Distance in a graph

Depth-first search finds vertices reachable from another given vertex. The paths are not the shortest ones.

Distance between two nodes: length of the shortest path between them.

Breadth-first search

Similar to a wave propagation
Breadth-first search

Breadth-first search

BFS algorithm

• BFS visits vertices layer by layer: 0, 1, 2, ..., d.

• Once the vertices at layer d have been visited, start visiting vertices at layer d + 1.

• Algorithm with two active layers:
 – Vertices at layer d (currently being visited).
 – Vertices at layer d + 1 (to be visited next).

• Central data structure: a queue.

BFS algorithm

function BFS(G, s)
// Input: Graph G(V, E), source vertex s.
// Output: For each vertex u, dist[u] is the distance from s to u.

for all u ∈ V: dist[u]=∞
dist[s] = 0
Q = {s} // Queue containing just s

while not Q.empty():
 u = Q.pop_front()
 for all (u, v) ∈ E:
 if dist[v] = ∞:
 dist[v] = dist[u] + 1
 Q.push_back(v)

Runtime O(|V| + |E|): Each vertex is visited once, each edge is visited once (for directed graphs) or twice (for undirected graphs).
Distances on edges

Graphs © Dept. CS, UPC

Reusing BFS

Graphs © Dept. CS, UPC

A
B
C
D
E

跟踪跑步者

图

The runners algorithm

At the beginning, we have one runner for each edge \(u \rightarrow v \) waiting at \(u \) for the arrival of the first runner. When the first runner arrives at \(u \), all runners waiting at \(u \) start running along their edge \(u \rightarrow v \). All runners run at a constant speed: \(\frac{1}{d_{\text{unit}}} \frac{\text{unit}}{\text{time unit}} \).

We just need to annotate the first arrival time at every vertex.

Algorithm:

- Set the expected arrival time at \(s \) to 0.
- No expected arrival time for the rest of vertices (\(\infty \)).
- Repeat until there are no more runners:
 - Select the earliest expected arrival time at a vertex not visited yet (vertex \(u \), time \(T \)). Annotate final distance \(s \rightarrow u \) to \(T \).
 - For each outgoing \(u \rightarrow v \):
 - If \(v \) has not been visited yet and the expected arrival time for the runner \(u \rightarrow v \) is smaller than the expected arrival time at \(v \) by any other active runner, start running along \(u \rightarrow v \) and stop the other runners going to \(v \).
 - Otherwise, do not start running.

Annotate the time of the first arrival at each node.
We need to:
- keep a list of active runners and their expected arrival times.
- select the earliest runner arriving at a vertex.
- update the active runners and their arrival times.

Dijkstra’s algorithm for shortest paths

```plaintext
function ShortestPaths(G, l, s)
// Input: Graph G(V,E), source vertex s,
//    ... > dist[u] + l(u,v):
dist[v] = dist[u] + l(u,v)
prev[v] = u
Q.decreasekey(v)
```

```
for all u ∈ V:
dist[u] = ∞
prev[u] = nil

dist[s] = 0
Q = makequeue(V)  // using dist as keys

while not Q.empty():
    u = Q.deleteMin()
    for all (u,v) ∈ E:
        if dist[v] > dist[u] + l(u,v):
            dist[v] = dist[u] + l(u,v)
            prev[v] = u
            Q.decreaseKey(v)
```
Dijkstra’s algorithm: complexity

\[
Q = \text{makequeue}(V)
\]

\[
\text{while not } Q.\text{empty}():
\]

\[
u = Q.\text{deletemin}()
\]

\[
\text{for all } (u, v) \in E:
\]

\[
\text{if } \text{dist}[v] > \text{dist}[u] + l(u, v):
\]

\[
\text{dist}[v] = \text{dist}[u] + l(u, v)
\]

\[
\text{prev}[v] = u
\]

\[
Q.\text{decreasekey}(v)
\]

\[|V| \text{ times} \]

\[|E| \text{ times} \]

The skeleton of Dijkstra’s algorithm is based on BFS, which is \(O(|V| + |E|)\).

We need to account for the cost of:

- makequeue: insert |V| vertices to a list.
- deletemin: find the vertex with min dist in the list (|V| times)
- decreasekey: update dist for a vertex (|E| times)

Let us consider two implementations for the list: vector and binary heap

Graphs with negative edges

- Dijkstra’s algorithm does not work:

 ![Graph](image)

 Dijkstra would say that the shortest path \(A \rightarrow B\) has length=3.

- Dijkstra is based on a safe update each time an edge \((u, v)\) is treated:

 \[
 \text{dist}(v) = \min\{\text{dist}(v), \text{dist}(u) + l(u, v)\}
 \]

- Problem: non-promising updates are not done.

- Solution: let us not abort updates that early.

Graphs with negative edges

- The shortest path from \(s\) to \(t\) can have at most \(|V| - 1\) edges:

 \[
 s \rightarrow u_1 \rightarrow u_2 \rightarrow u_3 \ldots \rightarrow u_k \rightarrow t
 \]

- If the sequence of updates includes

 \[(s, u_1), (u_1, u_2), (u_2, u_3), \ldots, (u_k, t),\]

 in that order, the shortest distance from \(s\) to \(t\) will be computed correctly (updates are always safe). Note that the sequence of updates does not need to be consecutive.

- Solution: update all edges \(|V| - 1\) times!

- Complexity: \(O(|V| \cdot |E|)\).

Implementation

<table>
<thead>
<tr>
<th></th>
<th>deletemin</th>
<th>insert/decreasekey</th>
<th>Dijkstra’s complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>(O(</td>
<td>V</td>
<td>))</td>
</tr>
<tr>
<td>Binary heap</td>
<td>(O(\log</td>
<td>V</td>
<td>))</td>
</tr>
</tbody>
</table>

Binary heap:

- The elements are stored in a complete (balanced) binary tree.
- **Insertion:** place element at the bottom and let it **bubble up** swapping the location with the parent (at most \(\log_2 |V|\) levels).
- **Deletemin:** Remove element from the root, take the last node in the tree, place it at the root and let it **sift down** (at most \(\log_2 |V|\) levels).
- **Decreasekey:** decrease the key in the tree and let it bubble up (same as insertion). A data structure might be required to known the location of each vertex in the heap (table of pointers).
Bellman-Ford algorithm

function ShortestPaths(G, l, s)
// Input: Graph G(V, E), source vertex s,
// edge lengths {l_e ∈ E}, no negative cycles.
// Output: dist[u] has the distance from s,
// prev[u] has the predecessor in the tree

for all u ∈ V:
 dist[u] = ∞
 prev[u] = nil

dist[s] = 0

repeat |V| − 1 times:
 for all (u, v) ∈ E:
 if dist[v] > dist[u] + l(u, v):
 dist[v] = dist[u] + l(u, v)
 prev[v] = u

Graphs © Dept. CS, UPC

Bellman-Ford: example

Negative cycles

• What is the shortest distance between S and A?

Bellman-Ford does not work as it assumes that the shortest path will not have more than |V| − 1 edges.

• A negative cycle produces −∞ distances by endlessly applying rounds to the cycle.

• How to detect negative cycles?
 – Apply Bellman-Ford (update edges |V| − 1 times)
 – Perform an extra round and check whether some distance decreases.

Shortest paths in DAGs

• DAG’s property:

In any path of a DAG, the vertices appear in increasing topological order.

• Any sequence of updates that preserves the topological order will compute distances correctly.

• Only one round visiting the edges in topological order is sufficient: O(|V| + |E|).

• How to calculate the longest paths?
 – Negate the edge lengths.
 – Compute the shortest paths.
DAG shortest paths algorithm

```plaintext
function DagShortestPaths(G, l, s)
    // Input: DAG G(V,E), source vertex s,
    //        edge lengths {l(e) ∈ E}.
    // Output: dist[u] has the distance from s,
    //        prev[u] has the predecessor in the tree
    for all u ∈ V:
        dist[u] = ∞
        prev[u] = nil
    dist[s] = 0
    Linearize G
    for all u ∈ V in linearized order:
        for all (u, v) ∈ E:
            if dist[v] > dist[u] + l(u, v):
                dist[v] = dist[u] + l(u, v)
                prev[v] = u
```

Minimum Spanning Trees

- Nodes are computers
- Edges are links
- Weights are maintenance cost
- Goal: pick a subset of edges such that
 - the nodes are connected
 - the maintenance cost is minimum

The solution is not unique.
Find another one!

Property:
An optimal solution cannot contain a cycle.

Properties of trees

- A tree is an undirected graph that is connected and acyclic.
- Property: A tree on n nodes has n − 1 edges.
 - Start from an empty graph. Add one edge at a time making sure that it connects two disconnected components.
- Property: Any connected, undirected graph G = (V, E) with |E| = |V| − 1 is a tree.
 - It is sufficient to prove that G is acyclic. If not, we can always remove edges from cycles until the graph becomes acyclic.
- Property: Any undirected graph is a tree iff there is a unique path between any pair of nodes.
 - If there would be two paths between two nodes, the union of the paths would contain a cycle.

Minimum Spanning Tree

- Given an undirected graph G = (V, E) with edge weights \(w_e \), find a tree \(T = (V, E') \), with \(E' \subseteq E \), that minimizes
 \[
 \text{weight}(T) = \sum_{e \in E'} w_e.
 \]
- Kruskal's algorithm: repeatedly add the next lightest edge that does not produce a cycle.
The cut property

Suppose edges \(X \) are part of an MST of \(G = (V, E) \). Pick any subset of nodes \(S \) for which \(X \) does not cross between \(S \) and \(V - S \), and let \(e \) be the lightest edge across this partition. Then \(X \cup \{ e \} \) is part of some MST.

Proof (sketch): Let \(T \) be an MST and assume \(e \) is not in \(T \). If we add \(e \) to \(T \), a cycle will be created with another edge \(e' \) across the cut \((S, V - S)\). We can now remove \(e' \) and obtain another tree \(T' \) with weight \(T' \leq \text{weight}(T) \). Since \(T \) is an MST, then the weights must be equal.

Kruskal’s algorithm

- Informal algorithm:
 - Sort edges by weight
 - Visit edges in ascending order of weight and add them as long as they do not create a cycle

- How do we know whether adding new edge will create a new cycle? How much does it cost to know it?

Disjoint sets

- A data structure to store a collection of disjoint sets.

- Operations:
 - \(\text{makeset}(x) \): creates a singleton set containing just \(x \).
 - \(\text{find}(x) \): returns the identifier of the set containing \(x \).
 - \(\text{union}(x, y) \): merges the sets containing \(x \) and \(y \).

- Kruskal’s algorithm uses disjoint sets and calls
 - \(\text{makeset}: |V| \) times
 - \(\text{find}: 2 \cdot |E| \) times
 - \(\text{union}: |V| - 1 \) times
Kruskal’s algorithm

function Kruskal(G, w)
// Input: A connected undirected Graph G(V,E)
// with edge weights w_e.
// Output: An MST defined by the edges in X.
for all u ∈ V: makeset(u)
X = {}
sort the edges in E by weight
for all (u,v) ∈ E, in ascending order of weight:
 if (find(u) ≠ find(v)):
 X = X ∪ {(u,v)}
 union(u,v)

Disjoint sets

• The nodes are organized as a set of trees. Each tree represents a set.

• Each node has two attributes:
 – parent (π): ancestor in the tree
 – rank: height of the subtree

• The root element is the representative for the set: its parent pointer is itself (self-loop).

• The efficiency of the operations depends on the height of the trees.

function makeset(x):
π(x) = x
rank(x) = 0

function find(x):
while x ≠ π(x): x = π(x)
return x

function union(x, y):
r_x = find(x)
r_y = find(y)
if r_x = r_y: return
if rank(r_x) > rank(r_y):
 π(r_y) = r_x
else:
 π(r_y) = r_x
 if rank(r_x) = rank(r_y):
 rank(r_y) = rank(r_y) + 1
 return x

Property: Any root node of rank k has at least 2^k nodes in its tree.
Property: If there are n elements overall, there can be at most $n/2^k$ nodes of rank k. Therefore, all trees have height $\leq \log n$.
Disjoint sets: path compression

- Complexity of Kruskal’s algorithm: $O(|E| \log |V|)$.
 - Sorting edges: $O(|E| \log|E|) \approx O(|E| \log |V|)$.
 - Find + union (2 · |E| times): $O(|E| \log |V|)$.

- How about if the edges are already sorted or sorting can be done in linear time (weights are small)?

- Path compression:

```
function find(x):
if x ≠ π x:
    π(x) = find(π x)
return π(x)
```

Amortized cost of find: $O(1)$
Kruskal’s cost: $O(|E|)$
(if sorting has linear cost)

Minimum Spanning Tree

Any scheme like this works (because of the properties of trees):

```
X = {}
repeat |V| − 1 times:
    pick a set $S \subset V$ for which $X$ has no edges between $S$ and $V − S$
    let $e \in E$ be the minimum-weight edge between $S$ and $V − S$
    $X = X \cup \{e\}$
```

Prim’s algorithm: X always forms a subtree and S is the set of X’s nodes:
Prim’s algorithm

Graphs © Dept. CS, UPC

Max-flow/min-cut problems

How much water can you pump from source to target?

OpenValve, by JAE HYUN LEE

https://brilliant.org/wiki/max-flow-min-cut-algorithm/

Max-flow/min-cut problems: applications

Model:
- a directed graph $G = (V, E)$.
- Two special nodes $s, t \in V$.
- Capacities $c_e > 0$ on the edges.

Goal: assign a flow f_e to each edge e of the network satisfying:
- $0 \leq f_e \leq c_e$ for all $e \in E$ (edge capacity not exceeded)
- For all nodes u (except s and t), the flow entering the node is equal to the flow exiting the node:

\[
\sum_{(u,v) \in E} f_{wu} = \sum_{(u,v) \in E} f_{vu}.
\]

Size of a flow: total quantity sent from s to t (equal to the quantity leaving s):

\[
\text{size}(f) = \sum_{(s,u) \in E} f_{su}.
\]
Given a flow, an augmenting path represents a feasible additional flow from s to t. An augmenting path can have forward and backward edges.

Augmenting paths can have forward and backward edges.

Given a flow f, an augmenting path is a directed path from s to t, which consists of edges from E, but not necessarily in the same direction. Each of these edges e satisfies exactly one of the following two conditions:

- e is in the same direction as in E (forward) and $f_e < c_e$. The difference $c_e - f_e$ is called the slack of the edge.

- e is in the opposite direction (backward) and $f_e > 0$. It represents the fact that some flow can be borrowed from the current flow.
Ford-Fulkerson algorithm: example

Graphs © Dept. CS, UPC


```
function Ford-Fulkerson(G,s,t)
    // Input: A directed Graph G(V,E) with edge capacities c_e.
    // s and t and the source and target of the flow.
    // Output: A flow f that maximizes the size of the flow.
    // For each (u,v) ∈ E, f(v,u) represents its flow.
    for all (u,v) ∈ E:
        f(u,v) = c(u,v) // Forward edges
        f(v,u) = 0 // Backward edges
    while there exists a path p = s ⇝ t in the residual graph:
        f(p) = min{f(u,v): (u,v) ∈ p}
        for all (u,v) ∈ p:
            f(u,v) = f(u,v) - f(p)
            f(v,u) = f(v,u) + f(p)
```

Ford-Fulkerson algorithm: complexity

- Finding a path in the residual graph requires $O(|E|)$ time (using BFS or DFS).

- How many iterations (augmenting paths) are required?
 - The worst case is really bad (C being the largest capacity of an edge if only integral values are used).
 - By carefully selecting *fat* augmenting paths (using some variant of Dijkstra's algorithm), the number of iterations is at most $O(|V| \cdot |E|)$.

- Ford-Fulkerson algorithm is $O(|V| \cdot |E|^2)$.
Max-flow problem

Cut: An \((s, t)\)-cut partitions the nodes into two disjoint groups, \(L\) and \(R\), such that \(s \in L\) and \(t \in R\).

For any flow \(f\) and any \((s, t)\)-cut \((L, R)\):

\[\text{size}(f) \leq \text{capacity}(L, R).\]

The max-flow min-cut theorem:

The size of the maximum flow equals the capacity of the smallest \((s, t)\)-cut.

The augmenting-path theorem:

A flow is maximum if it admits no augmenting path.

Bipartite matching

BOYS

Aleix
Bernat
Carles
David

GIRLS

Aida
Berta
Cristina
Duna

There is an edge between a boy and a girl if they like each other.

Can we pick couples so that everyone has exactly one partner that he/she likes?

Bad matching: if we pick (Aleix, Aida) and (Bernat, Cristina), then we cannot find couples for Berta, Duna, Carles and David.

A **perfect matching** would be: (Aleix, Berta), (Bernat, Duna), (Carles, Aida) and (David, Cristina).

Question: can we always guarantee an integer-valued flow?

Property: if all edge capacities are integer, then the optimal flow found by Ford-Fulkerson’s algorithm is integral. It is easy to see that the flow of the augmenting path found at each iteration is integral.

Min-cut algorithm

Finding a cut with minimum capacity:

1. Solve the max-flow problem with Ford-Fulkerson.
2. Compute \(L\) as the set of nodes reachable from \(s\) in the residual graph.
3. Define \(R = V - L\).
4. The cut \((L, R)\) is a min-cut.

Reduced to a max-flow problem with \(c_e = 1\).