
The Octahedron Abstract Domain ?

Robert Clarisó and Jordi Cortadella
Universitat Politècnica de Catalunya

Barcelona, Spain

Abstract. An interesting area in static analysis is the study of numeric proper-
ties. Complex properties can be analyzed using abstract interpretation, provided
that an adequate abstract domain is defined. Each domain can represent and ma-
nipulate a family of properties, providing a different trade-off between the preci-
sion and complexity of the analysis. The contribution of this paper is a new nu-
meric abstract domain called octahedron that represents constraints of the form
(±xj ± . . . ± xk ≥ c), where xi are numerical variables such that xi ≥ 0. The
implementation of octahedra is based on a new kind of decision diagrams called
Octahedron Decision Diagrams (OhDD).

1 Introduction

Abstract interpretation [5] defines a generic framework for the static analysis of dy-
namic properties of a system. This framework can be used, for instance, to analyze
termination or to discover invariants in programs automatically. However, each analysis
requires the framework to be parametrized for the relevant domain of properties being
studied, e.g. numerical properties.

There is a wide selection of numeric abstract domains that can be used to represent
and manipulate properties. Some examples are intervals, octagons and convex polyhe-
dra. Each domain provides a different trade-off between the precision of the properties
that can be represented and the efficiency of the manipulation. An interesting prob-
lem in abstract interpretation is the study of new abstract domains that are sufficiently
expressive to analyze relevant problems and allow an efficient implementation.

In this paper, a new numerical abstract domain called octahedron is described. This
abstract domain can represent conjunctions of restricted linear inequalities of the form
(±xj ± . . .± xk ≥ c), where xi are numerical variables such that xi ≥ 0. A new kind
of decision diagram called Octahedron Decision Diagram (OhDD) has been specifi-
cally designed to represent and manipulate this family of constraints efficiently. Several
analysis problems can be solved using these constraints, such as the analysis of timed
systems [1, 12], the analysis of string length in C programs [8] and the discovery of
bounds on the size of asynchronous communication channels.

The remaining sections of the paper are organized as follows. Section 2 explains re-
lated work in the definition of numeric domains for abstract interpretation, and previous
decision diagram techniques used to represent numerical constraints. Section 3 defines
the numeric domain of octahedra, and section 4 describes the data structure and its op-
erations. In section 5, some possible applications of the octahedron abstract domain are
discussed, and some experimental results are provided. Finally, section 6 draws some
conclusions and suggests some future work.
? c©Springer-Verlag LNCS 2004

Abstraction Cite Properties Example

Intervals [5] k1 ≤ x ≤ k2 2 ≤ x ≤ 5

Difference Bound [7, 15] k1 ≤ x ≤ k2 1 ≤ x ≤ 3
Matrices (DBMs) x − y ≤ k x − y ≤ 5

Octagons [16] ±x ± y ≤ k 2 ≤ x + y ≤ 6

Two variables per inequality [22] c1 · x1 + c2 · x2 ≥ k 2 ≤ 3x − 2y ≤ 5

Octahedra This paper ±xi ± . . . ± xk ≥ k x − y + z ≥ 5

Convex polyhedra [6, 11] c1 · x1 + . . . + cn · xn ≥ k x + 3y − 2z ≥ 6
Table 1. A comparison of numeric abstract domains based on inequality properties.

2 Related work

2.1 Numeric Abstract Domains

Abstract domain is a concept used to denote a computer representation for a family of
constraints, together with the algorithms to perform the abstract operators such as union,
intersection, widening or the transfer function. Several abstract domains have been de-
fined for interesting families of numeric properties, such as inequality or modulo prop-
erties. The octahedron abstract domain belongs to the former category. Other abstract
domains based on inequalities are intervals, difference bound matrices, octagons, two-
variables-per-inequality, and convex polyhedra. An example of these abstract domains
and their relation to octahedra can be seen in Table 1.

Intervals are a representation for constraints on the upper or lower bound of a single
variable, e.g. (k1 ≤ x ≤ k2). Interval analysis is very popular due to its simplicity and
efficiency: an interval abstraction for n variables requires O(n) space, and all opera-
tions require O(n) time in the worst case. Octagons are an efficient representation for
a system of inequalities on the sum or difference of variable pairs, e.g. (±x ± y ≤ k)
and (x ≤ k). The implementation of octagons is a based on difference bound matrices
(DBM), a data structure used to represent constraints on differences of variables, as in
(x − y ≤ k) and (x ≤ k). Efficiency is an advantage of this representation: the spatial
cost for representing constraints on n variables is O(n2), while the temporal cost is
between O(n2) and O(n3), depending on the operation. Convex polyhedra are an ef-
ficient representation for conjunctions of linear inequality constraints. This abstraction
is very popular due to its ability to express precise constraints. However, this precision
comes with a very high complexity overhead. This complexity has motivated the defi-
nition of abstract domains such as two-variables per inequality, which try to retain the
expressiveness of linear inequalities with a lower complexity.

The abstract domain presented in this paper, octahedra, also attempts to keep some
of the flexibility of convex polyhedra with a lower complexity. Instead of limiting the
number of variables per inequality, the coefficients of the variables are restricted to
{−1, 0, +1}. From this point of view, octahedra provide a precision that is between
octagons and convex polyhedra.

2.2 Decision Diagrams

The implementation of octahedra is based on decision diagrams. Decision diagram tech-
niques have been applied successfully to several problems in different application do-

mains. Binary Decision Diagrams (BDD) [3] provide an efficient mechanism to repre-
sent boolean functions. Zero Suppressed BDDs (ZDD) [14] are specially tuned to rep-
resent sparse functions more efficiently. Multi-Terminal Decision Diagrams (MTBDD)
[10] represent functions from boolean variables to reals, f :

�
n → IR

The paradigm of decision diagrams has also been applied to the analysis of numer-
ical constraints. Most of this approaches compare the value of numeric variables with
constants or intervals, or compare the value of pairs of variables. Some examples of
these representations are Difference Decision Diagrams (DDD) [17], Numeric Decision
Diagrams (NDD) [9], and Clock Difference Diagrams (CDD) [2]. These data structures
encode contraints on a maximum of two variables at a time. In other representations,
each node encodes one complex constraint like a linear inequality. Some examples of
these representations are Decision Diagrams with Constraints (DDC) [13] and Hybrid-
Restriction Diagrams (HRD) [24]. The Octahedron Decision Diagrams described in
this paper use an innovative approach to encode linear inequalities. This approach is
presented in Section 4.

3 Octahedra

3.1 Definitions

The octahedron abstract domain is now introduced. In the same way as convex poly-
hedra, an octahedron abstracts a set of vectors in Qn as a system of linear inequalities
satisfied by all these vectors. The difference between convex polyhedra and octahedra
is the family of constraints that are supported.

Definition 1 (Unit linear inequality). A linear inequality is a constraint of the form
(c1 · x1 + . . . + cn · xn ≥ k) where the constant term k and the coefficients ci are in
Q ∪ {−∞}, e.g. (3x + 2y − z ≥ −7). A linear inequality will be called unit if all
coefficients are in {−1, 0, +1}, such as (x + y − z ≥ −7).

Definition 2 (Octahedron). An octahedron O over Qn is the set of solutions to the sys-
tem of m unit inequalities O = {X | AX ≥ B ∧ X ≥ 0n}, where B ∈ (Q ∪ {−∞})m

and A ∈ {−1, 0, +1}m×n. Octahedra satisfy the following properties:

1. Convexity: An octahedron is a convex set.
2. Closed for intersection: The intersection of two octahedra is also an octahedron.
3. Non-closed for union: The union of two octahedra might not be an octahedron.

Figure 1(a) shows some examples of octahedra in two-dimensional space. In Fig.
1(b) there are several regions of space which are not octahedra, either because they
contain a region with negative values (1), they are not convex (2), they cannot be repre-
sented by a finite system of linear inequalities (3), or because they can be represented
as system of linear inequalities, but not unit linear inequalities (4). Notice that in two-
dimensional space all octahedra are octagons; octahedra can only show a better preci-
sion than octagons in higher-dimensional spaces.

During the remaining of this paper, we will use C to denote a vector in {−1, 0, +1}n

where n is the number of variables. Therefore, (CT X ≥ k) denotes the unit linear
inequality (c1 · x1 + . . . + cn · xn ≥ k).

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

(a)

(b)
1 2 4

3

Fig. 1. Some examples of (a) octahedra and (b) non-octahedra in two-dimensional space.

Lemma 1. An octahedron over n variables can be represented by at most 3n non-
redundant inequalities.

Proof. Each variable can have at most three different coefficients in a unit linear in-
equality. These means that if an octahedron has more than 3n unit inequalities, some of
them will only differ in the constant term, e.g. (CT X ≥ k1) and (CT X ≥ k2). Only
one of these inequalities is non-redundant, the one with the tightest bound (the largest
constant), i.e. (CT X ≥ max(k1, k2)). ut

A problem when dealing with convex polyhedra and octahedra is the lack of canon-
icity of the systems of linear inequalities: the same polyhedron/octahedroncan be repre-
sented with different inequalities. For example, both (x = 3) ∧ (y ≥ 5) and (x = 3) ∧
(x + y ≥ 8) define the same octahedron with different inequalities. Given a convex
polyhedron, there are algorithms to minimize the number of constraints in a system of
inequalities, i.e. removing all constraints that can be derived as linear combinations.
However, in the previous example both representations are minimal and even then, they
are different. Given that the number of possible linear inequalities in a convex polyhe-
dron is infinite, the definition of a canonical form for convex polyhedra seems a difficult
problem. However, a canonical form for octahedra can be defined using the result of
lemma 1. Even though the number of inequalities of this canonical form makes an ex-
plicit representation impractical, symbolic representations based on decision diagrams
can manipulate sets of unit inequalities efficiently.

Definition 3 (Canonical form of octahedra). The canonical form of an octahedron
O ⊆ Qn is either (i) the empty octahedron or (ii) a system of 3n unit linear inequalities,
where in each inequality (CT X ≥ k), k is the tightest bound satisfied by O.

Theorem 1. Two octahedra O1 and O2 represent the same subset of Qn if and only if
they both have the same canonical form.

Proof. (→) Given a constraint (CT X ≥ k), there is a single tightest bound to that con-
straint. So if two octahedra are equal, they will have the same bound for each possible
linear constraint, and therefore, the same canonical form. ut

(←): From its definition, an octahedron is completely characterized by its system
of inequalities. If two octahedra O1 and O2 have the same canonical form, then they
satisfy exactly the same system of inequalities and therefore are equal. ut

y

x

y

x

y

x

C−hull(A,B) O−hull(A,B)A U B

BBB

A A A
A = {(4 ≥ x ≥ 2) ∧ (7 ≥ y ≥ 4)}

B = {(5 ≥ x ≥ 1) ∧ (3 ≥ y ≥ 1)}

C-hull = {(5 ≥ x ≥ 1) ∧ (7 ≥ y ≥ 1) ∧

(4x − y ≥ 1) ∧ (−4x − y ≥ −23)}

O-hull = {(5 ≥ x ≥ 1) ∧ (7 ≥ y ≥ 1) ∧

(x − y ≥ 5) ∧ (−x − y ≥ −11)}

Fig. 2. Two upper approximations of the union: convex hull (C-hull) and octahedral hull (O-hull)

Theorem 2. Let A and B be two non-empty octahedra represented by systems of in-
equalities of the form (CT X ≥ ka) and (CT X ≥ kb) for all C ∈ {−1, 0, +1}n. The
intersection A ∩ B is defined by the system of inequalities (CT X ≥ max(ka, kb)),
which might be in non-canonical form even if the input systems were canonical.

Proof. Any point P ∈ Qn that satisfies (CT P ≥ max(ka, kb)) will also satisfy
(CT P ≥ ka) and (CT P ≥ kb). Therefore, any point P satisfying the new system
of inequalities will also appear in both A and B. ut

Lemma 2. An octahedron B is an upper approximation of an octahedron A, noted
A ⊆ B, iff (i) A is empty or (ii) for any constraint (CT X ≥ ka) in the canonical form
of A, the equivalent constraint (CT X ≥ kb) in the canonical form of B has a constant
term kb such that (ka ≥ kb).

Proof. By definition, A ⊆ B iff A = A ∩ B. This lemma is a direct consequence of
this property and Theorem 2. ut

Definition 4 (Convex and octahedral hull). The convex hull (C-hull) of two convex
polyhedra A and B is the intersection of all convex polyhedra that include both A and
B. The octahedral hull (O-hull) of two octahedra A and B is the intersection of all
octahedra that include both A and B.

Figure 2 shows an example of the convex and octahedral hulls of two octahedra A

and B. Notice that the convex hull is always an upper approximation of the union, and
the octahedral hull is always an upper approximation of the convex hull, i.e. A ∪ B ⊆
C-hull(A, B) ⊆ O-hull(A, B).

Theorem 3. Let A and B be two non-empty octahedra whose canonical form are re-
spectively (CT X ≥ ka) and (CT X ≥ kb) for all C ∈ {−1, 0, +1}n. Then, the octahe-
dral hull O-hull(A, B) is defined by the system of inequalities (CT X ≥ min(ka, kb))

Proof. Given a bound k for one inequality (CT X ≥ k) of O-hull(A, B), the proof can
be split into two parts: proving that k ≤ min(ka, kb) and proving that k ≥ min(ka, kb).

As the octahedral hull includes A and B, all points P ∈ A and P ∈ B should
also be in O-hull(A, B). Therefore, any point in A or B should satisfy the constraints
of O-hull(A, B). Given a constraint (CT X ≥ k), it is known that points in A satisfy
(CT X ≥ ka) and points in B satisfy (CT X ≥ kb). If both sets of points must satisfy
the constraint in O-hull(A, B), then k must satisfy k ≤ min(ka, kb).

On the other side, the octahedral hull is the least octahedron that includes A and
B. Therefore, the bounds of each constraint should be as tight as possible, i.e. as large

as possible. If we know that k ≤ min(ka, kb) should hold for a given unit inequality,
the tightest bound for that inequality is precisely k = min(ka, kb). As a corollary, the
octahedral hull computed in this way is in canonical form. ut

3.2 Abstractions of Octahedra

As it was shown in the previous section, the canonical form of an octahedron provides
a useful mechanism to define operations such as the test for inclusion, the intersection
or the octahedral hull. However, finding an efficient algorithm that can compute the
canonical form of an octahedron from a non-canonical system of inequalities is an open
problem at the time of writing this paper.

On the other hand, octahedra are defined in the context of abstract interpretation of
numeric properties. In this context, the problem is the abstraction of a set of values in
Qn, and the main concern is ensuring that our abstraction is an upper approximation of
the concrete set of values. Thus, as long as an upper approximation can be guaranteed,
an exact representation of octahedra is not required, as octahedra are already abstrac-
tions of more complex sets. Keeping this fact in mind, efficient algorithms that operate
with upper approximations of the canonical form can be designed.

The first step is the definition of a relaxed version of the canonical form, which
is called saturated form. While the canonical form has the tightest bound in each of
its inequalities, the bounds in the saturated form may be more relaxed. A system of
unit inequalities is in saturated form as long as the bounds imposed by the sum of any
pair of constraints appear explicitly. For example, a saturated form of the octahedron
(a ≥ 3)∧ (b ≥ 0)∧ (c ≥ 0)∧ (b− c ≥ 7)∧ (a + b ≥ 8)∧ (a + c ≥ 6) can be defined
by the following system of inequalities:

(a ≥ 3) ∧ (b ≥ 7) ∧ (c ≥ 0) ∧ (a + b ≥ 10) ∧ (a + c ≥ 6) ∧ (b + c ≥ 7)
∧ (b− c ≥ 7) ∧ (a + b− c ≥ 10) ∧ (a + b + c ≥ 13)

where the constraints with a bound of −∞ have been removed for brevity. In this ex-
ample, saturation has exposed explicitly that (a + b ≥ 10). This inequality is the linear
combination of (a ≥ 3), (b− c ≥ 7) and (c ≥ 0).

A saturated form O∗ of an octahedron O = {X | AX ≥ B ∧ X ≥ 0n} can be
computed using the following saturation procedure:

1. Initialize the system of 3n unit inequalities for all possible values of the coefficients
C ∈ {−1, 0, +1}n. The bound k of a given inequality (CT X ≥ k) is chosen as:

k =















max(0, b) if CT X ≥ b appears in AX ≥ B and C ≥ 0n

b if CT X ≥ b appears in AX ≥ B and C 6≥ 0n.
0 if CT X ≥ b does not appear in AX ≥ B but C ≥ 0n

−∞ otherwise

2. Select two inequalities CT
1 X ≥ k1 and CT

2 X ≥ k2 such that k1 > −∞ and
k2 > −∞. Let us define C∗ = C1 + C2 and k∗ = k1 + k2.

3. If C∗ 6∈ {−1, 0, +1}n return to step 2.
4. If CT

∗ X ≥ k appears in the system of inequalities with k ≥ k∗, return to step 2.

5. Replace the inequality CT
∗ X ≥ k by CT

∗ X ≥ k∗.
6. Repeat steps 2-5 until:

– A fixpoint is reached or
– An inequality CT

∗ X ≥ k with C = 0n and k > 0 is found. In this case, the
octahedron is empty.

Theorem 4. Let O = {X | AX ≥ B ∧ X ≥ 0n} be a non-empty octahedron. The
saturation algorithm applied to O terminates.

Proof. Each step of the saturation algorithm defines a tighter bound for an inequality
of the octahedron. The new inequality (CT

3 X ≥ k′
3) is obtained from two previously

known inequalities (CT
1 X ≥ k1) and (CT

2 X ≥ k2), so that C3 = C1 + C2 and
k′
3 = k1 + k2, and k′

3 > k3, where k3 is the previously known bound for the inequality.
If inequalities 1 and 2 were computed in previous rounds of the saturation algorithm,
this dependency chain can be expanded, e.g. if inequality 2 comes from inequalities 4
and 5, then C3 = C1+C4+C5 and k′

3 = k1+k4+k5. Non-termination of the saturation
algorithm implies that there will be infinitely many sums of pairs of inequalities. Ignor-
ing the bound k, there are only finitely many inequalities over n variables. Therefore, it
is always possible to find a step that computes a bound k′

j that depends on a previously
known bound kj , i.e. Cj = Cj +

∑

Cl and k′
j = kj +

∑

kl. As Cj−Cj =
∑

Cl = 0n

and k′
j − kj =

∑

kl > 0, the linear combination ((
∑

Cl)
T X ≥ (

∑

kl)) is equivalent
to (0 > 0), which implies that O is empty. ut

At each step, the saturation algorithm computes a new linear combination between
two unit inequalities. If this linear combination has a tighter bound than the one already
known, the bound is updated, and so on until a fixpoint is reached. Notice that this fix-
point may not be reached if the octahedron is empty. For example, the octahedron in
Fig. 3(a) is empty because the sum of the last four inequalities is (0 ≥ 4). The satura-
tion algorithm applied to this octahedron does not terminate. Adding the constraints in
bottom-down order allows the saturation algorithm to produce (x2−x4 ≥ 5), which can
again be used to produce (x2−x4 ≥ 9) and so on. Even then, the saturation algorithm is
used to perform the emptiness test because of two reasons. First, there are special kinds
of octahedra where termination is guaranteed. For instance, if all inequalities describe
constraints between symbols (all constant term is zero), saturation is guaranteeed to ter-
minate. Second, the conditions required to build an octahedron for which the saturation
algorithm does not terminate are complex and artificial, and therefore they will rarely
occur.

Even if the saturation algorithm terminates, in some cases it might fail to discover
the tightest bound for an inequality. For example, in the octahedron in Fig. 3(b), sat-
uration will fail to discover the constraint (x1 − x2 + x3 + x4 + x5 + x6 ≥ 6), as
any sum of two inequalities will yield a non-unit linear inequality. Therefore, given a
constraint (CT X ≥ ks) in the saturated form, the bound kc for the same inequality in
the canonical form may be different, kc 6≤ ks. But kc ≥ ks always holds, as kc is the
tightest bound for that inequality. Using this property, operations like the union or inter-
section that have been defined for the canonical form can also be used for the saturated
form. The result will always be an upper approximation of the exact canonical result,
as kc ≥ ks is the exact definition for upper approximation of octahedra (Lemma 2).

+ x2 − x4 ≥ 1

−x1 − x2 + x3 + x4 + x5 − x6 ≥ 1

+x1 − x2 − x3 + x4 − x5 + x6 ≥ 1

+x1 + x2 + x3 − x4 − x5 − x6 ≥ 1

−x1 + x2 − x3 − x4 + x5 + x6 ≥ 1

+x1 − x2 − x3 + x4 ≥ 1

−x1 − x2 + x3 + x5 ≥ 2

+x1 + x2 + x3 + x6 ≥ 3

(a) (b)

Fig. 3. (a) Empty octahedron where the saturation algorithm does not terminate and (b) Non-
empty octahedron where the saturated form is different from the canonical form.

3.3 Abstract Semantics of the Operators

In order to characterize the octahedron abstract domain, the abstract semantics of the
abstract interpretation operators must be defined. Intuitively, this abstract semantics is
defined as simple manipulations of the saturated form of octahedra. All operations are
guaranteed to produce upper approximations of the exact result, as it was justified in
section 3.2. Some operations like the intersection can deal with non-saturated forms
without any loss of precision, while others like the union can only do so at the cost of
additional over-approximation.

In the definition of the semantics, A and B will denote octahedra, whose saturated
forms contain inequalities of the form (CT X ≥ ka) and (CT X ≥ kb), respectively.

– Intersection A∩B is represented by system of inequalities (CT X ≥ max(ka, kb)),
which might be in non-saturated form.

– Union A ∪ B is approximated by the saturated form (CT X ≥ min(ka, kb)).
– Inclusion Let A and B be two octahedra. If ka ≥ kb for all inequalities in their

saturated form, then A ⊆ B. Notice that the implication does not work in the other
direction, i.e. if ka 6≥ kb then we don’t know whether A ⊆ B or A 6⊆ B.

– Widening A∇B is defined as the octahedron with inequalities (CT X ≥ k) such
that k:

k =

{

−∞ if ka > kb

ka otherwise

As established in [16], the result should not be saturated in order to guarantee con-
vergence in a finite number of steps.

– Extension An octahedron O can be extended with a new variable y ≥ 0 by mod-
ifying the constraints of its saturated form O∗. Let (c1 · x1 + . . . + cn · xn ≥ k)
be a constraint of O∗, the inequalities that will appear in the saturated form of the
extension are:
• c1 · x1 + . . . + cn · xn − 1 · y ≥ −∞
• c1 · x1 + . . . + cn · xn + 0 · y ≥ k

• c1 · x1 + . . . + cn · xn + 1 · y ≥ k

– Projection A projection of an octahedron O removing a dimension xi can be per-
formed by removing from its saturated form O∗ all inequalities where xi has a
coefficient that is not zero.

– Unit linear assignment A unit linear assignment [xi :=
∑m

j=1
cj · xj] with coeffi-

cients ci ∈ {−1, 0, +1} can be defined using the following steps:
• Extend the octahedron with a new variable t.
• Intersect the octahedron with the octahedron (t =

∑m

j=1
cj · xj)

• Project the variable xi.
• Rename t as xi.

Impact of the conservative inclusion test on abstract interpretation: Using these
operations, upper approximations of the concrete values will be computed in abstract
interpretation. A special mention is the case of test of inclusion, where the result is
only definite if the answer is true. Intuitively, this lack of accuracy appears from the
impossiblity to discover the tightest bound with saturation. In abstract interpretation, the
analysis is performed until a fixpoint is reached, and the fixpoint is detected using the
test for inclusion. The inaccurate test of inclusion might lead to additional iterations in
the abstract interpretation loop. Each iteration will add new constraints to our octahedra
that were not being discovered by saturation, until the test for inclusion is able to detect
the fixpoint. However, in practical examples, this theoretical scenario does not seem to
arise, as constraints tend to be generated in a structured way that allows saturation to
obtain good approximations of the exact canonical form.

4 Octahedra Decision Diagrams

4.1 Overview

The constraints of an octahedron can be represented compactly using a specially devised
decision diagram representation. This representation is called Octahedron Decision Di-
agram (OhDD). Intuitively, it can be described as a Multi-Terminal Zero-Suppressed
Ternary Decision Diagram:

– Ternary: Each non-terminal node represents a variable xi and has three output arcs,
labelled as {−1, 0, +1}. Each arc represents a coefficient of xi in a linear constraint.

– Multi-Terminal [10]: Terminal nodes can be constants in IR∪{−∞}. The semantics
of a path σ from the root to a terminal node k is the linear constraint (c1 · x1 + c2 ·
x2 + . . .+cn ·xn ≥ k), where ci is the coefficient of the arc taken from the variable
xi in the path σ.

– Zero-Suppressed [14]: If a variable does not appear in any linear constraint, it also
does not appear in the OhDD. This is achieved by using special reduction rules as
it is done in Zero-Suppressed Decision Diagrams.

Figure 4 shows an example of a OhDD and the octahedron it represents on the right.
The shadowed path highlights one constraint of the octahedron, (x + y − z ≥ 2). All
constraints that end in a terminal node with−∞ represent constraints with an unknown
bound, such as (x − y ≥ −∞). As the OhDD represents the saturated form of the
octahedron, some redundant constraints such as (x + y + z ≥ 3) appear explicitly.

This representation based on decision diagrams provides three main advantages.
First, decision diagrams provide many opportunities for reuse. For example, nodes in a

−3

z

0

−

−,0,+

+

x

y

0

−

−0+

0,+

z

2

x ≥ 2

y ≥ 0

z ≥ 0

x + y ≥ 3

x − z ≥ 2

x + y − z ≥ 2

x + y + z ≥ 3

Fig. 4. An example of a OhDD. On the right, the constraints of the octahedron.

OhDD can be shared. Furthermore, different OhDD can share internal nodes, leading
to a greater reduction in the memory usage. Second, the reduction rules avoid repre-
senting the zero coefficients of the linear inequalities. Finally, symbolic algorithms on
OhDD can deal with sets of inequalities instead of one inequality at a time. All these
factors combined improve the efficiency of operations with octahedra.

4.2 Definitions

Definition 5 (Octahedron Decision Diagram - OhDD). An Octahedron Decision Di-
agram is a tuple (V, G) where V is a finite set of positive real-valued variables, and
G = (N ∪ K, E) is a labeled single rooted directed acyclic graph with the following
properties. Each node in K, the set of terminal nodes, is labeled with a constant in
IR∪ {−∞}, and has an outdegree of zero. Each node n ∈ N is labeled with a variable
v(n) ∈ V , and it has three outgoing arcs, labeled −, 0 and +.

By establishing an order among the variables of the OhDD, the notion of ordered
OhDD can be defined. The intuitive meaning of ordered is the same as in BDDs, that is,
in every path from the root to the terminal nodes, the variables of the decision diagram
always appear in the same order. For example, the OhDD in Fig. 4 is an ordered OhDD.

Definition 6 (Ordered OhDD). Let � be a total order on the variables V of a OhDD.
The OhDD is ordered if, for any node n ∈ N , all of its descendants d ∈ N satisfy
v(d) � v(n).

In the same way, the notion of a reduced OhDD can be introduced. However, the
reduction rules will be different in order to take advantage of the structure of the con-
straints. In an octahedron, most variables will not appear in all the constraints. Avoiding
the representation of these variables with a zero coefficient would improve the efficiency
of OhDD. This can be achieved as in ZDDs by using a special reduction rule: whenever
the target of the − arc of a node n is −∞, and the 0 and + arcs have the same target
m, n is reduced as m. The rationale behind this rule is the following: if a constraint
(c1 ·x1 + . . .+ ci ·xi + . . .+ cn ·xn ≥ k) holds for ci = 0, it will also hold for ci = +1
as xi ≥ 0. However, it is not known if it will hold for ci = −1. This means that in
the OhDD, if a variable has coefficient zero in a constraint, it is very likely that it will
end up creating a node where the 0 and + arcs have the same target, and the target of

− − 0 + +

A B C

v v

0

X Y

−

A B C

0 +

v

X Y

−

D

D

0,+ −

v

zero coefficient

reduction
isomorphic subgraph

reduction

Fig. 5. Reduction rules for OhDD.

the− arc is −∞. By reducing these nodes, the zero coefficient is not represented in the
OhDD. Remarkably, using this reduction rule, the set of constraints stating that “any
sum of variables is greater or equal to zero” is represented only as the terminal node 0.

Figure 5 shows an example of the two reduction rules. Notice that contrary to BDDs,
nodes where all arcs have the same target will not be reduced.

Definition 7 (Reduced OhDD). A reduced OhDD is an ordered OhDD where none
of the following rules can be applied:

– Reduction of zero coefficients: Let n ∈ N be a node with the − arc going to the
terminal −∞, and with the arcs 0 and + point to a node m. Replace n by m.

– Reduction of isomorphic subgraphs: Let D1 and D2 be two isomorphic subgraphs
of the OhDD. Merge D1 and D2.

4.3 Implementation of the Operations

The octahedra abstract domain and its operations have been implemented as OhDD on
top of the CUDD decision diagram package [23]. Each operation on octahedra performs
simple manipulations such as computing the maximum or the minimum between two
systems of inequalities, where each inequality is encoded as a path in a OhDD. These
operations can be implemented as recursive procedures on the decision diagram. The
algorithm may take as arguments one or more decision diagrams, depending of the
operation. All these recursive algorithms share the same overall structure:

1. Check if the call is a base case, e.g. all arguments are constant decision diagrams.
In that case, the result can be computed directly.

2. Look up the cache to see if the result of this call was computed previously and is
available. In that case, return the precomputed result.

3. Select the top variable t in all the arguments according to the ordering. The al-
gorithm will only consider this variable during this call, leaving the rest of the
variables to be handled by the subsequent recursive calls.

4. Obtain the cofactors of t in each of the arguments of the call. In our case, each
cofactor represents the set of inequalities for each coefficient of the top variable.

5. Perform recursive calls on the cofactors of t.
6. Combine the results of the different calls into the new top node for variable t.
7. Store the result of this recursive call in the cache.
8. Return the result to the caller.

The saturation algorithm is a special case: all sums of pairs of constraints are computed
by a single traversal; but if new inequalities have been discovered, the traversal must be

repeated. The process continues until a fixpoint is reached. Even though this fixpoint
might not be reached, as seen in Fig. 3, the number of iterations required to saturate an
octahedron tends to be very low (1-4 iterations) if it is derived from saturated octahedra,
e.g. the intersection of two saturated octahedra.

These traversals might have to visit 3n inequalities/paths in the OhDD in the worst
case. However, as OhDD are directed graphs, many paths share nodes so many recursive
calls will have been computed previously, and the results will be reused without the need
to recompute. The efficiency of the operations on decision diagrams depends upon on
two very important factors. The first one is the order of the variables in the decision
diagram. Intuitively, each call should perform as much work as possible. Therefore,
the variables that appear early in the decision diagram should discriminate the result as
much as possible. Currently there is no dynamic reordering [21] in our implementation
of OhDD, but we plan to add it in the near future. A second factor in the performance
of these algorithms is the effectivity of the cache to reuse previously computed results.

5 Applications of the Octahedron Abstract Domain

5.1 Motivating Application

Asynchronous circuits are a kind of circuits where there is no global clock to syn-
chronize its different components. Asynchronous circuits replace the global clock by a
local hand-shake between components, gaining several advantages such as lower power
usage. However, the absence of a clock makes the verification of asynchronous cir-
cuits more complex. The lack of clock makes the circuit more dependent on timing
constraints that ensure the correctness of the synchronization within the circuit. This
means that the correctness of the circuit depends on the delays of its gates and wires.

In many asynchronous circuits implementing control logic, the timing constraints
that arise are unit inequalities. Intuitively, they correspond to constraints of the type

(δ1 + · · · + δi� ��� �

delay(path1)

) − (δi+1 + · · · + δn� ��� �

delay(path2)

) ≥ k

hinting that certain paths in the circuit must be longer than other paths. In very rare oc-
casions, coefficients different from ±1 are necessary. A typical counterexample would
be a circuit where one path must be c times longer than another one, e.g. a fast counter.

Example. Figure 6(a) depicts a D flip-flop [20]. Briefly stated, a D flip-flop is a 1-
bit register. It stores the data value in signal D whenever there is a rising edge in the
clock signal CK. The output Q of the circuit is the value which was stored in the last
clock rising edge. We would like to characterize the behavior of this circuit in terms
of the internal gate delays. The flip-flop has to be characterized with respect to three
parameters (see Figure 6(b)):

– Setup time, noted as Tsetup , is the amount of time that D should remain stable
before a clock rising edge.

– Hold time, noted as Thold , is the amount of time that D should remain stable after
a clock rising edge.

– Delay or clock-to-output time, noted as TCK→Q , is the amount of time required by
the latch to propagate a change in the input D to the output Q.

T setup T hold

T CK −> Q

HIT

T LO

(a) (b)

CK

D

Q
g1

g2
g3

g4

CK

Q

D
TCK→Q ≤ D2 + D3 + D4

Tsetup > D1 + D2 − d2

Thold > D2 + D3

THI > D2 + D3 + D4

THI > Thold

TLO > Tsetup

d1 > D2

(c)

Fig. 6. (a) Implementation of a D flip-flop [20], (b) description of variables that characterize any
D flip-flop and (c) sufficient constraints for correctness for any delay of the gates.

Example States Variables Time - Poly (sec) Time - Oct (sec)
nowick 60 30 0.5 0.1

sbuf-read-ctl 74 31 1.2 1.4
rcv-setup 72 27 2.1 8.3

alloc-outbound 82 39 1.3 0.2
ebergen 83 27 1.3 1.7

mp-forward-pkt 194 29 1.9 3.8
chu133 288 26 1.3 1.0

Table 2. Experimental results using convex polyhedra and octahedra.

The timing analysis algorithm is capable of deriving a set of sufficient linear contraints
that guarantee the correctness of the circuit’s behavior. This behavior will be correct if
the output Q matches the value of D in the last clock rising edge. Any behavior not
fulfilling this property is considered to be a failure. Fig. 6(c) reports the set of sufficient
timing constraints derived by the algorithm. Each gate gi has a symbolic delay in the
interval [di, Di]. Notice that the timing constraints are unit inequalities.

Experimental Results. Timing verification has been performed on several asynchronous
circuits from the literature. This verification can be seen as the analysis of a set of
clock variables, and the underlying timing behavior can be modeled as assignments and
guards on these variables [4]. The analysis of clock variables has been performed using
two different numeric abstractions: convex polyhedra and octahedra. The implemen-
tation of polyhedra uses the New Polka polyhedra library [19], while the library of
OhDD is implemented on top of the CUDD package [23]. Table 2 shows a compar-
ison of the experimental results for some examples. All these examples were verified
successfully using both octahedra and polyhedra, as all relevant constraints were unit
linear inequalities. For all these cases, the execution time of convex polyhedra and octa-
hedra is comparable, while the memory usage for octahedra is lower. For each example,
we provide the number of different states (configurations) of the circuit, the number
of clock and delay variables of the abstractions and the execution time required by the
analysis with each abstraction.

The difference in memory usage is quantified in the next example, an asynchronous
pipeline with different number of stages and an environment running at a fixed fre-
quency. The processing time required by each stage i has a processing time bounded by
an interval, with unknown upper and lower bound [di, Di]. Whenever a stage finishes its

ack req

IN

ack req

OUT(a) (b) (c)

of # of # of Polyhedra OhDD
stages States variables CPU Time Memory CPU Time Memory

2 36 20 0.6s 64Mb 1s 5Mb
3 108 24 2s 67Mb 17s 8Mb
4 324 28 13.5s 79Mb 249s 39Mb
5 972 32 259.2s 147Mb 3974s 57Mb
6 2916 36 – – 143058s 83Mb

Fig. 7. (a) Asynchronous pipeline with N=3 stages, (b) correct behavior of the pipeline and (c)
incorrect behavior. Dots represent data elements. On the right, the CPU time and memory required
to verify pipelines with different number of stages.

computation, it sends the result to the next stage if it is empty. The safety property being
verified in this case was “the environment will never have to wait before sending new
data to the pipeline”, i.e. whenever the environment sends new data to the pipeline, the
first stage is empty. Fig.7 shows the pipeline, with an example of a correct and incorrect
behavior. The tool discovers that correct behavior can be ensured if the following holds:

dIN > D1 ∧ . . . ∧ dIN > DN ∧ dIN > DOUT

where Di is the delay of stage i, and dIN and DOUT refer to environment delays. This
property is equivalent to:

dIN > max(D1, . . . , DN , DOUT)

Therefore, the pipeline is correct if the environment is slower than the slowest stage
of the pipeline. Both the polyhedra and octahedra abstract domain are able to discover
this property. This example is interesting because it exhibits a very high degree of con-
currency. The verification times and memory usage for different lengths of the pipeline
can be found in Fig.7. Notice that the memory consumption of OhDD is lower than
that of convex polyhedra. This reduction in memory usage is sufficient to verify larger
pipelines (n = 6 stages) not verifiable with our convex polyhedra implementation. How-
ever, this memory reduction comes at the expense of an increase in the execution time.

5.2 Other Applications

In general, the octahedron abstract domain may be interesting in any analysis problem
where convex polyhedra can be used. Many times, the precision obtained with convex
polyhedra is very good, but the efficiency of the analysis limits the applicability. In
these scenarios, using octahedra might be adequate as long as the variables involved in
the analysis are positive and unit linear inequalities provide sufficient information for
the specific problem. Some examples of areas of applications are the following:

– Analysis of program invariants involving unsigned variables.
– Static discovery of bounds in the size of asynchronous communication channels:

Many systems communicate using a non-blocking semantics, where the sender
does not wait until the receiver is ready to read the message. In these systems, each
channel requires a buffer to store the pending messages. Allocating these buffers
statically would improve performance but it is not possible, as the amount of pend-
ing messages during execution is not known in advance. Analysis with octahedra

could discover these bounds statically. This problem is related to the problem of
structural boundedness of a Petri Net [18], where an upper bound on the number of
tokens that can be in each place of the Petri Net must be found.

– Analysis of timed systems: Clocks and delays are restricted to positive values in
many types of models. Octahedra can be used to analyze these values and discover
complex properties such as timing constraints or worst-case execution time(WCET).

– Analysis of string length in C programs [8]: Checking the absence of buffer over-
flows is important in many scenarios, specially in the applications where security
is critical, e.g an operating system. C programs are prone to errors related to the
manipulation of strings. Several useful constraints on the length of strings can be
represented with octahedra. For instance, a constraint on the concatenation of two
strings can be strlen(strcat(s1, s2)) = strlen(s1) + strlen(s2).

6 Conclusions and future work

A new numeric abstract domain called octahedron has been presented. This domain can
represent and manipulate constraints on the sum or difference of an arbitrary number of
variables. In terms of precision, this abstraction is between octagons and convex poly-
hedra. Regarding complexity, the worst case complexity of octahedra operations over
n variables is O(3n) in memory, and O(3n) in execution time in addition to the cost
of saturation. However, worst-case performance is misleading due to the use of a de-
cision diagram approach. For instance, BDDs have a worst-case complexity of O(2n),
but they have a very good behavior in many real examples. Performance in this case
depends on factors such as the ordering of the variables in the decision diagram and the
effectiveness of the cache. In the experimental results of OhDD, memory consumption
was shown to be smaller than that of our convex polyhedra implementation. Running
time was comparable to that of convex polyhedra in small and medium-sized exam-
ples, while in more complex examples the execution time was worse. This shows that
OhDD trade speed for a reduction in memory usage.

Future work in this area will try to improve the execution time of octahedra opera-
tions. For example, dynamic reordering [21] would improve efficiency if proper heuris-
tics to find good variable orders can be developed. Another area where there is room for
improvement is the current bottleneck of the representation, the saturation procedure.

Acknowledgements. This work has been partially funded by CICYT TIC2001-2476
and the FPU grant AP2002-3862 from the Spanish Ministry of Education, Culture and
Sports. The authors would like to thank the referees for their valuable comments.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient timed reachability
analysis using clock difference diagrams. In Computer Aided Verification, pages 341–353,
1999.

3. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8):677–691, 1986.

4. R. Clarisó and J. Cortadella. Verification of timed circuits with symbolic delays. In Proc. of
Asia and South Pacific Design Automation Conference, pages 628–633, 2004.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proc. of the ACM Symposium
on Principles of Programming Languages, pages 238–252. ACM Press, 1977.

6. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Proc. of the ACM Symposium on Principles of Programming Languages, pages
84–97. ACM Press, New York, 1978.

7. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Auto-
matic Verification Methods for Finite State Systems, LNCS 407, pages 197–212. Springer-
Verlag, 1989.

8. N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for statically detecting all
buffer overflows in C. In Proceedings of the ACM SIGPLAN 2003 conference on Program-
ming lan guage design and implementation, pages 155–167. ACM Press, 2003.

9. E. Asarin, M. Bozga, A. Kerbrat, O. Maler, M. Pnueli, and A. Rasse. Data structures for the
verification of timed automata. In O. Maler, editor, Hybrid and Real-Time Systems, pages
346–360, Grenoble, France, 1997. Springer Verlag, LNCS 1201.

10. M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods in System Design,
10(2/3):149–169, 1997.

11. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysis. Formal Methods in System Design, 11(2):157–185, 1997.

12. T. A. Henzinger. The Temporal Specification and Verification of Real-Time Systems. PhD
thesis, Stanford University, Aug. 1991.

13. C. Mauras. Symbolic simulation of interpreted automata. In 3rd Workshop on Synchronous
Programming, Dec. 1996.

14. S. Minato. Zero-supressed BDDs for set manipulation in combinatorial problems. In Proc.
ACM/IEEE Design Automation Conference, pages 272–277, 1993.

15. A. Miné. A new numerical abstract domain based on difference-bound matrices. In Programs
as Data Objects II, volume 2053 of LNCS, pages 155–172. Springer-Verlag, May 2001.

16. A. Miné. The octagon abstract domain. In Analysis, Slicing and Tranformation (in Working
Conference on Reverse Engineering), IEEE, pages 310–319. IEEE CS Press, Oct. 2001.

17. J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference decision diagrams.
In Computer Science Logic, The IT University of Copenhagen, Denmark, 1999.

18. T. Murata. State equation, controllability and maximal matchings of Petri nets. IEEE Trans-
actions on Automatic Control, AC-22(3):412–416, 1977.

19. New Polka: Convex Polyhedra Library. http://www.irisa.fr/prive/bjeannet/newpolka.html.
20. C. Piguet et al. Memory element of the Master-Slave latch type, constructed by CMOS

technology. US Patent 5,748,522, 1998.
21. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Proc. Inter-

national Conf. Computer-Aided Design (ICCAD), pages 42–47, 1993.
22. A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality as an Abstract

Domain. In M. Leuschel, editor, Proceedings of Logic Based Program Development and
Transformation, LNCS 2664, pages 71–89. Springer-Verlag, 2002.

23. F. Somenzi. CUDD: Colorado university decision diagram package. Available online at
http://vlsi.colorado.edu/˜fabio/CUDD.

24. F. Wang. Symbolic parametric safety analysis of linear hybrid systems with BDD-like data-
structures. In Proceedings of Computer Aided Verification. Springer-Verlag, July 2004.

