Containers: Set and Dictionary

Jordi Cortadella and Jordi Petit
Department of Computer Science
Sets and Dictionaries

• A set: an unordered collection of items. The typical operations are:
 – Add/remove one element
 – Does it contain an element?
 – Size?, Is it empty?

• A dictionary (map): a collection of key-value pairs. The typical operations are:
 – Put a new key-value pair
 – Remove a key-value pair with a specific key
 – Get the value associated to a key
 – Does it contain a key?
Sets and Dictionaries

- A dictionary can be treated as a set of keys, each key having an associated value.

- We will focus on the implementation of sets and later extend the implementation to dictionaries.

Source: Natural Language Processing with Python, by Steven Bird, Ewan Klein and Edward Loper
Possible implementations of a set

<table>
<thead>
<tr>
<th></th>
<th>Unsorted list or vector</th>
<th>Sorted vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>$O(n)$, if checking for duplicate keys, $O(1)$ otherwise.</td>
<td>$O(n)$ in the worst case (similar to insertion sort)</td>
</tr>
<tr>
<td>Deletion</td>
<td>$O(n)$ since it has to find the item along the list.</td>
<td>$O(n)$ since it has to sift the elements after deletion.</td>
</tr>
<tr>
<td>Lookup</td>
<td>$O(n)$ since the list must be scanned.</td>
<td>$O(\log n)$ with binary search.</td>
</tr>
<tr>
<td>Restrictions</td>
<td>No restrictions.</td>
<td>Elements must be comparable and ordered.</td>
</tr>
<tr>
<td>Good for</td>
<td>Small sets.</td>
<td>Read-only collections (only lookups) or very few updates.</td>
</tr>
</tbody>
</table>
Binary Search Trees

BST property: for every node in the tree with value V:
- All values in the left subtree are smaller than V.
- All values in the right subtree are larger than V.

This is a binary search tree

This is *not* a binary search tree
template<typename T>
class Set {
private:
 struct Node {
 T elem; // The element stored in the node
 Node* left; // Pointer to the left subtree
 Node* right; // Pointer to the right subtree
 };
 Node* root; // Pointer to the root of the tree
 int n; // Number of elements
 root

 elem
 left right

 root

Sets & Dictionaries © Dept. CS, UPC
public:
 // Constructors, assignment and destructor
 Set();
 Set(const Set& S);
 Set& operator=(const Set& S);
 ~Set();

 // Finding elements
 const T& findMin() const;
 const T& findMax() const;
 bool contains(const T& x) const;
 int size() const;
 bool isEmpty() const;

 // Insert/remove methods
 void insert(const T& x);
 void remove(const T& x);
 void makeEmpty();
private:
 // Public methods require a private pointer-based
 // version to traverse the tree.

 // Finding elements
 Node* findMin(Node* t) const;
 Node* findMax(Node* t) const;
 bool contains(const T& x, Node* t) const;

 // Insert/remove methods
 void insert(const T& x, Node*& t);
 void remove(const T& x, Node*& t);
 void makeEmpty(Node*& t);
/** Find the smallest item in the subtree t. * Returns the node containing the smallest item. */
Node* findMin(Node* t) const {
 if (t->left == nullptr) return t;
 return findMin(t->left);
}

/** Find the largest item in the subtree t. * Returns the node containing the largest item. */
Node* findMax(Node* t) const {
 while (t->right != nullptr) t = t->right;
 return t;
}

/** Find the smallest item in the Set. */
const T& findMin() const {
 assert(not isEmpty());
 return findMin(root)->elem;
}

// findMax has a similar implementation
```cpp
/** Find an item in the subtree represented by t.
* Returns true if found, and false otherwise. */
bool contains(const T& x, Node* t) const {
    if (t == nullptr) return false;
    if (x < t->elem) return contains(x, t->left);
    if (x > t->elem) return contains(x, t->right);
    return true;
}

/** Find an item in the set.
* Returns true if found, and false otherwise. */
bool contains(const T& x) const {
    return contains(x, root);
}

/** Checks whether the tree is empty. */
bool isEmpty() const {
    return root == nullptr; // or also size() == 0
}
```
/** Inserts item x into the subtree t. */
void insert(const T& x, Node*& t) {
 if (t == nullptr) {
 t = new Node {x, nullptr, nullptr};
 ++n;
 } else if (x < t->elem) insert(x, t->left);
 else if (x > t->elem) insert(x, t->right);
 else; // Duplicated item: do nothing
}

/** Inserts item x into the set. */
void insert(const T& x) {
 insert(x, root);
}
remove: simple case (no children)

remove(3)
remove: simple case (one child)

```
6
/   \
2   8
/ \   /
1  4 3
```

```
6
/   \
2   8
/ \   /
1  4 3
```

remove(4)
/** Removes item x from the subtree t. */
void remove(const T& x, Node*& t) {
 if (t == nullptr) return; // Not found
 if (x < t->elem) return remove(x, t->left);
 if (x > t->elem) return remove(x, t->right);

 // We have found the item
 if (t->left == nullptr || t->right == nullptr) {
 Node* old = t;
 t = t->left ? t->left : t->right;
 delete t;
 --n;
 } else {
 ...
 ...
 // Case with two children
 ...
 }
}

remove: complex case (two children)

1. Find the element.

2. Find the min value of the left subtree.

3. Copy the min value onto the element to be removed.
remove: complex case (two children)

1. Find the element.

2. Find the min value of the left subtree.

3. Copy the min value onto the element to be removed.

4. Remove the min value in the left subtree (simple case).
1. Find the element.

2. Find the min value of the left subtree.

3. Copy the min value onto the element to be removed.

4. Remove the min value in the left subtree (simple case).
/** Removes item x from the subtree t. */
void remove(const T& x, Node*& t) {
 if (t == nullptr) return; // Not found
 if (x < t->elem) return remove(x, t->left);
 if (x > t->elem) return remove(x, t->right);

 // We have found the item
 if (t->left == nullptr or t->right == nullptr) {
 Node* old = t;
 t = t->left ? t->left : t->right;
 delete t;
 --n;
 } else { // Case with two children
 t->elem = findMin(t->right)->elem; // Copy the min element
 remove(t->elem, t->right); // Remove the min elem
 }
}

/** Public method for remove. */
void remove(const T& x) {
 remove(x, root);
}
/** Default constructor (empty set). */
Set() : root(nullptr), n(0) {}

/** Copy constructor. */
Set(const Set& S) {
 root = copy(S.root);
 n = S.n;
}

/** Assignment operator. */
Set& operator=(const Set& S) {
 if (&S != this) {
 makeEmpty(root);
 root = copy(S.root);
 n = S.n;
 }
 return *this;
}

/** Destructor. */
~Set() {
 makeEmpty(root);
 n = 0;
}
/** Recursive method to clone a subtree. */
Node* copy(Node* t) const {
 if (t == nullptr) return nullptr;
 return new Node{t->elem, copy(t->left), copy(t->right)};
}

/** Recursive method to clean a subtree. */
void makeEmpty(Node*& t) {
 if (t != nullptr) {
 makeEmpty(t->left);
 makeEmpty(t->right);
 delete t;
 }
 t = nullptr;
}
Let us assume that the set has n elements. The operations copy and makeEmpty take $O(n)$.

We are mostly interested in the runtime of the insert/remove/contains methods.

– The complexity is $O(d)$, where d is the depth of the node containing the required element.

But, how large is d?
Random BST

Source: Fig 4.29 of Weiss textbook
• **Internal path length (IPL):** The sum of the depths of all nodes in a tree. Let us calculate the average IPL considering all possible insertion sequences.

• \(D(n) \) is the IPL of a tree with \(n \) nodes. \(D(1) = 0 \). The left subtree has \(i \) nodes and the right subtree has \(n - i - 1 \) nodes. Thus,

\[
D(n) = D(i) + D(n - i + 1) + (n - 1)
\]

• If all subtree sizes are equally likely, then the average value for \(D(i) \) and \(D(n - i - 1) \) is

\[
\frac{1}{n} \sum_{j=0}^{n-1} D(j)
\]
BST: runtime analysis

• Therefore,

\[D(n) = \frac{2}{n} \left[\sum_{j=0}^{n-1} D(j) \right] + n - 1 \]

• The previous recurrence gives:

\[D(n) = O(n \log n) \]

• This does not mean that the average runtime of insert/remove is \(O(n \log n) \).
Random BST after n^2 insert/removes

Reason: the deletion algorithm is asymmetric (deletes elements from the right subtree)

Source: Fig 4.30 of Weiss textbook
Balanced trees

• The worst-case complexity for insert, remove and search operations in a BST is $O(n)$, where n is the number of elements.

• Various representations have been proposed to keep the height of the tree as $O(\log n)$:
 – AVL trees
 – Red-Black trees
 – Splay trees
 – B-trees
AVL trees

• Named after Adelson-Velsky and Landis (1962).

• Main idea: invest some additional time to balance the tree each time a new element is inserted or deleted.

• Properties:
 – The height of the tree is always $\Theta(\log n)$.
 – The time devoted to balancing is $O(\log n)$.
AVL tree: definition

• An AVL tree is a BST such that, for every node, the difference between the heights of the left and right subtrees is at most 1.
AVL tree in action

https://en.wikipedia.org/wiki/AVL_tree
Smallest AVL tree with $h = 9$.
AVL trees

Smallest AVL tree with $h = 6$.

The important question: what is the size of an AVL tree with height h?
Theorem: The height of an AVL tree with n nodes is $\Theta(\log n)$.

Proof in two steps:
- The height is $\Omega(\log n)$.
- The height is $O(\log n)$.
The height is $\Omega(\log n)$

• The size n of a tree with height h is:

$$n \leq 1 + 2 + 4 + \cdots + 2^h = 2^{h+1} - 1.$$

(all levels full of nodes)

• Therefore,

$$\log_2(n + 1) - 1 \leq h$$

and $h = \Omega(\log n)$.
The height is $O(\log n)$

• Let $S(h)$ be the min number of nodes of an AVL tree with height h.

• One of the children (e.g., left) must have height $h - 1$. The other child must have height $h - 2$ (because the AVL has min size).

• Therefore,

\[
S(h) = S(h - 1) + S(h - 2) + 1.
\]

• Thus,

\[
S(h) \geq 2 \cdot S(h - 2).
\]

• Given that $S(0) = 1$ and $S(1) = 2$, it can be easily proven, by induction, that:

\[
S(h) \geq 2^{h/2}
\]

• Since $n \geq S(h)$ and $\log_2 S(h) \geq h/2$, then $h \leq 2 \log_2 n$:

\[
h = O(\log n).
\]
Height of an AVL tree

• The recurrence

\[S(h) = S(h - 1) + S(h - 2) + 1 \]

resembles the one of the Fibonacci numbers. A tighter bound can be obtained.

• Theorem: the height of an AVL tree with \(n \) internal nodes satisfies:

\[h < 1.44 \log_2(n + 2) - 1.328 \]
Unbalanced insertion: 4 cases

Any newly inserted item may fall into any of the four subtrees (LL, LR, RL or RR).

A new insertion may violate the balancing property. Re-balancing might be required.
Single rotation: the left-left case

Sets & Dictionaries

© Dept. CS, UPC
Single rotation: the right-right case

1. Insertion:
 - Before insertion, the tree structure is maintained with balanced heights.
 - After insertion, the height of some nodes increases, necessitating a rotation.

2. Rotation:
 - The tree is rotated to maintain the balance, ensuring that the heights remain balanced.

The process involves adjusting the tree structure to ensure that the heights are balanced after insertion, demonstrating the dynamic nature of balancing in data structures like trees.
Double rotation: the left-right case

Insertion does not work

Single rotation does not work

Double rotation
Double rotation: the right-left case

Insertion

Double rotation
Implementation details

• The height must be stored at each node. Only the unbalancing factor (\{-1,0,1\}) is strictly required.

• The insertion/deletion operations are implemented similarly as in BSTs (recursively).

• The re-balancing of the tree is done when the recursive calls return to the ancestors (check heights and rotate if necessary).
Complexity

- Single and double rotations only need the manipulation of few pointers and the height of the nodes ($O(1)$).

- Insertion: the height of the subtree after a rotation is the same as the height before the insertion. Therefore, at most only one rotation must be applied for each insertion.

- Deletion: more complicated. More than one rotation might be required.

- Worst case for deletion: $O(\log n)$ rotations (a chain effect from leaves to root).