
Analytical Performance Modeling
of Hierarchical Interconnect Fabrics

Nikita Nikitin, Javier de San Pedro, Josep Carmona and Jordi Cortadella

Universitat Politècnica de Catalunya

Barcelona, Spain

Abstract—The continuous scaling of nanoelectronics is in-
creasing the complexity of chip multiprocessors (CMPs) and
exacerbating the memory wall problem. As CMPs become
more complex, the memory subsystem is organized into more
hierarchical structures to better exploit locality. During the
exploration and design of CMP architectures, it is essential to
efficiently analyze their performance. However, performance is
highly determined by the latency of the memory subsystem,
which in turn has a cyclic dependency with the memory traffic
generated by the cores. This paper proposes a scalable analytical
method to estimate the performance of highly parallel CMPs
(hundreds of cores) with hierarchical interconnect fabrics. The
method can use customizable probabilistic models and solves the
cyclic dependencies by using a fixed-point strategy. The technique
is shown to be a very accurate and efficient strategy when
compared to the results obtained by simulation.

I. INTRODUCTION

The continuous shrinking of CMOS technology has enabled

the integration of multiple cores and distributed memory in

one chip. Parallelism has also been one of the paradigms to

make computations more power efficient. In the last few years,

multicore systems have evolved from having few cores [1], [2]

to single-chip processors with tens or hundreds of computing

units [3]–[5].

Tiled CMPs are an effective approach to architect general-

purpose processors under the intense time-to-market pres-

sure [6], [7]. The replication of tiles provides a rapid way of

floorplanning many computing units in one chip and commu-

nicating them with scalable interconnect fabrics. Figure 1(a)

shows an example of a CMP with 16 tiles, each one including

a computing core (C), two levels of private on-chip caches

(L1, L2), and a router (R) that communicates with the on-chip

interconnection network (a mesh). Two memory controllers

(MC) provide access to the off-chip memory.

To exploit the locality of memory references, hierarchical

interconnects have been proposed [7], [8]. Several cores can be

grouped into one cluster to share the on-chip cache, accessible

through a local interconnect (e.g., bus, crossbar, ring, etc).

Hierarchy increases the intra-cluster hit-ratio and reduces the

traffic in the top-level interconnect. Figure 1(b) shows an

implementation of a CMP with 4 clusters. Each cluster has

two cores with private caches, a shared cache (L3) with tag

directory (DIR), a local interconnect (IC), a router and a

network interface (NI).

Given the vast space of design parameters, CMP designers

are faced with the complex problem of selecting the best ar-

� � � �

� � � �

� � � �

� � � �

�
�

�
�

� ��

�� � �

�
�

�
�

� ��

��

�� ��

��

�� 	
�

�

�

�

� �

��� ���

Fig. 1: CMP layouts: (a) flat, (b) hierarchical.

chitecture subject to a set of constraints. Many design options

must be explored, such as the variety of core implementations,

interconnect types, topologies, cache hierarchies and memory

management policies. Moreover, the amount of configurations

increases drastically as the technology advances, allowing

more cores and memory to fit into the chip area.

Evaluating the performance of a CMP architecture is es-

sential to take the correct decisions during design. Unfortu-

nately, simulation imposes a prohibitive computational cost

when the space of design points grows significantly. In this

scenario, analytical modeling becomes an effective alternative

for rapidly pruning the design space during early exploration

and selecting a small set of promising configurations. Along

this line, several analytical models for CMP exploration have

been recently proposed (e.g., [9], [10]).

The fundamental problem in evaluating the performance of

a CMP is the calculation of the latency for memory requests,

given the parameters of the interconnect fabrics and memory

hierarchy. A key phenomenon that is underestimated by the

existing models is the contention effect of the interconnection

fabric. This paper will show that contention has a major
significance in the analysis of CMP performance. Ignoring

contention leads to optimistic latency and throughput measure-

ments, and may overestimate the architectures with saturated

interconnects. As a result, exploration may select inefficient

architectures and, even worse, discard the promising ones.

Accounting for contention is particularly important when

exploring hierarchical CMPs. Interconnects at different levels

of hierarchy may deliver different throughput characteristics

(e.g., a bus at the cluster level and a mesh at the top level). It

is then essential to verify that the required bandwidth between

the cores and the memory is delivered at all levels. This

verification discards architectures in which one level of the

interconnect is saturated, while another remains underutilized

and consumes resources unnecessarily.

The purpose of this work is to emphasize the importance

and provide analytical methods for modeling contention in

2012 Sixth IEEE/ACM International Symposium on Networks-on-Chip

978-0-7695-4677-3/12 $26.00 © 2012 IEEE

DOI 10.1109/NOCS.2012.20

107

CMP exploration frameworks. The contributions of the paper

can be summarized as follows. First, we formulate the cyclic

dependency between the latency and the rate of memory

requests as a system of non-linear equations that models the

contention in the CMP interconnect. Second, we propose three

methods to resolve this model: using a general-purpose solver,

a fixed-point iteration and a bisection method. The last two

methods show significant runtime savings, trading-off accu-

racy and convergence. More importantly, these methods can

be parametrized with any black-box analytical model for the

latency. This makes our strategy flexible to incorporate novel

models for on-chip interconnects. Third, we experimentally

show the application of the methods for CMP exploration and

confirm the importance of evaluating contention.

Next section describes a simple example to emphasize the

importance of contention in performance evaluation of hier-

archical CMPs. Section III reports related work. The models

for CMP throughput, memory latency, traffic and their inter-

dependency are discussed in Section IV. In Section V, we

propose three methods to resolve this dependency. The exper-

imental evaluation of the methods is described in Section VI.

II. THE IMPORTANCE OF CONTENTION: AN EXAMPLE

Consider a CMP with 48 cores and 16 shared on-chip

cache modules. Figure 2 presents three (of the many) possible

architectures with such parameters. One of the architectures

has an 8×8 structure of regular tiles connected with a mesh

(Figure 2(a)). The cores and caches are shown as light and dark

squares, respectively. Solid lines represent the mesh links.

To take advantage of the locality of memory accesses,

several cores and caches can be grouped in a cluster and

communicate via the local interconnect. For instance, clusters

with bus interconnects were shown to notably improve the

average communication latency [8]. This fact encourages the

exploration of hierarchical interconnects. Figure 2(b) describes

the CMP organization with 16 clusters, each one having three

cores, one cache and a shared bus. The clusters communicate

via the top-level 4×4 mesh. Another option is to increase the

cluster size up to 16 components (12 cores and 4 caches) and

decrease the dimensions of the top-level mesh (Figure 2(c)).

One of the problems of architectural exploration is to select

the configuration with the best performance. We first estimated

the throughput of each configuration using only the static (hop-

count) latency of the network, i.e., assuming no contention.

In this experiment we assumed the ideal throughput of cores

(under the assumption of zero-latency memory) to be 2.0

IPC (instructions per cycle), and the number of memory

references per instruction to be 0.5. The values of static

latency (in cycles) and the estimated throughput (in IPC) are

displayed in the columns Lest and θest of Table I. Hierarchical

architectures show a higher performance due to the exploited

locality: configuration (c) has the largest size of local cache

(per cluster), hence the increased local hit ratio. Therefore, (c)

shows the highest estimated throughput.

However, this conclusion is incorrect when network con-

tention is taken into account. Simulation reveals rather distinct

(a) 8×8 mesh (b) 4×4 mesh with
bus clusters

(c) 2×2 mesh with
bus clusters

Fig. 2: Possible architectures for a 48-core CMP.

TABLE I: Performance of architectures in Figure 2.

Architecture Lest θest Lsim θsim
(a) 11.17 8.23 11.26 8.16
(b) 10.12 9.04 10.40 8.81
(c) 9.95 9.19 16.69 5.58

performance numbers, reported in the Lsim and θsim columns

of Table I. For configurations (a) and (b), the estimated

throughput with no contention is close to the one reported

by simulation. However, the performance of configuration (c)

drops by about 40%. In fact, simulation concludes that (c) is

the worst in terms of performance.

The reason of this significant discrepancy is the fabric

contention. It occurs because of the competition between

memory requests for the shared resources of the interconnect.

This results into longer latencies, decreasing the overall perfor-

mance of the system. In this example configuration (b), which

incorporates hierarchy at some extent, is the one with the

highest throughput and represents the best architectural trade-

off between cache locality and communication parallelism.

III. RELATED WORK

The topic of CMP design space exploration has been widely

studied in the last years. Many simulation-based frameworks

(e.g. [11], [12]) appeared to extensively investigate the param-

eters of core architectures, memory hierarchies and emphasize

the importance of their joint optimization for improving the

power, performance and thermal characteristics.

Analytical models aim at replacing costly simulations and

provide instead a quick insight on the architectures. How-

ever, the modeling techniques in the literature significantly

underestimate the performance degradation caused by the con-

tention in the communication fabric. The model in [9] studies

the trade-off between the number of cores and the on-chip

memory size for throughput optimization. The latency model

used includes a contention penalty with linear dependency

on the number of cores. Still, apart from being inaccurate,

this approximation does not allow to compare interconnects

with various parameters and topologies. In [10] the authors

introduce an energy-performance analytical model for CMP

architectures, however they only consider bus interconnects

with a simplified contention model. The work in [13] analyzes

finite cache penalties in memory hierarchies, but the intercon-

nects are also restricted to buses.

In this paper we propose a generic method for analyti-

cal modeling of contention in hierarchical interconnect fab-

rics. The advantages of hierarchical topologies for many-

108

core CMPs have been demonstrated in [7], [8]. Our method

can be parametrized by an arbitrary latency model for on-

chip interconnect. This paper discusses the application of the

latency model in [14] due to its flexibility. Other models can be

considered, such as [15]. It introduces an accurate model for

heterogeneous NoCs that can be useful for modeling variable

number of virtual channels and link capacities on the different

levels of the hierarchical interconnect. In [16], an approach

similar to [14] is proposed, offering an accurate backpressure

analysis at the cost of the model efficiency. To overcome the

limitations of queueing approaches, alternative latency models

(e.g. using non-stationary traffic analysis [17]) can be used.

IV. CMP PERFORMANCE MODELING

This section introduces the models for the evaluation of

CMP performance. First, we explain the assumptions and

input parameters of the model. Next, the equation to model

static latency is presented. This equation is then extended to

consider the contention component of communication. Finally,

the throughput model is discussed and the formula for memory

request rate is derived. The section concludes by emphasizing

the cyclic dependency between memory traffic and latency.

A. Assumptions and input parameters of the analytical model

In this paper we focus on systems with two-level hierarchi-

cal interconnect fabrics. However, the approach can be applied

for an arbitrary number of hierarchical levels, including the

particular case of flat interconnects. Several components are

grouped into a cluster: cores, components of the memory sub-

system and the local interconnect. The top-level interconnect

provides communication between the clusters and access to

the off-chip memory (Figure 1(b)).

The system has in total N cores, each one with two

user-defined parameters. IPC0 is the ideal core throughput,

i.e., the amount of instructions executed by the core in one

cycle, assuming zero-latency memory. MPI is the average

number of memory references generated per instruction. These

parameters characterize both the core and the workload.

Without loss of generality, we assume that the memory sub-

system has four hierarchy levels. Every core has a private L1
cache and possibly, a private L2 cache of larger size but higher

latency. The clusters incorporate modules of a distributed L3
cache, shared by all cores. The off-chip memory is accessible

via a set of memory controllers. The latencies of the caches

and the off-chip memory are provided as parameters.

We use the term memory flow to denote a feasible com-

munication between a core and a component of the memory

subsystem. For example, each core may access its own L1 or

L2 caches, or any of the L3 modules or MCs. The set of all

possible memory flows for core c is denoted as F (c).
Every flow f ∈ F (c) is realizable with probability pf , that

defines the probability for c to request data from a certain

memory component. These probabilities can be user-defined

or calculated with some analytical model. In our work we

calculate these probabilities using a model of cache miss
behavior based on a power law that represents the dependency

between miss ratio and cache size. This model was proven to

be a good approximation [18]:

Miss(S) = κS−α, (1)

where S is the cache size, and κ, α are the model parameters.

Since L3 is a distributed cache, its access latency depends

on the cluster where the requested data is stored. In this work

we assume the probability to find the data in a particular

cluster to be inversely proportional to the distance between

the requesting core and the cluster. However, our method can

be parameterized with any other model for distributed cache.

B. Static latency

In this section we describe how to calculate the average

static latency of memory accesses for a core c in the presence

of memory hierarchy. Given the probability pf for each flow

f ∈ F (c) and its latency Lf , the static latency Lst
c is:

Lst
c =

∑
f∈F (c)

pfLf . (2)

Since requests to L3 and MC are sent via the communication

fabric, its delay must also be considered. This delay represents

the latency of the on-chip network traversal and is defined

using the routing function R : f → π(f), that for any flow

f returns its routing path π(f). In this work we consider the

XY-routing function [19], however any deterministic or even

adaptive routing can be used, specifying the probabilities for

certain paths. The total latency to access an L3 instance is

the sum of the network traversal latency along the path π(f)
and the L3 latency. The total latency of the off-chip memory

accesses is calculated likewise.

The flow probabilities pf are obtained using the dependency

of miss ratio on the cache size, Miss(S), given by (1). As-

suming the sizes SL1, SL2 of the two low-level caches, the

probabilities to access them are:

pL1 = 1−Miss(SL1),
pL2 = (1− pL1)(1−Miss(SL2)).

As L3 is shared, the miss ratio is defined by the effective

L3 size, Seff
L3, seen by each core [20]. To estimate Seff

L3 we use

the concept of the average number of cores, sharing each line,

as proposed by [20]. The probability to access L3 is then:

pL3 = (1− pL1)(1− pL2)(1−Miss(Seff
L3)).

Finally, pL3 should be multiplied by the probability to find

the data in a particular L3 instance (cluster). A similar strategy

is used to calculate the probabilities of flows to every memory

controller.

C. Queueing model for the on-chip interconnect

Equation (2) describes the static latency of memory ac-

cesses. Another important part of the communication delay is

the dynamic or contention latency [19]. Contention happens

in the interconnect fabrics when several packets compete for

the same shared resource, such as a bus or an NoC link.

This results into additional delays experienced by packets in

109

�

� �

�

�� ��

�� ��

�
�

�
�

(a)

�

�� �� ��

�����

(b)

Fig. 3: Queueing representation for (a) mesh NoC and (b) bus-

based cluster.

the buffers, distributed over the on-chip interconnect. One of

the approaches to estimate the contention delays is to model

the CMP as a system of queues and apply queuing theory to

calculate the buffer delays.

Figure 3(a) shows the queueing representation of the top-

level mesh interconnect. The mesh routers (R) have up to five

input-buffered ports to store incoming flits while the router

is busy. The primary ports of the routers are connected to

the clusters of devices (CL), which in case of a flat CMP

organization may consist of one device (e.g. a core with private

caches in Figure 1(a)). Figure 3(b) presents the queueing

model of a cluster, corresponding to one tile of the hierarchical

CMP depicted in Figure 1(b). The cluster consists of five

devices, communicating via a shared bus: two cores with

private caches, an instance of an L3 shared cache, a directory

and a network interface. Every device has a buffer to store

the requests to the bus. To distribute the off-chip memory

traffic uniformly over the mesh and avoid high contention

of certain routers, we assume that memory controllers have

multiple connections to the mesh, as shown in Figure 3(a).

D. Total latency

The average total latency for core c, Lc, is obtained by

adding the queue delays along the communication paths,

denoted as wq , to the static latency. Hence, given the paths

π(f) for every flow f , we extend equation (2) accordingly:

Lc = Lst
c +

∑
f∈F (c)

pf
∑

q∈π(f)
wq. (3)

To find the values for wq , an analytical model for the on-chip

interconnects can be used. In this work we apply the model

from [14], that permits calculating the delays for a variety

of topologies. Given the vector of injection rates into the

interconnect, λ̄ ∈ R
N , the model proposes to express queue

delays in the form of a system of equations with a matrix W :

w̄q = W (λ̄). (4)

The exact form of the matrix W is given by the expressions

(5) and (18) in [14]. What only remains is to compute the

injection rates λ̄, which is covered in the next sections.

E. Throughput model

The throughput of a CMP and the traffic of its interconnect

are closely related. To derive the exact dependencies, we start

with the performance model for a single core, given in [21].

For a core with the average rate of accesses to remote memory

(RemRate), and the cost of an access (RemCost), the average

number of cycles for executing an instruction, CPI, is:

CPI = CPI0 + RemRate · RemCost, (5)

where CPI0 = 1/IPC0 is the ideal CPI, derived under the

assumption of zero-latency memory. For a single-threaded in-

order core, the cost of a remote access is the average latency,

given by (3), and the remote rate is given by the MPI value.

As throughput is typically measured in IPC, the reciprocal of

CPI, from (5) we obtain:

θc =
1

CPI
=

1
1

IPC0
+ MPI · Lc

. (6)

The throughput of a CMP, θcmp, is then calculated as the total

performance of individual cores:

θcmp =
∑
c

θc. (7)

The rate of memory accesses, λc, is the probability for a core

to issue a remote memory request per cycle. λc is proportional

to the core throughput and the MPI:

λc = θc · MPI =
MPI

1
IPC0

+ MPI · Lc

. (8)

This equation can be extended for the case of more complex

out-of-order and multithreaded cores. The difference in model-

ing an out-of-order core is that the remote memory access does

not force the core to stall, hence the effective remote latency

Lc decreases [21]. Techniques discussing throughput modeling

for out-of-order implementations can be found in [22]. A

multithreaded core can be modeled as a group of single-

threaded cores. The latency for each thread remains Lc, but

the total memory access rate becomes λmt
c = Mλc, where M

is the number of threads.

F. The cyclic dependency between memory latency and traffic

In order to calculate the buffer delays, equation (4) requires

the injection rates at every input (source) of the interconnect,

while equation (8) gives the rates of request generation per

core. Note that the injection rates in a flat interconnect are

directly defined by the core rates: for a CMP with N cores,

λ̄ = {λ1, .., λN}. In case of a hierarchical interconnect fabric,

the core rates will correspond to the injection rates at the

sources of the cluster-level interconnects, such as the bus in

Figure 3(b). The injection rates to the top-level mesh can be

calculated, given the fraction of inter-cluster traffic. The latter

is defined by the probabilities of access to the L3 and the off-

chip memory, discussed in section IV-B. Below we directly

consider the dependency of memory latency on the core rates.

From (3), (4) and (8) we observe the following system of

dependencies:

∀c = 1, .., N :

{
Lc = L(λ1, .., λN)

λc = λ(Lc).
(9)

This result is quite intuitive: the latency of the memory

requests traversing the interconnect depends on the rate of sent

110

requests, due to the network contention. In turn, the request

rate is determined by the latency, as no new memory requests

are issued if the execution of cores stalls due to the absence

of data. System (9) emphasizes the cyclic dependency between
the latency and rate of memory requests. In the following

section we describe the methods to resolve this dependency.

V. ANALYTICAL METHODS FOR LATENCY ESTIMATION

In this section we propose three methods that can be used

to resolve the dependency (9). Apart from the straightforward

way to solve the system of equations, the fixed-point iteration
and bisection methods are discussed. The benefit of the fixed-

point method is that it delivers the exact solution in case of

convergence and can be applied to arbitrary configurations.

The bisection always converges for our problem, but finds an

approximate solution. However, it was found to be a good ap-

proximation for tiled homogeneous CMPs (see Section V-C).

A. Solving the system of nonlinear equations

Given an analytical model for the interconnect latency

as a closed form, the straightforward way to find Lc is to

solve the system of nonlinear equations. We apply the model

from [14], which offers a convenient definition of queue delays

via the injection rates in the closed form (4). Hence, the
dependencies (3), (4) and (8) create a system of equations
with respect to the vectors of variables L̄, λ̄, and w̄q .

The system will always contain nonlinear equations because

of (8). The solution to a nonlinear system can be found using

a solver, such as MATLAB [23]. Although hard to be proved

analytically, our conjecture is that the system has a unique

solution. We verified this by running MATLAB with different

initial vectors and observing convergence to the same solution.

While this method is straightforward, it has two important

drawbacks. First, it only works for the analytical models

that provide closed-form equations for latency. Second, unless

properly tuned, the methods for solving general systems of

nonlinear equations may exhibit poor performance. Since our

objective is to apply the method for exploration of a large

design space, this limitation is critical. In conclusion, this

method is useful to validate the techniques described below.

B. Fixed-point iteration

The algorithm proposed in this section is a popular numeri-

cal method for solving the systems of nonlinear equations [24].

While the theoretical speed of convergence of this method is

relatively slow, it performs well in practice due to its low cost

for a single iteration. Given a system of equations in the form:

x̄ = F (x̄), (10)

where x̄ is the vector of unknowns and F is the system matrix,

and an initial guess x̄0, the following iterative procedure can

be used to find a solution x̄∗ (fixed point) of the system:

x̄n+1 = F (x̄n), n ≥ 0.

In our setting, x̄ is composed of the variables {L̄, λ̄,

w̄q} and matrix F is defined by the right-hand terms of the

equations (3), (4) and (8). For the initial guess, x̄0, we use

static latencies (2) and compute other values using the same

equations: L̄0 = L̄st, λ̄0 = λ(L̄0), w̄q,0 = W (λ̄0).
The benefit of the proposed method is that it does not require

closed-form analytical expressions for latencies. Furthermore,

any black-box model for the dependency of NoC latency on

injection rate can be used. The method hence maintains the

modular structure of hierarchical interconnects and permits

plugging independent models for different topologies, such

as bus (cluster-level) and mesh (top-level). This makes the

approach a valid tool for future interconnect modeling.

As a numerical method, fixed-point iteration is subject

to convergence issues. For a system in the form (10), the

sufficient condition for convergence is [24]:∑
i

∣∣∣∣ ∂F∂xi

∣∣∣∣ < 1.

In our case, this requires the latency to grow slowly with the

injection rate, and vice versa. This condition holds for the

communication fabrics that perform far from their saturation

throughput (for instance, see chapter 23 in [19]). Although this

condition is quite strong, it is not necessary for convergence.

In practice we observe that for the majority of configurations

the iterative procedure converges.

A second issue of the fixed-point iteration is due to the

analytical models based on queueing theory: the queueing

models work under the assumption of system being in the

steady-state [25]. This means, that for any router with service

time T and the sum of arrival rates to its inputs λ, the following

condition must hold: λT < 1. In other words, there should

be no packet accumulation in the input queues of the router.

Unfortunately, this requirement may be not satisfied by the

initial solution. From (8) we know that the latency Lc and the

memory access rate λc are inversely proportional. Since static

latency is taken for the initial value of Lc, it may be highly

underestimated for the configurations with high contention. As

a result, the initial value of λc will be overestimated and may

violate the steady-state condition.

To handle this situation as well as the configurations

for which the fixed-point iteration diverges, we propose the

method based on bisection search of λc, to find a reasonable

and fast approximation to the solution.

C. Bisection search for traffic rate

The advantage of the bisection method is that it always

converges for our model (due to the intermediate value the-

orem [24]). Since every core generates traffic at certain rate,

λc, multidimensional bisection [26] can be applied to find the

exact rates. However, a good approximation to the exact rates

can be obtained by using the less complex unidimensional
bisection: by simulation we observed that tiled CMPs with

uniform clusters tend to have traffic rates that change pro-

portionally to their estimates, obtained by the static latency.

Hence, we initialize the vector of injection rates λ̄ with the

values estimated by static latency, and on every bisection step

adjust all rates in the same proportion.

111

To introduce the bisection more formally, let us rewrite

equation (8) by isolating Lc, and using the star symbol to

distinguish from the latency in (3):

L∗c(λc) =
1

λc
− 1

MPI · IPC0
. (11)

From (3) and (11) we define the average latencies L(λ̄) and

L∗(λ̄) as the functions of the vector λ̄:

L(λ̄) =
1

N

N∑
c=1

Lc(λ̄), L∗(λ̄) =
1

N

N∑
c=1

L∗c(λc).

Finally we introduce the latency difference function, F(λ̄):

F (λ̄) = L(λ̄)− L∗(λ̄).

Figure 4 shows the typical behavior of these functions,

emphasizing the cyclic dependency (9). To depict a 2D view

of this behavior, we plot L(λ̄) and L∗(λ̄) as a function of the

average rate Λ = 1
N

∑N
c=1 λc. The curve L∗(λ̄) shows that

the average rate of memory requests increases as the latency

decreases. In turn, L(λ̄) shows that the average latency of

requests grows with the injection rate. The real values for

latency and traffic are defined by the intersection point A of

these curves, that can be found as a root of F (λ̄). Hence,

we use the bisection as a root-finding method, that does not

require the exact knowledge of the function F (λ̄) and can be

used with any black-box analytical model for latency.

Bisection searches for λ̄ that satisfies the condition

|F (λ̄)| < ε, where ε is the solution tolerance. The initial range

for λ̄ is limited by the traffic, obtained with static latency:

λ̄min = 0̄, λ̄max = λ̄(Lst
c). Assuming the proportionality in

variation of the individual components of λ̄, all components

are updated simultaneously. For any pair of consecutive iter-

ations i and i + 1, either λ̄i+1
min = λ̄i when F (λ̄i) < 0, or

λ̄i+1
max = λ̄i when F (λ̄i) > 0. The iteration is continued until

the required tolerance for F (λ̄) or λ̄ is met [24].

VI. EXPERIMENTAL RESULTS

In this section we describe several experiments used to

validate the proposed analytical method for efficiency and

quality. Validation is performed with respect to simulation.

Section VI-A describes our simulation environment. Further

sections focus on the experiments for the analytical model.

A. Simulation environment

To verify the analytical model we have developed a flit-level

simulator for hierarchical CMP interconnects on top of Book-

Sim 2.0 [19]. In contrast to the analytical model, the simulator

performs flit-level modeling of contention in the interconnect

fabric and cycle-accurate calculation of throughput.

To simulate a hierarchical CMP, three enhancements were

made to BookSim. First, BookSim purely probabilistic traffic

injection patterns were replaced with state machine models
for cores, caches and memory controllers. The cores inject

memory requests based on the average workload parameters

and stall waiting for the replies. Memories accept requests

from cores and send replies after a predefined latency. As

�

��

��

��

��

��

� ���� ��� ���� �����
��
��
��
	�
�
�
��
�

��
�

�

�
��

��������	������
������������
����
�

��

�

�����

����

Fig. 4: Behavior of the latency functions L(λ̄) and L∗(λ̄).

another extension, support for hierarchical topologies was

added. This enables simulation of multi-level interconnect

fabrics with arbitrary depth. Finally, we implemented bus and
multibus topologies.

Each simulation was run long enough to obtain a 2% relative

error (the same value used for the analytical method) with

a 95% confidence degree. The 95% confidence interval is

calculated using the popular batch means method [27].

B. Efficiency of the analytical methods
In this section we compare the efficiency of the three ana-

lytical methods for resolving the cyclic dependency presented

in Section V: solver (MATLAB), fixed-point iteration (FP) and

bisection (BS). We generated a set of CMPs having flat mesh

topologies with various dimensions and contention degrees.

The reason to select flat interconnects is to demonstrate that

even for rather simple architectures the obtained system of

equations is hard to be tackled in a straightforward way.
The test cases and the results of modeling are summarized

in Table II. The first three columns display the test name, mesh

dimension and the ratio of contention latency, with respect to

the average total latency. The fourth column represents the

number of variables and equations in the obtained system.

The fifth column shows the time required to find a solution

using the general nonlinear solver provided by MATLAB. The

last two columns show the time consumed by the FP and BS

methods. For each test case the three methods converged to

the same solution, within the given tolerance region of 2%.
Test cases T1 to T5 accentuate how the MATLAB time

grows with the mesh size. The solution to T5-T7 could

not been found within an hour. Clearly, this straightforward

method is not acceptable for efficient exploration of CMPs.
The purpose of test cases T6 and T7 is to compare the FP

and BS methods. Configuration T6 has higher contention than

T5. As a result, FP method takes more time to converge than

BS. Configuration T7 has even more contention, resulting in

a violation of the steady-state assumption for the queueing

model (see Section V-B). Hence, FP can not be used in this

case, so BS is the only option.
We observed that FP typically outperforms BS, when the

contention component of latency is moderate, i.e. does not

exceed about 30-40% of the total latency. Hence we choose

to run FP first and use BS only when the former method fails.

C. Architectural exploration for CMPs
To validate the quality of the analytical methods in perfor-

mance estimation of hierarchical architectures, we carry out an

112

TABLE II: Performance comparison of analytical methods.

Test Mesh Cont. Num. of Runtime (sec)
lat. var./eqn. MATLAB Fixed-point Bisection

T1 2× 2 5% 236 0.023 0.001 0.001
T2 4× 4 13% 1224 1.412 0.001 0.002
T3 6× 6 8% 3108 30.831 0.002 0.003
T4 8× 8 12% 6128 408.539 0.006 0.010
T5 10× 10 23% 10620 Timeout (1hr) 0.010 0.012
T6 10× 10 46% 10620 Timeout (1hr) 0.022 0.015
T7 10× 10 55% 10620 Timeout (1hr) NA 0.016

experiment for CMP design space exploration. Our framework

reads a setup file with the parameters for cores, memories

and workloads, generates a multitude of architectures, and for

every architecture obtains the throughput, using both modeling

and simulation. With this experiment we demonstrate that

the modeling selects a very similar set of best-throughput

architectures as simulation, but in much shorter time.

Table III shows the exploration setup. The estimates of

chip and component area were taken from the Niagara 2

processor [2]. We scaled the core area and memory density

down to the 16nm to allow hundreds of cores fit into the chip

area. The IPC0, MPI of cores and the miss ratio dependency

on cache size were estimated from the benchmarks in [28].

The number of cores and cache sizes were varied to explore

the trade-off between the computing units and the on-chip

memory. All architectures were generated with the mesh-

of-buses topology. The exploration of the mesh dimensions

compromises the number of clusters and processors per cluster.

Given these parameters, our framework generates 1062 fea-

sible configurations. The simulation of all the configurations

took 324 minutes, while performance modeling was done in

just 16.8 seconds, delivering more than 1000x speedup. The

best architecture by simulation is the configuration #937, with

a throughput of 30.81 IPC. It consists of 6×6 mesh (36

clusters, 5 cores per cluster), a total of 180 cores with 64Kb

L1, 256Kb L2 private caches and 68Mb shared L3 cache.

In Figure 5 we sorted the configurations by throughput

along the horizontal axis, as estimated by simulation. One can

see that the modeling estimate follows well the simulation

curve. The analytical model for latency underestimates the

contention, and therefore deviation increases with its degree.

Configurations with similar throughput may have various

contention degrees, hence the noisy behavior of the modeling

curve. The error in throughput varies up to 19% with the

�

�

��

��

��

��

��

��

� �� �� ��
�

�	
�

��
�

��
�

��
�

��
�

�	
�

��
�

��
�

��
�

��
�

�	
�

	�
�

	�
�

	�
�

�
�

	
�

��
�

��
�

��
�

��
�

�	
�

��
��

��
��

��
��
��

��
�	

��

�

�

���������	����
���	��
��
����������
�����
��
	��������	

�
������

��������
�

Fig. 5: Throughput comparison for modeling and simulation.

TABLE III: Parameters of the exploration.

Parameter Value
Chip area 350 mm2

Core area 1.25 mm2

Core IPC0 2.0
Core MPI 0.5
L1 size 64, 128 Kb
L2 size 64 Kb to 3 Mb
Memory density 1 mm2 / Mb
Mesh dimensions 2×2 to 16×16

Miss ratio dependency on cache size 0.05 · CacheSize−0.4

Cache latency dependency on size 5.0 · CacheSize0.5 cycles
Off-chip memory latency 100 cycles

average value being 10%, which corresponds to the error

reported by the latency model [14].

However, what really matters for exploration are the relative,

rather than the absolute values of throughput. Indeed, when

exploring the huge design space we would like to effectively

prune suboptimal architectures and leave a moderate subset of

promising solutions. These configurations can be simulated

further to select the best one. Hence, we are interested in

comparing the order of configurations by the highest through-
put, as delivered by modeling and simulation. And here our

technique demonstrates very accurate results: Figure 6 shows

the comparison for the best-throughput order. To make the

picture illustrative, we limit to consider the 50 best config-

urations, however the explained tendency is maintained for

the whole set. The horizontal axis specifies the number N
of best configurations chosen by simulation. The vertical axis

indicates the minimum number of best configurations chosen

by modeling, that include all the N best ones by simulation.

For example, the point with coordinates (1; 2) means that the

best configuration by simulation (#937) has the second place in

modeling. Furthermore, the throughput of #937 is 30.81 IPC,

while the throughput of the best configuration by modeling

(#940) is 30.80 IPC, and is within our modeling tolerance.

The rightmost point on the plot (50; 64) means that the 64 best

configurations by modeling include all 50 best by simulation.

This is actually a very accurate result for the analytical model,

when comparing more than one thousand of configurations.

We also demonstrate that approximation by the static latency

delivers poor order. It biases the exploration towards the

configurations with large clusters, given the fact that the long

contention latency in the buses is not considered. The point

(1; 33) in Figure 6 means that the best configuration (#937)

is on the 33rd position, when not considering contention.

For comparison, we also checked a configuration similar

to #937, having the same number of cores and cache size,

but exploiting less locality by using a 12×15 mesh with one

core and one cache module per cluster. The throughput of this

configuration is 24.23 IPC, that is 21% less. This witnesses the

importance of the hierarchical fabrics exploration, effectively

using the locality of memory accesses.

D. Scalability of the modeling

To investigate the scalability of the analytical model, we

generated several CMPs with mesh-of-buses topology and

113

�������

�������

����	�

�������

�
������

�

��

��

��

��

��

��

	�

� �� �� �� �� �� ��

�
��
���
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
��
��
��
�

�� �������������������������������� �����������

��
������������������
���

��
�����������������
���

��
������
�����������������

Fig. 6: Order comparison for modeling and simulation.

similar structure. Each cluster contains four components (three

cores and one cache module) and a bus interconnect. The

top-level mesh dimensions are varied from 2×2 to 16×16,

producing CMPs with 16 to 1024 components. For each

test case we executed both fixed-point and bisection and

compared the average runtime value of these two methods

with simulation. Figure 7 shows the results of comparison.

Our probabilistic simulator demonstrates very good per-

formance. Simulation of the 16-component CMP takes just

2.5 seconds, and for the 1024-component CMP about 600

seconds. However, the modeling yet brings about three orders

of magnitude improvement in efficiency. For the 16- and 1024-

component CMPs modeling took only 0.002 seconds and 3.3

seconds respectively. In one second our method handles a

CMP with nearly 700 components. This result justifies high

scalability of the proposed method and its ability to efficiently

explore architectures with many hundreds of cores.

VII. CONCLUSIONS

Analytical models for CMP performance are crucial to make

the architectural exploration possible. This paper shows that

such models need to incorporate the contention factor in order

to adequately estimate performance. We have presented three

analytical methods to model the contention of hierarchical

interconnects, by resolving the cyclic dependency between the

memory latency and traffic. The validity and efficiency of the

model were proved through extensive simulation and with an

example of architectural exploration.

�����

����

���

�

��

���

����

� ��� ��� ��� ��� ��� 	��
�� ��� ��� ����

��
��
��

�	

�
��

�

��
�

������	
�	�
��
�����	��	���

���������

��������

��������	�
�
�

����
�������
�

Fig. 7: Performance comparison of modeling and simulation.

VIII. ACKNOWLEDGMENT

This research has been funded by a grant from Intel Corp.,

project CICYT TIN2007-66523, and FPI grant BES-2008-

004612.

REFERENCES

[1] D. Pham et al., “Overview of the architecture, circuit design, and
physical implementation of a first-generation cell processor,” Solid-State
Circuits, vol. 41, pp. 179–196, 2006.

[2] U. Nawathe et al., “An 8-core 64-thread 64b power-efficient SPARC
SoC,” in Solid-State Circuits, feb. 2007, pp. 108 –590.

[3] S. Bell et al., “TILE64 - processor: A 64-core SoC with mesh intercon-
nect,” in Solid-State Circuits, feb. 2008, pp. 88 –598.

[4] S. Vangal et al., “An 80-tile 1.28TFLOPS network-on-chip in 65nm
CMOS,” in Solid-State Circuits, feb. 2007, pp. 98 –589.

[5] J. Owens et al., “GPU computing,” Proceedings of the IEEE, vol. 96,
pp. 879 –899, may 2008.

[6] M. Taylor et al., “The Raw microprocessor: a computational fabric for
software circuits and general-purpose programs,” Micro, IEEE, vol. 22,
no. 2, pp. 25 – 35, mar/apr 2002.

[7] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip
networks,” in Proc. Intl. Conf. on Supercomputing, 2006, pp. 187–198.

[8] R. Das, S. Eachempati, A. Mishra, V. Narayanan, and C. Das, “Design
and evaluation of a hierarchical on-chip interconnect for next-generation
CMPs,” in High Performance Comp. Arch., feb. 2009, pp. 175 –186.

[9] T. Oh, H. Lee, K. Lee, and S. Cho, “An analytical model to study optimal
area breakdown between cores and caches in a chip multiprocessor,” in
ISVLSI ’09, may 2009, pp. 181 –186.

[10] A. Cassidy, K. Yu, H. Zhou, and A. Andreou, “A high-level analytical
model for application specific CMP design exploration,” in Design,
Automation Test in Europe, march 2011, pp. 1 –6.

[11] M. Monchiero, R. Canal, and A. Gonzalez, “Power/performance/thermal
design-space exploration for multicore architectures,” Parallel and Dis-
tributed Systems, vol. 19, no. 5, pp. 666 –681, may 2008.

[12] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP design
space exploration subject to physical constraints,” in High-Performance
Computer Architecture, feb. 2006, pp. 17 – 28.

[13] R. E. Matick, T. J. Heller, and M. Ignatowski, “Analytical analysis
of finite cache penalty and cycles per instruction of a multiprocessor
memory hierarchy using miss rates and queuing theory,” IBM J. Res.
Dev., vol. 45, pp. 819–842, November 2001.

[14] U. Ogras, P. Bogdan, and R. Marculescu, “An analytical approach
for network-on-chip performance analysis,” Computer-Aided Design of
Integrated Circuits and Systems, vol. 29, pp. 2001 –2013, dec. 2010.

[15] Y. Ben-Itzhak, I. Cidon, and A. Kolodny, “Delay analysis of wormhole
based heterogeneous NoC,” in NOCS’11, may 2011, pp. 161 –168.

[16] S. Foroutan, Y. Thonnart, R. Hersemeule, and A. Jerraya, “An analyt-
ical method for evaluating network-on-chip performance,” in Design,
Automation Test in Europe, march 2010, pp. 1629 –1632.

[17] P. Bogdan and R. Marculescu, “Non-stationary traffic analysis and its
implications on multicore platform design,” Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, pp. 508 –519, april 2011.

[18] A. Hartstein, V. Srinivasan, T. Puzak, and P. Emma, “On the nature of
cache miss behavior: is it square root of 2,” Journal of Instruction-Level
Parallelism, vol. 10, 2008.

[19] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers, Inc., 2003.

[20] A. R. Alameldeen, “Using compression to improve chip multiprocessor
performance,” Ph.D. dissertation, 2006.

[21] J. L. Hennessy and D. A. Patterson, Computer Architecture, 4th Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., 2006.

[22] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM Trans.
Comput. Syst., vol. 27, pp. 1–37, May 2009.

[23] “MATLAB,” http://www.mathworks.com.
[24] R. Burden and D. Faires, Numerical Analysis. Brooks Cole, 2010.
[25] L. Kleinrock, Queueing Systems, Volume 1. Wiley-Interscience, 1975.
[26] G. Wood, “The bisection method in higher dimensions,” Math. Program.,

vol. 55, June 1992.
[27] G. S. Fishman, “Grouping observations in digital simulation,” Manage-

ment Science, vol. 24, pp. 510–521, 1978.
[28] K. Olukotun, Chip Multiprocessor Architecture: Techniques to Improve

Throughput and Latency. Morgan and Claypool Publishers, 2007.

114

