Approximate computations

Jordi Cortadella
Department of Computer Science
Living with floating-point numbers

• Standard normalized representation (sign + fraction + exponent):

\[0.15625_{10} = 0.001012 = 1.01 \times 2^{-3} \]

• Ranges of values:

<table>
<thead>
<tr>
<th>Representations for:</th>
<th>single precision (float)</th>
<th>double precision (double)</th>
</tr>
</thead>
<tbody>
<tr>
<td>–∞, +∞, +0, –0, NaN</td>
<td>±1.18 \times 10^{-38} to ±3.4 \times 10^{38}</td>
<td>±2.23 \times 10^{-308} to ±1.80 \times 10^{308}</td>
</tr>
</tbody>
</table>

• Be careful when operating with real numbers:

```cpp
double x, y;
cin >> x >> y;            // 1.1 3.1
cout.precision(20);
cout << x + y << endl;    // 4.200000000000001776
```
Single and double-precision FP numbers

float:

$$(-1)^{\text{sign}} (1. b_{51} b_{50} \ldots b_0) \times 2^{e-1023}$$

or

$$(-1)^{\text{sign}} \left(1 + \sum_{i=1}^{52} b_{52-i} 2^{-i} \right) \times 2^{e-1023}$$

Not every number can be represented.
Example: 0.15 is stored as $0.1499999999999999944488888888888876527755664$
Comparing floating-point numbers

• Comparisons:

\[
a = b + c; \\
if (a - b == c) \ldots \ // \ may \ be \ false
\]

• Allow certain tolerance for equality comparisons:

\[
if \ (expr1 == expr2) \ldots \ // \ Wrong! \\
if \ (abs(expr1 - expr2) < 0.000001) \ldots \ // \ Ok!
\]
Bolzano’s theorem:
Let \(f \) be a real-valued continuous function. Let \(a \) and \(b \) be two values such that \(a < b \) and \(f(a) \cdot f(b) < 0 \). Then, there is a value \(c \in [a,b] \) such that \(f(c) = 0 \).
Root of a continuous function

Design a function that finds a root of a continuous function f in the interval $[a, b]$ assuming the conditions of Bolzano’s theorem are fulfilled. Given a precision (ε), the function must return a value c such that the root of f is in the interval $[c, c+\varepsilon]$.

![Graph showing a function with root approximated by a value c within the interval $[a, b]$ and a precision ε.]
Root of a continuous function

Strategy: narrow the interval \([a, b]\) by half, checking whether the value of \(f\) in the middle of the interval is positive or negative. Iterate until the width of the interval is smaller \(\varepsilon\).
Root of a continuous function

// Pre: f is continuous, $a < b$ and $f(a)f(b) < 0$.
// Returns $c \in [a, b]$ such that a root exists in the
// interval $[c, c+\varepsilon]$.

// Invariant: a root of f exists in the interval $[a, b]$
double root(double a, double b, double epsilon) {
 while (b - a > epsilon) {
 double c = (a + b)/2;
 if (f(a)*f(c) <= 0) b = c;
 else a = c;
 }
 return a;
}
// A recursive version

double root(double a, double b, double epsilon) {
 if (b - a <= epsilon) return a;
 double c = (a + b)/2;
 if (f(a)*f(c) <= 0) return root(a, c, epsilon);
 else return root(c, b, epsilon);
}
A method for finding successively approximations to the roots of a real-valued function. The function must be differentiable.
The Newton-Raphson method

\[\tan \alpha = f'(x_i) = \frac{f(x_i)}{x_i - x_{i+1}} \]

\[x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \]
The Newton-Raphson method

source: http://en.wikipedia.org/wiki/Newton’s_method
Square root (using Newton-Raphson)

• Calculate \(x = \sqrt{a} \)

• Find the zero of the following function:

\[f(x) = x^2 - a \]

where \(f'(x) = 2x \)

• Recurrence:

\[x_{i+1} = x_i - \frac{x_i^2 - a}{2x_i} = \frac{1}{2} \left(x_i + \frac{a}{x_i} \right) \]
Square root (using Newton-Raphson)

// Pre: a >= 0
// Returns x such that |x^2 - a| < \varepsilon

double square_root(double a) {
 double x = 1.0; // Makes an initial guess

 // Iterates using the Newton-Raphson recurrence
 while (abs(x*x - a) >= epsilon) x = 0.5*(x + a/x);

 return x;
}
Square root (using Newton-Raphson)

• Example: \texttt{square_root(1024.0)}

\begin{center}
\begin{tabular}{|c|}
\hline
\textbf{x} \\
\hline
1.00000000000000000000 \\
512.50000000000000000000 \\
257.24902439024390332634 \\
130.61480157022683101786 \\
69.22732405448894610347 \\
42.00958563100827092284 \\
33.19248741685437664727 \\
32.02142090500024096400 \\
32.00000716481589790873 \\
32.00000000000080291329 \\
\hline
\end{tabular}
\end{center}
Approximating definite integrals

- There are various methods to approximate a definite integral:

\[\int_a^b f(x) \, dx. \]

- The trapezoidal method approximates the area with a trapezoid:

\[\int_a^b f(x) \, dx \approx (b - a) \left(\frac{f(a) + f(b)}{2} \right) \]
Approximating definite integrals

• The approximation is better if several intervals are used:
Approximating definite integrals

\[S = \sum_{i=0}^{n-1} h \cdot \frac{f(a_i) + f(a_{i+1})}{2} \]

\[= \frac{h}{2} \left(f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(a_i) \right) \]
Approximating definite integrals

// Pre: b >= a, n > 0
// Returns an approximation of the definite integral of f
// between a and b using n intervals.

double integral(double a, double b, int n) {
 double h = (b - a)/n;
 double s = 0;
 for (int i = 1; i < n; ++i) s = s + f(a + i*h);
 return (f(a) + f(b) + 2*s)*h/2;
}
Monte Carlo methods

• Algorithms that use repeated generation of random numbers to perform numerical computations.

• The methods often rely on the existence of an algorithm that generates random numbers uniformly distributed over an interval.

• In C++ we can use `rand()`, that generates numbers in the interval $[0, \text{RAND_MAX})$.
Approximating π

- Let us pick a random point within the unit square.
- **Q:** What is the probability for the point to be inside the circle?
- **A:** The probability is $\pi/4$

Algorithm:

- Generate n random points in the unit square
- Count the number of points inside the circle (n_{in})
- Approximate $\pi/4 \approx n_{in}/n$
Approximating π

```c
#include <stdlib>

// Pre: n is the number of generated points
// Returns an approximation of $\pi$ using n random points

double approx_pi(int n) {
    int nin = 0;
    double randmax = double(RAND_MAX);
    for (int i = 0; i < n; ++i) {
        double x = rand() / randmax;
        double y = rand() / randmax;
        if (x*x + y*y < 1.0) nin = nin + 1;
    }
    return 4.0*nin/n;
}
```
Approximating π

<table>
<thead>
<tr>
<th>n</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3.200000</td>
</tr>
<tr>
<td>100</td>
<td>3.120000</td>
</tr>
<tr>
<td>1,000</td>
<td>3.132000</td>
</tr>
<tr>
<td>10,000</td>
<td>3.171200</td>
</tr>
<tr>
<td>100,000</td>
<td>3.141520</td>
</tr>
<tr>
<td>1,000,000</td>
<td>3.141664</td>
</tr>
<tr>
<td>10,000,000</td>
<td>3.141130</td>
</tr>
<tr>
<td>100,000,000</td>
<td>3.141692</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>3.141604</td>
</tr>
</tbody>
</table>
Generating random numbers in an interval

Assume \(\text{rand()} \) generates a random natural number \(r \) in the interval \([0, R)\).

<table>
<thead>
<tr>
<th>Domain</th>
<th>Interval</th>
<th>Random number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>([0,1))</td>
<td>(r/R)</td>
</tr>
<tr>
<td>(R)</td>
<td>([0, a))</td>
<td>(ar/R)</td>
</tr>
<tr>
<td>(R)</td>
<td>([a, b))</td>
<td>(a + (b - a)r/R)</td>
</tr>
<tr>
<td>(Z)</td>
<td>([0, a))</td>
<td>(r \mod a)</td>
</tr>
<tr>
<td>(Z)</td>
<td>([a, b))</td>
<td>(a + r \mod (b - a))</td>
</tr>
</tbody>
</table>

Note: Be careful with integer divisions when delivering real numbers (enforce real division).
Monte Carlo applications: examples

• Determine the approximate number of lattice points in a sphere of radius r centered in the origin.

• Determine the volume of a 3D region R defined as follows: A point $P = (x, y, z)$ is in R if and only if $x^2 + y^2 + 2z^2 \leq 100$ and $3x^2 + y^2 + z^2 \leq 150$.

• And many other application domains:
 – Mathematics, Computational Physics, Finances, Simulation, Artificial Intelligence, Games, Computer Graphics, etc.
Example: intersection of two bodies

• Determine the volume of a 3D region R defined as follows: A point $P = (x, y, z)$ is in R if and only if $x^2 + y^2 + 2z^2 \leq 100$ and $3x^2 + y^2 + z^2 \leq 150$.

• The intersection of the two bodies is inside a rectangular cuboid C, with center in the origin, such that:

\[
\begin{align*}
 x^2 & \leq 50 \\
 y^2 & \leq 100 \\
 z^2 & \leq 50
\end{align*}
\]

• The volume of the cuboid is:

\[
\text{Volume}(C) = (2 \cdot \sqrt{50}) \cdot (2 \cdot 10) \cdot (2 \cdot \sqrt{50}) = 4000
\]
// Returns an estimation of the volume of the
// intersection of two bodies with n random samples.

double volume_intersection(int n) {
 int nin = 0;
 double s50 = sqrt(50)/RAND_MAX; // scaling for numbers in [0,sqrt(50))
 double s10 = 10.0/RAND_MAX; // scaling for numbers in [0,10)

 // Generate n random samples
 for (int i = 0; i < n; ++i) {

 // Generate a random point inside the cuboid
 double x = s50*rand();
 double y = s10*rand();
 double z = s50*rand();

 // Check whether the point is inside the intersection
 if (x*x + y*y + 2*z*z <= 100 and
 3*x*x + y*y + z*z <= 150) ++nin;
 }

 return 4000.0*nin/n;
}
Example: intersection of two bodies

Volume

number of samples

2474.56
Approximate computations is a resort when no exact solutions can be found numerically.

Intervals of tolerance are often used to define the level of accuracy of the computation.

Random sampling methods can be used to statistically estimate the result of some complex problems.