For loops, nested loops and scopes

Jordi Cortadella
Department of Computer Science
Outline

• For loops

• Scopes

• Nested loops
Calculate x^y

Algorithm: repeated multiplication

$x \cdot x \cdot x \cdot \ldots \cdot x$

y times

<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
<th>i</th>
<th>$p = x^i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>81</td>
</tr>
</tbody>
</table>
Calculate x^y

// Pre: $y \geq 0$
// Returns x^y

```c
int power(int x, int y) {
    int p = 1;
    int i = 0;
    while (i < y) {
        // Repeat $y$ times
        p = p*x;
        i = i + 1; // $p = x^i$
    }
    return p;
}
```
// Pre: \(y \geq 0 \)
// Returns \(x^y \)

```c
int power(int x, int y) {
    int p = 1;
    for (int i = 0; i < y; i = i + 1) {
        p = p * x;
    }
    return p;
}
```

```c
int i = 0;
while (i < y) {
    p = p * x;
    i = i + 1;
}
```
Calculate x^y

// Pre: $y \geq 0$
// Returns x^y
int power(int x, int y) {
 int p = 1;
 for (int i = 0; i < y; ++i) p = p*x;
 return p;
}

int i = 0;
while (i < y) {
 p = p*x;
 i = i + 1;
}
Factorial

// Pre: n ≥ 0
// Returns n!
int factorial(int n) {
 int f = 1;
 for (int i = 1; i <= n; ++i) f = f*i;
 return f;
}

int factorial(int n) {
 int f = 1;
 for (int i = n; i > 0; --i) f = f*i;
 return f;
}
Up-down sequence

• Write a program that reads a positive integer \(n \) and prints an up-down sequence (one number per line)

• Example (\(n=6 \)):

 1 2 3 4 5 6 5 4 3 2 1
// This program reads a positive integer (n) and prints an up-down sequence (one number per line).
// Example: 1 2 3 ... n-1 n n-1 ... 3 2 1

int main() {
 int n;
 cin >> n;

 // up sequence: 1 2 3 ... n-2 n-1 n
 for (int i = 1; i <= n; ++i) cout << i << endl;

 // down sequence: n-1 n-2 ... 3 2 1
 for (int i = n - 1; i > 0; --i) cout << i << endl;
}

Same name, different variables
Summary

• A for loop is a special type of repetitive statement with a loop counter.

• It is naturally used when the number of iterations is known before entering the loop.

• Recommendations:
 – Declare the loop counter locally (when possible).
 – Update the loop counter by a constant (++i, --i).
 – Do not modify the loop counter inside the for loop.
// This program reads three numbers and
// prints the same numbers in ascending order.

int main() {
 int x, y, z;
 cin >> x >> y >> z;
 if (x > y) { // Swap x ↔ y
 int t = x;
 x = y;
 y = t;
 } // We know that x ≤ y
 if (y > z) { // Swap y ↔ z
 int t = y;
 y = z;
 z = t;
 } // We know that z is the largest number
 if (x > y) { // Swap x ↔ y
 int t = x;
 x = y;
 y = t;
 } // We know that x ≤ y ≤ z
 cout << x << " " << y << " " << z << endl;
}
Print min and max

// This program reads two numbers and prints
// the minimum and the maximum (in this order).

int main() {
 int x, y;
 cin >> x >> y;

 if (x > y) {
 int min = y;
 int max = x;
 } else {
 int min = x;
 int max = y;
 }

 cout << min << " " << max << endl;
}
// This program reads two numbers and prints
// the minimum and the maximum (in this order).

int main() {
 int x, y;
 cin >> x >> y;

 int min, max;
 if (x > y) {
 min = y;
 max = x;
 } else {
 min = x;
 max = y;
 }

 cout << min << " " << max << endl;
}
Scopes and visibility

```cpp
{
    // a and b are not visible
    int a = 1, b = 20;
    // a and b are visible
    cout << a << endl;

    // c is not visible, a and b are visible
    cout << a + b << endl;

    // a, c and the inner b are visible,
    // but the outer b is not visible
    int b = 5, c = 4;
    cout << a + b << endl;
    cout << c << endl;

    // c is not visible
    cout << b << endl;
}
```
Summary

• Variables are only visible within their scope.

• Recommendations:
 – Declare and use variables as locally as possible.
 – When possible, initialize variables with their declaration.
 – Use meaningful names (e.g., min, count, avg, …)

• Do not try to reuse variables: fewer variables does not imply less memory.
Drawing a rectangle

• Write a program that reads the dimensions of a rectangle \((x, y)\) and prints \(x\) columns and \(y\) rows of asterisks.

• Example \((x=8, y=5)\):

```
************
************
************
************
************
```
// Reads the dimensions (x, y) of a rectangle
// and prints x columns and y rows of asterisks.

int main() {
 int x, y;
 cin >> x >> y;
 drawRectangle(x, y);
}

// Prints a rectangle with <ncols> columns and
// <nrows> rows of asterisks.
void drawRectangle(int ncols, int nrows) {
 for (int i = 0; i < nrows; ++i) {
 printRow(ncols);
 }
}

// Prints a row of n asterisks.
void printRow(int n) {
 for (int i = 0; i < n; ++i) cout << "*";
 cout << endl;
}
void printRow(int n) {
 . . .
}

void drawRectangle(int ncols, int nrows) {
 . . . // uses printRow
}

int main() {
 . . . // uses drawRectangle
}
// Reads the dimensions (x, y) of a rectangle
// and prints x columns and y rows of asterisks.

int main() {
 int x, y;
 cin >> x >> y;
 for (int r = 0; r < y; ++r) {
 for (int c = 0; c < x; ++c) cout << "*";
 cout << endl;
 }
}
• Write a program that reads an integer n and prints a right equilateral triangle with the length of the cathetus being n.

• Example (n=7):

```
  *
 **
 ***
 ****
 *****
 ******
 *******
********
```

Introduction to Programming © Dept. CS, UPC
Observation: row \(r \) has \(r \) asterisks
// Reads an integer \(n \) and prints a right equilateral triangle with the length of the cathetus being \(n \).

```cpp
int main() {
    int n;
    cin >> n;
    for (int r = 1; r <= n; ++r) {
        // Print row \( r \) with \( r \) asterisks
    }
}
```
// Reads an integer n and prints a right
// equilateral triangle with the length
// of the cathetus being n.

int main() {
 int n;
 cin >> n;
 for (int r = 1; r <= n; ++r) {
 for (int c = 0; c < r; ++c) cout << "*";
 cout << endl;
 }
}

Drawing a right equilateral triangle
Exercises

Draw the following shapes (for any n):

Chess board
Summary

• Nested loops are useful when treating multi-dimensional data, e.g., rows/columns, height/width, matrices, etc.

• Recommendations:
 – Use for loops if the number of iterations is known before entering the loop.
 – Use a different local counter for each loop.