Polynomial multiplication
(Fast Fourier Transform)

Jordi Cortadella and Jordi Petit
Department of Computer Science
Why polynomial multiplication?
Polynomials: coefficient representation

- A polynomial is represented as a vector of coefficients \((a_0, a_1, \ldots, a_{n-1})\):

\[
A(x) = 2x^4 + x^2 - 4x + 3
\]

\[
A = (3, -4, 1, 0, 2)
\]

- Addition: \(O(n)\)

\[
A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + \cdots + (a_{n-1} + b_{n-1})x^{n-1}
\]

- Evaluation: \(O(n)\) using Horner’s method

\[
A(x) = a_0 + (x(a_1 + x(a_2 + \cdots + x(a_{n-2} + x(a_{n-1})) \cdots)))
\]

- Multiplication: \(O(n^2)\) using brute force

\[
A(x) \cdot B(x) = \sum_{i=0}^{2n-2} c_i x^i, \quad \text{where} \quad c_i = \sum_{j=0}^{i} a_j b_{i-j}
\]
Polynomials: point-value representation

- **Fundamental Theorem (Gauss):** A degree n polynomial with complex coefficients has exactly n complex roots.

- **Corollary:** A degree $n - 1$ polynomial $A(x)$ is uniquely identified by its evaluation at n distinct values of x.
Polynomials: point-value representation

• A polynomial is represented as a set of pairs \((x_i, y_i)\):

\[
A(x) = \{(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})\}
\]

\[
B(x) = \{(x_0, z_0), \ldots, (x_{n-1}, z_{n-1})\}
\]

• Addition: \(O(n)\)

\[
A(x) + B(x) = \{(x_0, y_0 + z_0), \ldots, (x_{n-1}, y_{n-1} + z_{n-1})\}
\]

• Multiplication: \(O(n)\), but with \(2n - 1\) points

\[
A(x) \cdot B(x) = \{(x_0, y_0 \cdot z_0), \ldots, (x_{n-1}, y_{n-1} \cdot z_{n-1})\}
\]

• Evaluation: \(O(n^2)\) using Lagrange’s formula

\[
A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}
\]
Conversion between both representations

<table>
<thead>
<tr>
<th>representation</th>
<th>addition</th>
<th>multiplication</th>
<th>evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficient</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>point-value</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Could we have an efficient algorithm to move from coefficient to point-value representation and vice versa?
From coefficients to point-values

Given a polynomial $a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$, evaluate it at n different points x_0, \ldots, x_{n-1}:

$$
\begin{bmatrix}
 y_0 \\
 y_1 \\
 y_2 \\
 \vdots \\
 y_{n-1}
\end{bmatrix} =
\begin{bmatrix}
 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\
 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1}
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 \vdots \\
 a_{n-1}
\end{bmatrix}
$$

Runtime: $O(n^2)$ matrix-vector multiplication (apply Horner n times).
Evaluation by divide-and-conquer

- We want to evaluate $A(x)$ at n different points. Let us choose them to be positive-negative pairs: $\pm x_0, \pm x_1, \ldots, \pm x_{n/2-1}$

- The computations for $A(x_i)$ and $A(-x_i)$ overlap a lot.

- Split the polynomial into odd and even powers

\[
3 + 4x + 6x^2 + 2x^3 + x^4 + 10x^5 = (3 + 6x^2 + x^4) + x(4 + 2x^2 + 10x^4)
\]

- The terms in parenthesis are polynomials in x^2:

\[
A(x) = A_e(x^2) + xA_o(x^2)
\]
Evaluation by divide-and-conquer

• The calculations needed for $A(x_i)$ can be reused for computing $A(-x_i)$.

\[
A(x_i) = A_e(x_i^2) + x_i A_o(x_i^2)
\]
\[
A(-x_i) = A_e(x_i^2) - x_i A_o(x_i^2)
\]

• Evaluating $A(x)$ at n paired points

\[
\pm x_0, \pm x_1, \ldots, \pm x_{n/2-1}
\]

reduces to evaluating $A_e(x)$ and $A_o(x)$ at just $n/2$ points: $x_0^2, \ldots, x_{n/2-1}^2$
Evaluation by divide-and-conquer

Evaluate: $A(x)$
degree $\leq n - 1$

Evaluate:
$A_e(x)$ and $A_o(x)$
degree $\leq n/2 - 1$

If we could recurse, we would get a running time:

$$T(n) = 2 \cdot T(n/2) + O(n) = O(n \log n)$$

But can we recurse?
Evaluation by divide-and-conquer

Evaluate: $A(x)$
degree $\leq n - 1$

Evaluate:
$A_e(x)$ and $A_o(x)$
degree $\leq n/2 - 1$

The problem:
We need x_0^2 and x_1^2 to be a plus-minus pair. But a square cannot be negative!
Evaluation by divide-and-conquer

\[
\begin{align*}
+1 & \quad +x_0 \\
-1 & \quad -x_0 \\
+i & \quad +x_1 \\
-i & \quad -x_1 \\
+\sqrt{i} & \quad +x_2 \\
-\sqrt{i} & \quad -x_2 \\
+\sqrt{-i} & \quad +x_3 \\
-\sqrt{-i} & \quad -x_3 \\
\end{align*}
\]

\[
\begin{align*}
+x_0^2 & \quad +1 \\
-x_0^2 & \quad -1 \\
+x_1^2 & \quad +1 \\
-x_1^2 & \quad -1 \\
+x_2^2 & \quad +1 \\
-x_2^2 & \quad -1 \\
+x_3^2 & \quad +1 \\
-x_3^2 & \quad -1 \\
\end{align*}
\]

Note:
\[
\sqrt{i} = \pm \frac{1}{\sqrt{2}} (1 + i)
\]
\[
\sqrt{-i} = \pm \frac{1}{\sqrt{2}} (1 - i)
\]
Complex numbers: review

\[z = a + bi \]

\[z = r (\cos \theta + i \sin \theta) = re^{i\theta} \]

Polar coordinates: \((r, \theta)\)

Length: \(r = \sqrt{a^2 + b^2}\)

Angle \(\theta \in [0, 2\pi)\): \(\cos \theta = \frac{a}{r}, \sin \theta = \frac{b}{r}\)

\(\theta\) can always be reduced modulo \(2\pi\)

Some examples:

<table>
<thead>
<tr>
<th>Number</th>
<th>(-1)</th>
<th>(i)</th>
<th>(5 + 5i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar coords</td>
<td>((1, \pi))</td>
<td>((1, \pi/2))</td>
<td>((5\sqrt{2}, \pi/4))</td>
</tr>
</tbody>
</table>
Complex numbers: multiplication

For any $z = (r, \theta)$:

$-z = (r, \theta + \pi)$, since $-1 = (1, \pi)$

If z is on the unit circle, then $z^n = (1, n\theta)$
Complex numbers: the nth roots of unity

Solutions to the equation $z^n = 1$

$(n = 16)$

Solutions are $z = (1, \theta)$, for θ a multiple of $2\pi/n$

All roots are plus-minus paired:

$$-(1, \theta) = (1, \theta + \pi)$$
Divide-and-conquer step

Evaluate $A(x)$ at nth roots of unity

Evaluate $A_e(x)$ and $A_o(x)$ at $(n/2)$nd roots of unity
Divide-and-conquer steps
Roots of unity for $n = 8$
Polynomial evaluation (Fast Fourier Transform)

Function FFT(a, ω)

Inputs: $a = (a_0, a_1, \ldots, a_{n-1})$, for n a power of 2

ω: A primitive nth root of unity

Output: $(a(1), a(\omega), a(\omega^2), \ldots, a(\omega^{n-1}))$

if $\omega=1$: return a

$\left(s_0, s_1, \ldots, s_{n/2-1} \right) = \text{FFT}((a_0, a_2, \ldots, a_{n-2}), \omega^2)$

$\left(s'_0, s'_1, \ldots, s'_{n/2-1} \right) = \text{FFT}((a_1, a_3, \ldots, a_{n-1}), \omega^2)$

for $j = 0$ to $n/2 - 1$:

$r_j = s_j + \omega^j s'_j$

$r_{j+n/2} = s_j - \omega^j s'_j$

return $(r_0, r_1, \ldots, r_{n-1})$
FFT: asymptotic complexity

• The runtime of the FFT can be expressed as:

\[T(n) = 2 \cdot T(n/2) + O(n) \]

• Using the master theorem we conclude:

Runtime FFT(n) = O(n \log n)

• Gilbert Strang (MIT, 1994):

“the most important numerical algorithm of our lifetime”.
Unfolding the FFT

\[
F (T_n) = F (T_{n/2}) + \omega^j F (T_{n/2}) + \omega^{-j} F (T_{n/2})
\]

For \(j = 0, 1, \ldots, n-1 \)
Unfolding the FFT (butterfly diagram)

Divide & Conquer

© Dept. CS, UPC
Conversion between both representations

<table>
<thead>
<tr>
<th>representation</th>
<th>addition</th>
<th>multiplication</th>
<th>evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficient</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>point-value</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

\[
\langle \text{values} \rangle = \text{FFT}(\langle \text{coefficients} \rangle, \omega)
\]

\[
\langle \text{coefficients} \rangle = \frac{1}{n} \text{FFT}(\langle \text{values} \rangle, \omega^{-1})
\]
FFT application in Signal Processing

$$\sum_{n=1}^{5} n \times \cos(n \times \omega \times t), \quad \omega = 10 \times 2\pi$$

Converting a signal: time domain \leftrightarrow frequency domain