 }
}

// Invariant: v[0..i-1] is sorted and if a < i <= b then v[a] <= v[b]

Note: when i=v.size()-1, v[i] is necessarily the largest element. Nothing to do.
Selection Sort

// Pre: 0 <= left <= right < v.size()
// Returns pos such that left <= pos <= right
// and v[pos] is smallest in v[left..right]

int pos_min(const vector<elem>& v, int left, int right) {
 int pos = left;
 for (int i = left + 1; i <= right; ++i) {
 if (v[i] < v[pos]) pos = i;
 }
 return pos;
}
Selection Sort

• At the i-th iteration, Selection Sort makes
 – up to v.size()-1-i comparisons between elements
 – 1 swap (3 assignments) per iteration

• The total number of comparisons for a vector
 of size n is:

 \[
 (n-1) + (n-2) + \ldots + 1 = n(n-1)/2 \approx n^2/2
 \]

• The total number of assignments is 3(n-1).
Insertion Sort

• Let us use inductive reasoning:
 – If we know how to sort arrays of size n-1,
 – do we know how to sort arrays of size n?
Insertion Sort

• Insert $x=v[n-1]$ in the right place in $v[0..n-1]$

• Two ways:
 - Find the right place, then shift the elements
 - Shift the elements to the right until one $\leq x$ is found
Insertion Sort

- Insertion sort uses this invariant:

![Diagram showing sorted and unsorted elements]

- This is sorted
- This may not be sorted and we have no idea of what may be here
Insertion Sort

From http://en.wikipedia.org/wiki/Insertion_sort
// Post: v is sorted in ascending order

```cpp
void insertion_sort(vector<elem>& v) {
    for (int i = 1; i < v.size(); ++i) {
        elem x = v[i];
        int j = i;
        while (j > 0 and v[j - 1] > x) {
            v[j] = v[j - 1];
            --j;
        }
        v[j] = x;
    }
}
```

// Invariant: v[0..i-1] is sorted in ascending order
Insertion Sort

• At the i-th iteration, Insertion Sort makes up to i comparisons and up to i+2 assignments

• The total number of comparisons for a vector of size n is, at most:

 \[1 + 2 + \ldots + (n-1) = \frac{n(n-1)}{2} \approx \frac{n^2}{2} \]

• At most, \(\frac{n^2}{2} \) assignments

• But about \(\frac{n^2}{4} \) in typical cases
Selection Sort vs. Insertion Sort

<table>
<thead>
<tr>
<th>2</th>
<th>-1</th>
<th>5</th>
<th>0</th>
<th>-3</th>
<th>9</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>-3</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>
Selection Sort vs. Insertion Sort
void insertion_sort(vector<elem>& v) {
 for (int i = 1; i < v.size(); ++i) {
 elem x = v[i];
 int j = i;
 while (j > 0 and v[j - 1] > x) {
 v[j] = v[j - 1];
 --j;
 }
 v[j] = x;
 }
}

• How about: while (v[j - 1] > x and j > 0) ?

• Consider the case for j = 0 \(\Rightarrow\) evaluation of \(v[-1]\) (error !)

• How are complex conditions really evaluated?
Evaluation of complex conditions

• Many languages (C, C++, Java, PHP, Python) use the short-circuit evaluation (also called minimal or lazy evaluation) for Boolean operators.

• For the evaluation of the Boolean expression

\[\text{expr1 op expr2} \]

\textit{expr2} is only evaluated if \textit{expr1} does not suffice to determine the value of the expression.

• Example: \((j > 0 \text{ and } v[j-1] > x)\)

\textit{v[j-1]} is only evaluated when \(j>0\)
Evaluation of complex conditions

• In the following examples:

\[
\begin{align*}
n &\neq 0 \land \frac{\text{sum}}{n} > \text{avg} \\
n &\equiv 0 \lor \frac{\text{sum}}{n} > \text{avg}
\end{align*}
\]

\text{sum}/n will never execute a division by zero.

• Not all languages have short-circuit evaluation. Some of them have \textit{eager evaluation} (all the operands are evaluated) and some of them have both.

• The previous examples could potentially generate a runtime error (division by zero) when eager evaluation is used.

• Tip: short-circuit evaluation helps us to write more efficient programs, but cannot be used in all programming languages.
Merge Sort

• Recall our inductive reasoning for Insertion Sort:
 – suppose we can sort vectors of size $n-1$,
 – can we now sort vectors of size n?

• How about the following:
 – suppose we can sort vectors of size $n/2$,
 – can we now sort vectors of size n?
Merge Sort

9 -7 0 1 -3 4 3 8 -6 8 6 2

Induction!

-7 -3 0 1 4 9 3 8 -6 8 6 2

Induction!

-7 -3 0 1 4 9 -6 2 3 6 8 8

How do we do this?

-7 -6 -3 0 1 2 3 4 6 8 8 9
From http://en.wikipedia.org/wiki/Merge_sort
Merge Sort

• We have seen almost what we need!

```cpp
// Pre: A and B are sorted in ascending order
// Returns the sorted fusion of A and B

vector<elem> merge(const vector<elem>& A,
                    const vector<elem>& B);
```

• Now, \(v[0..n/2-1]\) and \(v[n/2..n-1]\) are sorted in ascending order.

• Merge them into an auxiliary vector of size \(n\), then copy back to \(v\).
Merge Sort

Merge Sort

9 -7 0 1 4 -3 3 8

Split

9 -7 0 1

4 -3 3 8

Merge Sort

Merge Sort

-7 0 1 9

-3 3 4 8

Merge

-7 -3 0 1 3 4 8 9
// Pre: 0 <= left <= right < v.size()
// Post: v[left..right] is sorted in ascending order

void merge_sort(vector<elem>& v, int left, int right) {
 if (left < right) {
 int m = (left + right)/2;
 merge_sort(v, left, m);
 merge_sort(v, m + 1, right);
 merge(v, left, m, right);
 }
}
Merge Sort – merge procedure

// Pre: 0 <= left <= mid < right < v.size(), and
// v[left..mid], v[mid+1..right] are sorted in ascending order
// Post: v[left..right] is sorted in ascending order

void merge(vector<elem>& v, int left, int mid, int right) {
 int n = right - left + 1;
 vector<elem> aux(n);
 int i = left;
 int j = mid + 1;
 int k = 0;
 while (i <= mid and j <= right) {
 if (v[i] <= v[j]) { aux[k] = v[i]; ++i; }
 else { aux[k] = v[j]; ++j; }
 ++k;
 }
 while (i <= mid) { aux[k] = v[i]; ++k; ++i; }
 while (j <= right) { aux[k] = v[j]; ++k; ++j; }
 for (k = 0; k < n; ++k) v[left+k] = aux[k];
}
Merge Sort

: merge_sort

: merge

9 -7 0 1 4 -3 3 8

9 -7 0 1

4 -3 3 8

3 8

9 -7

0 1

4 -3

3 8

9 -7

0 1

4 -3

-3 4

-3 3 4 8

-7 -3 0 1 3 4 8 9
Merge Sort

• How many comparisons does Merge Sort do?
 – Say v.size() is n, a power of 2
 – merge(v,L,M,R) makes k comparisons if k=R-L+1
 – We call merge \(\frac{n}{2^i} \) times with R-L=2^i
 – The total number of comparisons is

\[
\sum_{i=1}^{\log_2 n} \frac{n}{2^i} \cdot 2^i = n \cdot \log_2 n
\]

The total number of assignments is \(2n \cdot \log_2 n \)
Comparison of sorting algorithms

Selection

Insertion

Merge
Comparison of sorting algorithms

- Approximate number of comparisons:

<table>
<thead>
<tr>
<th>n = v.size()</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion and Selection Sort (≈n²/2)</td>
<td>50</td>
<td>5,000</td>
<td>500,000</td>
<td>50,000,000</td>
<td>5,000,000,000</td>
</tr>
<tr>
<td>Merge Sort (≈n·log₂n)</td>
<td>67</td>
<td>1,350</td>
<td>20,000</td>
<td>266,000</td>
<td>3,322,000</td>
</tr>
</tbody>
</table>

- **Note:** it is known that every general sorting algorithm must do at least \(n \cdot \log_2 n \) comparisons.
Comparison of sorting algorithms

For small vectors

Execution time (µs)
Comparison of sorting algorithms

For medium vectors

Vector size

Execution time (ms)

- Insertion Sort
- Selection Sort
- Bubble Sort
- Merge Sort

Thousands
Comparison of sorting algorithms

Execution time (secs)

For large vectors

- Insertion Sort
- Selection Sort
- Bubble Sort
- Merge Sort

Vector size

Introduction to Programming © Dept. CS, UPC
Other sorting algorithms

• There are many other sorting algorithms.

• The most efficient algorithm for general sorting is *quick sort* (C.A.R. Hoare).
 – The worst case is proportional to n^2
 – The average case is proportional to $n \cdot \log_2 n$, but it usually runs faster than all the other algorithms
 – It does not use any auxiliary vectors

• Quick sort will not be covered in this course.
Sorting with the C++ library

• A sorting procedure is available in the C++ library

• It probably uses a quicksort algorithm

• To use it, include:

```
#include <algorithm>
```

• To increasingly sort a vector v (of int’s, double’s, string’s, etc.), call:

```
sort(v.begin(), v.end());
```
Sorting with the C++ library

• To sort with a different comparison criteria, call

```cpp
sort(v.begin(), v.end(), comp);
```

• For example, to sort int’s decreasingly, define:

```cpp
bool comp(int a, int b) {
    return a > b;
}
```

• To sort people by age, then by name:

```cpp
bool comp(const Person& a, const Person& b) {
    if (a.age == b.age) return a.name < b.name;
    else return a.age < b.age;
}
```
Sorting is not always a good idea...

• **Example:** to find the min value of a vector

```cpp
min = v[0];
for (int i=1; i < v.size(); ++i)
    if (v[i] < min) min = v[i];
```

```cpp
sort(v);
min = v[0];
```

• **Efficiency analysis:**

 – **Option (1):** \(n \) iterations (visit all elements).

 – **Option (2):** \(2n \cdot \log_2 n \) moves with a good sorting algorithm (e.g., merge sort)
Summary

• Sorting is a fundamental operation in Computer Science.

• Sorted data structures enable efficient searching algorithms in different application domains.

• Efficient sorting algorithms run in $O(n \log n)$ time.

• Sorting is an operation implemented in many libraries. The user usually has to provide the comparison function.