A priority queue

• A priority queue is a queue in which each element has a priority.

• Elements with higher priority are served before elements with lower priority.

• It can be implemented as a vector or a linked list.
 For a queue with n elements:
 – Insertion is $O(n)$.
 – Extraction is $O(1)$.

• A more efficient implementation can be proposed in which insertion is $O(\log n)$: binary heap.

Binary Heap

- Complete binary tree (except at the bottom level).
- Height h: between 2^h and $2^{h+1} - 1$ nodes.
- For N nodes, the height is $O(\log N)$.
- It can be represented in a vector.

Heap-Order Property: the key of the parent of X is smaller than (or equal to) the key in X.

Binary Heap

Locations in the vector:

- $2i$ (even)
- $2i + 1$ (odd)

Heap-Order Property: the key of the parent of X is smaller than (or equal to) the key in X.

Two main operations on a binary heap:
- Insert a new element
- Remove the min element

Both operations must preserve the properties of the binary heap:
- Completeness
- Heap-Order property

Binary Heap: insert 14
Insert in the last location
... and bubble up ...
done!

Binary Heap: remove min
Extract the min element and move the last one to the root of the heap
... and bubble down ...
done!
// Elem must be a comparable type
template <typename Elem>
class PriorityQueue {
private:
 vector<Elem> v; // Table for the heap (location 0 not used)
public:
 // Constructor (one fake element in the vector)
 PriorityQueue() {
 v.push_back(Elem());
 }

 int size() {
 return v.size() - 1; // The 0 location does not count
 }

 bool empty() {
 return size() == 0;
 }

 Elem minimum() {
 assert(not empty());
 return v[1];
 }

 void insert(const Elem& x) {
 v.push_back(x); // Put element at the bottom
 bubble_up(size()); // … and bubble up
 }

 Elem remove_min() {
 assert(not empty());
 Elem x = v[1]; // Store the element at the root
 v[1] = v.back(); // Move the last element to the root
 v.pop_back();
 bubble_down(1); // … and bubble down
 return x;
 }

private:
 void bubble_up(int i) {
 if (i != 1 and v[i/2] > v[i]) {
 swap(v[i], v[i/2]);
 bubble_up(i/2);
 }
 }

 void bubble_down(int i) {
 int n = size();
 int c = 2*i;
 if (c <= n) {
 if (c+1 <= n and v[c+1] < v[c]) c++;
 if (v[i] > v[c]) {
 swap(v[i], v[c]);
 bubble_down(c);
 }
 }
 }

 // Bubble up/down operations do at most \(h \) swaps, where \(h \) is the height of the tree and \(h = \lfloor \log_2 N \rfloor \).

 // Therefore:
 // – Getting the min element is \(O(1) \)
 // – Inserting a new element is \(O(\log N) \)
 // – Removing the min element is \(O(\log N) \)
Binary Heap: other operations

• Let us assume that we have a method to know the location of every key in the heap.

• Increase/decrease key:
 – Modify the value of one element in the middle of the heap.
 – If decreased → bubble up.
 – If increased → bubble down.

• Remove one element:
 – Set value to \(-\infty\), bubble up and remove min element.

Containers: Priority Queues © Dept. CS, UPC

Building a heap from a set of elements

• Heaps are sometimes constructed from an initial collection of \(N\) elements. How much does it cost to create the heap?
 – Obvious method: do \(N\) insert operations.
 – Complexity: \(O(N \log N)\)

• Can it be done more efficiently?

Containers: Priority Queues © Dept. CS, UPC

Building a heap: implementation

```cpp
// Constructor from a collection of items
PriorityQueue(const vector<Elem>& items) {
    v.push_back(Elem());
    for (auto& e: items) v.push_back(e);
    for (int i = size()/2; i > 0; --i) bubble_down(i);
}
```

A heap can be built from a collection of items in linear time.

Containers: Priority Queues © Dept. CS, UPC

Sum of the heights of all nodes:

- 1 node with height \(h\)
- 2 nodes with height \(h - 1\)
- 4 nodes with height \(h - 2\)
- \(2^i\) nodes with height \(h - i\)

\[
S = h + 2(h - 1) + 4(h - 2) + 8(h - 3) + 16(h - 4) + \cdots + 2^{h-1}(1)
\]

\[
2S = 2h + 4(h - 1) + 8(h - 2) + 16(h - 3) + \cdots + 2^h(1)
\]

Subtract the two equations:

\[
S' = -h + 2 + 4 + 8 + \cdots + 2^{h-1} + 2^h = (2^{h+1} - 1) - (h + 1) = O(N)
\]

A heap can be built from a collection of items in linear time.
Heap sort

```cpp
template <typename T>
void heapSort(vector<T>& v) {
    PriorityQueue<T> heap(v);
    for (T& e : v) e = heap.remove_min();
}
```

- Complexity: $O(n \log n)$
 - Building the heap: $O(n)$
 - Each removal is $O(\log n)$, executed n times.