What do we expect from an algorithm?

• Correct
• Easy to understand
• Easy to implement
• Efficient:
 – Every algorithm requires a set of resources
 • Memory
 • CPU time
 • Energy

Fibonacci: recursive version

```c
// Pre: n ≥ 0
// Returns the Fibonacci number of order n.
int fib(int n) {
    if (n <= 1) return n;
    return fib(n - 1) + fib(n - 2);
}
```

How many recursive calls?
Fibonacci: runtime

\[
T(0) = 1 \\
T(1) = 1 \\
T(n) = T(n-1) + T(n-2)
\]

Let us assume that \(T(n) = a^n \) for some constant \(a \). Then,

\[
a^n = a^{n-1} + a^{n-2} \quad \Rightarrow \quad a^2 = a + 1
\]

\[
a = \frac{1 + \sqrt{5}}{2} = \varphi \approx 1.618 \quad \text{(golden ratio)}
\]

Therefore, \(T(n) \approx 1.6^n \).

If \(T(0) = 1 \) ns, then \(T(100) \approx 2.6 \cdot 10^{20} \text{ns} > 8000 \text{ yrs} \).

With the age of Universe (14 \cdot 10^9 \text{ yrs}), we could compute up to \(\text{fib}(128) \).

Fibonacci numbers: iterative version

```c
// Pre: n \geq 0
// Returns the Fibonacci number of order n.
int fib(int n) {
    // iterative solution
    int f_i = 0;
    int f_i1 = 1;
    // Inv: f_i is the Fibonacci number of order i.
    //      f_i1 is the Fibonacci number of order i+1.
    for (int i = 0; i < n; ++i) {
        int f = f_i + f_i1;
        f_i = f_i1;
        f_i1 = f;
    }
    return f_i;
}
```

Runtime: \(n \) iterations

Fibonacci numbers

Algebraic solution: find matrix \(A \) such that

\[
\begin{bmatrix}
F_{n+2} \\
F_{n+1}
\end{bmatrix} = \begin{bmatrix}
? & ? \\
? & ?
\end{bmatrix} \cdot \begin{bmatrix}
F_{n+1} \\
F_n
\end{bmatrix}
\]

\[
\begin{bmatrix}
F_{n+2} \\
F_{n+1}
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix} \cdot \begin{bmatrix}
F_{n+1} \\
F_n
\end{bmatrix}
\]

\[
\begin{bmatrix}
F_{n+1} \\
F_n
\end{bmatrix} = A^n \cdot \begin{bmatrix}
1 \\
0
\end{bmatrix}
\]

\[
A^1 = \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix} \quad A^2 = \begin{bmatrix}
2 & 1 \\
1 & 1
\end{bmatrix}
\]

\[
A^4 = \begin{bmatrix}
5 & 3 \\
3 & 2
\end{bmatrix} \quad A^8 = \begin{bmatrix}
34 & 21 \\
21 & 13
\end{bmatrix}
\]

\[
A^{16} = \begin{bmatrix}
1597 & 987 \\
987 & 610
\end{bmatrix} \quad \ldots \quad A^n = \begin{bmatrix}
F_{n+1} & F_n \\
F_n & F_{n-1}
\end{bmatrix}
\]

Runtime \(\approx \log_2 n \) 2x2 matrix multiplications
Algorithm analysis

Given an algorithm that reads inputs from a domain D, we want to define a cost function C:

$$C : D \rightarrow \mathbb{R}^+$$

$$x \mapsto C(x)$$

where $C(x)$ represents the cost of using some resource (CPU time, memory, energy, ...).

Analyzing $C(x)$ for every possible x is impractical.

Algorithm analysis: simplifications

• Analysis based on the size of the input: $|x| = n$

• Only the best/average/worst cases are analyzed:

$$C_{\text{worst}}(n) = \max \{ C(x) : x \in D, |x| = n \}$$

$$C_{\text{best}}(n) = \min \{ C(x) : x \in D, |x| = n \}$$

$$C_{\text{avg}}(n) = \sum_{x \in D, |x| = n} p(x) \cdot C(x)$$

$p(x)$: probability of selecting input x among all the inputs of size n.

Algorithm analysis

• Properties:

$$\forall n \geq 0 : \ C_{\text{best}}(n) \leq C_{\text{avg}}(n) \leq C_{\text{worst}}(n)$$

$$\forall x \in D : \ C_{\text{best}}(|x|) \leq C(x) \leq C_{\text{worst}}(|x|)$$

• We want a notation that characterizes the cost of algorithms independently from the technology (CPU speed, programming language, efficiency of the compiler, etc.).

• Runtime is usually the most important resource to analyze.

Asymptotic notation

Let us consider all functions $f : \mathbb{R}^+ \rightarrow \mathbb{R}^+$

Definitions:

$$O(f(n)) = \{ g(n) : \exists k > 0, \exists n_0, \forall n \geq n_0 : g(n) \leq k \cdot f(n) \}$$

$$\Omega(f(n)) = \{ g(n) : \exists k > 0, \exists n_0, \forall n \geq n_0 : g(n) \geq k \cdot f(n) \}$$

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$
Asymptotic notation

Examples for Big-O and Big-Ω

13n^3 - 4n + 8 ∈ O(n^3)
2n - 5 ∈ O(n)
n^2 ∉ O(n)
2^n ∈ O(n!)
3^n ∉ O(2^n)
3 log₂ n ∈ O(log n)
3n log₂ n ∈ O(n^2)
O(n^2) ⊆ O(n^3)

13n^3 - 4n + 8 ∈ Ω(n^3)

n! ∈ Ω(2^n)
n! ∈ Ω(2^n)

Complexity ranking

<table>
<thead>
<tr>
<th>Function</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>n!</td>
<td>factorial</td>
</tr>
<tr>
<td>2^n</td>
<td>exponential</td>
</tr>
<tr>
<td>n^d, d > 3</td>
<td>polynomial</td>
</tr>
<tr>
<td>n^3</td>
<td>cubic</td>
</tr>
<tr>
<td>n^2</td>
<td>quadratic</td>
</tr>
<tr>
<td>n√n</td>
<td>quasi-linear</td>
</tr>
<tr>
<td>n log n</td>
<td>linear</td>
</tr>
<tr>
<td>n</td>
<td>root - n</td>
</tr>
<tr>
<td>√n</td>
<td>log n</td>
</tr>
<tr>
<td>log n</td>
<td>logarithmic</td>
</tr>
<tr>
<td>1</td>
<td>constant</td>
</tr>
</tbody>
</table>
The limit rule

Let us assume that L exists (may be ∞) such that:

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

\[
\begin{align*}
\text{if } L &= 0 \quad \text{then } f \in O(g) \\
\text{if } 0 < L < \infty \quad \text{then } f \in \Theta(g) \\
\text{if } L &= \infty \quad \text{then } f \in \Omega(g)
\end{align*}
\]

Note: If both limits are ∞ or 0, use L'Hôpital rule:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

Properties

All rules (except the last one) also apply for Ω and Θ:

- $f \in O(f)$
- $\forall c > 0, O(f) = O(c \cdot f)$
- $f \in O(g) \land g \in O(h) \Rightarrow f \in O(h)$
- $f_1 \in O(g_1) \land f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(g_1 + g_2) = O(\max\{g_1, g_2\})$
- $f \in O(g) \Rightarrow f + g \in O(g)$
- $f_1 \in O(g_1) \land f_2 \in O(g_2) \Rightarrow f_1 \cdot f_2 \in O(g_1 \cdot g_2)$
- $f \in O(g) \Leftrightarrow g \in \Omega(f)$

Asymptotic complexity (small values)

Asymptotic complexity (larger values)
Let us consider that every operation can be executed in 1 ns (10^{-9} s).

<table>
<thead>
<tr>
<th>Function</th>
<th>$n = 1,000$</th>
<th>$n = 10,000$</th>
<th>$n = 100,000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_2 n$</td>
<td>10 ns</td>
<td>13.3 ns</td>
<td>16.6 ns</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>31.6 ns</td>
<td>100 ns</td>
<td>316 ns</td>
</tr>
<tr>
<td>n</td>
<td>1 μs</td>
<td>10 μs</td>
<td>100 μs</td>
</tr>
<tr>
<td>$n \log_2 n$</td>
<td>10 μs</td>
<td>133 μs</td>
<td>1.7 ms</td>
</tr>
<tr>
<td>n^2</td>
<td>1 ms</td>
<td>100 ms</td>
<td>10 s</td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 min</td>
<td>11.6 days</td>
</tr>
<tr>
<td>2^n</td>
<td>$3.4 \cdot 10^{284}$ yr</td>
<td>$6.3 \cdot 10^{2993}$ yr</td>
<td>$3.2 \cdot 10^{30086}$ yr</td>
</tr>
</tbody>
</table>

How about “big data”?

Source: Jon Kleinberg and Éva Tardos, Algorithm Design, Addison Wesley 2006.

<table>
<thead>
<tr>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>30</td>
<td>< 1 sec</td>
<td>18 min</td>
</tr>
<tr>
<td>50</td>
<td>< 1 sec</td>
<td>11 min</td>
</tr>
<tr>
<td>100</td>
<td>< 1 sec</td>
<td>1 sec</td>
</tr>
<tr>
<td>1,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
</tr>
<tr>
<td>10,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
</tr>
<tr>
<td>100,000</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>

This is often the practical limit for big data.

The robot and the door in an infinite wall

A robot stands in front of a wall that is infinitely long to the right and left side. The wall has a door somewhere and the robot has to find it to reach the other side. Unfortunately, the robot can only see the part of the wall in front of it.

The robot does not know neither how far away the door is nor what direction to take to find it. It can only execute moves to the left or right by a certain number of steps.

Let us assume that the door is at a distance d. How to find the door in a minimum number of steps?

Algorithm 1:

- Pick one direction and move until the door is found.

Complexity:

- If the direction is correct $\rightarrow O(d)$.
- If incorrect \rightarrow the algorithm does not terminate.
Algorithm 2:

- 1 step to the left, 2 steps to the right, 3 steps to the left, ...
- ... increasing by one step in the opposite direction.

Complexity:

\[
T(d) = d + 2 \sum_{i=1}^{d-1} i = d + 2 \frac{d(d - 1)}{2} = O(d^2)
\]

Algorithm 3:

- 1 step to the left, 2 steps to the right, 4 steps to the left, 8 steps to the right, 16 steps to the left, ...
- ... doubling the number of steps in the opposite direction.

Complexity (assume that \(d = 2^n\)):

\[
T(d) = d + 2 \sum_{i=0}^{n-1} 2^i = d + 2(2^n - 1) = 3d - 2 = O(d)
\]

Runtime analysis rules

- Variable declarations cost no time.
- **Elementary operations** are those that can be executed with a small number of basic computer steps (an assignment, a multiplication, a comparison between two numbers, etc.).
- Vector sorting or matrix multiplication are not elementary operations.
- We consider that the cost of elementary operations is \(O(1)\).
Runtime analysis rules

- **For/While loops:**
 - Running time is at most the running time of the statements inside the loop times the number of iterations.

- **Nested loops:**
 - Analyze inside out: running time of the statements inside the loops multiplied by the product of the sizes of the loops.

Nested loops: examples

```java
for (int i = 0; i < n; ++i)
    for (int j = 0; j < n; ++j)
        DoSomething();     // O(1)  \Rightarrow O(n^2)
```

```java
for (int i = 0; i < n; ++i)
    for (int j = i; j < n; ++j)
        DoSomething();     // O(1)  \Rightarrow O(n^2)
```

```java
for (int i = 0; i < n; ++i)
    for (int j = 0; j < m; ++j)
        for (int k = 0; k < p; ++k)
            DoSomething(); // O(1)  \Rightarrow O(n \cdot m \cdot p)
```

Linear time: \(O(n)\)

- Running time proportional to input size

```java
// Compute the maximum of a vector
// with n numbers

int m = a[0];
for (int i = 1; i < a.size(); ++i) {
    if (a[i] > m) m = a[i];
}
```

Other examples:

- Reversing a vector
- Merging two sorted vectors
- Finding the largest null segment of a sorted vector: a linear-time algorithm exists (a null segment is a compact sub-vector in which the sum of all the elements is zero)
Logarithmic time: \(O(\log n)\)

- Logarithmic time is usually related to divide-and-conquer algorithms

Examples:
- Binary search
- Calculating \(x^n\)
- Calculating the \(n\)-th Fibonacci number

Example: recursive \(x^y\)

```c
// Pre: \(x \neq 0, y \geq 0\)
// Returns \(x^y\)
int power(int x, int y) {
    if (y == 0) return 1;
    if (y%2 == 0) return power(x*x, y/2);
    return x*power(x*x, y/2);
}
```

// Assumption: each */% takes \(O(1)\)

Linearithmic time: \(O(n \log n)\)

- **Sorting**: Merge sort and heap sort can be executed in \(O(n \log n)\).

- **Largest empty interval**: Given \(n\) time-stamps \(x_1, \ldots, x_n\) on which copies of a file arrive at a server, what is largest interval when no copies of file arrive?
 - \(O(n \log n)\) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Selection Sort

- Selection sort uses this invariant:

\[
T(x^y) \leq 4 + T((x^2)^{y/2}) \leq 4 + 4 + T((x^4)^{y/4}) \leq \cdots \\
T(x^y) \leq 4 + 4 + \cdots + 4 \quad \Rightarrow \quad O(\log y)
\]

\[
\log_2 y \text{ times}
\]
Selection Sort

```cpp
tvoid selection_sort(vector<elem>& v) {
    int last = v.size() - 1;  // v.size() = n
    for (int i = 0; i < last; ++i) {  // 0..n-2
        int k = i;
        for (int j = i + 1; j <= last; ++j) {  // i+1..n-1
            if (v[j] < v[k]) k = j;
        }
        swap(v[k], v[i]);
    }
}
```

Insertion Sort

```cpp
tvoid insertion_sort(vector<elem>& v) {
    for (int i = 1; i < v.size(); ++i) {  // n-1 times
        elem x = v[i];
        int j = i;
        while (j > 0 and v[j - 1] > x) {  // 0..i times
            v[j] = v[j - 1];
            --j;
        }
        v[j] = x;
    }
}
```

The Maximum Subsequence Sum Problem

Given (possibly negative) integers \(A_1, A_2, \ldots, A_n\), find the maximum value of \(\sigma_{k=\tau}^{\tau} A_k\).

Example:
- Input: -2, 11, -4, 13, -5, -2
- Answer: 20 (subsequence 11, -4, 13)

\[
T(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} O(1) = O(1) \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = O(1) \sum_{i=0}^{n-2} (n-i-1) = O(1) \left(\frac{1}{2} (n-1) \cdot (n-2) \right) = O(1) \left(\frac{1}{2} n \cdot (n-1) \right) = O(1) \cdot O(n^2) = O(n^2)
\]
The Maximum Subsequence Sum Problem

```cpp
int maxSubSum(const vector<int>& a) {
    int maxSum = 0;
    // try all possible subsequences
    for (int i = 0; i < a.size(); ++i) {
        for (int j = i; j < a.size(); ++j) {
            int thisSum = 0;
            for (int k = i; k <= j; ++k)
                thisSum += a[k];
            if (thisSum > maxSum) maxSum = thisSum;
        }
    }
    return maxSum;
}
```

Algorithm Analysis

Max Subsequence Sum: Divide&Conquer

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>5</td>
<td>-2</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>-2</td>
</tr>
</tbody>
</table>

The max sum can be in one of three places:
- 1st half
- 2nd half
- Spanning both halves and crossing the middle

In the 3rd case, two max subsequences must be found starting from the center of the vector (one to the left and the other to the right)

\[
T(n) = \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1
\]

\[
= \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (j - i + 1)
\]

\[
= \sum_{i=0}^{n-1} (n - i + 1)(n - i) \frac{2}{2}
\]

\[
= \frac{n^3 + 3n^2 + 2n}{6} = O(n^3)
\]
Max Subsequence Sum: Divide & Conquer

```cpp
int maxSumRec(const vector<int>& a,
               int left, int right) {
    // base cases
    if (left == right)
        if (a[left] > 0)
            return a[left];
        else
            return 0;
    // Recursive cases: left and right halves
    int center = (left + right)/2;
    int maxLeft = maxSumRec(a, left, center);
    int maxRight = maxSumRec(a, center + 1, right);
    ...
}
```

Algorithm Analysis © Dept. CS, UPC 45

We will see how to solve this equation formally in the next lesson (Master Theorem). Informally:

- If $a[i]$ is negative, it cannot be the start of the optimal subsequence.
- Any negative subsequence cannot be the prefix of the optimal subsequence.

Let us consider the inner loop of the $O(n^2)$ algorithm and assume that $a[i..j-1]$ is positive and $a[i..j]$ is negative:

- If p is an index between $i+1$ and j, then any subsequence from $a[p]$ is not larger than any subsequence from $a[i]$ and including $a[p-1]$.
- If $a[j]$ makes the current subsequence negative, we can advance i to $j+1$.

```
int maxRCenter = 0, rightSum = 0;
for (int i = center; i >= left; --i) {
    rightSum += a[i];
    if (rightSum > maxRCenter) maxRCenter = rightSum;
}
int maxLCenter = 0, leftSum = 0;
for (int i = center + 1; i <= right; ++i) {
    leftSum += a[i];
    if (leftSum > maxLCenter) maxLCenter = leftSum;
}
int maxCenter = maxRCenter + maxLCenter;
return max3(maxLeft, maxRight, maxCenter);
```

Algorithm Analysis © Dept. CS, UPC 48
The Maximum Subsequence Sum Problem

```cpp
int maxSubSum(const vector<int>& a) {
    int maxSum = 0, thisSum = 0;
    for (int i = 0; i < a.size(); ++i) {
        int thisSum += a[i];
        if (thisSum > maxSum) maxSum = thisSum;
        else if (thisSum < 0) thisSum = 0;
    }
    return maxSum;
}
```

$T(n) = O(n)$

given a set of n points in the plane, connect them in a simple closed path.

Problems on polygons

Simple polygon

- **Input:** $p_1, p_2, ..., p_n$ (points in the plane).
- **Output:** P (a polygon whose vertices are $p_1, p_2, ..., p_n$ in some order).

1. Select a point z with the largest x coordinate (and smallest y in case of a tie in the x coordinate). Assume $z = p_1$.
2. For each $p_i \in \{p_2, ..., p_n\}$, calculate the angle α_i between the lines $z - p_i$ and the x axis.
3. Sort the points $\{p_2, ..., p_n\}$ according to their angles. In case of a tie, use distance to z.

Compute the convex hull of n given points in the plane.
There is no need to calculate angles (requires arctan). It is enough to calculate slopes ($\Delta y/\Delta x$).

There is not need to calculate distances. It is enough to calculate the square of distances (no sqrt required).

Complexity: $O(n \log n)$.
The runtime is dominated by the sorting algorithm.

Convex hull: gift wrapping algorithm

- **Input:** p_1, p_2, \ldots, p_n (points in the plane).
- **Output:** P (the convex hull of p_1, p_2, \ldots, p_n).
- Initial point: z with the largest x coordinate (and smallest y in case of a tie in the x coordinate).
- Iteration: Assume that a partial path with k points has been built (p_k is the last point). For each remaining point q calculate the angle of $p_k - q$ with the x axis and pick the smallest one (in counter-clockwise fashion).
- Stop when P is complete (back to point z).

Complexity: At each iteration k, we calculate $n - k$ angles. In the worst case, all points may belong to the convex hull, thus $T(n) = O(n^2)$.

Convex hull: Graham Scan

- **Input:** p_1, p_2, \ldots, p_n (points in the plane).
- **Output:** q_1, q_2, \ldots, q_m (the convex hull).
- Initially:
 Create a simple polygon P (complexity $O(n \log n)$).
 Assume the order of the points is p_1, p_2, \ldots, p_n.

Intuition: every three consecutive vertices in the convex hull must be in a counter-clockwise turn.

```cpp
bool ccw(p1, p2, p3) {
    return
        (p2.x - p1.x) * (p3.y - p1.y) >
        (p2.y - p1.y) * (p3.x - p1.x);
}
```

Observation: each point p_k can be included in Q and deleted at most once. The main loop of Graham scan has linear cost.

Complexity: dominated by the creation of the simple polygon $\Rightarrow O(n \log n)$.